
A Toolbox for Property 
Checking from Simulation 
using Incremental SAT
Rob Sumners
Centaur Technology
rsumners@centtech.com



...terrible title... 
Rob Sumners
Centaur Technology
rsumners@centtech.com



Motivation: “extending” simulation..

● Hardware designs go through extensive verification via design simulation.
● Verification engineers define simulation environments which:

○ Generate random and/or directed legal input stimulus.
○ Check that the behavior of the design matches specification.

● These environments are extensive and (unfortunately) often written in 
“higher-level” languages..

○ These definitions are not finite-state and in general, not amenable to formal tools



Motivation: “extending” simulation..

● Goal: use existing simulations of hardware designs to efficiently search for 
property failures..

● Simple approach:
○ Take dump file from existing simulation to specify initial state and input sequence..
○ From each state in the simulation, generate a quick search for property failures..

■ A limited, directed form of bounded model checking

● Different approach:
○ Use input transformation to reduce the number of inputs and afford deeper search..
○ Use Incremental SAT and dynamically manage the size of the SAT clauses



Two parts to present..

● First part: a tool that extends simulation with limited efficient search for 
failure using..

● Second part: a core (or “toolkit”) for efficiently checking properties of a 
finite next-state function evaluated over time

○ Uses incremental SAT (via books/centaur/ipasir interface) to amortize the cost of SAT 
queries across sequential clocks



First part: tool steps..

● Read in design (in Verilog) 
○ Process from top module to build an AIGNET for next-state
○ Makes use of VL, SV, etc. to translate to SVEX, then AIGs, then AIGNET.

● Read in VCD file dumped from simulation
○ Process to get initial state and input values at each clock cycle

● Initialize and Execute main search loop
○ ...more on this in a moment..

● Report results back to the user
○ ..including generation of VCD in case of failure



First part: main search loop..

● Iterates a “search window” which defines the current property check.
● Repeat until pass/fail:

○ Choose step .. determine which step to take:
■ Heuristically choose which step to take next based on current targets, search 

measurements, and recent step results
○ Take step .. pick one of the following:

■ Grow-window -- add clauses for checking the next property in time
■ Shrink-window -- add unit clauses for reducing based on input binding
■ Check-fails -- SAT check the fails in the current search window
■ Cleanup-state -- cleanup memory and (optionally) reset incremental SAT



Example: SMQ simple memory queue

● Simple read-write queue with:
○ Read and write requests coming from source port and forwarded to dest port
○ Responses flow from dest port back to source port

● Excluding address matches, reads can pass writes except:
○ If enough writes are blocked, then we enter write-burst mode.. writes get priority
○ In addition, the oldest entry can also only be bypassed a maximum number of times 

● Property: check that if some entry is always ready to go



Example: SMQ simple memory queue

SMQ

source dest

requests

responses

requests

responses

queue



First part: SMQ adding input transformers..

SMQ

source dest

requests

responses

requests

responses

1. Address Selection
2. Burst Generation
3. Delay Injection

Delay
Injection



Example: SMQ Adding Input Transformers

● Transform #1 : address selection
○ Pick focal address, then (based on free input) pick that address

● Transform #2 : burst generation
○ Based on a free input, re-pick the previous command type (read/write in this case)

● Transform #3 : delay injection (on src req. and dest. resp)
○ Free inputs on both src. and resp. to delay delivery (single buffer in this case)

● With these transforms and just allowing fixed random data, the number of 
free inputs reduced to 4 bits per clock cycle..



Second part: Designing a “core”

● In considering a “proof” of correctness for extended simulation.. 
● .. a desire arose to design and simplify the “core”

○ Potentially useful for other applications..

● The state of the “core” is comprised of:
○ The AIGNET defining the next-state function of the design
○ The IPASIR stobj storing the state of incremental SAT
○ A 2D-array defining a mapping from design variables (at each clock cycle) to literals

■ Progresses from bottom to SAT literal to boolean value
○ A list of assignments/bindings, a list of constraints, and a list of checked assertions



Second part: Designing the “core”

● The “core” supports the following steps:
○ Initialization

■ take an AIGNET defining next-state function and a fixed number of cycles
■ initialize the state of the “core” 

○ Add logic supporting a variable@cycle
■ Variable@cycle goes from bottom to SAT literal

○ Add constraint or assignments
■ Variable@cycle goes to boolean value

○ Check any variable@cycle (must currently map to SAT literal)
■ Can add assumptions..



Second part: Proving core invariant

● Define and prove invariant: (core-inv cs$) 
○ At every step, ensures that satisfying assignments to clauses in IPASIR state are 

consistent with current constraints, assignments, and definition of next-state via AIGNET 
given the current binding of variable@cycle to SAT literals.

○ The invariant provides a context for every SAT check performed
■ (assignments and constraints and definitions) => assertion

○ The invariant holds after initialization and is preserved by every other “core” step.



Second part: A few implementation notes..

● Adding assignments causes a fast forward (lifted) evaluation to propagate 
constants forward..

● Adding the logic supporting a new variable@cycle will only include “cone of 
influence” based on current variable@cycle map

● In support of this work, we added some additional optional interface 
functions to the ipasir library to:

○ Get statistics on current SAT clause database state
○ Adjust the priority of certain literals to be chosen
○ These are only defined and will only work for MINISAT-based incremental SAT libraries



Work done and work to be done..

● Have built extended simulation tool as specified
○ Some small-ish examples included in supporting materials

● Have defined and proven a “core” as specified

● Still need to replace “core” in extended simulation tool with proven “core”
● Ongoing work to improve direction and coverage of extended simulation



Questions? .. and answers..

Thank you!!


