“m & AR AR AR AR AR TR SR o i == o
* St mpr e T e -
e B R I LI N R SR R

Engineering and Use of
Large Formal Specifications

Alastair Reid
Arm Research
@alastair d reid

© 2017 Arm Limited

2 © 2017 Arm Limited

IViore

Data
Performance

Machine Learning

Internet of Things
Smart Homes
Self Driving Cars
Social Media

Less

BUugs

Crashes

Data loss
Data corruption
Data leaks / theft
DDoS attacks

Cyber-Physical attacks

Better Hardware Exploit
Programming Security Detection
Languages Enforcement
Formal Automatic
Better Verification lest
ISDyes;cier: Rotter Generation
5 Bug Legal / C1ry Tost
Finding Regulatory w4 1estNs

arm

4 © 2017 Arm Limited

Specification Specification

Specification Specification

Specification

5 © 2017 Arm Limited

What (formal) specifications do we need?

Libraries: stdio.h, OpenGl, ...

Languages: C, C++, ML, Javascript, Verilog, ...
Network: TCP/IP, OAuth, DNS, TLS, WiFi, ...
Filesystems: FAT32, NTFS, ext4, ...

OSes: Posix/Linux system call, Linux device driver, KVM, UEFI, ...

Hardware: CPU, PCle, AMBA, NIC, ...

6 © 2017 Arm Limited

Critical properties of specifications

Scope
- Completeness

- Not abstracting out critical detail

Applicability
- Version agnostic

- Vendor agnostic

Trustworthiness

7/ © 2017 Arm Limited

Overcoming the Specification Bottleneck

Creating formal specifications
Testing specifications

Getting buy in

Using specifications

Formal validation of specifications
Making your specifications public

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
“End to End Verification of ARM processors with ISA Formal,” CAV 2016
“Who guards the guards? Formal Validation of ARM v8-M Specifications,” OOPSLA 2017
“ISA Semantics for ARM v8-A, , RISC-V, and CHERI-MIPS,” POPL 2019
° o DeoL7 Armimitec https://alastairreid.github.io/papers

arm

Creating formal specifications
lTesting specifications
Getting buy In

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

Creating Specifications

10 © 2017 Arm Limited

Creating Specifications

Rirjc

10 © 2017 Arm Limited

Creating Specifications

Rirjc

10 © 2017 Arm Limited

Creating Specifications

o
. ctions |
| - ~~ution Of \“Stru ne thre” bGOVQ
RJRJC . wpmued by O \0
Exit from lockup is bv anv af the Wo®
Table B2-1 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain
Before th After th

e1o e the fte. the Full system Outer Shareable Inner Shareable Non-shareable
barrier barrier
Reads and writes ~ Reads and writes SY OSH ISH NSH
Writes Writes ST OSHST ISHST NSHST
Reads Reads and writes LD OSHLD ISHLD NSHLD

LY Y
6$Q‘\ @qus < Y‘Q _w targel addlr h
o ddress nc
Q‘q O ‘(\:6 Jith the old target a o s he ~hange to the bra
® . . I
‘z@&»\\ ter the con tion, either befo
C

10 © 2017 Arm Limited

Creating Specifications

2

oQé

o <
. ~weented oy onc o \.0\0

“~ hy anv nF tha £ “»o» .
~=~ading of the DMB and DSB <option> parameter

10 © 2017 Arm Limited

Creating Specifications

_poin
64 floating P
. o AA ch
. son operatiot
1 floating PO compe
h
fo AA re tead. :
bit \31\ . diton flag flag ns _nomt
™ Negath's 002 <ot the PSTA Ex tions A Archo4 floating™®
ariso erall
comp p-point© omparnson Op xed -1 @S S) s
it |30) fag for AATERS o fnstead ~4ddres S)*
Z’ b‘t Zel’O COnd‘t on : the PSTATE Z ﬂag 2y
g S€

10 © 2017 Arm Limited

Pseudocode

ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}
3130202827 262524 23 2221 2019181716 15 14 13 121110 9 8 7 6 5 4 3 2

"ot Joo[oJo 1o [5] me | W [s [om[o] w

if Rd == *1111" && S = ‘1" then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘17);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

if ConditionPassed() then
EncodingSpecificOperations():
shifted = Shift(R[m], shift_t, shift_n, APSR.();
(result, carry, overflow) - AddwithCarry(Rin], shifted, APSR.(C)
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result): // setflags 15 always FALSE here
else
R[d] = result:
1f setflags then
APSR.N = result<3ils;

APSR.Z = IsZeroBit(result):
APSR.C = carry:

APSR.V = overflow;

11 © 2017 Arm Limited

ARM Pseudocode

~40,000 lines

- 32-bit and 64-bit modes

- All 4 encodings: Thumb16, Thumb32, ARM32, ARM64

- All instructions (> 1300 encodings)

- All 4 privilege levels (User, Supervisor, Hypervisor, Secure Monitor)
- Both Security modes (Secure / NonSecure)

- MMU, Exceptions, Interrupts, Privilege checks, Debug, TrustZone, ...

12 © 2017 Arm Limited

Status at the start

No language spec

No tools (parser, type checker)
Incomplete (around 15% missing)
Unexecuted, untested

Senior architects believed that an executable spec was

- Impossible

- Not useful

- Less readable
- Less correct

13 © 2017 Arm Limited

Architectural Conformance Suite

Processor architectural compliance sign-oft

Large
e v8-A 32,000 test programs, billions of instructions
e v8-M 3,500 test programs, > 250 million instructions

Thorough

e Tests dark corners of specification

Hard to run
e Requires additional testing infrastructure

14 © 2017 Arm Limited

Progress in testing Arm specification

- Does not parse, does not typecheck
- Can’t get out of reset

- - Can’t execute first instruction

- Can't execute first 100 instructions

o0

- Passes 90% of tests

0 - Passes 99% of tests

© 2017 Arm Limited

Measuring architecture coverage of tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

bits(N) FPRSqrtStepFused(bits(N) opl, bits(N) op2)
assert N IN {32. 64}
bits(N) result;
opl = FPNeg(opl). // per FMSUB/FMLS
(typel.signl valuel) = FPUnpack(opl. FPCR):
(type.sign2. value) = FPUnpack(op2. FPCR):
(done.result) = FPProcessNaNs(typel. tvpel, opl, op2. FPCR):
if !done then
infl = (typel == FPType_Infimty):
inf2 = (type2 == FPType_Infimty):
zerol = (typel == FPTvpe Zero):
zero2 = (type2 == FPTvype Zero):
if (infl && zero2) || (zerol && inf2) then
result = FPOnePomntFive('0'):
elstf infl || mf2 then
result = FPInfimtyv(signl EOR sign2. N):
else
// Fully fused multiply-add and halve
result value = (3.0 + (valuel * value2)) / 2.0;
if result value == 0.0 then
// S1gn of exact zero result depends on rounding mode
sign = if FPCRRounding() == FPRounding NEGINF then '1' else '0';
result = FPZero(sign, N):
else
result = FPRound(result value, FPCRRounding()):
return result;

16 © 2017 Arm Limited

Creating a Virtuous Cycle

Lessons learned about engineering a specification

Specifications contain bugs

Huge value in being able to run existing test suites

- Need to balance against benefits of non-executable specs

Find ways to provide direct benefit to other users of spec

- They will do some of the testing/debugging for you

- They will support getting your changes/spec adopted as master spec

- Creates Virtuous Cycle

18 © 2017 Arm Limited

Using Specifications

“End to End Verification of ARM processors with ISA Formal,” CAV 2016

Documentation

- Generate PDF/HTML Generation
- Interactive specifications - Testsuites (Concolic)
- Simulators

Verification of Implementations - Peephole Optimisations
- Bounded Model Checking - Binary Translators
- Testing (Golden Reference)

- Deductive Reasonin o : :
5 Verification of Clients

- Formally verifying OS code / etc.
- Verifying Compilers/Linkers

Specification Extension
- Testing / Exploration

Static Analysis

- Abstract interpretation of binaries
- Decompilation of binaries

- Reverse engineering tools

Instrumented Execution

- Measure Coverage
- Driving Fuzz Testing

20 © 2017 Arm Limited

Formally validating ARM processors - using an existing tool

ARM

ARM m
Specification to Verilog

Verilog
Model
Checker

21 © 2017 Arm Limited

Checking an instruction

ADD

Checking an instruction

CMP LDR| ADD | STR BNE

Context

Lessons Learned from validating processors

Very effective way to find bugs in implementations

Formally validating implementation is effective at finding bugs in spec
- Try to find most of the bugs in your spec before you start

Huge value in being able to use spec to validate implementations

- Helps get formal specification adopted as part of official spec

23 © 2017 Arm Limited

Formal Validation of
Specifications

mied “Who guards the guards”? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

arm

One Specification to rule them all?

Compliance Tests

Architecture Spec

Processors

Reference Simulator

25 © 2017 Arm Limited

Rule JRJC
Exit from lockup 1s by any of the following:

e A Cold reset.
e A Warm reset.

* Entry to Debug state.
* Preemption by a higher priority processor exception.

Rule R

State Change X 1s by any of the following;:
e tvent A
e Event B

e State Change C
e tvent D

Rule R

State Change X 1s by any of the following:
e tvent A
e Event B

e State Change C
e tvent D

RuleR: X=>AvBvCvD

State Change Exit from lockup Fell(LockedUp)

Fvent A Cold reset Called(TakeColdReset)
Fvent A Warm reset Called(TakeReset)
State Change Entry to Debug state Rose(Halted)

Fvent Preemption by a higher Called(ExceptionEntry)

priority processor
exception

27 © 2017 Arm Limited

“Eyeball Closeness”

Rule JRJC
Exit from lockup 1s by any of the following:

e A Cold reset.
e A Warm reset.

* Entry to Debug state.
* Preemption by a higher priority processor exception.

Fell(LockedUp) - Called(TakeColdReset)
v Called(TakeReset)

v Rose(Halted)
v Called(ExceptionEntry)

28 © 2017 Arm Limited

Rule VGNW
Entry to lockup from an exception causes

* Any Fault Status Registers associated with the exception
to be updated.

Out of date «(No update to the exception state, pending or active.
Misleading «(The PC to be set to OXEFFFFFFE.

Untestable «(EPSR.IT to become UNKNOWN.
Ambiguous (In addition, HFSR.FORCED is not set to 1.

29 © 2017 Arm Limited

v8-M Spec

Convert
e

—
Counterexample

~10,000 lines ~1,000,000 lines

30 © 2017 Arm Limited

Lessons Learned from validating specifications

Redundancy essential for detecting errors

- Detected subtle bugs in security, exceptions, debug, ...

- Found bugs in English prose

Need set of ‘orthogonal’ properties

- Invariants, Security properties, Reachability properties, etc.

Eyeball closeness

Needed to translate specification to another language to let us use other tools

31 © 2017 Arm Limited

arm

Making your specification
public

<[_J=

Public release of machine readable Arm specification

Enable formal verification of software and tools
Machine readable

Releases:

v8.2 (4/2017)
v8.3 (10/2017)
v8.4 (6/2018)
v8.5 (9/2018)

https://developer.arm.com/products/architecture/a-profile/exploration-tools
https://github.com/alastairreid/mra tools
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

Cambridge University Specs/Tools

ARMvVS-A
ASL

lasl_’ro_sa !
ARMvVSE-A RISC-V CHERI-MIPS
Sail Sail Sail
- Concurrency models
: : RISC-V
Sequential Sequentidl Lem
Emulator (OCaml) Emulator (C) Definitions Lem
Cog Isabelle HOLA4
Sequential
Emulator (OCaml)

34 © 2017 Arm Limitec From “ISA Semantics for ARM v8-A, , RISC-V, and CHERI-MIPS,” POPL 2019

Used with permission of REMS Group, Cambridge University

Cambridge University Specs/Tools

Missing?
ARMVS-A
ASE x86 (ACL2)
ldsl_’ro_sa I
ARMVS-A RISC-V MIPS CHERI-MIPS
Sall Sall Sall Sail
RS
- \ Concurrency models
: . RISC-V
Sequential Sequentidl Lem
Emulator (OCaml) Emulator (C) Definitions Lem
Cog Isabelle HOLA4
Sequential
Emulator (OCaml)

34 © 2017 Arm Limitec From “ISA Semantics for ARM v8-A, , RISC-V, and CHERI-MIPS,” POPL 2019

Used with permission of REMS Group, Cambridge University

Cambridge University Specs/Tools

Missing?
ASE x86 (ACL2)
ldsl_’ro_sa I
ARMVSE-A RISC-V CHERI-MIPS
Salil Salil Salil

- / \ Concurrency models
: : RISC-V
Sequential Sequentidl Lem
Emulator (OCaml) Emulator (C) Definitions Lem
Cog Isabelle HOLA4
Missing? ¢
Sequential
Emulator (OCaml)

34 © 2017 Arm Limitec From “ISA Semantics for ARM v8-A, , RISC-V, and CHERI-MIPS,” POPL 2019

Used with permission of REMS Group, Cambridge University

Work In Progress:

Security of Architecture
Specifications

Validating security of processor architectures

Scope
- Hardware-based Security Enforcement (HSE) Mechanisms

- Confidentiality, Integrity, Availability

Challenges

- Compositional Attacks
- Cyclic dependencies between HSES

- Microarchitectural storage/timing channels

36 © 2017 Arm Limited

The Specification Bottleneck: Modelling Real World Artifacts

- Trustworthiness, Scope and Applicability
- Significant Engineering Effort

- Importance of sharing specifications across many users

Thanks

Alasdair Armstrong (Cambridge U.)
Alex Chadwick (ARM)

Ali Zaidi (ARM)

Anastasios Deligiannis (ARM)
Anthony Fox (Cambridge U.)
Ashan Pathirane (ARM)
Belaji Venu (ARM)

Bradley Smith (ARM)

Brian Foley (ARM)

Curtis Dunham (ARM)

David Gilday (ARM)

David Hoyes (ARM)

David Seal (ARM)

Daniel Bailey (ARM)

Erin Shepherd (ARM)
Francois Botman (ARM)

38 © 2017 Arm Limited

George Hawes (ARM)
Graeme Barnes (ARM)
Isobel Hooper (ARM)

Jack Andrews (ARM)
Jacob Eapen (ARM)

Jon French (Cambridge U.)
Kathy Gray (Cambridge U.)
Krassy Gochev (ARM)
Lewis Russell (ARM)
Matthew Leach (ARM)
Meenu Gupta (ARM)
Michele Riga (ARM)
Milosch Meriac (ARM)
Nigel Stephens (ARM)
Niyas Sait (ARM)

Peng Wang (ARM)

Peter Sewell (Cambridge U.)
Peter Vrabel (ARM)

Richard Grisenthwaite (ARM)
Rick Chen (ARM)

Simon Bellew (ARM)
Thomas Grocutt (ARM)

Will Deacon (ARM)

Will Keen (ARM)

Wojciech Meyer (ARM)

(and others)

Thank Youl @alastair d reid

Dankel
arm

Merci!
159157 |
HL)HE D

Gracias!

. “Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
Kl ItOS | “End to End Verification of ARM processors with ISA Formal,” CAV 2016
“Who guards the guards? Formal Validation of ARM v8-M Specifications,” OOPSLA 2017
“ISA Semantics for ARM v8-A, , RISC-V, and CHERI-MIPS,” POPL 2019
https://alastairreid.github.io/papers/

© 2017 Arm Limited

IS It better to create specs
- Within ACL2%
- In a DSL translated to ACL2?

