
Verified Graph Algorithms in ACL2

Nathan Guermond
Kestrel Institute

November 5, 2018

Another graph library?

Goal: A unified graph library with common algorithms

I Full specifications

I Modularity

I Optimization

Another graph library?

Goal: A unified graph library with common algorithms

I Full specifications

I Modularity

I Optimization

Another graph library?

Goal: A unified graph library with common algorithms

I Full specifications

I Modularity

I Optimization

Another graph library?

Goal: A unified graph library with common algorithms

I Full specifications

I Modularity

I Optimization

Core data structure

A graph is a dependent datastructure with

I (setp vertices)

I (true-listp edges)

I (booleanp directed)

The dependency is given by the well-formedness constraint

I (graph-constraint vertices edges)

Core data structure

A graph is a dependent datastructure with

I (setp vertices) → (get-vertices gph)

I (true-listp edges) → (get-edges gph)

I (booleanp directed) → (directed-p gph)

The dependency is given by the well-formedness constraint

I (graph-constraint vertices edges)

Core data structure

A graph is a dependent datastructure with

I (setp vertices) → (get-vertices gph)

I (true-listp edges) → (get-edges gph)

I (booleanp directed) → (directed-p gph)

The dependency is given by the well-formedness constraint

I (graph-constraint vertices edges)

Common data structures

I (path-p pth gph) satisfies

1. (true-listp pth) with
2. (in (car pth) (neighbours (cadr pth) gph))

3. (path-p (cdr pth))

I (rev-path-p rev-pth gph) satisfies

1. (true-listp pth) with
2. (in (cadr pth) (inv-neighbours (car pth) gph))

3. (rev-path-p (cdr pth))

I (cycle-p cyc gph) is a path-p with equal ends

Algorithms and specs

I (find-path src tgt gph)

(defthm path−exists− impl ies−exists−path−spec
(implies (and (path−p pth gph)

(graph−p gph))
(find−path (get−src pth) (get−tgt pth) gph)))

(defthm exists−path− impl ies−path−construct ib le−spec
(implies (and (graph−p gph)

(find−path s r c tg t gph))
(l et ((pth (find−path s r c tg t gph)))

(and (path−p pth gph)
(equal (get−src pth) s r c)
(equal (get−tgt pth) tg t)))))

Algorithms and specs

I (find-path src tgt gph)

I (reachable-set S gph)

(defthm exists−path− impl ies−reachable−spec
(implies (and (graph−p gph)

(path−p pth gph))
(in (get−tgt pth)

(reachable− set
(s i n g l e t o n (get−src pth)) gph))))

(defthm exists−path− from−src−to−reachable−set−spec
(implies (and (graph−p gph)

(in s r c (g e t−ve r t i c e s gph))
(in tg t (reachable− set

(s i n g l e t o n s r c) gph)))
(find−path s r c tg t gph)))

Algorithms and specs

I (find-path src tgt gph)

I (reachable-set S gph)

(defthm exists−path− impl ies−reachable−spec
(implies (and (graph−p gph)

(path−p pth gph))
(in (get−tgt pth)

(reachable− set
(s i n g l e t o n (get−src pth)) gph))))

(defthm exists−path− from−src−to−reachable−set−spec
(implies (and (graph−p gph)

(in s r c (g e t−ve r t i c e s gph))
(in tg t (reachable− set

(s i n g l e t o n s r c) gph)))
(find−path s r c tg t gph)))

Algorithms and specs

I (find-path src tgt gph)

I (reachable-set S gph) and
(inv-reachable-set S gph)

I (find-simple-cycle gph) and
(find-non-trivial-cycle gph)

I (topological-sort gph)

I (get-strongly-connected-component S gph)

I (collapse-strongly-connected-components gph)

I constructed from find-non-trivial-cycle,
reachable-set, and inv-reachable-set

I A strongly connected compoment is given by
(Reach cyc) ∩ (InvReach cyc)

Algorithms and specs

I (find-path src tgt gph)

I (reachable-set S gph) and
(inv-reachable-set S gph)

I (find-simple-cycle gph) and
(find-non-trivial-cycle gph)

I (topological-sort gph)

I (get-strongly-connected-component S gph)

I (collapse-strongly-connected-components gph)

I constructed from find-non-trivial-cycle,
reachable-set, and inv-reachable-set

I A strongly connected compoment is given by
(Reach cyc) ∩ (InvReach cyc)

Algorithms and specs

I (find-path src tgt gph)

I (reachable-set S gph) and
(inv-reachable-set S gph)

I (find-simple-cycle gph) and
(find-non-trivial-cycle gph)

I (topological-sort gph)

I (get-strongly-connected-component S gph)

I (collapse-strongly-connected-components gph)

I constructed from find-non-trivial-cycle,
reachable-set, and inv-reachable-set

I A strongly connected compoment is given by
(Reach cyc) ∩ (InvReach cyc)

Algorithms and specs

I (find-path src tgt gph)

I (reachable-set S gph) and
(inv-reachable-set S gph)

I (find-simple-cycle gph) and
(find-non-trivial-cycle gph)

I (topological-sort gph)

I (get-strongly-connected-component S gph)

I (collapse-strongly-connected-components gph)

I constructed from find-non-trivial-cycle,
reachable-set, and inv-reachable-set

I A strongly connected compoment is given by
(Reach cyc) ∩ (InvReach cyc)

Algorithms and specs

I (find-path src tgt gph)

I (reachable-set S gph) and
(inv-reachable-set S gph)

I (find-simple-cycle gph) and
(find-non-trivial-cycle gph)

I (topological-sort gph)

I (get-strongly-connected-component S gph)

I (collapse-strongly-connected-components gph)
I constructed from find-non-trivial-cycle,

reachable-set, and inv-reachable-set
I A strongly connected compoment is given by

(Reach cyc) ∩ (InvReach cyc)

Reachable and finite differencing

I Specification is proven by a two step refinement
I Compute set reachable in k steps

I S ∪ (Neighs S) ∪ . . . ∪ (Neighs (. . . (Neighs S)) . . .)

I Compute reachable set by iterative unioning

I S ∪ (Neighs S) ∪ (Neighs (Neighs S)) . . .

I Compute reachable set by finite difference

I S0 = S, S1 = (Neighs S0)
I Di+1 = Si+1 − Si, Si+1 = Si ∪ (Neighs Di)

1

2

3

4

5 6

7

8

9

Reachable and finite differencing

I Specification is proven by a two step refinement
I Compute set reachable in k steps

I S ∪ (Neighs S) ∪ . . . ∪ (Neighs (. . . (Neighs S)) . . .)

I Compute reachable set by iterative unioning
I S ∪ (Neighs S) ∪ (Neighs (Neighs S)) . . .

I Compute reachable set by finite difference

I S0 = S, S1 = (Neighs S0)
I Di+1 = Si+1 − Si, Si+1 = Si ∪ (Neighs Di)

1

2

3

4

5 6

7

8

9

Reachable and finite differencing

I Specification is proven by a two step refinement
I Compute set reachable in k steps

I S ∪ (Neighs S) ∪ . . . ∪ (Neighs (. . . (Neighs S)) . . .)

I Compute reachable set by iterative unioning
I S ∪ (Neighs S) ∪ (Neighs (Neighs S)) . . .

I Compute reachable set by finite difference
I S0 = S, S1 = (Neighs S0)
I Di+1 = Si+1 − Si, Si+1 = Si ∪ (Neighs Di)

1

2

3

4

5 6

7

8

9

1

2

3

4

5 6

7

8

9

Applications

I Call-graphs

I Guard verification

I Getting ordered guard
obligations

I Your next project!

factorial

+*zp

<not

integerp

if

Applications

I Call-graphs

I Guard verification

I Getting ordered guard
obligations

I Your next project!

factorial

+*zp

<not

integerp

if

Applications

I Call-graphs

I Guard verification

I Getting ordered guard
obligations

I Your next project!

factorial

+*zp

<not

integerp

if

Applications

I Call-graphs

I Guard verification

I Getting ordered guard
obligations

I Your next project!

factorial

+*zp

<not

integerp

if

Future work

I Prove specs for topological-sort

I Prove specs for
collapse-strongly-connected-components

I Optimize find-path using finite differencing

I Optimize already specified algorithms, possibly using
transformations

Future work

I Prove specs for topological-sort

I Prove specs for
collapse-strongly-connected-components

I Optimize find-path using finite differencing

I Optimize already specified algorithms, possibly using
transformations

Future work

I Prove specs for topological-sort

I Prove specs for
collapse-strongly-connected-components

I Optimize find-path using finite differencing

I Optimize already specified algorithms, possibly using
transformations

Future work

I Prove specs for topological-sort

I Prove specs for
collapse-strongly-connected-components

I Optimize find-path using finite differencing

I Optimize already specified algorithms, possibly using
transformations

