
© 2017 Rockwell Collins. 
All rights reserved.

Rockwell Collins Proprietary Information

Trapezoidal Generalization 
Over Linear Constraints

David Greve
Andrew Gacek



2 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Generalization Talk Overview

 Motivation

– Model-Based Fuzzing

 Previous Work

– High-Level Spec

 Proof

– Overview and Proof Pearls

 Future Efforts

– Sampling



3 | © 2018 Rockwell Collins. All rights reserved.

Model-Based Fuzzing

 Limited Knowledge of System Under Test

– Requirements Specifications (Grey Box)

 Limited Visibility of System Behavior

– Anomalous Behavior must Manifest at “System Level”

 Leverages Synergy Between Fuzzer and Solver Technologies

– Solver Targets Known Behavior

– Fuzzer Searches Unknown Behavior Target What We Know
Fuzz What We Don’t

The use of Behavioral Models to perform Directed Fuzzing 
in search of Cyber Vulnerabilities in Embedded System Targets



4 | © 2018 Rockwell Collins. All rights reserved.

Model-Based Fuzzing Pipeline

 Model Describes Fuzzing Target
– Functional Behaviors, Stateful Protocols

 Heuristics are used to generate constraints
– Driven by Testing Criteria/Metric

 Constraint Solver Generates Solutions
– Solutions Target Interesting Model Behaviors

 Generalizer Randomizes (Fuzzes) Solution
– Explores Behavioral Boundaries

 Generator Samples Generalization to produce Test Vectors
– Much Faster than Solver



5 | © 2018 Rockwell Collins. All rights reserved.

Generalization in Model-Based Fuzzing

 Generalization

– Transforms a Concrete Solution

• Into a Set of Solutions

– Produces a symbolic expression

• In terms of system inputs

• That Satisfies Constraint

 We use Generalization to

– Randomize Solver Solutions

– Influence Test Distributions

• Boundary Value Testing

– Decouple Solver from Test Generation

• Boost Test Generation Performance!

Solution

Randomization

Biased Distribution

Performance



6 | © 2018 Rockwell Collins. All rights reserved.

Rectilinear Generalization

x

y
z

Lower Bound Variable Upper Bound
100 < x < 200
0 < y < 100

-50 < z < 50



7 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Generalization

Lower Bound Variable Upper Bound
100 < x < 200

3x - 290 < y < -3x + 970
y + x – 250 < z < -y + 7



8 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Generalization

Lower Bound Variable Upper Bound
100 < x < 200

3x - 290 < y < -3x + 970
y + x – 250 < z < -y + 7

x

y
z



9 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Generalization (vs. Intervals)

• Reduced Dependency on Original Solution

• Better Approximation of Linear Features (Boundaries)
– Enhanced Boundary Value Fuzzing

• Larger Generalization Regions
– Each Counterexample yields more test vectors

• Bounded Representation Size
– Worst Case Quadratic in #Inputs

• Efficient Computation
– Worst Case Cubic Intersection
– Worst Case Quartic for Integer Restriction

• Supports Efficient Sampling (Vector Generation)
– Nearly As Efficient As Intervals

9



10 | © 2018 Rockwell Collins. All rights reserved.

Sampling

10

Lower Bound Variable Upper Bound
100 < x < 200

3x - 290 < y < -3x + 970
y + x – 250 < z < -y + 7

Test Values
x = 110

y
z



11 | © 2018 Rockwell Collins. All rights reserved.

Sampling

11

Lower Bound Variable Upper Bound
100 < x < 200

3x - 290 = 40 < y < 640 = -3x + 970
y + x – 250 < z < -y + 7

Test Values
x = 110
y = 50

z



12 | © 2018 Rockwell Collins. All rights reserved.

Sampling

12

Lower Bound Variable Upper Bound
100 < x < 200

3x - 290 = 40 < y < 640 = -3x + 970
y + x – 250 = -90 < z < -43 = -y + 7

Test Values
x = 110
y = 50
z = -50



13 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Intersection Example 1

13

Lower Variable Upper
2 <= x

y < -x + 6

Lower Variable Upper
x < 5

3x + 2 < y
&

Lower Variable Upper
2 <= x < 5

3x + 2 y < -x + 6



14 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Intersection Example 2

14

Lower Variable Upper

y < x + 2

Lower Variable Upper

y < -x + 6
&

X = 4
Y = 1



15 | © 2018 Rockwell Collins. All rights reserved.

Domain Restriction

x

y y < x + 2

y < -x + 6



16 | © 2018 Rockwell Collins. All rights reserved.

Domain Restriction

x = 2

x

y y < x + 2

y < -x + 6



17 | © 2018 Rockwell Collins. All rights reserved.

Domain Restriction

x >= 2

x

y

y < -x + 6

Lower Variable Upper
2 <= x

y < -x + 6



18 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Intersection Example 2

18

Lower Variable Upper

y < -x + 6

Lower Variable Upper

y < x + 2
&

Lower Variable Upper
2 <= x

y < -x + 6



19 | © 2018 Rockwell Collins. All rights reserved.

Trapezoid Intersection

 If we intersect two trapezoids from smallest to largest
– Domain Restrictions will be applied from largest to smallest

 Intersection of two variable constraints
– May result in a Domain Restriction

 Domain Restrictions
– Expressed in terms of Smaller Variables

 Intersection with a Domain Restriction
– May result in 1 more (even smaller) restriction

• Etc.
 Computational Complexity

– Order N operations to intersect two trapezoids
– Order N^2 operations to apply domain restrictions
– Interval Intersection is Order N
– Total Complexity Order N^3



Generalization Problem Statement

• Given
– System Model
– Constraint
– Solution provided by Constraint 

Solver

• Generate a Generalization
– Convert a single solution into a set of 

solutions
– Express Result Concisely

• Usually Generalization != Constraint
• Result is Inexact

20

constraintsolution

generalization



Possible Generalizations

21

constraint

generalization

solution

Conservative
Over-Approximation

Conservative
Under-Approximation



Previous Work (2017 Rump Session)

• Identified Conservative Under-Approximation 
– As Appropriate for our Application

• Formalized this Concept in ACL2
– Expressed Correctness using 2 Invariants

• Refined a Set of Generalization Rules
– We initially assumed that “Doing Nothing” was conservative

• If you don’t change the expression, it trivially satisfies correctness
– We were wrong !
– It is easy to make these kinds of mistakes

• ACL2 can help during algorithmic development

• Motivated continued Formalism
– Verify Concrete Implementation

22



23 | © 2018 Rockwell Collins. All rights reserved.

Generalization Correctness Statements

• Top Level Correctness Statement
– Generalization Contains Original Solution
– Generalization is a Subset of Original 

Constraint

• Invariants
– Can be enforced incrementally

• During Symbolic Simulation
– Reduce to Correctness when applied to top 

level constraint

23

• Correctness Invariants
– 1. Evaluating Solution on Generalization must be the same as 

Evaluating Solution on original expression
– 2. Any input whose evaluation differs from that of the solution on 

the original expression must also differ on the Generalization 



24 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Generalization: ACL2 Formalism

 Linear Rational Multi-Variate Polynomial Library
– Formalization of Solving Equality/Inequality for one variable

 Interval Bounds
– Bounds single variable w/to polynomials 
– Upper and/or Lower Inequalities or a single Equality

 Trapezoidal Data Structure, Regions
– Ordered List of Interval Bounds

 Operational Building Blocks
– Model Derived From Implementation Source Code

 Generalization Procedure
– Generalizes a Solution Vector and produces a Region
– Relative to arbitrary Boolean combinations of Linear Constraints

 Proof of Generalization Correctness
– w/to 2 Correctness Invariants



25 | © 2018 Rockwell Collins. All rights reserved.

Trapezoidal Data Types



26 | © 2018 Rockwell Collins. All rights reserved.

Evaluator



27 | © 2018 Rockwell Collins. All rights reserved.

Generalizer



28 | © 2018 Rockwell Collins. All rights reserved.

Generalization Correctness

Evaluating Solution on Generalization must be the
same as Evaluating Solution on original expression

Any input whose evaluation differs from that of the solution on
the original expression must also differ on the Generalization

Establishes Correctness of detailed
Generalization Procedure Model 
against our Formal specification



29 | © 2018 Rockwell Collins. All rights reserved.

Proof Pearls (Weird Things Dave Does in ACL2)

 Non-Traditional Congruences (nary)

– Used to verify variable ordering invariants

 Delayed/Partial Termination (def::ung)

– Used to admit/reason about awkward functions

 Question about ACL2 Linear Capabilities



30 | © 2018 Rockwell Collins. All rights reserved.

Traditional backchaining (member/subset)



31 | © 2018 Rockwell Collins. All rights reserved.

Non-Traditional (one-way) “equivalences”

Alluded to in 2006 Workshop:
“Parameterized Congruences in ACL2”

(defthm generalized-cong-rule
(implies

(< x a)
(equal (foo x)

(foo a))))



32 | © 2018 Rockwell Collins. All rights reserved.

Non-Traditional Congruences



33 | © 2018 Rockwell Collins. All rights reserved.

Non-Traditional “Driver” Rules

If we modified the ancestors check (?)
perhaps these could be rewrite rules ..



34 | © 2018 Rockwell Collins. All rights reserved.

Proof Using Non-Traditional Congruences



35 | © 2018 Rockwell Collins. All rights reserved.

Admitting Awkward Functions (def::ung)

Zipper Merge
Domain 
Restriction

Reflexive Recursion



36 | © 2018 Rockwell Collins. All rights reserved.

intersect type theorems



37 | © 2018 Rockwell Collins. All rights reserved.

intersect measure and (conditional) termination



38 | © 2018 Rockwell Collins. All rights reserved.

What are ACL2’s Linear Reasoning Capabilities?

 Doublecheck

– Framework can emit ACL2 theorems during generalization

– Instances of invariants 1 & 2

• Trapezoids : Conjunctions of linear constraints

 Original Theorems Failed/Took Forever

– Function Applications rather than Variables

 Generalized Theorems Don’t Prove Consistently



39 | © 2018 Rockwell Collins. All rights reserved.

What are ACL2’s Linear Reasoning Capabilities?



40 | © 2018 Rockwell Collins. All rights reserved.

What are ACL2’s Linear Reasoning Capabilities?



41 | © 2018 Rockwell Collins. All rights reserved.

What are ACL2’s Linear Reasoning Capabilities?

 Doublecheck

– Framework can emit ACL2 theorems during generalization

– Instances of invariants 1 & 2

• Trapezoids : Conjunctions of linear constraints

 Original Theorems Failed/Took Forever

– Function Applications rather than Variables

 Generalized Theorems Don’t Prove Consistently

How does Linear Reasoning differ from LP?



42 | © 2018 Rockwell Collins. All rights reserved.

Sampling (Oops ..)

42

Lower Bound Variable Upper Bound
100 < x < 200

3x - 290 = 40 < y < 640 = -3x + 970
y + x – 250 = 490 < z < -623 = -y + 7

Test Values
x = 110
y = 630
z = ??



43 | © 2018 Rockwell Collins. All rights reserved.

Integer Equality

Lower Variable Upper
0 <= x <= 6

(2/3)x = y = (2/3)x 

If we choose a
value of x in these
regions, there is
no integer value
for y satisfying
our constraints



44 | © 2018 Rockwell Collins. All rights reserved.

Integer Intervals

Lower Variable Upper
0 <= x <= 5

.9x – .4 <= y <= .74x + .4

If we choose a
value of x in this
region, there is
no integer value
for y satisfying
our constraints



45 | © 2018 Rockwell Collins. All rights reserved.

Future Work

 We have defined a technique for restricting trapezoids

– Restricted Trapezoids can be sampled 

• Without Inconsistencies

• Without Backtracking

– Even for Integer Valued Variables

 Remaining Challenge:

– Prove that Restriction Works


	Trapezoidal Generalization Over Linear Constraints
	Trapezoidal Generalization Talk Overview
	Model-Based Fuzzing
	Model-Based Fuzzing Pipeline
	Generalization in Model-Based Fuzzing
	Rectilinear Generalization
	Trapezoidal Generalization
	Trapezoidal Generalization
	Trapezoidal Generalization (vs. Intervals)
	Sampling
	Sampling
	Sampling
	Trapezoidal Intersection Example 1
	Trapezoidal Intersection Example 2
	Domain Restriction
	Domain Restriction
	Domain Restriction
	Trapezoidal Intersection Example 2
	Trapezoid Intersection
	Generalization Problem Statement
	Possible Generalizations
	Previous Work (2017 Rump Session)
	Generalization Correctness Statements
	Trapezoidal Generalization: ACL2 Formalism
	Trapezoidal Data Types
	Evaluator
	Generalizer
	Generalization Correctness
	Proof Pearls (Weird Things Dave Does in ACL2)
	Traditional backchaining (member/subset)
	Non-Traditional (one-way) “equivalences”
	Non-Traditional Congruences
	Non-Traditional “Driver” Rules
	Proof Using Non-Traditional Congruences
	Admitting Awkward Functions (def::ung)
	intersect type theorems
	intersect measure and (conditional) termination
	What are ACL2’s Linear Reasoning Capabilities?
	What are ACL2’s Linear Reasoning Capabilities?
	What are ACL2’s Linear Reasoning Capabilities?
	What are ACL2’s Linear Reasoning Capabilities?
	Sampling (Oops ..)
	Integer Equality
	Integer Intervals
	Future Work

