Updates to the ACL2
Community Books

(Centaur Edition)
Sept. 2015-May 2017




Broad Categories

Mostly improvements on existing libraries

STD

SV and VL (hardware modeling)

FTY (type definitions)

Ipasir incremental SAT solver interface
Misc



std/util/define(s)

e defret/defret-mutual --theorems with return values already bound

(define foo-bar (x y z)
:returns (mv (foo) (bar))
/1]
(defret foo-preserves-natp
(implies (natp x) (natp foo))))

o More DRY; reduces amount of code to modify when adding a formal or return value
o :hints ((... :expand (<call>)))
o :rule-classes ((:forward-chaining :trigger-terms (foo0)))



std/util/define(s)

More:

e ret b*binder-- automatically bind return values by name
(define foo-bar (x y z)
:returns (mv (foo) (bar)) ... )

iB; (((ret fb) (foo-bar xy z)))
(list fb.foo fb.bar))

e Post-define hooks (not documented)
o (local (std::add-default-post-define-hook :fix)) for FTY



std/stobjs

Mostly moved from centaur/misc, not strictly new

e Def-1d-arr, def-2d-arr
e Defabsstobj-events (submit all events necessary for defabsstobj)
e Defstobj-clone (create congruent stobj)



FTY

e Generates xdoc documentation for type definitions

e Improved representation for memory efficiency in product types:
o (NIL.NIL) — NIL

e Bitstructs:
(defbitstruct mxcsr
(flags fp-flags-p)
(daz bitp)
(masks fp-flags-p) ..)
e Defvisitor - generates code to traverse a complicated type hierarchy, do
something to objects of certain types



SV and VL

Improved procedural statement support (break/continue/return)
Supports sequential cosim tests

Memory efficiency & performance improvements

SVTV state machine mode (experimental, see “sv/tutorial/counter.lisp”)



Ipasir incremental SAT interface

Standard interface to incremental SAT libraries
Logical story accurately (?) modeled by abstract stobj
Shared library interface (no writing out files)

Aignet integration



Miscellaneous

Ongoing library development:

e centaur/bitops
e aignet (added abc connection)

Others:

e Satlink: use LRAT checker to verify unsat proofs

e GL - new flex-bindings utility for complicated BDD variable orderings

e centaur/misc/bound-rewriter: utility for solving certain inequalities when
nonlinear arithmetic is too slow



Tracking Updates

(thanks Shilpi!)

Suggestion: Maintain book update notes as we go, in a common file
docs/book-changes.txt (?)

Somewhat less granular (but more detailed?) than commit messages

Incorporate into documentation (note-books-?.?) before releases



Updates to the ACL2
Community Books

(Kestrel Edition)
Sept. 2015-May 2017




Kestrel Books

All new since the ACL2-2015 Workshop:
e kestrel/abnf/: ABNF (Augmented Backus-Naur Form) formalization, verified
grammar parser, and grammar operations.
o Described in a rump talk at the ACL2-2017 Workshop.
e kestrel/soft/: SOFT (Second-Order Functions and Theorems), a macro

library to mimic second-order functions and theorems in ACL2.
o Described in a paper at the ACL2-2015 Workshop.
o A few updates since the paper, described in an XDOC topic.
e kestrel/utilities/: A collection of various utilities.
o Described in the following slides.
o Some contributed by Matt Kaufmann and Jared Davis.



General-Purpose, Logic-Mode Utilities

*-theorems.lisp: Theorems about things defined outside the Kestrel Books, e.qg.
lists, osets, terms.

characters.lisp: Functions and theorems on (lists of) characters.

strings.lisp: Functions and theorems on strings.

osets.lisp: Functions and theorems about osets and types osets.
symbol-*-alists.lisp: Typed alists defined via std::defalist.

nati.lisp: Fixtype for natural numbers plus infinity.

integers-from-to.lisp: Functions and theorems for lists/osets of integers from
min to max.

typed-tuples.lisp: Macro to recognize tuples with given component types.
maybe-msgp.lisp: Recognizer for msgp or nil.

maybe-unquote.lisp: Function to remove wrapping quote, if any.



Utilities for Worlds and Terms

e world-queries.lisp: Query properties of functions, macros, theorems, events,
and currently included books.

o defun-sk-queries.lisp: Recognize, and retrieve the constituents of, functions
that may have been introduced via defun-sk.

e defchoose-queries.lisp: Recognize, and retrieve the constituents of,
functions that have been introduced via defchoose.

e term-utilities.lisp: Recognizers, checkers, translators, and constructors for
terms and lambdas.

Meant to complement the built-in world and term utilities (topic system-utilities).



Utilities for Processing User Macro Inputs

e enumerations.lisp: Types of certain typical inputs.
e error-checking.lisp: Functions to check for erroneous conditions and

generate soft errors with informative and consistent messages.
o Mostly generated via a def-error-checker macro, also in that file.

e doublets.lisp: Function doublets-to-alist, inverse of built-in alist-to-doublets,
with inversion theorems.

e prove-interface.lisp: Programmatic interface to the prover, e.g. to prove
applicability conditions of program transformations, but more general.

e named-formulas.lisp: Manipulate named formulas, e.g. applicability
conditions of program transformations.



Utilities to Support Event Generation

e event-forms.lisp: Shallow recognizers of (lists of) event forms, and functions
to generate function or theorem introduction macro variants.

e install-not-norm-event.lisp: Generator of install-not-normalized event forms.

e fresh-names.lisp: Make a name new by appending $ signs as needed.

e numbered-names.lisp: Manage and generate names accompanied by
numeric indices, e.g. f{1}, f{2}, ...

e user-interface.lisp: Control the output generated on the screen.

e directed-untranslate.lisp: Untranslate a term in a way that resembles a
related given term, useful e.g. when transforming terms.

e minimize-ruler-extenders.lisp (1/2): Retrieve and manipulate ruler extenders.



Other Utilities (1)

e minimize-ruler-extenders.lisp (2/2): Minimize the ruler extenders of the
enclosed function definition.

e auto-termination.lisp: Attempt to prove the termination of the enclosed
function by finding a matching termination theorem in the ACL2 world.

e untranslate-preprocessing.lisp: Macro to update the untranslation
preprocessing function with a new constant to keep closed in screen output.

e testing.lisp: Macros to create tests, some based on must-succeed/fail.

e ubi.lisp: Undo history back to longest initial segment of include-book and
related commands.



Other Utilities (2)

define-sk.lisp: A define-like version of defun-sk, with extended formals etc.
defmacroq.lisp: Define a macro that quotes arguments not wrapped in :eval.
defthmr.lisp: Define a theorem as a rewrite rule if possible.
acceptable-rewrite-rule-p.lisp: Check if a proposed rewrite rule is acceptable.
copy-def.lisp: Make a copy of a function definition and prove it equivalent.
make-termination-theorem.lisp: Make a version of a function’s termination
theorem that calls stubs and thus is suitable for functional instantiation.
non-ascii-pathnames.lisp: Support for file names with character codes
above 255 (e.g. Unicode).

verify-guards-program.lisp: Ephemerally verify guards of program-mode
functions, useful for validation.



Remarks

e Some of the Kestrel Utilities could be moved to more central/fitting books.
o A few Kestrel additions to other books already exists.

e Coming soon: kestrel/apt/, with an initial subset of APT (Automated
Program Transformations), including the latest simplify-defun.

e The Kestrel Books are mostly based on the STD libraries.

e It would be nice to have more “unity” in some of the ACL2 Community
Books.



