
Updates to the ACL2
Community Books

(Centaur Edition)
Sept. 2015-May 2017

Broad Categories

Mostly improvements on existing libraries

● STD
● SV and VL (hardware modeling)
● FTY (type definitions)
● Ipasir incremental SAT solver interface
● Misc

std/util/define(s)

● defret/defret-mutual -- theorems with return values already bound

(define foo-bar (x y z)
 :returns (mv (foo) (bar))
 ...
 ///
 (defret foo-preserves-natp
 (implies (natp x) (natp foo))))

○ More DRY; reduces amount of code to modify when adding a formal or return value
○ :hints ((... :expand (<call>)))
○ :rule-classes ((:forward-chaining :trigger-terms (foo)))

std/util/define(s)

More:

● ret b* binder -- automatically bind return values by name
(define foo-bar (x y z)
 :returns (mv (foo) (bar)) ...)
...
(b* (((ret fb) (foo-bar x y z)))
 (list fb.foo fb.bar))

● Post-define hooks (not documented)

○ (local (std::add-default-post-define-hook :fix)) for FTY

std/stobjs

Mostly moved from centaur/misc, not strictly new

● Def-1d-arr, def-2d-arr
● Defabsstobj-events (submit all events necessary for defabsstobj)
● Defstobj-clone (create congruent stobj)

FTY

● Generates xdoc documentation for type definitions
● Improved representation for memory efficiency in product types:

○ (NIL . NIL) → NIL

● Bitstructs:
 (defbitstruct mxcsr
 (flags fp-flags-p)
 (daz bitp)
 (masks fp-flags-p) …)
● Defvisitor -- generates code to traverse a complicated type hierarchy, do

something to objects of certain types

SV and VL

● Improved procedural statement support (break/continue/return)
● Supports sequential cosim tests
● Memory efficiency & performance improvements
● SVTV state machine mode (experimental, see “sv/tutorial/counter.lisp”)

Ipasir incremental SAT interface

● Standard interface to incremental SAT libraries
● Logical story accurately (?) modeled by abstract stobj
● Shared library interface (no writing out files)
● Aignet integration

Miscellaneous

Ongoing library development:

● centaur/bitops
● aignet (added abc connection)

Others:

● Satlink: use LRAT checker to verify unsat proofs
● GL -- new flex-bindings utility for complicated BDD variable orderings
● centaur/misc/bound-rewriter: utility for solving certain inequalities when

nonlinear arithmetic is too slow

Tracking Updates

(thanks Shilpi!)

Suggestion: Maintain book update notes as we go, in a common file

docs/book-changes.txt (?)

Somewhat less granular (but more detailed?) than commit messages

Incorporate into documentation (note-books-?.?) before releases

Updates to the ACL2
Community Books

(Kestrel Edition)
Sept. 2015-May 2017

Kestrel Books

All new since the ACL2-2015 Workshop:
● kestrel/abnf/: ABNF (Augmented Backus-Naur Form) formalization, verified

grammar parser, and grammar operations.
○ Described in a rump talk at the ACL2-2017 Workshop.

● kestrel/soft/: SOFT (Second-Order Functions and Theorems), a macro
library to mimic second-order functions and theorems in ACL2.
○ Described in a paper at the ACL2-2015 Workshop.
○ A few updates since the paper, described in an XDOC topic.

● kestrel/utilities/: A collection of various utilities.
○ Described in the following slides.
○ Some contributed by Matt Kaufmann and Jared Davis.

General-Purpose, Logic-Mode Utilities
● *-theorems.lisp: Theorems about things defined outside the Kestrel Books, e.g.

lists, osets, terms.
● characters.lisp: Functions and theorems on (lists of) characters.
● strings.lisp: Functions and theorems on strings.
● osets.lisp: Functions and theorems about osets and types osets.
● symbol-*-alists.lisp: Typed alists defined via std::defalist.
● nati.lisp: Fixtype for natural numbers plus infinity.
● integers-from-to.lisp: Functions and theorems for lists/osets of integers from

min to max.
● typed-tuples.lisp: Macro to recognize tuples with given component types.
● maybe-msgp.lisp: Recognizer for msgp or nil.
● maybe-unquote.lisp: Function to remove wrapping quote, if any.

Utilities for Worlds and Terms

● world-queries.lisp: Query properties of functions, macros, theorems, events,
and currently included books.

● defun-sk-queries.lisp: Recognize, and retrieve the constituents of, functions
that may have been introduced via defun-sk.

● defchoose-queries.lisp: Recognize, and retrieve the constituents of,
functions that have been introduced via defchoose.

● term-utilities.lisp: Recognizers, checkers, translators, and constructors for
terms and lambdas.

Meant to complement the built-in world and term utilities (topic system-utilities).

Utilities for Processing User Macro Inputs

● enumerations.lisp: Types of certain typical inputs.
● error-checking.lisp: Functions to check for erroneous conditions and

generate soft errors with informative and consistent messages.
○ Mostly generated via a def-error-checker macro, also in that file.

● doublets.lisp: Function doublets-to-alist, inverse of built-in alist-to-doublets,
with inversion theorems.

● prove-interface.lisp: Programmatic interface to the prover, e.g. to prove
applicability conditions of program transformations, but more general.

● named-formulas.lisp: Manipulate named formulas, e.g. applicability
conditions of program transformations.

Utilities to Support Event Generation

● event-forms.lisp: Shallow recognizers of (lists of) event forms, and functions
to generate function or theorem introduction macro variants.

● install-not-norm-event.lisp: Generator of install-not-normalized event forms.
● fresh-names.lisp: Make a name new by appending $ signs as needed.
● numbered-names.lisp: Manage and generate names accompanied by

numeric indices, e.g. f{1}, f{2}, ...
● user-interface.lisp: Control the output generated on the screen.
● directed-untranslate.lisp: Untranslate a term in a way that resembles a

related given term, useful e.g. when transforming terms.
● minimize-ruler-extenders.lisp (1/2): Retrieve and manipulate ruler extenders.

Other Utilities (1)

● minimize-ruler-extenders.lisp (2/2): Minimize the ruler extenders of the
enclosed function definition.

● auto-termination.lisp: Attempt to prove the termination of the enclosed
function by finding a matching termination theorem in the ACL2 world.

● untranslate-preprocessing.lisp: Macro to update the untranslation
preprocessing function with a new constant to keep closed in screen output.

● testing.lisp: Macros to create tests, some based on must-succeed/fail.
● ubi.lisp: Undo history back to longest initial segment of include-book and

related commands.

Other Utilities (2)
● define-sk.lisp: A define-like version of defun-sk, with extended formals etc.
● defmacroq.lisp: Define a macro that quotes arguments not wrapped in :eval.
● defthmr.lisp: Define a theorem as a rewrite rule if possible.
● acceptable-rewrite-rule-p.lisp: Check if a proposed rewrite rule is acceptable.
● copy-def.lisp: Make a copy of a function definition and prove it equivalent.
● make-termination-theorem.lisp: Make a version of a function’s termination

theorem that calls stubs and thus is suitable for functional instantiation.
● non-ascii-pathnames.lisp: Support for file names with character codes

above 255 (e.g. Unicode).
● verify-guards-program.lisp: Ephemerally verify guards of program-mode

functions, useful for validation.

Remarks

● Some of the Kestrel Utilities could be moved to more central/fitting books.
○ A few Kestrel additions to other books already exists.

● Coming soon: kestrel/apt/, with an initial subset of APT (Automated
Program Transformations), including the latest simplify-defun.

● The Kestrel Books are mostly based on the STD libraries.
● It would be nice to have more “unity” in some of the ACL2 Community

Books.

