## The Fundamental Theorem of Algebra in ACL2

## Ruben Gamboa and John Cowles

Department of Computer Science<br>University of Wyoming<br>Laramie, Wyoming 82071<br>\{ruben, cowles \} @uwyo. edu

ACL2 Workshop 2018
Austin, TX


## Outline

- Overview
- Extreme Value Theorem
- Continuity
- Growth Lemma for Polynomials
- D'Alembert's Lemma
- Conclusion


## The Theorem

## Theorem

Suppose $p$ is a non-constant, complex polynomial with complex coefficients, then there is some complex number $z$ such that $p(z)=0$.

## The Theorem

```
(defun-sk polynomial-has-a-root (poly)
    (exists (z)
    (equal (eval-polynomial poly z) 0)))
(defthm fundamental-theorem-of-algebra-sk
    (implies (and (polynomial-p poly)
        (not (constant-polynomial-p poly)))
    (polynomial-has-a-root poly))
    :hints ...)
```


## Proof Outline



## Outline

- Overview
- Extreme Value Theorem
- Continuity
- Growth Lemma for Polynomials
- D'Alembert's Lemma
- Conclusion


## Extreme Value Theorem (Reals)

## Theorem

Suppose $f$ is a real function that is continuous on the interval $[a, b]$. Then there exists some $d \in[a, b]$ such that $(\forall x \in[a, b])(f(d) \leq f(x))$.

## Extreme Value Theorem (Reals)



## Extreme Value Theorem (Complex $\rightarrow$ Reals)

## Theorem

Suppose $f$ is a real-valued, complex function that is continuous on a closed, bounded region $A$. Then there exists some $d \in A$ such that $(\forall x \in A)(f(d) \leq f(x))$.

## Extreme Value Theorem (Complex $\rightarrow$ Reals)



## The Extreme Value Theorem

```
(defthm minimum-point-in-region-theorem-sk
    (implies (and (acl2-numberp z0)
            (realp s)
            (< 0 s)
            (inside-region-p z0 (crvcfn-domain))
            (inside-region-p (+ z0 (complex s s)) (crvcfn-domain)))
            (achieves-minimum-point-in-region context z0 s))
    :hints ...)
```


## The Extreme Value Theorem

```
(defun-sk achieves-minimum-point-in-region (context z0 s)
    (exists (zmin)
        (implies (and (acl2-numberp z0)
        (realp s)
        (< 0 s))
        (and (inside-region-p
        zmin
        (cons (interval (realpart z0)
                            (+ s (realpart z0)))
                            (interval (imagpart z0)
                            (+ s (imagpart z0)))))
    (is-minimum-point-in-region context
        zmin z0 s)))))
```


## The Extreme Value Theorem

```
(defun-sk is-minimum-point-in-region (context zmin z0 s)
    (forall (z)
            (implies (and (acl2-numberp z)
            (acl2-numberp z0)
            (realp s)
            (< 0 s)
                            (inside-region-p
            z
            (cons (interval (realpart z0)
                                    (+ s (realpart z0)))
                                    (interval (imagpart z0)
                                    (+ s (imagpart z0))))))
            (<= (crvcfn context zmin) (crvcfn context z)))))
```


## Outline

- Overview
- Extreme Value Theorem
- Continuity
- Growth Lemma for Polynomials
- D'Alembert's Lemma
- Conclusion


## Continuity

## Definition

A function $f$ is continuous at a standard point $x_{0}$ if $f\left(x_{0}\right)$ is close to $f(x)$ whenever $x_{0}$ is close to $x$.

## Continuity

## Definition

A function $f$ is continuous at a standard point $x_{0}$ in a standard context if $f\left(\right.$ context, $\left.x_{0}\right)$ is close to $f($ context, $x)$ whenever $x_{0}$ is close to $x$.

## Polynomials

- We use lists of coefficients to represent polynomials, e.g., ' (C B A) to represent the polynomial $A x^{2}+B x+C$
- The function eval-polynomial is used to interpret polynomials


## Polynomials

- We use lists of coefficients to represent polynomials, e.g., ' (C B A) to represent the polynomial $A x^{2}+B x+C$
- The function eval-polynomial is used to interpret polynomials
- (eval-polynomial poly $x$ ) is continuous at $x$, using poly as the "context"


## Minimum Value for Polynomials

- If $p$ is a polynomial, then the function $\|p(z)\|$ from $\mathbb{C}$ to $\mathbb{R}$ is continuous
- By the EVT, it achieves its minimum value on any closed, bounded region


## Outline

- Overview
- Extreme Value Theorem
- Continuity
- Growth Lemma for Polynomials
- D'Alembert's Lemma
- Conclusion


## A Useful Bound

- Suppose $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{n} \neq 0$
- Then for large enough $z$ :

$$
\begin{aligned}
\|p(z)\| & =\left\|a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}\right\| \\
& \leq\left\|a_{0}\right\|+\left\|a_{1} z\right\|+\left\|a_{2} z^{2}\right\|+\cdots+\left\|a_{n} z^{n}\right\| \\
& \leq\left\|a_{0}\right\|+\left\|a_{1}\right\|\|z\|+\left\|a_{2}\right\|\left\|z^{2}\right\|+\cdots+\left\|a_{n}\right\|\left\|z^{n}\right\| \\
& \leq A\left(\left\|z^{0}\right\|+\left\|z^{1}\right\|+\left\|z^{2}\right\|+\cdots+\left\|z^{n}\right\|\right) \\
& \leq A(n+1)\left\|z^{n}\right\| \\
& \leq K\left\|z^{n+1}\right\|
\end{aligned}
$$

- The last inequality holds for any real constant $K$


## An Upper Bound

- Suppose $p$ is any polynomial
- Then for large enough $z$ and any constant $K,\|p(z)\| \leq K\left\|z^{n+1}\right\|$
- Consider another polynomial $q(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n} z^{n}$

$$
\begin{aligned}
\|q(z)\| & =\left\|b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n-1} z^{n-1}+b_{n} z^{n}\right\| \\
& \leq\left\|b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n-1} z^{n-1}\right\|+\left\|b_{n} z^{n}\right\| \\
& \leq K\left\|z^{n}\right\|+\left\|b_{n} z^{n}\right\| \\
& \leq \frac{\left\|b_{n}\right\|}{2}\left\|z^{n}\right\|+\left\|b_{n}\right\|\left\|z^{n}\right\| \\
& =\frac{3}{2}\left\|b_{n}\right\|\left\|z^{n}\right\|
\end{aligned}
$$

- The last inequality comes from letting $K$ be $\frac{\left\|b_{n}\right\|}{2}$


## A Lower Bound

- Consider the polynomial $q(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n} z^{n}$

$$
\begin{aligned}
\|q(z)\| & =\left\|b_{n} z^{n}-\left(-b_{0}-b_{1} z-b_{2} z^{2}-\cdots-b_{n-1} z^{n-1}\right)\right\| \\
& \geq\left\|b_{n} z^{n}\right\|-\left\|-b_{0}-b_{1} z-b_{2} z^{2}-\cdots-b_{n-1} z^{n-1}\right\| \\
& =\left\|b_{n} z^{n}\right\|-\left\|b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n-1} z^{n-1}\right\| \\
& \geq\left\|b_{n}\right\|\left\|z^{n}\right\|-\frac{1}{2}\left\|b_{n}\right\|\left\|z^{n}\right\| \\
& =\frac{1}{2}\left\|b_{n}\right\|\left\|z^{n}\right\|
\end{aligned}
$$

## A Lower Bound

- Consider the polynomial $q(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n} z^{n}$

$$
\frac{1}{2}\left\|b_{n}\right\|\left\|z^{n}\right\| \leq\|q(z)\| \leq \frac{3}{2}\left\|b_{n}\right\|\left\|z^{n}\right\|
$$

- This holds for large enough $z$
- The most important fact for us is that for large enough $z$, the value of $\|q(z)\|$ can't be that small

The Global Minimum of $\|q(z)\|$


## Outline

- Overview
- Extreme Value Theorem
- Continuity
- Growth Lemma for Polynomials
- D'Alembert's Lemma
- Conclusion


## D'Alembert's Lemma

## Theorem

Suppose $p$ is a non-constant polynomial, and $z \in \mathbb{C}$ is such that $p(z) \neq 0$. Then there is some $z_{0}$ such that $\left\|p\left(z_{0}\right)\right\|<\|p(z)\|$. In particular, if $p(z) \neq 0$ then $z$ cannot be a global minimum of $\|p(\cdot)\|$.

- We prove this for a special case and only when $z=0$ :

$$
\begin{aligned}
p(z) & =1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \\
& =1+a_{k} z^{k}+z^{k+1} q(z)
\end{aligned}
$$

- This last equality works for some value of $k$ and some polynomial $q(z)$
- So $\|p(z)\| \leq\left\|1+a_{k} z^{k}\right\|+\left\|z^{k+1} q(z)\right\|$
- Suppose $s$ is real with $0<s<1$
- We can always find a $z$ such that $a_{k} z^{k}=-s$
- So for any $s$ with $0<s<1$, we can find a $z$ such that $\left\|1+a_{k} z^{k}\right\|=1-s$


## Proof

$$
\begin{aligned}
\|p(z)\| & \leq 1-s+\left\|z^{k+1}\right\|\|q(z)\| \\
& =1-s+\|z\|^{k}\|z\|\|q(z)\| \\
& =1-s+\frac{s}{\left\|a_{k}\right\|}\|z\|\|q(z)\| \\
& =1-s\left(1-\frac{\|z\|}{\left\|a_{k}\right\|}\|q(z)\|\right)
\end{aligned}
$$

## Proof

$$
\begin{aligned}
\|p(z)\| & \leq 1-s+\left\|z^{k+1}\right\|\|q(z)\| \\
& =1-s+\|z\|^{k}\|z\|\|q(z)\| \\
& =1-s+\frac{s}{\left\|a_{k}\right\|}\|z\|\|q(z)\| \\
& =1-s\left(1-\frac{\|z\|}{\left\|a_{k}\right\|}\|q(z)\|\right) \\
& \leq 1-s\left(1-\frac{\|z\|}{\left\|a_{k}\right\|} A(n+1)\right)
\end{aligned}
$$

## Proof

$$
\begin{aligned}
\|p(z)\| & \leq 1-s+\left\|z^{k+1}\right\|\|q(z)\| \\
& =1-s+\|z\|^{k}\|z\|\|q(z)\| \\
& =1-s+\frac{s}{\left\|a_{k}\right\|}\|z\|\|q(z)\| \\
& =1-s\left(1-\frac{\|z\|}{\left\|a_{k}\right\|}\|q(z)\|\right) \\
& \leq 1-s\left(1-\frac{\|z\|}{\left\|a_{k}\right\|} A(n+1)\right) \\
& \leq 1-s \\
& <1 \\
& =\|p(0)\|
\end{aligned}
$$

- We can choose a value of $z$ such that $\frac{\|z\|}{\left\|a_{k}\right\|} A(n+1)<1$
- And now we can pick the $s$ that will result in that particular $z$


## D'Alembert's Lemma

```
(defthm lowest-exponent-split-10
    (implies (and (polynomial-p poly)
                (equal (car poly) 1)
        (< 1 (len poly))
        (not (equal (leading-coeff poly) 0)))
        (< (norm2 (eval-polynomial
            poly
    (fta-bound-1 poly
                                    (input-with-smaller-value
                                    poly)))
        1))
    :hints ...)
```


## Wrapping Up the Proof

- We know that $p(0)=1$ and 0 cannot be the global minimum of $\|p(\cdot)\|$
- That was a special case, but we can extend it to any polynomial
- Divide by $a_{0}$, so that $p(0) \neq 0$
- Shift the polynomial, so that $p\left(x_{0}\right) \neq 0$
- Handle the case when the leading coefficient is 0


## Outline

- Overview
- Extreme Value Theorem
- Continuity
- Growth Lemma for Polynomials
- D'Alembert's Lemma
- Conclusion


## Wrapping Up the Main Proof

- We know that there is some $x_{\text {min }}$ that is a global minimum of $\|p(\cdot)\|$
- We also know that if $p\left(x_{\min }\right) \neq 0$, then $x_{\text {min }}$ can't be a global minimum
- So $p\left(x_{\text {min }}\right)=0$


## The Fundamental Theorem of Algebra

```
(defun-sk polynomial-has-a-root (poly)
    (exists (z)
    (equal (eval-polynomial poly z) 0)))
(defthm fundamental-theorem-of-algebra-sk
    (implies (and (polynomial-p poly)
                (not (constant-polynomial-p poly)))
    (polynomial-has-a-root poly))
    :hints ...)
```

