
DefunT:
A Tool for Automating Termination Proofs

by Using the Community Books
(Extended Abstract)

Matt Kaufmann

UT Austin

November 6, 2018

1/14



SUMMARY

defunT:

I (defun with auto-Termination)
I A tool that can automate ACL2 proofs of measure

(termination) conjectures

GOALS for this talk:

I introduce this tool to potential users,
I explain some of its implementation, and
I advertise for research collaborators to improve the tool.

(Well, that’s what it says in the paper; actually I’d like
someone to take over the tool.)

Relevant files are in books/kestrel/auto-termination/
(archival version in books/workshops/2018/kaufmann/).

2/14



SUMMARY

defunT:

I (defun with auto-Termination)
I A tool that can automate ACL2 proofs of measure

(termination) conjectures

GOALS for this talk:

I introduce this tool to potential users,
I explain some of its implementation, and
I advertise for research collaborators to improve the tool.

(Well, that’s what it says in the paper; actually I’d like
someone to take over the tool.)

Relevant files are in books/kestrel/auto-termination/
(archival version in books/workshops/2018/kaufmann/).

2/14



SUMMARY

defunT:

I (defun with auto-Termination)
I A tool that can automate ACL2 proofs of measure

(termination) conjectures

GOALS for this talk:

I introduce this tool to potential users,
I explain some of its implementation, and
I advertise for research collaborators to improve the tool.

(Well, that’s what it says in the paper; actually I’d like
someone to take over the tool.)

Relevant files are in books/kestrel/auto-termination/
(archival version in books/workshops/2018/kaufmann/).

2/14



SUMMARY

defunT:

I (defun with auto-Termination)
I A tool that can automate ACL2 proofs of measure

(termination) conjectures

GOALS for this talk:

I introduce this tool to potential users,
I explain some of its implementation, and
I advertise for research collaborators to improve the tool.

(Well, that’s what it says in the paper; actually I’d like
someone to take over the tool.)

Relevant files are in books/kestrel/auto-termination/

(archival version in books/workshops/2018/kaufmann/).

2/14



SUMMARY

defunT:

I (defun with auto-Termination)
I A tool that can automate ACL2 proofs of measure

(termination) conjectures

GOALS for this talk:

I introduce this tool to potential users,
I explain some of its implementation, and
I advertise for research collaborators to improve the tool.

(Well, that’s what it says in the paper; actually I’d like
someone to take over the tool.)

Relevant files are in books/kestrel/auto-termination/
(archival version in books/workshops/2018/kaufmann/).

2/14



RUNNING EXAMPLE

I’ll use a running example:

I Start with an edited log.

I Drill down to get a high-level sense of the implementation.

3/14



ACL2 !>(include-book "kestrel/auto-termination/defunt-top"
:dir :system)

[[.. output elided ..]]
ACL2 !>

(defunt f3 (x y)
(if (consp x)

(if (atom y)
(list (f3 (cddr x) y) (f3 (cadr x) y))

(f3 (cdr x) y))
(list x y)))

*Defunt note*: Using termination theorems for
SYMBOL-BTREE-TO-ALIST-AUX, EVENS and TRUE-LISTP.

*Defunt note*: Evaluating
(LOCAL (INCLUDE-BOOK "misc/symbol-btree" :DIR :SYSTEM))
to define function SYMBOL-BTREE-TO-ALIST-AUX.

*Defunt note*: Concluded local include-books.

F3
ACL2 !>

4/14



ACL2 !>(include-book "kestrel/auto-termination/defunt-top"
:dir :system)

[[.. output elided ..]]
ACL2 !>(defunt f3 (x y)

(if (consp x)
(if (atom y)

(list (f3 (cddr x) y) (f3 (cadr x) y))
(f3 (cdr x) y))

(list x y)))

*Defunt note*: Using termination theorems for
SYMBOL-BTREE-TO-ALIST-AUX, EVENS and TRUE-LISTP.

*Defunt note*: Evaluating
(LOCAL (INCLUDE-BOOK "misc/symbol-btree" :DIR :SYSTEM))
to define function SYMBOL-BTREE-TO-ALIST-AUX.

*Defunt note*: Concluded local include-books.

F3
ACL2 !>

4/14



ACL2 !>(include-book "kestrel/auto-termination/defunt-top"
:dir :system)

[[.. output elided ..]]
ACL2 !>(defunt f3 (x y)

(if (consp x)
(if (atom y)

(list (f3 (cddr x) y) (f3 (cadr x) y))
(f3 (cdr x) y))

(list x y)))

*Defunt note*: Using termination theorems for
SYMBOL-BTREE-TO-ALIST-AUX, EVENS and TRUE-LISTP.

*Defunt note*: Evaluating
(LOCAL (INCLUDE-BOOK "misc/symbol-btree" :DIR :SYSTEM))
to define function SYMBOL-BTREE-TO-ALIST-AUX.

*Defunt note*: Concluded local include-books.

F3
ACL2 !>

4/14



ACL2 !>(include-book "kestrel/auto-termination/defunt-top"
:dir :system)

[[.. output elided ..]]
ACL2 !>(defunt f3 (x y)

(if (consp x)
(if (atom y)

(list (f3 (cddr x) y) (f3 (cadr x) y))
(f3 (cdr x) y))

(list x y)))

*Defunt note*: Using termination theorems for
SYMBOL-BTREE-TO-ALIST-AUX, EVENS and TRUE-LISTP.

*Defunt note*: Evaluating
(LOCAL (INCLUDE-BOOK "misc/symbol-btree" :DIR :SYSTEM))
to define function SYMBOL-BTREE-TO-ALIST-AUX.

*Defunt note*: Concluded local include-books.

F3
ACL2 !>

4/14



ACL2 !>(include-book "kestrel/auto-termination/defunt-top"
:dir :system)

[[.. output elided ..]]
ACL2 !>(defunt f3 (x y)

(if (consp x)
(if (atom y)

(list (f3 (cddr x) y) (f3 (cadr x) y))
(f3 (cdr x) y))

(list x y)))

*Defunt note*: Using termination theorems for
SYMBOL-BTREE-TO-ALIST-AUX, EVENS and TRUE-LISTP.

*Defunt note*: Evaluating
(LOCAL (INCLUDE-BOOK "misc/symbol-btree" :DIR :SYSTEM))
to define function SYMBOL-BTREE-TO-ALIST-AUX.

*Defunt note*: Concluded local include-books.

F3
ACL2 !>

4/14



ACL2 !>:trans1 (defunt f3 (x y)
(if (consp x)

(if (atom y)
(list (f3 (cddr x) y)

(f3 (cadr x) y))
(f3 (cdr x) y))

(list x y)))

(WITH-OUTPUT :OFF :ALL :ON ERROR :GAG-MODE NIL :STACK :PUSH
(MAKE-EVENT
(CREATE-DEFUNT
’(F3 (X Y)

(IF (CONSP X)
(IF (ATOM Y)

(LIST (F3 (CDDR X) Y) (F3 (CADR X) Y))
(F3 (CDR X) Y))

(LIST X Y)))
T ’(DEFUNT . F3) STATE)

:ON-BEHALF-OF :QUIET!))
ACL2 !>

5/14



ACL2 !>:trans1 (defunt f3 (x y)
(if (consp x)

(if (atom y)
(list (f3 (cddr x) y)

(f3 (cadr x) y))
(f3 (cdr x) y))

(list x y)))
(WITH-OUTPUT :OFF :ALL :ON ERROR :GAG-MODE NIL :STACK :PUSH
(MAKE-EVENT
(CREATE-DEFUNT
’(F3 (X Y)

(IF (CONSP X)
(IF (ATOM Y)

(LIST (F3 (CDDR X) Y) (F3 (CADR X) Y))
(F3 (CDR X) Y))

(LIST X Y)))
T ’(DEFUNT . F3) STATE)

:ON-BEHALF-OF :QUIET!))
ACL2 !>

5/14



ACL2 !>(CREATE-DEFUNT
’(F3 (X Y)

(IF (CONSP X)
(IF (ATOM Y)

(LIST (F3 (CDDR X) Y) (F3 (CADR X) Y))
(F3 (CDR X) Y))

(LIST X Y)))
T ’(DEFUNT . F3) STATE)

(PROGN
(ENCAPSULATE
NIL
[[.. Events for printing and locally including a book ..]]
[[.. Local defthm events ..]]
(DEFUN F3 (X Y)

(DECLARE (XARGS :MEASURE (ACL2-COUNT X)
:HINTS (("Goal"

:BY (:FUNCTIONAL-INSTANCE
F3-TERMINATION-LEMMA-3
(TD-STUB-2 F3))))))

(IF (CONSP X) ...)))
(DEFUNT-NOTE "" T)
(VALUE-TRIPLE ’F3))

ACL2 !>

6/14



ACL2 !>(CREATE-DEFUNT
’(F3 (X Y)

(IF (CONSP X)
(IF (ATOM Y)

(LIST (F3 (CDDR X) Y) (F3 (CADR X) Y))
(F3 (CDR X) Y))

(LIST X Y)))
T ’(DEFUNT . F3) STATE)

(PROGN
(ENCAPSULATE
NIL
[[.. Events for printing and locally including a book ..]]
[[.. Local defthm events ..]]
(DEFUN F3 (X Y)
(DECLARE (XARGS :MEASURE (ACL2-COUNT X)

:HINTS (("Goal"
:BY (:FUNCTIONAL-INSTANCE

F3-TERMINATION-LEMMA-3
(TD-STUB-2 F3))))))

(IF (CONSP X) ...)))
(DEFUNT-NOTE "" T)
(VALUE-TRIPLE ’F3))

ACL2 !> 6/14



Events for printing and locally including a book

(DEFUNT-NOTE
(MSG

"Using termination theorem~#0~[~/s~] for ~&0."
’(SYMBOL-BTREE-TO-ALIST-AUX EVENS TRUE-LISTP)))

(DEFUNT-NOTE
(MSG "Evaluating ~x0~|to define function ~x1."

’(LOCAL (INCLUDE-BOOK "misc/symbol-btree"
:DIR :SYSTEM))

’SYMBOL-BTREE-TO-ALIST-AUX))
(LOCAL (INCLUDE-BOOK "misc/symbol-btree"

:DIR :SYSTEM))
(DEFUNT-NOTE (MSG "Concluded local include-books."))

7/14



Local defthm events
(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-1-SYMBOL-BTREE-TO-ALIST-AUX ...))

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX ...))

(LOCAL (DEFTHM F3-TERMINATION-LEMMA-1-EVENS ...))
(LOCAL (DEFTHM F3-TERMINATION-LEMMA-2-EVENS ...))
(LOCAL (DEFTHM F3-TERMINATION-LEMMA-1-TRUE-LISTP ...))
(LOCAL (DEFTHM F3-TERMINATION-LEMMA-2-TRUE-LISTP ...))
(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-3
[[.. termination theorem for F3 ..]]
:HINTS
(("Goal"

:USE (F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX
F3-TERMINATION-LEMMA-2-EVENS
F3-TERMINATION-LEMMA-2-TRUE-LISTP)

:IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

8/14



(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-1-EVENS
(IF (O-P (ACL2-COUNT L))

(IF (NOT (CONSP L))
’T
(O< (ACL2-COUNT (CDR (CDR L)))

(ACL2-COUNT L)))
’NIL)

:HINTS (("Goal"
:USE ((:TERMINATION-THEOREM EVENS

((EVENS TD-STUB-1))))
:IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-2-EVENS

(IF (NOT (CONSP X))
’T
(IF (CONSP Y)

’T
(O< (ACL2-COUNT (CDR (CDR X)))

(ACL2-COUNT X))))
:HINTS (("Goal" :BY F3-TERMINATION-LEMMA-1-EVENS))))

9/14



(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-1-EVENS
(IF (O-P (ACL2-COUNT L))

(IF (NOT (CONSP L))
’T
(O< (ACL2-COUNT (CDR (CDR L)))

(ACL2-COUNT L)))
’NIL)

:HINTS (("Goal"
:USE ((:TERMINATION-THEOREM EVENS

((EVENS TD-STUB-1))))
:IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-2-EVENS
(IF (NOT (CONSP X))

’T
(IF (CONSP Y)

’T
(O< (ACL2-COUNT (CDR (CDR X)))

(ACL2-COUNT X))))
:HINTS (("Goal" :BY F3-TERMINATION-LEMMA-1-EVENS))))

9/14



Putting it all together:

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-3
[[.. termination theorem for F3 ..]]
:HINTS
(("Goal"

:USE (F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX
F3-TERMINATION-LEMMA-2-EVENS
F3-TERMINATION-LEMMA-2-TRUE-LISTP)

:IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

10/14



(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-3
(IF (O-P (ACL2-COUNT X))

(IF (IF (NOT (CONSP X))
’T
(IF (NOT (ATOM Y))

’T
(O< (ACL2-COUNT (CDR (CDR X)))

(ACL2-COUNT X))))
(IF (IF (NOT (CONSP X))

’T
(IF (NOT (ATOM Y))

’T
(O< (ACL2-COUNT (CAR (CDR X)))

(ACL2-COUNT X))))
(IF (NOT (CONSP X))

’T
(IF (ATOM Y)

’T
(O< (ACL2-COUNT (CDR X))

(ACL2-COUNT X))))
’NIL)

’NIL)
’NIL)

:HINTS
(("Goal"
:USE (F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX

F3-TERMINATION-LEMMA-2-EVENS
F3-TERMINATION-LEMMA-2-TRUE-LISTP)

:IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

11/14



THE DATABASE

QUESTION
But where did the tool find the termination theorems to use?

ANSWER:
The termination database candidates file,
td-cands.lisp, which come from defun forms.

I It is generated by invoking the script
write-td-cands.sh, which:

I includes the book books/doc/top.lisp (to include
defun forms from all books that support bulding the
manual);

I includes the database-building book,
termination-database.lisp; then

I writes out td-cands.lisp and (for necessary packages)
td-cands.acl2.

12/14



THE DATABASE

QUESTION
But where did the tool find the termination theorems to use?

ANSWER:
The termination database candidates file,
td-cands.lisp, which come from defun forms.

I It is generated by invoking the script
write-td-cands.sh, which:

I includes the book books/doc/top.lisp (to include
defun forms from all books that support bulding the
manual);

I includes the database-building book,
termination-database.lisp; then

I writes out td-cands.lisp and (for necessary packages)
td-cands.acl2.

12/14



THE DATABASE

QUESTION
But where did the tool find the termination theorems to use?

ANSWER:
The termination database candidates file,
td-cands.lisp, which come from defun forms.

I It is generated by invoking the script
write-td-cands.sh, which:

I includes the book books/doc/top.lisp (to include
defun forms from all books that support bulding the
manual);

I includes the database-building book,
termination-database.lisp; then

I writes out td-cands.lisp and (for necessary packages)
td-cands.acl2.

12/14



THE DATABASE

QUESTION
But where did the tool find the termination theorems to use?

ANSWER:
The termination database candidates file,
td-cands.lisp, which come from defun forms.

I It is generated by invoking the script
write-td-cands.sh, which:

I includes the book books/doc/top.lisp (to include
defun forms from all books that support bulding the
manual);

I includes the database-building book,
termination-database.lisp; then

I writes out td-cands.lisp and (for necessary packages)
td-cands.acl2.

12/14



THE DATABASE

QUESTION
But where did the tool find the termination theorems to use?

ANSWER:
The termination database candidates file,
td-cands.lisp, which come from defun forms.

I It is generated by invoking the script
write-td-cands.sh, which:

I includes the book books/doc/top.lisp (to include
defun forms from all books that support bulding the
manual);

I includes the database-building book,
termination-database.lisp; then

I writes out td-cands.lisp and (for necessary packages)
td-cands.acl2.

12/14



THE DATABASE

QUESTION
But where did the tool find the termination theorems to use?

ANSWER:
The termination database candidates file,
td-cands.lisp, which come from defun forms.

I It is generated by invoking the script
write-td-cands.sh, which:

I includes the book books/doc/top.lisp (to include
defun forms from all books that support bulding the
manual);

I includes the database-building book,
termination-database.lisp; then

I writes out td-cands.lisp and (for necessary packages)
td-cands.acl2.

12/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)
I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and
I filtering clauses with limits on both the number of function

symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.

I Store each termination scheme as a set of clauses
(disjunctions)

I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and
I filtering clauses with limits on both the number of function

symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)

I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and
I filtering clauses with limits on both the number of function

symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)
I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and
I filtering clauses with limits on both the number of function

symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)
I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;

I during the search, using subsumption tailored to
termination theorem clause sets; and

I filtering clauses with limits on both the number of function
symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)
I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and

I filtering clauses with limits on both the number of function
symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)
I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and
I filtering clauses with limits on both the number of function

symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)
I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and
I filtering clauses with limits on both the number of function

symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



SOME ENGINEERING CONSIDERATIONS

I Generated lemmas are carefully orchestrated.
I Store each termination scheme as a set of clauses

(disjunctions)
I in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

I using subsumption to minimize database size;
I during the search, using subsumption tailored to

termination theorem clause sets; and
I filtering clauses with limits on both the number of function

symbols and the size.

I Make (up to) two passes, first restricting to functions
defined in the current world.

I Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14



CONCLUDING REMARKS AND FUTURE WORK

Much more about the algorithms is discussed in the README
file in the directory, books/kestrel/auto-termination/.

In spite of making two passes, ACL2 reports only 0.04 seconds
taken altogether for the example in this talk (and paper), using
a 2014 MacBook Pro.

But there is probably a lot more to do to make defunt widely
useful. The file to-do.txt in the directory above has 26 tasks
to consider.

I’d be thrilled for someone to take ownership of this tool!

14/14



CONCLUDING REMARKS AND FUTURE WORK

Much more about the algorithms is discussed in the README
file in the directory, books/kestrel/auto-termination/.

In spite of making two passes, ACL2 reports only 0.04 seconds
taken altogether for the example in this talk (and paper), using
a 2014 MacBook Pro.

But there is probably a lot more to do to make defunt widely
useful. The file to-do.txt in the directory above has 26 tasks
to consider.

I’d be thrilled for someone to take ownership of this tool!

14/14



CONCLUDING REMARKS AND FUTURE WORK

Much more about the algorithms is discussed in the README
file in the directory, books/kestrel/auto-termination/.

In spite of making two passes, ACL2 reports only 0.04 seconds
taken altogether for the example in this talk (and paper), using
a 2014 MacBook Pro.

But there is probably a lot more to do to make defunt widely
useful. The file to-do.txt in the directory above has 26 tasks
to consider.

I’d be thrilled for someone to take ownership of this tool!

14/14



CONCLUDING REMARKS AND FUTURE WORK

Much more about the algorithms is discussed in the README
file in the directory, books/kestrel/auto-termination/.

In spite of making two passes, ACL2 reports only 0.04 seconds
taken altogether for the example in this talk (and paper), using
a 2014 MacBook Pro.

But there is probably a lot more to do to make defunt widely
useful. The file to-do.txt in the directory above has 26 tasks
to consider.

I’d be thrilled for someone to take ownership of this tool!

14/14



CONCLUDING REMARKS AND FUTURE WORK

Much more about the algorithms is discussed in the README
file in the directory, books/kestrel/auto-termination/.

In spite of making two passes, ACL2 reports only 0.04 seconds
taken altogether for the example in this talk (and paper), using
a 2014 MacBook Pro.

But there is probably a lot more to do to make defunt widely
useful. The file to-do.txt in the directory above has 26 tasks
to consider.

I’d be thrilled for someone to take ownership of this tool!

14/14


