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New Libraries

build/ifdef.lisp: Defines ifdef and ifndef forms which test
environment variables; supported by the build system.

centaur/acre: New regular expression implementation supporting
features somewhat similar to Perl regexes.

centaur/bitops/sparseint.lisp: Library representing bignums
as balanced trees to efficiently support operations that preserve
large ranges of bits.

centaur/glmc: Interface to hardware model checkers.

centaur/truth: Integer-encoded truth table library.

coi/quantification/quantified-congruence.lisp: A library
for proving congruences about quantified formulae.
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New Libraries

kestrel/apt: APT (Automated Program Transformations), a
toolkit to transform programs and program specifications with
automated support.

I Includes two of Kestrel’s ∼40 transformations.

I Also includes some utilities used across transformations.

I More forthcoming.

kestrel/auto-termination: defunt is a variant of defun that
can prove termination using previously-proved termination
theorems from a large set of community books, as described in the
paper DefunT: A Tool for Automating Termination Proofs by
Using the Community Books at this workshop.
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New Libraries

kestrel/bitcoin: A (small start towards a) library for the Bitcoin
cryptocurrency and ecosystem.

I Executable specification of Base58 encoding and decoding.

I Executable specification of Base58Check encoding.

kestrel/ethereum: A library for the Ethereum cryptocurrency and
ecosystem.

I Executable specification of RLP (Recursive Length Prefix)
encoding; declarative specification of RLP decoding.

I Executable specification of hex-prefix encoding.

I Kestrel is actively working on this.
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New Libraries

kestrel/java: A library for Java.

I AIJ (ACL2 In Java), a deep embedding of ACL2 in Java.

I ATJ (ACL2 To Java), a Java code generator for ACL2.

I These are described in the paper A Simple Java Code
Generator for ACL2 Based on a Deep Embedding of ACL2 in
Java at this Workshop.
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New Libraries

kestrel/utilities/apply-fn-if-known.lisp: Apply a function,
expressed as a package and a name, if it exists.

kestrel/utilities/auto-instance.lisp: defthm<w will attempt
to prove a theorem directly from previously-proved theorems by
generating suitable hints, using previous-subsumer-hints.

kestrel/utilities/digits-any-base: Conversions between
natural numbers and their representations in arbitrary bases.

I Big and little endian.

I Minimal, minimal non-zero, or specified length.

I Several theorems, e.g. about inversions.

5 / 29



New Libraries

kestrel/utilities/er-soft-plus.lisp: The logic-mode utilities
er-soft+ and er-soft-logic produce soft errors with specified
error triples.

kestrel/utilities/fixbytes: Fixtypes for unsigned and signed
bytes, and true lists thereof.

I Macros to create fixtypes and theorems for a specified size.
The size may be a constrained nullary function, e.g. useful to
formalize C bytes.

I Several instances available; just include the respective file(s).

I These are candidate extensions of the fty library.

kestrel/utilities/include-book-paths.lisp: List paths via
include-book down to a given book; may be useful for reducing
book dependencies.
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New Libraries

kestrel/utilities/integer-range-*.lisp: Utilities related to
integer-range-p.

I Parameterized recognizer integer-range-listp.

I Parameterized fixers integer-range-fix and
integer-range-list-fix.

I Several theorems.

kestrel/utilities/magic-macroexpand.lisp: Logic-mode
macroexpansion.

kestrel/utilities/messages.lisp: A few utilities for msgp
values, e.g. to convert the first character to upper/lower case.

kestrel/utilities/orelse.lisp: Try one event, then a second
one if the first fails.
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New Libraries

kestrel/utilities/proof-builder-macros.lisp: A book that
defines some proof-builder macros. Current contents include
definitions of:

I when-not-proved to skip instructions when all goals have
been proved;

I prove-guard and prove-termination, for using
previously-proved guard or termination theorems efficiently;
and

I a more general macro, fancy-use, for using lemma instances
efficiently.
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New Libraries

kestrel/utilities/skip-in-book.lisp: The utility,
skip-in-book, wraps around a form to prevent its evaluation
during book certification or inclusion.

kestrel/utilities/symbols.lisp: Some utilities for symbols.

I These could become a new std/symbols library.

kestrel/utilities/system/paired-names.lisp: Utilities for
names consisting of two parts with a customizable separator in
between. (Used by APT, but more general.)

kestrel/utilities/untranslate-preprocessing.lisp: A
macro add-const-to-untranslate-preprocess to keep a named
constant unexpanded in the screen output.
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New Libraries

kestrel/utilities/xdoc: XDOCumentation utilities.

I Constructors of well-tagged XDOC strings, e.g.

(xdoc::p "This is a paragraph.")
(xdoc::ul
(xdoc::li "First unordered item.")
(xdoc::li "Second unordered item."))

I defxdoc+ extends defxdoc with :order-subtopics t/nil
and :default-parent t/nil.

I These are candidate extensions of the xdoc library.
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New Libraries

projects/arm: Proofs of correctness of some floating-point
operations, as implemented in the FPU of an Arm Cortex-A class
high-end processor.

projects/async/tools/convert-edif.lisp: Convert between
EDIF format and a convenient s-expression format.

projects/avr-isa: Formal model of the ISA of the AVR 8-bit
controller.

I Supports a paper at the ACL2-2013 Workshop; see comments
in the file avr8 isa.lisp.

projects/irv: Formalization of an instant-runoff voting scheme,
described in a rump talk at this Workshop.
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New Libraries

projects/pltpa: An ACL2 Implementation of the Edinburgh Pure
Lisp Theorem Prover of 1973.

projects/rac: A translator from RAC (Restricted Algorithmic C)
to ACL2.

I Replaces projects/masc.

projects/sat/zz-resolution-checker: An early SAT
proof-checker from 2011 based on resolution (see README).
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New Libraries

std/io/open-channels.lisp: Lemmas about how open channels
are affected or unaffected by various state-modifying functions.

std/stobjs/updater-independence.lisp: Utility for defining
stobj and stobj-like accessor/updater independence theorems.

std/util/termhints.lisp: Hint utility described in the paper
Hint Orchestration Using ACL2’s Simplifier at this Workshop.

tools/run-script.lisp: This utility supports testing of
evaluation of the forms in a given file, to check that the output is
as expected. Several community books utilize it.

workshops/2018: Supporting materials for some of the papers at
this Workshop. The supporting materials for other papers at this
Workshop are elsewhere, not under this directory.
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Improved Libraries

centaur/aignet: And-Inverter Graph (AIG) representation for
Boolean functions and finite-state machines.

I New verified AIGNET transforms including FRAIGing,
DAG-aware balancing and rewriting.

I AIGNET natively supports XORs, i.e. represents them using
one node instead of three.

centaur/bitops/rotate.lisp: Bit-vector rotation libraries.

I Generalized existing theorems and added a new theorem for
compositions of rotate-left operations, as well as a theorem
for compositions of rotate-right operations.

I To do: Add theorems for compositions of rotate-left and
rotate-right with each other.
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Improved Libraries

centaur/fty/bitstruct: Define a bit vector type with
accessor/updater functions for its fields.

I The :exec part of the mbe in accessor and updater functions
now has efficient, heavily type-declared code that avoids
bignum operations whenever possible.

I Accessor and updater functions can now be inlined.

centaur/gl: Symbolic simulation framework for solving finite
theorems.

I Add hooks in GL to allow calling AIGNET transforms before
SAT.

I Improve GL counterexample generation for term-level
reasoning.

I Added accumulated-persistence-like rule profiling.
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Improved Libraries

centaur/sv: Hardware verification library with vector-based
expression representation.

I Many SV/SVEX algorithms are now based on sparseints so
that they scale when dealing with variables thousands/millions
of bits in size.

centaur/vl: Library for SystemVerilog and regular Verilog.

I Add new SystemVerilog lint check based on accurately
determining used/set ranges of vectors.
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Improved Libraries

coi/generalize/generalize.lisp: A library that generalizes
terms that appear as arguments to the function
(gensym::generalize term).

I Now supports one-step generalization of multiple terms.

coi/nary/nary.lisp: A library supporting parametrized
equivalence relations and related congruences.

I Improved support for non-traditional congruences involving
implications rather than equalities.

coi/util/deffix.lisp: Given an equivalence relation, the macro
def::fix witnesses an appropriate fixing function.

I Added support for witnessing fixing functions that preserve
(fix) a type.
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Improved Libraries

kestrel/soft: SOFT (Second-Order Functions and Theorems),
macros to mimic second-order functions and theorems.

I Added full support for defun-sk2.

I Improved user interface.

kestrel/utilities/...: Started refactoring some of these
utilities to reduce book dependencies.

kestrel/utilities/copy-def.lisp: Made improvements: better
handling of mutual-recursion and of the :equiv argument, and
generated :expand hint for better handling of recursion.

kestrel/utilities/directed-untranslate.lisp: Made several
improvements to directed-untranslate, in particular for let,
let*, mv, mv-let, and b*, including enhanced executability of the
result.
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Improved Libraries

kestrel/utilities/error-checking.lisp: Utilities to check
error conditions and return customizable error messages.

I Improved the def-error-checker macro, e.g. to support
logic-mode error-checking functions.

I Added several error-checking functions.

kestrel/utilities/osets.lisp: Utilities for osets.

I Added a fixtype for osets.

I These are candidate extensions of the std/osets library.

kestrel/utilities/strings: String manipulation libraries.

I Added several new rewrite rules.
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Improved Libraries

kestrel/utilities/system/defun-sk-queries.lisp: Utilities
to query defun-sk functions.

I Added support for the recently added :constrain option.

I These could become part of a new std/system library.

kestrel/utilities/system/terms.lisp: Utilities to manipulate
terms.

I Added and improved several utilities.

I Moved some utilities to a separate file
term-function-recognizers.lisp.

I These could become part of a new std/system library.

20 / 29



Improved Libraries

kestrel/utilities/system/world-queries.lisp: Utilities to
query worlds.

I Added and improved several utilities.

I There are two variants for most of these utilities: a “fast” one
and a “logic-friendly” one (see documentation for details).

I These could become part of a new std/system library.

kestrel/utilities/user-interface.lisp: Utilities for
customizing screen output of user-defined events.

I Added several utilities.
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Improved Libraries

misc/assert.lisp & misc/eval.lisp: Testing utilities.

I Added some utilities moved from
kestrel/utilities/testing.lisp.

I Added some XDOCumentation.

I Renamed some utilities for greater uniformity (deprecated the
old names).

I Reduced book dependencies.

misc/expander.lisp: The expander has been improved in several
ways.
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Improved Libraries

misc/install-not-normalized.lisp: Improved
install-not-normalized to handle cases in which
recursively-defined functions have non-recursive normalized
definitions.

misc/profiling.lisp: Profiling fixes for recent distributions of
CCL.

projects/apply & projects/apply-model: Updated books
pertaining to apply$.

23 / 29



Improved Libraries

projects/async: ASYNC, the framework for modeling and
verifying the functional correctness of asynchronous (self-timed)
circuit models.

I Developed a new compositional methodology for scalable
formal verification of functional properties of self-timed circuit
designs.

I Verified the functional correctness of data-loop-free self-timed
circuits (see fifo/).

I Verified the functional correctness of a self-timed serial
adder/subtractor model (see serial-adder/).

I Verified the functional correctness of iterative self-timed
circuit models that compute the greatest-common-divisor
(GCD) (see gcd/).

I Verified the functional correctness of self-timed circuits
performing arbitrated merge operations (see arbitration/).
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Improved Libraries

projects/filesystems: Formal models of filesystems.

I M1 and M2, new filesystem models for FAT32, described in the
paper Formalising Filesystems in the ACL2 Theorem Prover:
an Application to FAT32 at this Workshop.

projects/sat/lrat: SAT proof-checker extensions (improved
theorem, extension to cube-and-conquer; see README).

projects/smtlink: Smtlink, a framework for integrating external
SMT solvers into ACL2.

I Smtlink has experienced great architecture refactoring and
was moved from workshop/2015/peng-greenstreet to
projects/smtlink, as described in the paper Smtlink 2.0 at
this Workshop.

I Developed new XDOC documentation.

I Added more toy examples and a ring oscillator proof example.
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Improved Libraries

projects/x86isa: X86ISA, the formal model of the x86 ISA.

I Added support for 32-bit mode; see the paper Adding 32-bit Mode
to the ACL2 Model of the x86 ISA at this Workshop.

I Improved and extended some documentation.

I The model’s modes are now called “views” to avoid overloading the
word “mode”, which refers to an x86 processor’s own modes of
operation.

I Opcode dispatch functions and coverage data are generated from
annotated opcode maps, which are taken from the Intel manuals.

I Added support for decoding VEX- and EVEX-encoded instructions
(AVX/AVX2/AVX512).

I Decode-time exceptions are detected during opcode dispatch now,
as opposed to inside individual instruction semantic functions.

I Added support for enabling/disabling machine features that depend
on CPUID feature flags.

I Codewalker can now be used to reason about x86 programs.
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Improved Libraries

rtl: The register-transfer logic library.

I Added an improved version of SRT division and square root.

I The old version was moved to projects/srt.

std/io/combine.lisp: Byte-combining libraries.

I Added invertibility theorems for combine16u and combine32u.

I To do: make these invertibility theorems compatible with
part-select.

I To do: prove similar theorems for combine64u as well as for
the signed-integer functions, combine16s et al.
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Improved Libraries

tools/flag.lisp: The new keyword argument :last-body of
make-flag specifies use of the most recent definition rule.

tools/include-raw.lisp: Fixed an issue with option
:do-not-compile t by extending “fns-with-raw-code” state
globals.

tools/removable-runes.lisp: Improved removable-runes and
added related utility, minimal-runes, which returns a list of runes
to enable that is sufficient for admitting a given event.
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Additional Contributions

workshops/references: BibTeX references for all the ACL2
Workshop papers, and a LaTeX document that shows them.

xdoc/fancy/lib/katex: KaTeX, a JavaScript library for TeX
math rendering on the web, has been updated to version 0.8.3.

Developers Guide: The topic developers-guide is, together
with its subtopics, actually a manual for ACL2 development. It is
intended for experienced ACL2 users who may wish to become
ACL2 developers.
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