
Smtlink 2.0

Yan Peng1 Mark R. Greenstreet1

1Department of Computer Science
University of British Columbia

November 6th 2018

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 1 / 21

1 Why Smtlink 2.0?

2 A Simple Ring Oscillator Example

3 The New Architecture

4 Exciting Future Work

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 2 / 21

Smtlink 1.0

Linear
Phase

Control

refΦ

ΦDCO/N

Fref

ΦDCO

Bang−Bang
Frequency

Control

PFD
+
− dn

up

Coarse

Control
Frequency

discarded

v DCO
φ

BBPFD

0:23

0:14

15:23

0:7

Σ

Fref

Σ

DAC

c

÷N

−
(
Center
code

)
V

fdco
= f ref

cmin

vmin c
ccenter cmax

vmax

vhi

vlo

1 Achievement: Smtlink’s supports for linear and non-linear
arithmetics of integers and rationals helps forming the DPLL
global convergence proof

2 Limitations: thought of as only useful when it comes to
problems involving non-linear arithmetics

3 But, Smtlink should be more than that.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 3 / 21

What’s New in Smtlink 2.0

1 An extensible architecture

process-hint
clause-processor

a verified
clause-processor

Original Clause
G

Computed-hint

The subgoals

ACL2 the trusted
clause-processor

trusted

verified

SMT
precondition

subgoal

G_SMT
SMT

solver

2 A richer support of datatypes
3 Better user interface: follows the define convention and the

:hints convention
4 Now supports both Python 2 and Python 3

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 4 / 21

What’s New in Smtlink 2.0

1 An extensible architecture
2 A richer support of datatypes

Integers
Rationals

Reals
(ACL2(r))

Booleans

FTY types (selected)

Symbols

Lists

Alists

Product types

Option types

3 Better user interface: follows the define convention and the
:hints convention

4 Now supports both Python 2 and Python 3

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 4 / 21

What’s New in Smtlink 2.0

1 An extensible architecture

2 A richer support of datatypes

3 Better user interface: follows the define convention and the
:hints convention

:hints(("Goal"

:smtlink

(: functions ((foo :formals ((x real/rationalp))

:returns ((rx real/rationalp))

:level 0))

:hypotheses (((<= 1 (foo x))

:hints

(:use ((: instance foo- >=-1

(x x))))))

)))

4 Now supports both Python 2 and Python 3

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 4 / 21

What’s New in Smtlink 2.0

1 An extensible architecture

2 A richer support of datatypes

3 Better user interface: follows the define convention and the
:hints convention

4 Now supports both Python 2 and Python 3

Python2 Python3

Calm down, Peace&Love, Smtlink has a solution

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 4 / 21

1 Why Smtlink 2.0?

2 A Simple Ring Oscillator Example

3 The New Architecture

4 Exciting Future Work

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 5 / 21

The Simple Ring Oscillator Example

inv1 inv3inv2 Q_Freqn1n3 n2

1 A ring oscillator is an oscillator circuit consisting of an odd
number of inverters in a ring

2 A 3-stage ring oscillator consists of three inverters

3 The one-safe property:

Theorem (One-Safe)

Starting from a state where there is exactly one inverter ready-to-fire,
for all future states, the ring oscillator will stay in a state where there
is only one inverter ready-to-fire.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 6 / 21

The Simple Ring Oscillator Example

inv1 inv3inv2 Q_FreqL L H

1 A ring oscillator is an oscillator circuit consisting of an odd
number of inverters in a ring

2 A 3-stage ring oscillator consists of three inverters

3 The one-safe property:

Theorem (One-Safe)

Starting from a state where there is exactly one inverter ready-to-fire,
for all future states, the ring oscillator will stay in a state where there
is only one inverter ready-to-fire.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 6 / 21

The Simple Ring Oscillator Example

inv1 inv3inv2 Q_FreqL H H

1 A ring oscillator is an oscillator circuit consisting of an odd
number of inverters in a ring

2 A 3-stage ring oscillator consists of three inverters

3 The one-safe property:

Theorem (One-Safe)

Starting from a state where there is exactly one inverter ready-to-fire,
for all future states, the ring oscillator will stay in a state where there
is only one inverter ready-to-fire.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 6 / 21

Modeling the Ring Oscillator

n1
n2

.

.

.

T
F
.

 .
 .

n1
n2

.

.

.

T
F
.

 .
 .

n1
n2

.

.

.

T
F
.

 .
 .

Fstep(S1, S2)

S1 S2 Sn

…

1 We model circuits using trace recognizers (based on [Dil87])
1 A state is an alist mapping from signal paths to its state value
2 A stepping function constrains possible next state; allows

nondeterministic behaviors
3 A trace is a list of states

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 7 / 21

The Theorem

(defthm ringosc3-one-safe

(implies (and (ringosc3-p r) (any-trace-p tr) (consp tr)

(ringosc3-valid r tr)

(ringosc3-one-safe-state r (car tr)))

(ringosc3-one-safe-trace r tr))

:hints (("Goal"

:induct (ringosc3-one-safe-trace r tr)

:in-theory (e/d ...))

("Subgoal *1/1.1"

:use ((: instance ringosc3-one-safe-lemma

(r r)

(tr tr)))

)))

1 ringoc3-one-safe-lemma: the inductive step proved using
Smtlink

2 Smtlink expands out definitions and z3 is able to derive enough
relationships between terms to figure out the proof

3 Smtlink is very good at flattened formulas with large amount of
details

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 8 / 21

Extend the Proof to Arbitrary Number of Stages

inv1 inv3inv2 Q_Freqnk n1 n2 … invk

1 We’ve proven a theorem that states the one-safe property with a
ring oscillator of arbitrary number of stages

2 Some statistics of the proof:

FTY types Functions Total thms Smtlink thms LOC
5 17 55 23 2375

3 Smtlink is smarter than I thought it was
4 There are still potential of improvements

1 Much of the lengthiness of the proof is coming from having to
expand terms out enough, so that Smtlink can handle the proof

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 9 / 21

1 Why Smtlink 2.0?

2 A Simple Ring Oscillator Example

3 The New Architecture

4 Exciting Future Work

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 10 / 21

The Story for a New Architecture

1 The old architecture is monolithic: one single trusted
clause-processor

Clause
Processor

Original
Clause G

SMT
solver

^ ^ ^…

Clause returned by clause processor
C1 ^ C2 ^ ... ^ Cn) G

C1 C2 Cn

2 After the 2015 workshop, based on Jared’s suggestions, Matt,
Dave, Dmitry, Mark and I discussed the possibility of using
computed-hint. Lead to the file: books/hints/hint-wrapper.lisp

3 The idea is to use a verified clause-processor that generates
multiple clauses, and put markers on clauses that can be
recognized by computed-hints for further steps

4 This further leads to the new architecture

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 11 / 21

The Architecture

The new architecture is both extensible and has a more
compelling argument for soundness

Smtlink interface

add
hypotheses

Original Clause
G

Computed-hint

Subgoals

the trusted
clause-processor

trusted

verified

G_SMT
SMT

solver

User hints: use Smtlink and provide smtlink-hint

Translate smtlink-hint into internal data structure
add hint to invoke next transform step

function
expansion

Subgoals

type
extraction

uninterpreted
function

Subgoals Subgoals

Verified clause-processors transform
ACL2 goal into SMT theories.
Each verified clause-processors adds a hint
indicating which step to take next.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 12 / 21

The Architecture - Cont’d

process-hint
clause-processor

a verified
clause-processor

smt-architecture table

smt-trusted-cp-customuninterpreted-custom

step tag

add-hypo-cp

type-extract-cp

uninterpreted-fn-cp

process-hint

uninterpreted

add-hypo expand-cp

smt-trusted-cp

next clause-processor

type-extract

expand

Original Clause
G

Computed-hint

The subgoals

ACL2 the trusted
clause-processor

trusted

verified

SMT
precondition

subgoal

G_SMT
SMT

solver

1 Each step is a verified clause-processor that can be configured
through a single table

2 Only the last step uses a trusted clause-processor

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 13 / 21

The Trusted Clause Processor

SMT clause
G_py

not(G_py)
SAT? Z3

sat, unsat,
unknownunsat?

Proved!

CEX

ACL2 Z3(python)

clause G_tcp generated clause
G_SMT

The trusted clause-processor

Processing type
information

SMT precondition
subgoal

1 What’s not verified? The trusted clause-processor, Z3py
interface class, and Z3

2 SMT precondition subgoals: subgoals that have to be satisfied
to ensure soundness.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 14 / 21

There are Always Exceptions - Precondition

Example

(fty:: deflist intlist

:elt-type integerp

:true-listp t)

(defthm bogus

(implies (intlist-p x)

(or (< (car x) 0)

(equal (car x) 0)

(> (car x) 0))))

x = nil is a counter-example to this bogus theorem:
let x = nil:
(or (< (car nil) 0) (equal (car nil) 0) (> (car nil) 0))

(car nil) = nil:
(or (< nil 0) (equal nil 0) (> nil 0))

All comparisons of non-numbers produce nil:
(or nil nil nil) = nil

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 15 / 21

Precondition Example Cont’d.

A direct translation of the ACL2 goal:

IntList = Datatype(’IntList ’)

IntList.declare(’cons’, (’car’, IntSort ()),

(’cdr’, IntList))

IntList.declare(’nil’)

IntList = IntList.create ()

x = Const(’x’, IntList)

prove(Or(IntList.car(x) > 0, IntList.car(x) == 0,

IntList.car(x) < 0))

But x = nil is not a counter-example to this Z3 theorem.
Because IntList.car(nil) in Z3 denotes an arbitrary integer
value, and the theorem trivially holds.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 16 / 21

Precondition Example Cont’d.

The problem:

ACL2: Taking car of nil gives us nil

Z3: Taking car gives us an arbitrary value of the appropriate
type

Solution: add precondition check x 6= nil in places where (car x)

is applied;
Similarly, for (cdr (assoc-equal key alist)), precondition
check (assoc-equal key alist) 6= nil

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 17 / 21

Counter-example Generation

types counter-example examples
booleans ((X NIL))

integers ((X 0))

rationals ((X 1/4))

algebraic numbers ((Y (CEX-ROOT-OBJ Y STATE (+ (^ X 2) (- 2)) 1)) (X -2))

symbols ((X (SYM 0)))

lists ((L (CONS 0 (CONS 0 NIL))))

alists ((L (K SYMBOL (SOME 0))))

product types ((S2 (SANDWICH 0 (SYM 2))) (S1 (SANDWICH 0 (SYM 1))))

option types ((M2 (SOME 0)) (M1 (SOME 0)))

1 Algebraic numbers are represented by the k th root of some
polynomial

2 The (K s v) for alists represents an array mapping any values
of s sort/type into a constant value (or an expression) v .

3 Currently evaluable counter-examples are booleans, integers and
rationals

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 18 / 21

The Exciting Future Work

1 Types are crucial to using SMT solvers, need a type inference
engine

2 Reflection allowed by meta-extract: removes the necessity of
proving auxiliary theorems. We plan to add:

1 Verified function expansion
2 Verified type inference

3 More induction proof support

4 Fully evaluable counter-examples

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 19 / 21

Conclusion

Conclusion: We built a new version of Smtlink that has a more
compelling argument for soundness, has an extensible architecture
and is more user-friendly.

1 How can I start using it?

(include-book "projects/smtlink/top" :dir :system)

(value-triple (tshell-ensure))

(add-default-hints ’((SMT:: SMT-computed-hint clause)))

2 Documentation: :doc smtlink or go to XDOC website

3 Smtlink is under active development right now. We’re eager to
hear any feedback!

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 20 / 21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=SMT____SMTLINK

Questions?

Maybe you should consider asking Smtlink that question? ...

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 21 / 21

References I

David L. Dill.

Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1987.

AAI8814716.

Peng & Greenstreet (UBC) Smtlink 2.0 ACL2 Workshop 2018 22 / 21

