
Analyzing Khipu in ACL2
Rob Sumners
Centaur Technology
rsumners@centtech.com

Brief introduction to khipu

● “Khipu” (from the Quechan for “knot”) are structured combinations of
woven strings tied into knots used as a form of “writing” developed before
and during the Inka empire.

● Khipu were prevalent throughout the Inka empire but almost all were
destroyed by the Spanish.

● About 600 intact documented specimens in museums, estimated about
1000 specimens in total including private collections.

Pictures of khipu

Pictures of khipu

Basic structure of khipu

● Khipu have a main or primary cord which forms the root of all other cords.
● Any cord can have subcords attached to it and knots tied into it.
● Subcord attachments may be spaced to form cord groups and knot

placement is spaced to create knot clusters on a cord.
● Cords can also be differentiated by other properties such as color,

material, “spin”, and attachment direction.

A more “discrete” view of a khipu

Primary cordCord group

. . . .

Subsidiary cord

Pendant Cord
Knot cluster

Knot

Khipu (simplified) as a recursive data type..

(defmacro list-of (chk name)
 `(or (equal x (quote ,name))
 (and (consp x) (let ((f (first x))) ,chk) (,name (rest x)))))

(defun knot-cluster-p (x) (list-of (knot-p f) knot-cluster-p))

(mutual-recursion
(defun cord-p (x) (list-of (or (cord-group-p f)
 (knot-cluster-p f)) cord-p))
(defun cord-group-p (x) (list-of (cord-p f) cord-group-p)))

(defun khipu-p (x) (cord-p x))

A few more notes on existing khipu..

● Numbers of pendant cords:
○ Smaller khipu have 10s of pendant cords
○ Average khipu have around 100 or so pendant cords
○ Larger khipu can have around a 1000 or more pendant cords

● Some khipu have subsidiary cords up to 10 levels deep..
○ Most khipu are only a couple levels deep

● Existing khipu have largely been found grouped in burial sites
● “Khipukamayuq” were specialists trained in producing and reading khipu

Research progress in decoding khipu

● Decoding khipu is in general unsolved but some progress has been made:
○ Decoding.knot clusters as decimal numbers (Locke)
○ Finding numerical summations across pendant cords (Ascher)
○ Correlating khipu structure to Inca bureaucratic structure (Ascher)
○ Correlating matching subcord structures to calendar seasons (Urton)
○ Matching cords as summations across khipus used for accounting (Urton, Brezine)
○ Correlating khipu data census and death records (Urton)

● Additional research into khipu which are believed to record stories,
histories, and ???

Special “terminal” knot

3 * 1 = 3

1 * 10 = 10

4 * 100 = 400

2 * 1000 = 2000

2000+400+10+3 = 2413

From: Purochuco accounting khipu (Brezine, Urton)

Example decoding.. Numbers on a cord..

Continuing “accounting” example..
Summations across khipu..

+ +
. . . .

+ +
. . . .

lower level khipu

higher level khipu

Khipu Database Project (Urton, Brezine)

● A database collecting descriptive data on 600 (relatively) complete khipu.
○ Data for just under 50K cords and over 100K knots in these khipu.
○ About 150 fields per khipu, 100 fields per cord, 15 fields per knot.

● Database queries used by researchers to find correlations and patterns
amongst khipu and to quickly test hypotheses.

● Data files can be retrieved from:

http://khipukamayuq.fas.harvard.edu

Khipu in ACL2

● Goal: to create books/definitions for processing/analyzing/theorizing
about Khipu

● Current books/definitions support:
○ Read Khipu Database Project data (sql dump) files into ACL2
○ Translate khipu data into tables relating identifiers to values
○ “Compile” khipu data into stobj arrays for fast access and iteration
○ Define abstract stobj which hides array details for logical definitions
○ Define projection functions which map khipu data to tagged khipu-p objects
○ Checked some of the previous research results defined with ACL2 functions

Khipu in ACL2: example, cord->nums..

(defun cord->first-num (cord acc)
 (if (atom cord) (mv acc ())
 (let* ((fst (first cord))
 (acc+f (+ (* acc 10) (len fst))))
 (cond
 ((terminal-knots-p fst) (mv acc+f (rest cord)))
 ((knot-cluster-p fst) (cord->first-num (rest cord) acc+f))
 (t (cord->first-num (rest cord) acc))))))

(defun cord->nums (cord)
 (if (atom cord) ()
 (mv-let (first-num rest-cord) (cord->first-num cord 0)
 (cons first-num (cord->nums rest-cord)))))

Why Khipu in ACL2?

● First reason.. for the fun of it..
● But, in addition, ACL2 provides:

○ A clear logical picture of discrete khipu definition and properties
○ A tool for proving theorems about these definitions
○ Fast execution for testing properties on existing khipu
○ Links to SAT and SMT for checking/testing properties on a bounded set of khipu

Ongoing/future work

● Big goal: develop automated support for searching for possible
relationships amongst khipu..

● Test (assumption ⇒ conclusion) as possible correlations.. where..
○ assumption and conclusion are generated logical formula of a fixed set of predicates.
○ test results and further search will be ranked based on number of existing khipu which

satisfy assumption and conclusion.

● Use proven ACL2 theory on predicates to reduce generated tests and..
● Use GL/SATLINK (..maybe SMTLINK..) to further qualify/filter tests

Questions? .. and answers..

Thank you!!

