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The Theorem

Theorem
Suppose p is a non-constant, complex polynomial with complex coefficients, then
there is some complex number z such that p(z) = 0.



The Theorem

(defun-sk polynomial-has-a-root (poly)
(exists (z)

(equal (eval-polynomial poly z) 0)))

(defthm fundamental-theorem-of-algebra-sk
(implies (and (polynomial-p poly)

(not (constant-polynomial-p poly)))
(polynomial-has-a-root poly))

:hints ...)



Proof Outline
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Extreme Value Theorem (Reals)

Theorem
Suppose f is a real function that is continuous on the interval [a,b]. Then there
exists some d ∈ [a,b] such that (∀x ∈ [a,b])(f (d) ≤ f (x)).



Extreme Value Theorem (Reals)



Extreme Value Theorem (Complex→ Reals)

Theorem
Suppose f is a real-valued, complex function that is continuous on a closed,
bounded region A. Then there exists some d ∈ A such that (∀x ∈ A)(f (d) ≤ f (x)).



Extreme Value Theorem (Complex→ Reals)
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The Extreme Value Theorem

(defthm minimum-point-in-region-theorem-sk
(implies (and (acl2-numberp z0)

(realp s)
(< 0 s)
(inside-region-p z0 (crvcfn-domain))
(inside-region-p (+ z0 (complex s s)) (crvcfn-domain)))

(achieves-minimum-point-in-region context z0 s))
:hints ...)



The Extreme Value Theorem

(defun-sk achieves-minimum-point-in-region (context z0 s)
(exists (zmin)

(implies (and (acl2-numberp z0)
(realp s)
(< 0 s))

(and (inside-region-p
zmin
(cons (interval (realpart z0)

(+ s (realpart z0)))
(interval (imagpart z0)

(+ s (imagpart z0)))))
(is-minimum-point-in-region context

zmin z0 s)))))



The Extreme Value Theorem

(defun-sk is-minimum-point-in-region (context zmin z0 s)
(forall (z)

(implies (and (acl2-numberp z)
(acl2-numberp z0)
(realp s)
(< 0 s)

(inside-region-p
z
(cons (interval (realpart z0)

(+ s (realpart z0)))
(interval (imagpart z0)

(+ s (imagpart z0))))))
(<= (crvcfn context zmin) (crvcfn context z)))))
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Continuity

Definition
A function f is continuous at a standard point x0 if f (x0) is close to f (x) whenever
x0 is close to x .



Continuity

Definition
A function f is continuous at a standard point x0 in a standard context if
f (context , x0) is close to f (context , x) whenever x0 is close to x .



Polynomials

• We use lists of coefficients to represent polynomials, e.g., ’(C B A) to
represent the polynomial Ax2 + Bx + C

• The function eval-polynomial is used to interpret polynomials

• (eval-polynomial poly x) is continuous at x , using poly as the
“context”
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Minimum Value for Polynomials

• If p is a polynomial, then the function ||p(z)|| from C to R is continuous
• By the EVT, it achieves its minimum value on any closed, bounded region
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A Useful Bound

• Suppose p(z) = a0 + a1z + a2z2 + · · ·+ anzn, where an 6= 0
• Then for large enough z:

||p(z)|| = ||a0 + a1z + a2z2 + · · ·+ anzn||
≤ ||a0||+ ||a1z||+ ||a2z2||+ · · ·+ ||anzn||
≤ ||a0||+ ||a1|| ||z||+ ||a2|| ||z2||+ · · ·+ ||an|| ||zn||

≤ A
(
||z0||+ ||z1||+ ||z2||+ · · ·+ ||zn||

)
≤ A(n + 1)||zn||
≤ K ||zn+1||

• The last inequality holds for any real constant K



An Upper Bound

• Suppose p is any polynomial
• Then for large enough z and any constant K , ||p(z)|| ≤ K ||zn+1||

• Consider another polynomial q(z) = b0 + b1z + b2z2 + · · ·+ bnzn

||q(z)|| = ||b0 + b1z + b2z2 + · · ·+ bn−1zn−1 + bnzn||
≤ ||b0 + b1z + b2z2 + · · ·+ bn−1zn−1||+ ||bnzn||
≤ K ||zn||+ ||bnzn||

≤ ||bn||
2
||zn||+ ||bn|| ||zn||

=
3
2
||bn|| ||zn||

• The last inequality comes from letting K be ||bn||
2



A Lower Bound

• Consider the polynomial q(z) = b0 + b1z + b2z2 + · · ·+ bnzn

||q(z)|| = ||bnzn − (−b0 − b1z − b2z2 − · · · − bn−1zn−1)||
≥ ||bnzn|| − || − b0 − b1z − b2z2 − · · · − bn−1zn−1||
= ||bnzn|| − ||b0 + b1z + b2z2 + · · ·+ bn−1zn−1||

≥ ||bn|| ||zn|| − 1
2
||bn|| ||zn||

=
1
2
||bn|| ||zn||



A Lower Bound

• Consider the polynomial q(z) = b0 + b1z + b2z2 + · · ·+ bnzn

1
2
||bn|| ||zn|| ≤ ||q(z)|| ≤ 3

2
||bn|| ||zn||

• This holds for large enough z
• The most important fact for us is that for large enough z, the value of ||q(z)||

can’t be that small



The Global Minimum of ||q(z)||
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D’Alembert’s Lemma

Theorem
Suppose p is a non-constant polynomial, and z ∈ C is such that p(z) 6= 0. Then
there is some z0 such that ||p(z0)|| < ||p(z)||. In particular, if p(z) 6= 0 then z
cannot be a global minimum of ||p(·)||.



Proof

• We prove this for a special case and only when z = 0:

p(z) = 1 + a1z + a2z2 + · · ·+ anzn

= 1 + akzk + zk+1q(z)

• This last equality works for some value of k and some polynomial q(z)



Proof

• So ||p(z)|| ≤ ||1 + akzk ||+ ||zk+1q(z)||

• Suppose s is real with 0 < s < 1
• We can always find a z such that akzk = −s
• So for any s with 0 < s < 1, we can find a z such that ||1 + akzk || = 1− s



Proof

||p(z)|| ≤ 1− s + ||zk+1|| ||q(z)||
= 1− s + ||z||k ||z|| ||q(z)||

= 1− s +
s
||ak ||

||z|| ||q(z)||

= 1− s
(

1− ||z||
||ak ||

||q(z)||
)

≤ 1− s
(

1− ||z||
||ak ||

A(n + 1)
)

≤ 1− s
< 1
= ||p(0)||

• We can choose a value of z such that ||z||||ak ||
A(n + 1) < 1

• And now we can pick the s that will result in that particular z
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D’Alembert’s Lemma

(defthm lowest-exponent-split-10
(implies (and (polynomial-p poly)

(equal (car poly) 1)
(< 1 (len poly))
(not (equal (leading-coeff poly) 0)))

(< (norm2 (eval-polynomial
poly
(fta-bound-1 poly

(input-with-smaller-value
poly))))

1))
:hints ...)



Wrapping Up the Proof

• We know that p(0) = 1 and 0 cannot be the global minimum of ||p(·)||
• That was a special case, but we can extend it to any polynomial

• Divide by a0, so that p(0) 6= 0
• Shift the polynomial, so that p(x0) 6= 0
• Handle the case when the leading coefficient is 0
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Wrapping Up the Main Proof

• We know that there is some xmin that is a global minimum of ||p(·)||
• We also know that if p(xmin) 6= 0, then xmin can’t be a global minimum

• So p(xmin) = 0



The Fundamental Theorem of Algebra

(defun-sk polynomial-has-a-root (poly)
(exists (z)

(equal (eval-polynomial poly z) 0)))

(defthm fundamental-theorem-of-algebra-sk
(implies (and (polynomial-p poly)

(not (constant-polynomial-p poly)))
(polynomial-has-a-root poly))

:hints ...)


	Overview
	Extreme Value Theorem
	Continuity
	Growth Lemma for Polynomials
	D'Alembert's Lemma
	Conclusion

