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Disclaimer

   The views expressed are those of the authors and do not reflect 
the official policy or position of the Defense Advanced Research 
Projects Agency (DARPA) or the U.S. Government.
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Motivation

• Cyber resilience is an increasingly important requirement for 
Rockwell Collins customers, both government and commercial 

• As DARPA HACMS Air Vehicle team lead, we researched 
methods/tools to create “clean-slate” cyber-resilient systems 

• Our air vehicles resisted all attacks by the HACMS red team 
• On the new DARPA CASE program, challenges include: 
• Making cyber resilience a first-class systems engineering 

property, on par with the various existing “ilities” 
• Applying cyber-resilient  engineering methods and tools to 

systems including significant legacy elements
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Motivation (cont’d.)

• Additionally, new autonomy functions such as route planning, 
inference, pattern recognition, etc. present a significant V&V 
challenge, due to the lack of a human operator, as well as 
complex new data structures and algorithms 

• Proof techniques for these data structures exist, but are oriented 
to unbounded, functional data types 
• Functional data structure implementations are not often 

efficient in space or time, so developers generally take a 
more imperative approach 

• We need to find proof techniques that embrace the “natural” 
functional proof style, yet apply to more efficient data 
structure implementations 
• Including GPU-based and hardware-based data structures
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Verified Data Structure Compilation and Property 
Proofs
• Once we develop the Data Structure Compilation 

Correctness Proof, properties proved of the functional 
data structure specification will also hold for the 
optimized implementation

Functional Specification Proved Properties

Optimized Implementation

Property Proofs

   Verified   Compilation

Data Structure Compilation 
Correctness Proof
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DASL: A Domain-Aware System Language

• We have developed a “Domain-Aware” System Language,  
DASL, that embodies our vision: 

• DASL is a system-level language, appropriate for expressing 
algorithms and data structures that can be compiled to 
traditional programming languages, GPU languages, as well 
as Hardware Description Languages (HDLs) 

• HOL4 gives semantics to DASL evaluation, and we use 
proved source-to-source transformations in HOL4 to compile 
DASL code 

• DASL is a “mashup” of concepts from Ada, ML, and the C 
family of languages, and has a similar feel to modern 
languages such as Swift and Rust
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DASL Data Structure Compilation to Linear Form

• DASL provides ML-like functional data structure specifications 
• Data structure specification includes a maximum size 

• DASL compiles Data Structure Specifications into a linearized 
form requiring no heap allocation or deallocation, in keeping 
with high-assurance development tenets  
• (e.g. DO-178C Level A) 

• The DASL toolchain produces proofs that data structure 
operations on the compiled form are equivalent to the same 
operations on the high-level functional form 
• Proves that in-place updates are equivalent to functional 

(copying) updates, given that no “old” copies of the data 
structure are allowed 

• User-defined properties are introduced using spec statements
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DASL Code Generation Options

DASL Source

JVM

DASL 
Compiler 
(HOL4)

GPU 
Fabric

Binary Verified  
Binary

Bit file

GNAT

Java
Ada/

SPARK CUDAML VHDL

javac CakeML CUDA 
compiler

FPGA 
Tools

D
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Related Work: Theorem Provers and Verified/
Verifying Compilers
• A number of verified/verifying compilers have emerged recently 

• e.g., CompCert C compiler, CakeML 
• Concurrently, theorem provers have increasingly supported the  

translation of logic functions to code, e.g.: 
• OCaml code from Coq 
• Verified binary code from HOL4 functions via CakeML tools 

• Assembly code from Gallina (Coq) 
• Œuf, CertiCoq 

• Isabelle/HOL 
• ML, OCaml, Haskell, Scala 
• Interface to CakeML 

• C code from PVS (PVS2C) 
• ACL2 is both a logic and a programming language (Applicative 

subset of Common Lisp) !9
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• Verified/Verifying compilers for conventional programming 
languages are a boon for establishing compiler correctness, but 
do nothing to prove correctness of the source code 

• We are particularly interested in tools that provide a verified 
connection between high-level specifications of algorithms and 
data structures expressed in a logic (where algorithm 
correctness proofs can be readily performed) and (hopefully 
efficient) low-level implementations (the bits in the box)

Related Work: Theorem Provers and Verified/
Verifying Compilers (cont’d.)
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The sized Declarator and Compilation to Array-Based 
Form

• The DASL sized declarator informs the toolchain that an 
otherwise unbounded datatype declaration has limited size: 

sized pq: PQType (MAX_VERTICES); 

• sized datatypes can be compiled to an array-based form with 
destructive updates, similar to the way that ACL2 single-
threaded objects (stobjs) are compiled 

• Array-based form greatly simplifies code generation for GPUs 
and hardware
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Example DASL datatype: Binary Search Tree (BST)

• Binary Search Tree from Sedgewick and Wayne’s Algorithms 
(4th edition) translated into DASL: 

    package BSTree = 

    const MAX_VERTICES : uint = 500000; 

    datatype BSTree 
      = Leaf 
      | Node :  
         (key   : uint,   -- Key (sorted) = 0 => "null key" 
          val   : uint,   -- Associated data = 0 => "null val" 
          size  : uint,   -- Nodes in this subtree 
          left  : BSTree, 
          right : BSTree); 

   sized BSTRoot: BSTree(MAX_VERTICES);
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Binary Search Tree (BST) (cont’d)

• BST has operators for isEmpty(), sizeOf(), getVal(), insert(), delete(), 
deleteMin(), deleteMax(), etc. 

• Example BST Operator in DASL: deleteMin() 

  function deleteMin(bst: inout BSTree) { 
    match bst { 
      'Leaf => 
        skip; 
      'Node n =>  
       { match n.left { 
           'Leaf => 
              bst := n.right; 
           'Node nl => 
              deleteMin(n.left); 
          } 
         n.size := 1 + sizeOf(n.left) + sizeOf(n.right); 
       } 
    } 
  } !13
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DASL Graph Datatypes

• Another unique DASL feature is a specialized graph datatype 
declarator, and its associated sized declarator: 

    graphtype DKGraph (nodeLabel = vertexLabelTy,  
                      edgeLabel = edgeLabelTy); 

    sized dkg: DKGraph (MAX_VERTICES, MAX_EDGES_PER_VERTEX); 

• The DASL toolchain compiles this declaration to an array-
based form, and generates several associated functions for 
manipulating the array-based form: 

    getOutEdges(), setOutEdges(), addEdge(), labelVertex(),  
   labelEdge(),…
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Example graphtype: Depth-First Search

• graphtype declaration 

  type vertexLabelTy = uint; 
  type edgeLabelTy = uint; 

  graphtype graph (nodeLabel = vertexLabelTy,  
                   edgeLabel = edgeLabelTy); 

  const MAX_NODES : uint = 50000; 
  const MAX_EDGES : uint = 4; 
  type vertex = uint; 

  sized theGraph : graph (MAX_NODES, MAX_EDGES); 
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Depth-first search in DASL

function DFS_span (vtarget: in vertex, G: in graph, 
                   spanning_tree: inout BST, 
                   fringe: inout vertex_pair_list) { 
  var v, vpred: vertex; 
  in 
    match fringe { 
      -- Out of vertex pairs to process 
      'Empty => skip; 
      'Node n => { 
        -- Found target vertex 
        if exists(vtarget, spanning_tree) then 
          skip; 
        else { 
          (v, vpred) := n.elt; 
          rest(fringe); 
          -- if v already found, on to the next fringe element 
          if exists(v, spanning_tree) then 
            DFS_span(vtarget, G, spanning_tree, vertex_pair_list); 
          else { 
            mark(v, vpred, spanning_tree); 
            explore(MAX_EDGES, v, G, spanning_tree, vertex_pair_list); 
            DFS_span(vtarget, G, spanning_tree, vertex_pair_list); 
          }}}}} !16
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Array-Based Graph Representation

• Based on a data structure layout approach created for efficient 
GPU execution (Harish and Narayanan, HiPC 2007); used to 
code Dijkstra’s All-Pairs Shortest Path algorithm (APSP) 

• Amenable to efficient CUDA, OpenCL implementation, as well as 
hardware implmentation (VHDL) 

• Implementated APSP using ACL2 single-threaded object (ACL2 
Workshop 2013) 
• Execution of Dijkstra’s shortest path algorithm on compiled 

graph using stobjs was linear in number of vertices up to at 
least 1 million vertices at 10 edges per vertex 

• DASL compiler analyzes datatype, graphtype, and sized 
declarations, creates appropriate array-based layout, and 
instantiates runtime functions
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Graph Compilation Example, Two Edges per 
Vertex
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Prototyping DASL Data Structure Design in ACL2

Even though we are implementing DASL in HOL4, we chose to 
prototype the DASL data structure design in ACL2.  Why? 

• ACL2 is the most capable system we know of for the creation, 
proof, and execution of formal specifications 
• Using ACL2, we have been able to easily scale our data 

structure prototypes to millions of vertices and edges 
• ACL2 provides sophisticated proof libraries (books) for reasoning 

about aggregate data structures 
• Single-threaded objects (stobjs) provide functional data 

structure definitions with destructive “under-the-hood” 
implementations. 

• Guards combine a type-like discipline with the power of proof
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Prototyping DASL Data Structure Design in ACL2 
(cont’d)
• ACL2 is a mostly-automated theorem prover, and is quite adept 

at automated inductive proofs 
• Tail recursion in ACL2 combines recursive functional style with 

efficient compilation to loops 
• ACL2’s simple packaging facility provides separate namespaces 

for datatypes/graphtypes 
• All functions admitted to ACL2 must first be proven to terminate 

• This encourages the ACL2 developer to explicitly consider 
termination issues when writing functions 

• We have thus constructed a Rudimentary ACL2 Semantic 
Laboratory for DASL: 
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Prototyping DASL Data Structure Design in ACL2 
(cont’d)
• ACL2 is a mostly-automated theorem prover, and is quite adept 

at automated inductive proofs 
• Tail recursion in ACL2 combines recursive functional style with 

efficient compilation to loops. 
• ACL2’s simple packaging facility provides separate namespaces 

for datatypes/graphtypes 
• All functions admitted to ACL2 must first be proven to terminate 

• This encourages the ACL2 developer to explicitly consider 
termination issues when writing functions 

• We have thus constructed a Rudimentary ACL2 Semantic 
Laboratory for DASL: RASL DASL
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RASL DASL

• Source of original prototype of DASL array-based memory layout 
and DASL datatype runtime API 
• No garbage generation/collection overhead 

• Utilizes ACL2 single-threaded objects for all data structures 
• RASL DASL functions are applicative, yet implement array 

updates destructively “under-the-hood”  
• Each data structure defined in its own package 

• All target functions are written in tail-recursive style, so that 
recursion can be compiled to looping 

• Embrace the restriction that all ACL2 functions must be proved to 
terminate 

• All functions have guards for “super-defensive” programming
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Binary Search Tree Declaration in RASL DASL

(in-package "BST") 

(defconst *MAX_VTX* 65535) 
(defconst *MAX_VTX1* (1+ *MAX_VTX*)) ;; 2**16 
(defconst *MAX_EDGES_PER_VTX* 2) 
(defconst *MAX_EDGE* (* *MAX_VTX* *MAX_EDGES_PER_VTX*)) 
(defconst *MAX_EDGE1* (1+ (* *MAX_VTX* *MAX_EDGES_PER_VTX*))) 
(defconst *MAX_EDGE_MINUS* (1+ (- *MAX_EDGE* *MAX_EDGES_PER_VTX*))) 

(defstobj Obj 
;; padding -- keeps ACL2 from turning (nth *VTXHD* Obj) into (car Obj) 
  (pad :type t :initially 0) 
  (vtxHd :type (integer 0 65535) :initially 0) 
  (vtxTl :type (integer 0 65535) :initially 0) 
  (vtxCount :type (integer 0 65535) :initially 0) 
;; (V) This contains a pointer to the edge list for each vertex 
  (vtxArr :type (array (integer 0 131069) (*MAX_VTX1*)) :initially 0) 
;; (K) Keys for each vertex 
  (keyArr :type (array (integer 0 *) (*MAX_VTX1*)) :initially 0) 
;; (D) Data Value array 
  (valArr :type (array (integer 0 *) (*MAX_VTX1*)) :initially 0) 
;; (E) This contains pointers to the vertices that each edge is attached to 
  (edgeArr :type (array (integer 0 65535) (*MAX_EDGE1*)) :initially 0) 
 :inline t)
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Sample BST Function in RASL DASL

((defun getVal (count key vtx Obj) 
  (declare (xargs :stobjs Obj  
                  :guard (and (natp count) (natp key) (natp vtx)))) 
  (cond 
   ((not (mbt (Objp Obj))) 0)    ;; Only positive values stored. 0 = ‘null'. 
   ((not (mbt (natp count))) 0) 
   ((not (mbt (natp key))) 0) 
   ((not (mbt (natp vtx))) 0) 
   ((zp count) 0) 
   ((zp key) 0)                  ;; Only positive keys stored. 0 = ‘null'. 
   ((zp vtx) 0) 
   ((> vtx *MAX_VTX*) 0) 
   ((mbe :logic (zp (vtxCount Obj)) 
         :exec (int= (vtxCount Obj) 0)) 0) ;; no vertices 
   ((zp (keyArri vtx Obj)) 0) 
   ((< key (keyArri vtx Obj)) 
    (getVal (1- count) key (edgeArri (left (vtxArri vtx Obj)) Obj) Obj)) 
   ((> key (keyArri vtx Obj)) 
    (getVal (1- count) key (edgeArri (right (vtxArri vtx Obj)) Obj) Obj)) 
   ;; (= key (keyArri vtx Obj)) 
   (t (valArri vtx Obj)))) 

(defmacro getV (key Obj) 
  `(getVal (vtxCount ,Obj) ,key (vtxHd ,Obj) ,Obj)) !24
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Depth-First Search in RASL DASL
(defun dfs_span (count vtarget gObj BST::Obj DLPR::Obj) 
  (declare (xargs :stobjs (gObj BST::Obj DLPR::Obj) 
                  :guard (and (natp count) (natp vtarget)))) 
  (cond 
   ((not <recapitulation of :guard conditions>) (mv BST::Obj DLPR::Obj)) 
   ((zp count) (mv BST::Obj DLPR::Obj)) 
   ((> vtarget *MAX_VTX*) (mv BST::Obj DLPR::Obj)) 
   ((BST::existp vtarget BST::Obj) (mv BST::Obj DLPR::Obj)) ;; Found target vtx 
   ((zp (DLPR::ln DLPR::Obj)) (mv BST::Obj DLPR::Obj)) 
   (t (mv-let (v vpred) (DLPR::nthelem 0 DLPR::Obj) 
        (cond 
         ((not (posp v)) (mv BST::Obj DLPR::Obj)) 
         ((> v *MAX_VTX*) (mv BST::Obj DLPR::Obj)) 
         ((not (posp vpred)) (mv BST::Obj DLPR::Obj)) 
         ((> vpred *MAX_VTX*) (mv BST::Obj DLPR::Obj)) 
         ((BST::existp v BST::Obj) 
          (seq2 BST::Obj DLPR::Obj 
                (BST::nop BST::Obj) 
                (DLPR::rst DLPR::Obj) 
                (dfs_span (1- count) vtarget gObj BST::Obj DLPR::Obj))) 
         (t (seq2 BST::Obj DLPR::Obj 
                  (mark v vpred BST::Obj) 
                  (seq DLPR::Obj 
                       (DLPR::rst DLPR::Obj) 
                       (explore *MAX_EDGES_PER_VTX* v gObj BST::Obj DLPR::Obj)) 
                  (dfs_span (1- count) vtarget gObj BST::Obj DLPR::Obj))))))))

!25

mark/spanning tree 
(Binary Search Tree)

fringe: doubly-linked list of 
(vtx, vtx_prev) pairs



© 2018 Rockwell Collins. All rights reserved.

Functional Correctness Proofs in RASL DASL

• Since we have a formalization of the DASL data structure form 
in ACL2, we should perform functional correctness proofs 

• Doubly-linked list correctness proofs are relatively simple 
• For Binary Search Trees, we have a nice correctness property, 

namely that inorder traversal of the BST yields a sorted list: 

 (defthm bstp-ordered-posp-of-inorder-traversal 

   (implies 

    (bstp Obj) 

    (ordered-posp (inorder Obj))) 

where bstp is a BST well-formedness property that says, mainly, 
that all non-zero keys of the “left” children of any given non-
zero vertex vtx of the BST are less than (keyArri vtx Obj), 
and that the keys of the “right” children of vtx are greater than 
(keyArri vtx Obj) !26
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Functional Correctness Proofs (cont’d.)

• Thus, for any Binary Search Tree mutator function mut, we need 
to prove: 

 (defthm mut-preserves—ordered-posp-of-inorder-traversal 

   (implies 

    (bstp Obj) 

    (ordered-posp (inorder (mut <args> Obj))) 

which, in turn, requires that bstp is upheld by mut.  Not 
surprisingly, this isn’t easy using a stobj-based infrastructure, 
what with arrays, tail-recursive functions, and whatnot 

• The hard part is establishing that the “keys of left subtree all 
less than” and the “keys of right subtree all greater than” 
functions continue to hold after mut
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Functional Correctness Proofs (cont’d.)

• To perform the proofs of the all-lt-p and all-gt-p functions 
(not shown for space), we need to define some lower-level 
well-formedness invariants on the underlying stobj 
representation of the BST, and show that they hold after mut. 

• Many possible invariants — how do we know which to define? 
• Use “The Method”: Try some high-level proofs, and see what 

low-level properties pop up in the failed subgoals 
• Using “The Method” led to three well-formedness predicates for 

the BST stobj: 
• The non-zero vertex array element for vertex index vtx is  

    (1+ (* (1- vtx) *MAX_EDGES_PER_VTX*)) 

• All non-zero edge array elements are unique, i.e. no two 
edges “point to” the same vertex 

• All non-zero edges “point to” a non-zero entry in the vertex 
array; no “dangling edges” !28
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Functional Correctness Proofs (cont’d.)

• The latter two invariant functions are computationally 
expensive; however, they are only called by functions that are 
used in proofs, and are not called by any runtime BST 
function 

• Using these discovered wellf-formedness predicates, we have 
been able to prove that the all-lt-p and all-gt-p functions 
continue to hold after the insert mutator 

• The “long pole in the tent” to proving the top-level BST 
functonal correctness properties 

• Currently working to make these proofs more efficient by 
disabling more functions and unnecessary theorems  
• all-lt-p proof takes approximately 30 minutes of proof 

time on an ancient 2012 MacBook Pro
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Status and Next Steps
• Completed: 

• HOL4 DASL toolchain supports datatypes and graphtypes 
• Basic Data structure prototyping using RASL DASL complete 

• Several data structures developed, e.g. stacks, lists, 
binary search trees, priority queues, directed graphs 

• Several applications implemented, including breadth/
depth-first search, lexer/parser, and inference engine 

• Next Steps: 
• Complete binary search tree functional correctness proofs 

• “Hard part” done 
• Improve book certification times 
• Complete DASL proof infrastructure in HOL4 
• Demonstrate end-to-end DASL datatype proof using CakeML 
• Demonstrate DASL compilation to VHDL/FPGA

!30


