
What’s New in the Community Books
Since the ACL2-2017 Workshop

Cuong Chau9, Alessandro Coglio5, John Cowles10,
Jared Davis1, Andrew Gacek7, Ruben Gamboa10, Shilpi Goel3,

Mark Greenstreet8, David Greve7, Matt Kaufmann9,
Keshav Kini6, Carl Kwan8, Mihir Mehta9, J Moore9,
David Russinoff2, Julien Schmaltz4, Rob Sumners3,

Sol Swords3, Yan Peng8

1Apple, 2ARM, 3Centaur, 4Eindhoven Institute of Technology, 5Kestrel Institute,
6Oracle, 7Rockwell Collins, 8University of British Columbia,
9University of Texas at Austin, 10University of Wyoming

ACL2-2018 Workshop



New Libraries

build/ifdef.lisp: Defines ifdef and ifndef forms which test
environment variables; supported by the build system.

centaur/acre: New regular expression implementation supporting
features somewhat similar to Perl regexes.

centaur/bitops/sparseint.lisp: Library representing bignums
as balanced trees to efficiently support operations that preserve
large ranges of bits.

centaur/glmc: Interface to hardware model checkers.

centaur/truth: Integer-encoded truth table library.

coi/quantification/quantified-congruence.lisp: A library
for proving congruences about quantified formulae.

1 / 29



New Libraries

kestrel/apt: APT (Automated Program Transformations), a
toolkit to transform programs and program specifications with
automated support.

I Includes two of Kestrel’s ∼40 transformations.

I Also includes some utilities used across transformations.

I More forthcoming.

kestrel/auto-termination: defunt is a variant of defun that
can prove termination using previously-proved termination
theorems from a large set of community books, as described in the
paper DefunT: A Tool for Automating Termination Proofs by
Using the Community Books at this workshop.

2 / 29



New Libraries

kestrel/bitcoin: A (small start towards a) library for the Bitcoin
cryptocurrency and ecosystem.

I Executable specification of Base58 encoding and decoding.

I Executable specification of Base58Check encoding.

kestrel/ethereum: A library for the Ethereum cryptocurrency and
ecosystem.

I Executable specification of RLP (Recursive Length Prefix)
encoding; declarative specification of RLP decoding.

I Executable specification of hex-prefix encoding.

I Kestrel is actively working on this.

3 / 29



New Libraries

kestrel/java: A library for Java.

I AIJ (ACL2 In Java), a deep embedding of ACL2 in Java.

I ATJ (ACL2 To Java), a Java code generator for ACL2.

I These are described in the paper A Simple Java Code
Generator for ACL2 Based on a Deep Embedding of ACL2 in
Java at this Workshop.

4 / 29



New Libraries

kestrel/utilities/apply-fn-if-known.lisp: Apply a function,
expressed as a package and a name, if it exists.

kestrel/utilities/auto-instance.lisp: defthm<w will attempt
to prove a theorem directly from previously-proved theorems by
generating suitable hints, using previous-subsumer-hints.

kestrel/utilities/digits-any-base: Conversions between
natural numbers and their representations in arbitrary bases.

I Big and little endian.

I Minimal, minimal non-zero, or specified length.

I Several theorems, e.g. about inversions.

5 / 29



New Libraries

kestrel/utilities/er-soft-plus.lisp: The logic-mode utilities
er-soft+ and er-soft-logic produce soft errors with specified
error triples.

kestrel/utilities/fixbytes: Fixtypes for unsigned and signed
bytes, and true lists thereof.

I Macros to create fixtypes and theorems for a specified size.
The size may be a constrained nullary function, e.g. useful to
formalize C bytes.

I Several instances available; just include the respective file(s).

I These are candidate extensions of the fty library.

kestrel/utilities/include-book-paths.lisp: List paths via
include-book down to a given book; may be useful for reducing
book dependencies.

6 / 29



New Libraries

kestrel/utilities/integer-range-*.lisp: Utilities related to
integer-range-p.

I Parameterized recognizer integer-range-listp.

I Parameterized fixers integer-range-fix and
integer-range-list-fix.

I Several theorems.

kestrel/utilities/magic-macroexpand.lisp: Logic-mode
macroexpansion.

kestrel/utilities/messages.lisp: A few utilities for msgp
values, e.g. to convert the first character to upper/lower case.

kestrel/utilities/orelse.lisp: Try one event, then a second
one if the first fails.

7 / 29



New Libraries

kestrel/utilities/proof-builder-macros.lisp: A book that
defines some proof-builder macros. Current contents include
definitions of:

I when-not-proved to skip instructions when all goals have
been proved;

I prove-guard and prove-termination, for using
previously-proved guard or termination theorems efficiently;
and

I a more general macro, fancy-use, for using lemma instances
efficiently.

8 / 29



New Libraries

kestrel/utilities/skip-in-book.lisp: The utility,
skip-in-book, wraps around a form to prevent its evaluation
during book certification or inclusion.

kestrel/utilities/symbols.lisp: Some utilities for symbols.

I These could become a new std/symbols library.

kestrel/utilities/system/paired-names.lisp: Utilities for
names consisting of two parts with a customizable separator in
between. (Used by APT, but more general.)

kestrel/utilities/untranslate-preprocessing.lisp: A
macro add-const-to-untranslate-preprocess to keep a named
constant unexpanded in the screen output.

9 / 29



New Libraries

kestrel/utilities/xdoc: XDOCumentation utilities.

I Constructors of well-tagged XDOC strings, e.g.

(xdoc::p "This is a paragraph.")
(xdoc::ul
(xdoc::li "First unordered item.")
(xdoc::li "Second unordered item."))

I defxdoc+ extends defxdoc with :order-subtopics t/nil
and :default-parent t/nil.

I These are candidate extensions of the xdoc library.

10 / 29



New Libraries

projects/arm: Proofs of correctness of some floating-point
operations, as implemented in the FPU of an Arm Cortex-A class
high-end processor.

projects/async/tools/convert-edif.lisp: Convert between
EDIF format and a convenient s-expression format.

projects/avr-isa: Formal model of the ISA of the AVR 8-bit
controller.

I Supports a paper at the ACL2-2013 Workshop; see comments
in the file avr8 isa.lisp.

projects/irv: Formalization of an instant-runoff voting scheme,
described in a rump talk at this Workshop.

11 / 29



New Libraries

projects/pltpa: An ACL2 Implementation of the Edinburgh Pure
Lisp Theorem Prover of 1973.

projects/rac: A translator from RAC (Restricted Algorithmic C)
to ACL2.

I Replaces projects/masc.

projects/sat/zz-resolution-checker: An early SAT
proof-checker from 2011 based on resolution (see README).

12 / 29



New Libraries

std/io/open-channels.lisp: Lemmas about how open channels
are affected or unaffected by various state-modifying functions.

std/stobjs/updater-independence.lisp: Utility for defining
stobj and stobj-like accessor/updater independence theorems.

std/util/termhints.lisp: Hint utility described in the paper
Hint Orchestration Using ACL2’s Simplifier at this Workshop.

tools/run-script.lisp: This utility supports testing of
evaluation of the forms in a given file, to check that the output is
as expected. Several community books utilize it.

workshops/2018: Supporting materials for some of the papers at
this Workshop. The supporting materials for other papers at this
Workshop are elsewhere, not under this directory.

13 / 29



Improved Libraries

centaur/aignet: And-Inverter Graph (AIG) representation for
Boolean functions and finite-state machines.

I New verified AIGNET transforms including FRAIGing,
DAG-aware balancing and rewriting.

I AIGNET natively supports XORs, i.e. represents them using
one node instead of three.

centaur/bitops/rotate.lisp: Bit-vector rotation libraries.

I Generalized existing theorems and added a new theorem for
compositions of rotate-left operations, as well as a theorem
for compositions of rotate-right operations.

I To do: Add theorems for compositions of rotate-left and
rotate-right with each other.

14 / 29



Improved Libraries

centaur/fty/bitstruct: Define a bit vector type with
accessor/updater functions for its fields.

I The :exec part of the mbe in accessor and updater functions
now has efficient, heavily type-declared code that avoids
bignum operations whenever possible.

I Accessor and updater functions can now be inlined.

centaur/gl: Symbolic simulation framework for solving finite
theorems.

I Add hooks in GL to allow calling AIGNET transforms before
SAT.

I Improve GL counterexample generation for term-level
reasoning.

I Added accumulated-persistence-like rule profiling.

15 / 29



Improved Libraries

centaur/sv: Hardware verification library with vector-based
expression representation.

I Many SV/SVEX algorithms are now based on sparseints so
that they scale when dealing with variables thousands/millions
of bits in size.

centaur/vl: Library for SystemVerilog and regular Verilog.

I Add new SystemVerilog lint check based on accurately
determining used/set ranges of vectors.

16 / 29



Improved Libraries

coi/generalize/generalize.lisp: A library that generalizes
terms that appear as arguments to the function
(gensym::generalize term).

I Now supports one-step generalization of multiple terms.

coi/nary/nary.lisp: A library supporting parametrized
equivalence relations and related congruences.

I Improved support for non-traditional congruences involving
implications rather than equalities.

coi/util/deffix.lisp: Given an equivalence relation, the macro
def::fix witnesses an appropriate fixing function.

I Added support for witnessing fixing functions that preserve
(fix) a type.

17 / 29



Improved Libraries

kestrel/soft: SOFT (Second-Order Functions and Theorems),
macros to mimic second-order functions and theorems.

I Added full support for defun-sk2.

I Improved user interface.

kestrel/utilities/...: Started refactoring some of these
utilities to reduce book dependencies.

kestrel/utilities/copy-def.lisp: Made improvements: better
handling of mutual-recursion and of the :equiv argument, and
generated :expand hint for better handling of recursion.

kestrel/utilities/directed-untranslate.lisp: Made several
improvements to directed-untranslate, in particular for let,
let*, mv, mv-let, and b*, including enhanced executability of the
result.

18 / 29



Improved Libraries

kestrel/utilities/error-checking.lisp: Utilities to check
error conditions and return customizable error messages.

I Improved the def-error-checker macro, e.g. to support
logic-mode error-checking functions.

I Added several error-checking functions.

kestrel/utilities/osets.lisp: Utilities for osets.

I Added a fixtype for osets.

I These are candidate extensions of the std/osets library.

kestrel/utilities/strings: String manipulation libraries.

I Added several new rewrite rules.

19 / 29



Improved Libraries

kestrel/utilities/system/defun-sk-queries.lisp: Utilities
to query defun-sk functions.

I Added support for the recently added :constrain option.

I These could become part of a new std/system library.

kestrel/utilities/system/terms.lisp: Utilities to manipulate
terms.

I Added and improved several utilities.

I Moved some utilities to a separate file
term-function-recognizers.lisp.

I These could become part of a new std/system library.

20 / 29



Improved Libraries

kestrel/utilities/system/world-queries.lisp: Utilities to
query worlds.

I Added and improved several utilities.

I There are two variants for most of these utilities: a “fast” one
and a “logic-friendly” one (see documentation for details).

I These could become part of a new std/system library.

kestrel/utilities/user-interface.lisp: Utilities for
customizing screen output of user-defined events.

I Added several utilities.

21 / 29



Improved Libraries

misc/assert.lisp & misc/eval.lisp: Testing utilities.

I Added some utilities moved from
kestrel/utilities/testing.lisp.

I Added some XDOCumentation.

I Renamed some utilities for greater uniformity (deprecated the
old names).

I Reduced book dependencies.

misc/expander.lisp: The expander has been improved in several
ways.

22 / 29



Improved Libraries

misc/install-not-normalized.lisp: Improved
install-not-normalized to handle cases in which
recursively-defined functions have non-recursive normalized
definitions.

misc/profiling.lisp: Profiling fixes for recent distributions of
CCL.

projects/apply & projects/apply-model: Updated books
pertaining to apply$.

23 / 29



Improved Libraries

projects/async: ASYNC, the framework for modeling and
verifying the functional correctness of asynchronous (self-timed)
circuit models.

I Developed a new compositional methodology for scalable
formal verification of functional properties of self-timed circuit
designs.

I Verified the functional correctness of data-loop-free self-timed
circuits (see fifo/).

I Verified the functional correctness of a self-timed serial
adder/subtractor model (see serial-adder/).

I Verified the functional correctness of iterative self-timed
circuit models that compute the greatest-common-divisor
(GCD) (see gcd/).

I Verified the functional correctness of self-timed circuits
performing arbitrated merge operations (see arbitration/).

24 / 29



Improved Libraries

projects/filesystems: Formal models of filesystems.

I M1 and M2, new filesystem models for FAT32, described in the
paper Formalising Filesystems in the ACL2 Theorem Prover:
an Application to FAT32 at this Workshop.

projects/sat/lrat: SAT proof-checker extensions (improved
theorem, extension to cube-and-conquer; see README).

projects/smtlink: Smtlink, a framework for integrating external
SMT solvers into ACL2.

I Smtlink has experienced great architecture refactoring and
was moved from workshop/2015/peng-greenstreet to
projects/smtlink, as described in the paper Smtlink 2.0 at
this Workshop.

I Developed new XDOC documentation.

I Added more toy examples and a ring oscillator proof example.

25 / 29



Improved Libraries

projects/x86isa: X86ISA, the formal model of the x86 ISA.

I Added support for 32-bit mode; see the paper Adding 32-bit Mode
to the ACL2 Model of the x86 ISA at this Workshop.

I Improved and extended some documentation.

I The model’s modes are now called “views” to avoid overloading the
word “mode”, which refers to an x86 processor’s own modes of
operation.

I Opcode dispatch functions and coverage data are generated from
annotated opcode maps, which are taken from the Intel manuals.

I Added support for decoding VEX- and EVEX-encoded instructions
(AVX/AVX2/AVX512).

I Decode-time exceptions are detected during opcode dispatch now,
as opposed to inside individual instruction semantic functions.

I Added support for enabling/disabling machine features that depend
on CPUID feature flags.

I Codewalker can now be used to reason about x86 programs.

26 / 29



Improved Libraries

rtl: The register-transfer logic library.

I Added an improved version of SRT division and square root.

I The old version was moved to projects/srt.

std/io/combine.lisp: Byte-combining libraries.

I Added invertibility theorems for combine16u and combine32u.

I To do: make these invertibility theorems compatible with
part-select.

I To do: prove similar theorems for combine64u as well as for
the signed-integer functions, combine16s et al.

27 / 29



Improved Libraries

tools/flag.lisp: The new keyword argument :last-body of
make-flag specifies use of the most recent definition rule.

tools/include-raw.lisp: Fixed an issue with option
:do-not-compile t by extending “fns-with-raw-code” state
globals.

tools/removable-runes.lisp: Improved removable-runes and
added related utility, minimal-runes, which returns a list of runes
to enable that is sufficient for admitting a given event.

28 / 29



Additional Contributions

workshops/references: BibTeX references for all the ACL2
Workshop papers, and a LaTeX document that shows them.

xdoc/fancy/lib/katex: KaTeX, a JavaScript library for TeX
math rendering on the web, has been updated to version 0.8.3.

Developers Guide: The topic developers-guide is, together
with its subtopics, actually a manual for ACL2 development. It is
intended for experienced ACL2 users who may wish to become
ACL2 developers.

29 / 29


