
Preserving the Structure
of Definitions

After Simplification

Matt Kaufmann

UT Austin

November 6, 2018

1/9

THE PROBLEM

Task: Simplify definitions (largest single task during my
three-year collaboration with Kestrel; part of their APT tool
suite)

Goal: Preserve structure when simplifying definitions

Approach: Directed-untranslate

Problem: Reconstruct LET, LET*, and MV-LET (and B*) after
they are expanded away by simplification.

Solution: Make separate calls to the ACL2 rewriter while
descending through the top-level IF and LAMBDA calls of the
definition’s body.

2/9

THE PROBLEM

Task: Simplify definitions (largest single task during my
three-year collaboration with Kestrel; part of their APT tool
suite)

Goal: Preserve structure when simplifying definitions

Approach: Directed-untranslate

Problem: Reconstruct LET, LET*, and MV-LET (and B*) after
they are expanded away by simplification.

Solution: Make separate calls to the ACL2 rewriter while
descending through the top-level IF and LAMBDA calls of the
definition’s body.

2/9

THE PROBLEM

Task: Simplify definitions (largest single task during my
three-year collaboration with Kestrel; part of their APT tool
suite)

Goal: Preserve structure when simplifying definitions

Approach: Directed-untranslate

Problem: Reconstruct LET, LET*, and MV-LET (and B*) after
they are expanded away by simplification.

Solution: Make separate calls to the ACL2 rewriter while
descending through the top-level IF and LAMBDA calls of the
definition’s body.

2/9

THE PROBLEM

Task: Simplify definitions (largest single task during my
three-year collaboration with Kestrel; part of their APT tool
suite)

Goal: Preserve structure when simplifying definitions

Approach: Directed-untranslate

Problem: Reconstruct LET, LET*, and MV-LET (and B*) after
they are expanded away by simplification.

Solution: Make separate calls to the ACL2 rewriter while
descending through the top-level IF and LAMBDA calls of the
definition’s body.

2/9

THE PROBLEM

Task: Simplify definitions (largest single task during my
three-year collaboration with Kestrel; part of their APT tool
suite)

Goal: Preserve structure when simplifying definitions

Approach: Directed-untranslate

Problem: Reconstruct LET, LET*, and MV-LET (and B*) after
they are expanded away by simplification.

Solution: Make separate calls to the ACL2 rewriter while
descending through the top-level IF and LAMBDA calls of the
definition’s body.

2/9

THE PROBLEM

Task: Simplify definitions (largest single task during my
three-year collaboration with Kestrel; part of their APT tool
suite)

Goal: Preserve structure when simplifying definitions

Approach: Directed-untranslate

Problem: Reconstruct LET, LET*, and MV-LET (and B*) after
they are expanded away by simplification.

Solution: Make separate calls to the ACL2 rewriter while
descending through the top-level IF and LAMBDA calls of the
definition’s body.

2/9

EXAMPLE
(include-book "simplify")
(defun app3 (x y ign)
(declare (ignore ign))
(append x y))

(defstub f1 (x) t)
(defun f2 (x) (f1 x))
(defun g (u)
(let* ((temp (f2 u))

(v temp))
(app3 u v 17)))

ACL2 !>(simplify g)
(DEFUN G$1 (U)

(DECLARE (XARGS :GUARD T :VERIFY-GUARDS NIL))
(LET* ((TEMP (F1 U)) (V TEMP))

(APPEND U V)))
(DEFTHM G-BECOMES-G$1 (EQUAL (G U) (G$1 U)))
ACL2 !>

3/9

EXAMPLE
(include-book "simplify")
(defun app3 (x y ign)
(declare (ignore ign))
(append x y))

(defstub f1 (x) t)
(defun f2 (x) (f1 x))
(defun g (u)
(let* ((temp (f2 u))

(v temp))
(app3 u v 17)))

ACL2 !>(simplify g)
(DEFUN G$1 (U)

(DECLARE (XARGS :GUARD T :VERIFY-GUARDS NIL))
(LET* ((TEMP (F1 U)) (V TEMP))

(APPEND U V)))
(DEFTHM G-BECOMES-G$1 (EQUAL (G U) (G$1 U)))
ACL2 !>

3/9

(rewrite-augmented-term-rec
aterm ; augmented term
alist hyps geneqv thints runes ctx state)

(generalize-to-lambda formals
rewritten-actuals
rewritten-body)

(trace$
(apt::rewrite-augmented-term-rec
:entry (cons traced-fn (take 2 arglist))
:exit (car (cadr values)))
(apt::generalize-to-lambda
:entry (cons ’generalize-to-lambda arglist)
:exit (cons ’generalize-to-lambda values)))

4/9

(rewrite-augmented-term-rec
aterm ; augmented term
alist hyps geneqv thints runes ctx state)

(generalize-to-lambda formals
rewritten-actuals
rewritten-body)

(trace$
(apt::rewrite-augmented-term-rec
:entry (cons traced-fn (take 2 arglist))
:exit (car (cadr values)))
(apt::generalize-to-lambda
:entry (cons ’generalize-to-lambda arglist)
:exit (cons ’generalize-to-lambda values)))

4/9

Recall:

(defun g (u)
(let* ((temp (f2 u))

(v temp))
(app3 u v 17)))

1> (APT::REWRITE-AUGMENTED-TERM-REC
((LAMBDA (TEMP U)

((LAMBDA (V U) (APP3 U V ’17))
TEMP U))

(F2 U) U)
NIL)

....
<1 ((LAMBDA (TEMP U)

((LAMBDA (V U) (BINARY-APPEND U V))
TEMP U))

(F1 U) U)

5/9

Recall:

(defun g (u)
(let* ((temp (f2 u))

(v temp))
(app3 u v 17)))

1> (APT::REWRITE-AUGMENTED-TERM-REC
((LAMBDA (TEMP U)

((LAMBDA (V U) (APP3 U V ’17))
TEMP U))

(F2 U) U)
NIL)

....
<1 ((LAMBDA (TEMP U)

((LAMBDA (V U) (BINARY-APPEND U V))
TEMP U))

(F1 U) U)

5/9

ACL2 !>(untranslate
’((LAMBDA (TEMP U)

((LAMBDA (V U)
(BINARY-APPEND U V))

TEMP U))
(F1 U) U)

nil
(w state))

(LET* ((TEMP (F1 U)) (V TEMP))
(APPEND U V))

ACL2 !>

6/9

1> (APT::REWRITE-AUGMENTED-TERM-REC
((LAMBDA (TEMP U)

((LAMBDA (V U) (APP3 U V ’17)) TEMP U))
(F2 U) U)

NIL)
2> (APT::REWRITE-AUGMENTED-TERM-REC

((LAMBDA (V U) (APP3 U V ’17)) TEMP U)
((TEMP F1 U) (U . U)))

3> (APT::REWRITE-AUGMENTED-TERM-REC
(APP3 U V ’17)
((V F1 U) (U . U)))

...
<3 (BINARY-APPEND U (F1 U))

<2 ((LAMBDA (V U) (BINARY-APPEND U V))
(F1 U)
U)

7/9

2> (APT::REWRITE-AUGMENTED-TERM-REC
((LAMBDA (V U) (APP3 U V ’17)) TEMP U)
((TEMP . (F1 U)) (U . U)))

3> (APT::REWRITE-AUGMENTED-TERM-REC
(APP3 U V ’17)
((V F1 U) (U . U)))

<3 (BINARY-APPEND U (F1 U))
3> (GENERALIZE-TO-LAMBDA (V U)

((F1 U) U)
(BINARY-APPEND U (F1 U)))

<3 (GENERALIZE-TO-LAMBDA
((LAMBDA (V U) (BINARY-APPEND U V))
(F1 U)
U)) ; (let ((v (f1 u))) (append u v))

<2 ((LAMBDA (V U) (BINARY-APPEND U V))
(F1 U)
U)

8/9

CONCLUSION

An old lesson but a good one....

If an approach is problematic, try another approach!

DUH?

If an approach (like trying to use directed-untranslate to
reconstruct LET forms) is problematic, try another approach
(like orchestrating calls to the rewriter that support such
reconstruction)!

9/9

CONCLUSION

An old lesson but a good one....

If an approach is problematic, try another approach!

DUH?

If an approach (like trying to use directed-untranslate to
reconstruct LET forms) is problematic, try another approach
(like orchestrating calls to the rewriter that support such
reconstruction)!

9/9

CONCLUSION

An old lesson but a good one....

If an approach is problematic, try another approach!

DUH?

If an approach (like trying to use directed-untranslate to
reconstruct LET forms) is problematic, try another approach
(like orchestrating calls to the rewriter that support such
reconstruction)!

9/9

CONCLUSION

An old lesson but a good one....

If an approach is problematic, try another approach!

DUH?

If an approach (like trying to use directed-untranslate to
reconstruct LET forms) is problematic, try another approach
(like orchestrating calls to the rewriter that support such
reconstruction)!

9/9

