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A graph is a dependent datastructure with
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Common data structures

I (path-p pth gph) satisfies

1. (true-listp pth) with
2. (in (car pth) (neighbours (cadr pth) gph))

3. (path-p (cdr pth))

I (rev-path-p rev-pth gph) satisfies

1. (true-listp pth) with
2. (in (cadr pth) (inv-neighbours (car pth) gph))

3. (rev-path-p (cdr pth))

I (cycle-p cyc gph) is a path-p with equal ends



Algorithms and specs

I (find-path src tgt gph)

(defthm path−exists− impl ies−exists−path−spec
( implies (and ( path−p pth gph )

( graph−p gph ) )
( find−path ( get−src pth ) ( get−tgt pth ) gph ) ) )

(defthm exists−path− impl ies−path−construct ib le−spec
( implies (and ( graph−p gph )

( find−path s r c tg t gph ) )
( l et ( ( pth ( find−path s r c tg t gph ) ) )

(and ( path−p pth gph )
( equal ( get−src pth ) s r c )
( equal ( get−tgt pth ) tg t ) ) ) ) )
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Reachable and finite differencing

I Specification is proven by a two step refinement
I Compute set reachable in k steps

I S ∪ (Neighs S) ∪ . . . ∪ (Neighs (. . . (Neighs S)) . . .)

I Compute reachable set by iterative unioning

I S ∪ (Neighs S) ∪ (Neighs (Neighs S)) . . .

I Compute reachable set by finite difference

I S0 = S, S1 = (Neighs S0)
I Di+1 = Si+1 − Si, Si+1 = Si ∪ (Neighs Di)
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Applications

I Call-graphs

I Guard verification

I Getting ordered guard
obligations

I Your next project!
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Future work

I Prove specs for topological-sort

I Prove specs for
collapse-strongly-connected-components

I Optimize find-path using finite differencing

I Optimize already specified algorithms, possibly using
transformations
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