
Alessandro Coglio
 Shilpi Goel

Adding 32-bit Mode
to the ACL2 Model

of the x86 ISA

Kestrel

Technology

Centaur

Technology

Workshop 2018

IA-32e Mode

larger addresses and operands,
simplified memory management

x86 Modes of Operation

power on

or reset

Real-Address
Mode

no memory management,
limited address space

Protected

Mode

memory management,
privilege levels,
‘32-bit mode’

Virtual-8086

Mode

emulates real-address mode,
very legacy

Compatibility

(Sub-)Mode

64-bit
(Sub-)Mode

emulates 32-bit mode

from/to all the other modes

System Management

Mode

run firmware for special uses

Memory Management

Linear AddressSegment

Selector

Logical Address

Effective

Address

Physical Address
Segmentation Paging

instructions use
logical addresses

the bus uses
physical addresses

Segmentation

Segment
Selector

Effective
Address

Logical Address

Descriptor

Tablepoints to the base

of the descriptor
table

Global or Local

Descriptor Table Register

table_indicator(selector) points
to the appropriate register

machine registers
CS (default), SS,

DS, ES, FS, and GS

Hidden
Part

cached part of the
selector holding
information from

the corresponding
descriptor

Segment

points to the base
of the segment

index(selector)
points to the
descriptor

Segment
Descriptor

points to the
address inside
the segment

Linear
Address

Linear AddressSegment

Selector

Logical Address

Effective

Address

Physical Address
Segmentation Paging

Memory Management

instructions use
logical addresses

the bus uses
physical addresses

IA-32e Paging (4K Pages)

4K Page

CR3

Linear Address

PML4E

PML4

PDPTE

Dir. Ptr.

PDE

Dir.

PTE

Table

Physical Address

Offset

control register CR3
points to the base
of the first paging

data structure

first few bits of
linear address

point to an entry,
PML4E, in this

structure

PML4E points to
the next structure
in the hierarchy

and so on…

the last entry
points to the

base of a page

offset points to
the address

inside the page

Memory Management

Linear AddressSegment

Selector

Logical Address

Effective

Address

Physical Address
Segmentation Paging

32-bit mode uses full segmentation and paging
(with different paging modes than the one shown)

64-bit mode uses full paging (the one shown),
but very limited segmentation (just FS and GS)visible to system code

and to application code

visible to system code
but not to application code

X86ISA: The ACL2 Formal
Model of the x86 ISA

• Number of instructions: 413 (e.g., arithmetic, floating-
point, control-flow, some system-mode opcodes).

- See :doc x86isa::implemented-opcodes.

• Simulation speed in instructions/second:

- Application programs: ~3.3 million.

- System programs: ~320,000 (with 1G paging).

• Some 64-bit programs verified using X86ISA:

- Application programs: bit count, word count, array copy.

- System program: zero copy.

All measurements done on an Intel Xeon E31280 CPU @ 3.50GHz with 32GB RAM.

x86 state
(stobj)

X86ISA: Overview
regs

flags

byte-addressable

mem

interface to
the x86 state

(run n x86)

…
instruction
semantic
functions

ADD SUB MUL MOV PUSH POP…

(step x86)
fetch, decode, &

execute one
instruction

rb wbxr xw
x86 read x86 write read mem bytes write mem bytes

model-specific

fields

view
ms

env

X86ISA: Views
Application View System View

• Lowest level of memory address:
linear address.

- User-level segmentation visible.

Access only to segment selector
and its hidden part; none to
segmentation data structures.

- Paging abstracted away.

• Suitable level of abstraction for

verification of application programs.

• Lowest level of memory address:
physical address.

- Full access to segmentation
and paging data structures.

• Necessary level of operation for
verification of system programs.

Linear AddressSegment

Selector

Logical Address

Effective

Address

Physical Address
Segmentation Paging

Modes of Operation of the Model (NOT of the Processor)

Coverage of the Model

IA-32e Mode

Real-Address
Mode

Protected
(32-bit) Mode

Virtual-8086

Mode

Compatibility

(Sub-)Mode

64-bit
(Sub-)Mode

System Management

Mode

before the work
in this paper

after the work in this paper
(application view only in

32-bit mode: no paging yet)
(no floating point instructions

in 32-bit more yet either)

Challenges of Extending the
Model to 32-bit Mode

• Much more than generalizing the sizes of operands and
addresses manipulated by instructions.

• Memory accesses are more complicated in 32-bit mode.

• Add full (application-visible) segmentation.

• Make small, incremental changes.

• Keep all existing proofs working — guards, return types,
64-bit programs.

they had to be separated
in the 64/32-bit model

Distinguish between Effective
and Linear Addresses

Linear AddressSegment

Selector

Logical Address

Effective

Address Physical Address

Segmentation Paging

they were essentially the same in the 64-bit model
(except for adding FS/GS.base as needed)

Add Mode Discrimination
64-bit model 64/32-bit model

(defun 64-bit-modep (x86)
 t)

predicate to check whether
the current mode is 64-bit
(always true, rarely called)

(defun 64-bit-modep (x86)
 ;; return T iff
 ;; IA32_EFER.LMA = 1
 ;; and CS.D = 1
)

modify definition to check for
IA-32e mode (1st condition) and
64-bit sub-mode (2nd condition)

IA-32e Mode

Real-Address
Mode

Protected
(32-bit) Mode

Compatibility

(Sub-)Mode

64-bit
(Sub-)Mode

Add Temporary Wrappers in
Top-Level Instruction Dispatch

64-bit model 64/32-bit model

;; fetch and decode...
;; dispatch:
(case opcode
 (#x00 (execute-00 x86))
 (#x01 (execute-01 x86))
 ...)

simplified version
of the actual code

;; fetch and decode...
;; dispatch:
(case opcode
 (#x00 (if (64-bit-modep x86)
 (execute-00 x86)
 <throw-error>)
 (#x01 (if (64-bit-modep x86)
 (execute-01 x86)
 <throw-error>))
 ...)

return ‘unimplemented error’ initially;
remove wrappers as each execute-XX

is extended to work in 32-bit mode

Add Translation from
Logical to Linear Address

Linear AddressSegment

Selector

Logical Address

Effective

Address Physical Address

Segmentation Paging

64-bit model 64/32-bit model

(defun la-to-pa (lin-addr r-w-x x86)
 ;; use paging (shown before)
)

translate linear address
to physical address

(defun la-to-pa ...) ;; unchanged

(defun ea-to-la (eff-addr seg-reg x86)
 ;; use segmentation (shown before):
 ;; retrieve segment base and bounds
 ;; (handle expand-down segments)
 ;; and add effective address to base
)

translate effective address,
in the context of segment,

to linear address

Add New Top-Level Memory
Access Functions

Linear AddressSegment

Selector

Logical Address

Effective

Address Physical Address

Segmentation Paging

64-bit model 64/32-bit model
(defun rm08 (lin-addr ...) ...)
(defun rm16 (lin-addr ...) ...)
...
(defun wm08 (lin-addr ...) ...)
(defun wm16 (lin-addr ...) ...)
...

read & write via linear address
(paging in system view;

“direct” in application view)

;; unchanged but renamed:
(defun rml08 (lin-addr ...) ...)
(defun wml08 (lin-addr ...) ...)
...

;; new:
(defun rme08 (eff—addr ...) ...)
(defun wme08 (eff-addr ...) ...)
...

read & write via effective address
(call ea-to-la and then
call rml08, wml08, …)

Extend Instruction Fetching
64-bit model 64/32-bit model

;; read instruction (via lin. addr.):
opcode := (rml08 rip ...) ;; etc.

;; increment instruction pointer:
new-rip := (+ rip delta)
;; if new-rip not canonical then fault

;; read instruction (via eff. addr.):
opcode := (rme08 *ip ...) ;; etc.

;; read instr. pointer from RIP/EIP/IP:
*ip := (read-*ip x86) ;; 48/32/16-bit

new function

;; write instr. pointer to RIP/EIP/IP:
x86 := (write-*ip new-*ip x86)

new function

;; write instruction pointer to RIP:
x86 := (!rip new-rip x86)

stobj field writer

;; increment instruction pointer:
new-*ip := (add-to-*ip *ip delta x86)

new function
(includes canonical

and segment checks)

;; read instruction pointer from RIP:
rip := (rip x86) ;; 48-bit (canonical)

stobj field readerartistic license

Other Infrastructural Extensions

• Generalize stack manipulation analogously to instruction
fetching.

• Add 16-bit addressing modes — for effective address
calculation (base, index, scale, displacement, …).

• Generalize the functions to read/write memory operands.

- Use effective addresses instead of linear addresses.

- Handle segment defaults and override prefixes.

- Use 32-bit or 16-bit addressing modes.

• No changes to the x86 stobj were needed.

Instruction Extensions
• Comparatively easy, after all the previous infrastructural

extensions were in place.

• Extend one instruction at a time, removing each 64-bit-modep
wrapper in the top-level instruction dispatch.

• Generalize determination of operand, address, and stack size.

• No changes to existing core arithmetic and logical functions,
which already handled operands of different sizes.

• Call the new or extended functions to read & write stack,
immediate, and (other) memory operands.

• Slightly better code factoring as a byproduct (e.g. alignment
checks).

Proof Adaptations:
Add 64-bit Mode Hypotheses
64-bit model 64/32-bit model

(defun run ... step ...)

(defthm program-is-correct
 formula<(run ... x86)>)

an existing theorem
about a 64-bit program

(defun run ... step ...)

(defun step (x86)
 ;; fetch and decode...
 (case opcode
 (#x00 (if (64-bit-modep x86)
 (execute-00 x86)
 <throw-error>)
 ...)

our initial wrapping in the top-level dispatch (shown before)

(defthm program-is-correct
 (implies (64-bit-modep x86)
 formula<(run ... x86)>))

add 64-bit mode hypotheses to
this theorem and many lemmas

(defun step (x86)
 ;; fetch and decode...
 (case opcode
 (#x00 (execute-00 x86))
 ...)

simplified code
(shown before)

Proof Adaptations:
Add “Reduction” Rules

64-bit model 64/32-bit model

(defthm program-is-correct
 formula<(run ... x86)>)

same as before

(defthm program-is-correct
 (implies (64-bit-modep x86)
 formula<(run ... x86)>))

;; run -> step -> execute-XX:
(defun execute-XX (x86)
 ... (rgfi *rsp* x86) ...)

read stack pointer
(for example)

;; run -> step -> execute-XX:
(defun execute-XX (x86)
 ... (read-*sp x86) …)

(defthm read-*sp-when-64-bit-modep
 (implies (64-bit-modep x86)
 (equal (read-*sp x86)
 (rgfi *rsp* x86))))

reduce general stack pointer read
to 64-bit-mode stack pointer read

stobj field reader

Other Proof Adaptations
• Add theorems asserting that 64-bit-modep is preserved by

state updates.

- So the reduction rules keep applying.

- The model does not cover mode changes yet.

• Adapt the congruence-based reasoning for 64-bit system
programs.

- Linear-to-physical address translations may change the state — the

accessed and dirty flags of paging structures.

- These flags are “abstracted away” via an equivalence relation on x86

states — i.e. everything is the same except possibly these flags.

- 64-bit-modep had to be added to this equivalence relation, as well

as to other related theorems.

- This was more laborious than all the previous proof adaptations.

Performance
simulation speed
(application view),

in instructions/second

before the
extensions

after the
extensions

after some
optimizations

64-bit mode

32-bit mode

1.9M

0.9M

3.0M

2.5M

3.0M

—

All measurements done on an Intel Xeon E31280 CPU @ 3.50GHz with 32GB RAM.

Future Work
• Short and medium term:

- Extend floating-point instructions to 32-bit mode.

- Extend system view to 32-bit mode — add 32-bit paging.

- Remaining modes — real-address, virtual-8086, system management.

- More instructions, especially vector features (AVX, AVX2, AVX-512).

- Co-simulate 32-bit programs, for validation.

- Improve performance in 32-bit mode.

- Verify 32-bit programs.

- Detect malware variants via semantic equivalence checking by symbolic

execution — this prompted these 32-bit extensions.

• Long term:

- Add concurrent semantics.

- Make the specification more declarative, generating efficient code via

macros, possibly APT transformations.

- Verified compilation to binaries.

- Synthesis of verified binaries.

