
Building Blocks for RTL
Verification in ACL2

Sol Swords
Centaur Technology, Inc.

ACL2 2018

About Centaur & the FV Team

● Designers of x86 CPUs since 1995

● ~100 employees total, all in a single building in Austin:
○ Logic, circuit, verification

● FV team started in 2007
○ 4 employees

○ ACL2 based

○ Focus on datapath verification

○ Currently maintaining proofs about over 600 uops implemented on latest design.

○ Additional efforts: memory hierarchy, front-end correctness

Early Centaur FV Efforts

● Divide microcode -- compute a 2N-bit (signed/unsigned) divide using native
N-bit unsigned divide uop

● Implementation modeled by hand
○ Simple interpreter covering only the uops needed

○ Code transcribed into ACL2 constant by hand from sources

● Proof done using The Method

Next: FP Adder RTL

● Much bigger input artifact
● Already need much more automation
● Front end: Read in & update model of implementation automatically

○ Commercial synthesis tool dumps gate-level design

○ ACL2 parse, convert to E modules

● Back end: Proved automatically with G System (Boyer/Hunt), BDDs, split into
many cases

Since then

● “Front end” rewritten in ACL2, then rewritten another time or 2
○ VL2014/Esim -- synthesizable subset of Verilog, no more commercial synthesis

○ Reworked to support synthesizable SystemVerilog: VL/SV

● G became GL (“G in the Logic”, 2009); lots of fancy features added (rewriter -- 2013)

● Improved support for AIG → SAT flow
○ SATLINK -- plug in any modern SAT solver

○ Fraiging (SAT sweeping) and other AIGNET transforms

○ Now preferred over BDDs in most cases

Outline

● Tour through a small demo example: bitcount SystemVerilog module
○ Front end: VL and SV
○ Lowering proofs to the Boolean domain: GL

● Little Tricks
○ Make the spec look more like the implementation
○ Make case splits count in AIG equivalence checks
○ Make GL proofs more general

Demo example: bitcount

 localparam integer shift = 1<<cycle;
 localparam logic [width-1:0] mask
 = { width>>(cycle+1)
 { { shift {1'b0}}, { shift {1'b1}} } };
 // The cycles proceed as follows:
 // cycle shift mask (bits) mask (hex)
 // 0 1 01010101... 55555555.....
 // 1 2 00110011... 33333333.....
 // 2 4 00001111... 0F0F0F0F....
 // 3 8 00FF00FF....

 logic [width-1:0] prevdata, indata,
 half0, half1, resdata;
 logic cyclevalid, prevvalid;
 if (cycle == 0) begin
 assign prevdata = data;
 assign prevvalid = valid;
 end else begin
 assign prevdata = cycleblock[cycle-1].resdata;
 assign prevvalid = cycleblock[cycle-1].cyclevalid;
 end

 always @(posedge clk) begin
 indata <= prevvalid ? prevdata : indata;
 cyclevalid <= prevvalid;
 end

 assign half0 = indata & mask;
 assign half1 = (indata >> shift) & mask;
 assign resdata = half0 + half1;

module bitcount #(integer logwidth = 5,
 integer width = 1<<logwidth)
 (input clk,
 input valid,
 input [width-1:0] data,
 output resvalid,
 output [logwidth:0] count);

 generate
 genvar cycle;
 for (cycle=0; cycle<logwidth; cycle=cycle+1)
 begin : cycleblock

 end // block: cycleblock
 endgenerate

 assign count =
 (logwidth+1)'(cycleblock[logwidth-1].resdata);
 assign resvalid = cycleblock[logwidth-1].cyclevalid;

endmodule // bitcount

(def-gl-thm bitcount1024-correct

 :hyp (and (unsigned-byte-p 1024 data)
 (bitp valid))

 :concl (b* ((outs (sv::svtv-run (bitcount1024-run)
 `((data . ,data)
 (valid . ,valid))))
 ((assocs resvalid count) outs))
 (and (equal resvalid valid)
 (implies (equal valid 1)
 (equal count (logcount data)))))

 :g-bindings (gl::auto-bindings
 (:nat data 1024)
 (:nat valid 1)))

VL: SystemVerilog Parsing and Syntax Analysis

● SystemVerilog spec is 1,275 pages; “formal” syntax is 42 pages

● VL encodes parse tree using ~200 type definitions from vl-design-p down to vl-bit-p
● Tools built on VL (J. Davis):

○ Linter
○ Module browser
○ Parsetree → JSON

● “Formal semantics”: translate to SV modules ...

Parsing a SystemVerilog design

(defconsts (*vl-design* state)
 #!vl (b* (((mv loadres state)
 (vl-load
 (make-vl-loadconfig :start-files '("demo.sv")))))
 (mv (vl-loadresult->design loadres) state)))

(:VL-DESIGN
 ((("VL Syntax 2016-08-26"
 (:VL-MODULE
 (((("bitcount" 16777216 :VL-LOCATION . "demo.sv")
 (213909504 :VL-LOCATION . "demo.sv")
 "bitcount")
 (NIL)
 NIL
 ((:VL-ASSIGN
 ((:VL-INDEX ("count"))
 (:VL-CAST
 (:SIZE :VL-BINARY
 (:VL-BINARY-PLUS :VL-INDEX ("logwidth"))
 (:VL-LITERAL (:VL-CONSTINT (32 . 1) :VL-SIGNED . T))
 ("VL_EXPLICIT_PARENS"))
 (:VL-INDEX ((("cycleblock" (:VL-BINARY (:VL-BINARY-MINUS :VL-INDEX ("logwidth"))
 (:VL-LITERAL (:VL-CONSTINT (32 . 1)
 :VL-SIGNED . T))))
 . "resdata"))))
 201326595 :VL-LOCATION . "demo.sv"))
 (:VL-ASSIGN
 ((:VL-INDEX ("resvalid"))
 (:VL-INDEX ((("cycleblock" (:VL-BINARY (:VL-BINARY-MINUS :VL-INDEX ("logwidth"))
 (:VL-LITERAL (:VL-CONSTINT (32 . 1)
 :VL-SIGNED . T))))
 . "cyclevalid")))
.....

VL Type
Hierarchy

SV: Almost-Formal Hierarchical HDL

● Rich enough to be a translation target for (synthesizable) SystemVerilog

● Simple enough to someday have a formal semantics

● Every level of lexical hierarchy is expressed as a module

● No statements, only expressions assigned to parts of (wide) wires

● Simple expression format “SVEX” -- variable, quote, or operator call

● No port connections, only aliases and hierarchical references

● Sequential behavior via referencing delayed values of variables

● “Formal semantics”:

○ Flatten hierarchy and combine/split assignments to obtain one assignment for every (wide) wire

○ Compose assignments together to a fixpoint to get FSM next-states and update functions.

Translating to SV

(defconsts *bitcount-sv-design*
 (b* (((mv err sv-design ?good ?bad)
 (vl::vl-design->sv-design
 "bitcount"
 vl-design
 (vl::make-vl-simpconfig)))
 ((when err)
 (er hard? 'sv-design "~@0~%" err)))
 sv-design))

((SV::MODALIST
 ((("bitcount" :GENARRAY "cycleblock"
 :GENBLOCK 2)
 (SV::WIRES (("prevdata" 32 . 0))
 (("indata" 32 . 0))
 (("half0" 32 . 0))
 (("half1" 32 . 0))
 (("resdata" 32 . 0))
 (("cyclevalid" 1 . 0))
 (("prevvalid" 1 . 0)))
 (SV::ASSIGNS (("cyclevalid")
 (SV::? (SV::BITAND (SV::BITNOT (:VAR (:ADDRESS "clk" NIL 2) . 1))
 (SV::CONCAT 1 (:VAR (:ADDRESS "clk" NIL 2) . 0)
 0))
 (SV::CONCAT 1 (:VAR "prevvalid" . 1)
 (SV::RSH 1 (:VAR "cyclevalid" . 1)))
 (:VAR "cyclevalid" . 1))
 . 6)
 (((32 . "indata"))
 (SV::? (SV::BITAND (SV::BITNOT (:VAR (:ADDRESS "clk" NIL 2) . 1))
 (SV::CONCAT 1 (:VAR (:ADDRESS "clk" NIL 2) . 0)
 0))
 (SV::CONCAT 32
 (SV::? (SV::CONCAT 1 (:VAR "prevvalid" . 1) 0)
 (:VAR "prevdata" . 1)
 (:VAR "indata" . 1))

SV Type
Hierarchy

Semantics for a finite run

● Defsvtv and derivatives compute symbolic formulas for certain signals after finite steps

● Specify (concrete or symbolic) inputs, delays, outputs to extract

● Flattens hierarchy, composes expessions for a single time slice, unrolls phases

● Result: essentially a mapping: output signals → SVEX expressions

(sv::defsvtv-phasewise bitcount-run
 :design *bitcount-sv-design*
 :phases ((:inputs (("clk" 0 :toggle 1)
 ("valid" valid)
 ("data" data)))
 (:delay 10 ;; 10 phases = 5 clk cycles
 :outputs (("count" count)
 ("resvalid" resvalid)))))

Simulation of a finite run

(sv::svtv-run (bitcount-run)
 '((data . #x38f0a500)
 (valid . 1)))

⇒

((COUNT . 11) (RESVALID . 1))

Proofs about SVTVs

● You could try opening up definitions & do proofs using The Method
○ I don’t recommend this

● Usual route: bit blast using GL
○ Intermediate form: convert SVEX objects to vectors of AIGs

○ Oftentimes, just prove it equivalent to a spec & be done

○ Sometimes split into cases

○ Sometimes decompose by proving lemmas about internal signals

GL Background

● Stands for “G in the Logic,” based on Boyer & Hunt’s “G system”

● Idea: Represent ACL2 conjecture as Boolean function (AIG, BDD)

● Express ACL2 objects containing symbolic Booleans and integers

● Operate on these objects using symbolic analogues of functions, e.g.:
(equal (+ (gl-obj-eval a env) (gl-obj-eval b env))
 (gl-obj-eval (gl-obj-+ a b) env))

● Symbolically interpret terms:
(equal (gl-obj-eval (gl-term-interp my-term bindings) env)
 (term-eval my-term (gl-obj-alist-eval bindings env))*

* (Some technical details elided…)

(def-gl-thm bitcount1024-correct

 :hyp (and (unsigned-byte-p 1024 data)
 (bitp valid))

 :concl (b* ((outs (sv::svtv-run (bitcount1024-run)
 `((data . ,data)
 (valid . ,valid))))
 ((assocs resvalid count) outs))
 (and (equal resvalid valid)
 (implies (equal valid 1)
 (equal count (logcount data)))))

 :g-bindings (gl::auto-bindings
 (:nat data 1024)
 (:nat valid 1)))

GL Scaling

● Default: use BDDs --

● 128 bits: 2 sec

● 256 bits: 14 sec

● 512 bits: 95 sec

● Trend: 1024 > 10 minutes (too impatient!)

● Switching to SAT or FRAIGing + SAT → even worse (for this problem)

● How do we get there? Back to theorem proving?

Little Tricks

Trick 1: Make the spec like the implementation

● Don’t read the RTL more than necessary…

● But the algorithm is basically just summing the bits in a tree

● Logcount sums them in a linear scan:

 (defun logcount-of-natural (n)
 (if (zp n)
 0
 (+ (if (logbitp 0 n) 1 0)
 (logcount-of-natural (ash n -1)))))

● Maybe if we represent logcount as a more treelike sum...

 (define logcount-rec ((logwidth natp) (x integerp))
 (if (zp logwidth)
 (loghead 1 x)
 (+ (logcount-rec (1- logwidth) x)
 (logcount-rec (1- logwidth) (logtail (ash 1 (1- logwidth)) x))))
 ///
 (defthm logcount-rec-is-logcount
 (equal (logcount-rec logwidth x)
 (logcount (loghead (ash 1 (nfix logwidth)) x)))))

 (gl::def-gl-rewrite logcount-of-u1024
 (implies (unsigned-byte-p 1024 x)
 (equal (logcount x)
 (logcount-rec 10 x))))

Close enough?

● SAT solving now solves 1024-bit case in 2.7 sec

● FRAIGing: 0.03 sec

Fraiging is very fast at comparing very similar formulas!

Relies on finding many exact functional matches between AIG nodes.

→ Trick 1: Prove your spec equivalent to something close to the implementation algorithm.

Trick 2: Make case splits count

● Fraiging only works if nodes have EXACTLY equivalent function

● Sometimes they’re equivalent EXCEPT in unimportant cases → Fraiging fails

● Example: FP addition paths: either normalize or round, depending on exponents and signs
○ If exponents within 1 and signs opposite (effective subtract), normalize
○ Otherwise round

● Don’t know what normalization path does when we’re going to round

● But if the spec does something different, then there won’t be full equivalences between the nodes!

A simple transformation can fix this...

Observability Transform

● Transform the inputs to the main formula so that they always satisfy the “hyp”
○ Mux: if hyp is satisfied, then original inputs, else arbitrary satisfying assignment

● Equivalent-under-hyp nodes within main formula are then fully equivalent

● Effects on performance:
○ Random simulation is less useful

○ Counterexample simulations are more important

● Transform available in aignet package
○ Configurable, but usually just works

Observability + Fraiging results

● Extended precision FP Add proved equivalent to spec in ~4 minutes
○ Four cases: Special, normalize, round effective add, round effective subtract

● For comparison, our previous result with BDDs (Use of Formal Verification at Centaur Technology,

2010): 48 minutes, >800 cases

● Intel result (Universal Boolean Functional Vectors, 2015): double precision add verified in 30 minutes
○ No case splitting using BDD-based functional parametrization approach
○ Their previous result: 51.5 hours, 231 cases

Trick 3: Make GL Proofs More General

GL proofs are commonly written with rigid shape specs binding every free variable:
 :g-bindings (gl::auto-bindings
 (:nat data 1024)
 (:nat valid 1))

These have some disadvantages:

● Require otherwise unnecessary hyps

 :hyp (and (unsigned-byte-p 1024 data)
 (bitp valid))

● Lead to overly specific objects, making composition difficult
 `((data . ,data)
 (valid . ,valid))

● In examples with too many variables, may be impractical to build shape specs or verify coverage

Ditching Shape Specs for Free Variables

● Decide on a set of accessors sufficient to extract relevant bits from your variables

● Make them uninterpreted (prevent function expansion) using gl-set-uninterpreted
● Prove any rewrite rules necessary

● Provide counterexample extraction rules for rebuilding objects from Boolean assignments

● Lots of work, but perhaps can just do it once and use it for lots of proofs…

● Useful GL rewriting theory for SV provided in centaur/sv/svex/gl-rules

With suitable GL rewrite rules (i.e. “centaur/sv/svex/gl-rules”)…

(def-gl-thm bitcount1024-correct3
 :hyp (and (integerp (sv::svex-env-lookup 'data env))
 (integerp (sv::svex-env-lookup 'valid env)))
 :concl (b* ((outs (sv::svtv-run (bitcount1024-run) env
 :boolvars nil :allvars t))
 ((assocs resvalid count) outs)
 (data (loghead 1024 (sv::svex-env-lookup 'data env)))
 (valid (loghead 1 (sv::svex-env-lookup 'valid env))))
 (and (equal resvalid valid)
 (implies (equal valid 1)
 (equal count (logcount data)))))
 :g-bindings nil)

Final Thoughts

● VL/SV show that big, ugly languages can be handled, “formalized” (given time & commitment)
○ Helpful to have a way to ramp up -- i.e. code that doesn’t use too many features
○ Some benefit to working directly from sources vs. using 3rd party tools to simplify

● Boolean equivalence checking is quite a hammer
○ (Granted, not everything is a nail.)
○ Several alternatives if it can’t get your whole proof:

■ Split into cases (and maybe use observability xform to make conditional equivalences useful)
■ Split spec/implementation into subparts
■ Lift implementation to something that can be proven equivalent to spec (or lower spec to something

that can be proven equivalent to implementation)

