
ACL2-2018

Shilpi Goel & Mayank Manjrekar

15 min. Rump Session Talk

1

2

3

4

A Formalization of an
 Instant Run-Off Voting Scheme

!2

Instant Run-Off Voting

!2

a.k.a. Single-Winner Ranked Choice Voting

Instant Run-Off Voting

!2

a.k.a. Single-Winner Ranked Choice Voting

a.k.a. Single Transferable Voting

Instant Run-Off Voting

!2

a.k.a. Single-Winner Ranked Choice Voting

a.k.a. Alternative Voting

a.k.a. Single Transferable Voting

Instant Run-Off Voting

IRV is a preferential voting scheme: voters rank candidates in
order of preference to elect one winner.

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!2

a.k.a. Single-Winner Ranked Choice Voting

a.k.a. Alternative Voting

a.k.a. Single Transferable Voting

Instant Run-Off Voting

• Politics
- US Senate and Congress Race in Maine
- President of India
- Mayor of London
- Members of the Australian Parliament’s lower House

• Entertainment
- Oscar’s Best Picture Award

• Computer Science
- Planning
- Rank Aggregation Engines

Where is IRV Used?

!3

• Politics
- US Senate and Congress Race in Maine
- President of India
- Mayor of London
- Members of the Australian Parliament’s lower House

• Entertainment
- Oscar’s Best Picture Award

• Computer Science
- Planning
- Rank Aggregation Engines

Where is IRV Used?

!3

We got interested because of ACL2-2018's slogan election.

C Candidate
FPV First-Place Votes!4

ACL2-2018: IRV Scheme

Does some C have a
majority of FPV?

C Candidate
FPV First-Place Votes!4

Majority
Step

ACL2-2018: IRV Scheme

Yes This C is the
winner.

Does some C have a
majority of FPV?

C Candidate
FPV First-Place Votes!4

Majority
Step

ACL2-2018: IRV Scheme

Yes This C is the
winner.

No

Does every C
in the election have the

same #FPV?

Does some C have a
majority of FPV?

C Candidate
FPV First-Place Votes!4

Majority
Step

Tie-Breaker
Step

ACL2-2018: IRV Scheme

Yes This C is the
winner.

No

Does every C
in the election have the

same #FPV?

Does some C have a
majority of FPV?

Yes The chairs pick the
winner among

these Cs.

C Candidate
FPV First-Place Votes!4

Majority
Step

Tie-Breaker
Step

ACL2-2018: IRV Scheme

Yes This C is the
winner.

No

Does every C
in the election have the

same #FPV?

Does some C have a
majority of FPV?

Yes The chairs pick the
winner among

these Cs.

No

Eliminate all Cs with
the least #FPV;  

adjust each ballot.

C Candidate
FPV First-Place Votes!4

Majority
Step

Tie-Breaker
Step

Elimination
Step

ACL2-2018: IRV Scheme

Yes This C is the
winner.

No

Does every C
in the election have the

same #FPV?

Does some C have a
majority of FPV?

Yes The chairs pick the
winner among

these Cs.

No

Eliminate all Cs with
the least #FPV;  

adjust each ballot.

C Candidate
FPV First-Place Votes!4

Majority
Step

Tie-Breaker
Step

Elimination
Step

ACL2-2018: IRV Scheme

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

A wins

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

A wins

- Vote counting was done
manually for ACL2-2018
slogans.

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

A wins

- Vote counting was done
manually for ACL2-2018
slogans.

- This scheme seems a little
unfair…

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

A wins

- Vote counting was done
manually for ACL2-2018
slogans.

- This scheme seems a little
unfair…
 …different notions of fairness

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

A wins

- Vote counting was done
manually for ACL2-2018
slogans.

- This scheme seems a little
unfair…
 …different notions of fairness

- Matt Kaufmann:

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A - -

Voter 2 A - -

Voter 3 - - A

Voter 4 - -

Preference 1

Voter 1 A

Voter 2 A

Voter 3 A

A wins

- Vote counting was done
manually for ACL2-2018
slogans.

- This scheme seems a little
unfair…
 …different notions of fairness

- Matt Kaufmann:
“if I were to do this again
… if there's a tie for least
first-place votes, then it's
broken by which of those
has the least second-place
votes, etc., before deleting
candidates.”

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

!5

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

Pick-Candidate(B,C) = B

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

Pick-Candidate(B,C) = B

Preference 1 Preference 2

Voter 1 A C

Voter 2 A C

Voter 3 C A

Voter 4 C

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

Pick-Candidate(B,C) = B

Preference 1 Preference 2

Voter 1 A C

Voter 2 A C

Voter 3 C A

Voter 4 C

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

Pick-Candidate(B,C) = B

Preference 1 Preference 2

Voter 1 A C

Voter 2 A C

Voter 3 C A

Voter 4 C

Eliminate A

[books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

Pick-Candidate(B,C) = B

Preference 1 Preference 2

Voter 1 A C

Voter 2 A C

Voter 3 C A

Voter 4 C

Eliminate A

Preference 1

Voter 1 C

Voter 2 C

Voter 3 C

Voter 4 C [books]/projects/irv

Preference 1 Preference 2 Preference 3

Voter 1 A B C

Voter 2 A C B

Voter 3 C B A

Voter 4 B C

Pick-Candidate(B,C) = B

Preference 1 Preference 2

Voter 1 A C

Voter 2 A C

Voter 3 C A

Voter 4 C

Eliminate A

Preference 1

Voter 1 C

Voter 2 C

Voter 3 C

Voter 4 C

C wins

[books]/projects/irv

!7

[books]/projects/irv

(defun irv (xs)
 (cond
 ((or (not (irv-ballot-p xs))
 (endp xs))
 nil)
 (t
 (b* ((cids (candidate-ids xs))
 (maj-winner? (first-choice-of-majority-p cids xs))
 ((when (natp maj-winner?)) maj-winner?)
 (weak-candidate
 (candidate-with-least-nth-place-votes 0 cids xs))
 (new-xs (eliminate-candidate weak-candidate xs)))
 (irv new-xs)))))

!8

(defun candidate-with-least-nth-place-votes (n cids xs)
 (cond ((endp cids) nil)

 ((< n (number-of-candidates xs))
 (let* ((relevant-candidates
 (candidates-with-min-votes n cids xs)))
 (if (equal (len relevant-candidates) 1)
 (car relevant-candidates)
 (candidate-with-least-nth-place-votes
 (1+ n) relevant-candidates xs))))

 (t
 ;; Tie persisted throughout all the preference
 ;; levels. Use a tie-breaker function.
 (pick-candidate cids))))

[books]/projects/irv

!8

(defun candidate-with-least-nth-place-votes (n cids xs)
 (cond ((endp cids) nil)

 ((< n (number-of-candidates xs))
 (let* ((relevant-candidates
 (candidates-with-min-votes n cids xs)))
 (if (equal (len relevant-candidates) 1)
 (car relevant-candidates)
 (candidate-with-least-nth-place-votes
 (1+ n) relevant-candidates xs))))

 (t
 ;; Tie persisted throughout all the preference
 ;; levels. Use a tie-breaker function.
 (pick-candidate cids))))

[books]/projects/irv

Constrained function:
returns a member of its input

• Social Choice Theory

- Very rich

- Many other possibly “better” schemes

- Voting schemes can be quite controversial

!9

Stuff We Don’t Have Time For

• Social Choice Theory

- Very rich

- Many other possibly “better” schemes

- Voting schemes can be quite controversial

- All “reasonable” fairness criteria cannot be satisfied:

‣ Arrow’s Impossibility Theorem

‣ Gibbard–Satterthwaite Theorem

• Computational Choice Theory

!9

Stuff We Don’t Have Time For

• Social Choice Theory

- Very rich

- Many other possibly “better” schemes

- Voting schemes can be quite controversial

- All “reasonable” fairness criteria cannot be satisfied:

‣ Arrow’s Impossibility Theorem

‣ Gibbard–Satterthwaite Theorem

• Computational Choice Theory

- Additional sets of concerns: parallelizability,
importance of tie-breaking, etc.

!9

Stuff We Don’t Have Time For

Our formalization meets the following criteria that should
be satisfied by IRV schemes:

- Majority Winner Criterion

- Condorcet Loser Criterion

- Majority Loser Criterion

!10

Fairness Criteria

If a candidate is preferred by an absolute majority of voters,
then that candidate must win.

!11

Majority Winner Criterion

(defthm irv-satisfies-the-majority-criterion
 (implies (and (< (majority (number-of-voters xs))
 (count e (make-nth-choice-list 0 xs)))
 (irv-ballot-p xs))
 (equal (irv xs) e)))

If a candidate is preferred by an absolute majority of voters,
then that candidate must win.

!11

Majority Winner Criterion

(defthm irv-satisfies-the-majority-criterion
 (implies (and (< (majority (number-of-voters xs))
 (count e (make-nth-choice-list 0 xs)))
 (irv-ballot-p xs))
 (equal (irv xs) e)))

Straightforward; needed lemmas like:

- If e gets the majority of first-place votes, then there
cannot be a tie for the maximum number of first-
place votes.

If a candidate L loses a head-to-head competition against every
other candidate, then L must not win the overall election.

!12

Condorcet Loser Criterion

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

If a candidate L loses a head-to-head competition against every
other candidate, then L must not win the overall election.

!12

Condorcet Loser Criterion

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

Proof Sketch: Let w = (irv xs).

If a candidate L loses a head-to-head competition against every
other candidate, then L must not win the overall election.

!12

Condorcet Loser Criterion

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

Proof Sketch: Let w = (irv xs).

- If w won by a majority, then w would still have majority in
every head-to-head competition; therefore, w != l.

If a candidate L loses a head-to-head competition against every
other candidate, then L must not win the overall election.

!12

Condorcet Loser Criterion

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

Proof Sketch: Let w = (irv xs).

- If w won by a majority, then w would still have majority in
every head-to-head competition; therefore, w != l.

- Otherwise, induct on xs.

!13

Condorcet Loser Criterion

- Base Case: xs has two candidates.

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

!13

Condorcet Loser Criterion

- Base Case: xs has two candidates.

- Inductive Step: Let the statement be true for
(eliminate-candidate id xs),where id is picked
by candidate-with-least-nth-place-votes.

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

!13

Condorcet Loser Criterion

- Base Case: xs has two candidates.

- Inductive Step: Let the statement be true for
(eliminate-candidate id xs),where id is picked
by candidate-with-least-nth-place-votes.

- Note that w ≠ id.

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

!13

Condorcet Loser Criterion

- Base Case: xs has two candidates.

- Inductive Step: Let the statement be true for
(eliminate-candidate id xs),where id is picked
by candidate-with-least-nth-place-votes.

- Note that w ≠ id.

- If l == id, then w ≠ l.

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

!13

Condorcet Loser Criterion

- Base Case: xs has two candidates.

- Inductive Step: Let the statement be true for
(eliminate-candidate id xs),where id is picked
by candidate-with-least-nth-place-votes.

- Note that w ≠ id.

- If l == id, then w ≠ l.

- Otherwise, l is still the head-to-head loser after id is
eliminated. So by the induction hypothesis, w ≠ l.

(defthm irv-satisfies-the-condorcet-loser-criterion
 (implies (and (all-head-to-head-competition-loser-p l cids xs)
 (set-equiv (cons l cids) (candidate-ids xs))
 (no-duplicatesp-equal (cons l cids))
 (nat-listp cids) (<= 1 (len cids))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

If a majority of voters prefers every other candidate over a given
candidate l, then l must not win.

Note that l has a majority of last-place votes.

!14

Majority Loser Criterion

(defthm irv-satisfies-the-majority-loser-criterion
 (implies
 (and (< (majority (number-of-voters xs))
 (count l (make-nth-choice-list (last-place xs) xs)))
 (< 1 (number-of-candidates xs))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

If a majority of voters prefers every other candidate over a given
candidate l, then l must not win.

Note that l has a majority of last-place votes.

!14

Majority Loser Criterion

(defthm irv-satisfies-the-majority-loser-criterion
 (implies
 (and (< (majority (number-of-voters xs))
 (count l (make-nth-choice-list (last-place xs) xs)))
 (< 1 (number-of-candidates xs))
 (irv-ballot-p xs))
 (not (equal (irv xs) l))))

But, a candidate who gets the majority of last-place votes
must be the Condorcet Loser.

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

Conclusion
:doc irv::instant-runoff-voting

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

• Applications:

Conclusion
:doc irv::instant-runoff-voting

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

• Applications:

- Slogan winner for the next ACL2 Workshop?

Conclusion
:doc irv::instant-runoff-voting

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

• Applications:

- Slogan winner for the next ACL2 Workshop?

- Any area where everyone’s opinion ought to count:

Conclusion
:doc irv::instant-runoff-voting

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

• Applications:

- Slogan winner for the next ACL2 Workshop?

- Any area where everyone’s opinion ought to count:

‣ Picking a dinner place?

Conclusion
:doc irv::instant-runoff-voting

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

• Applications:

- Slogan winner for the next ACL2 Workshop?

- Any area where everyone’s opinion ought to count:

‣ Picking a dinner place?

‣ Next read for your book club?

Conclusion
:doc irv::instant-runoff-voting

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

• Applications:

- Slogan winner for the next ACL2 Workshop?

- Any area where everyone’s opinion ought to count:

‣ Picking a dinner place?

‣ Next read for your book club?

‣ …

Conclusion
:doc irv::instant-runoff-voting

• Fun project for us; taught us a lot about voting schemes

• Possible future work: include other properties & schemes

• Applications:

- Slogan winner for the next ACL2 Workshop?

- Any area where everyone’s opinion ought to count:

‣ Picking a dinner place?

‣ Next read for your book club?

‣ …

Conclusion
:doc irv::instant-runoff-voting

Thanks!
1

2

3

4

