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About Centaur & the FV Team

● Designers of x86 CPUs since 1995

● ~100 employees total, all in a single building in Austin:
○ Logic, circuit, verification

● FV team started in 2007
○ 4 employees

○ ACL2 based

○ Focus on datapath verification

○ Currently maintaining proofs about over 600 uops implemented on latest design.

○ Additional efforts: memory hierarchy, front-end correctness



Early Centaur FV Efforts

● Divide microcode -- compute a 2N-bit (signed/unsigned) divide using native 
N-bit unsigned divide uop

● Implementation modeled by hand
○ Simple interpreter covering only the uops needed

○ Code transcribed into ACL2 constant by hand from sources

● Proof done using The Method





Next: FP Adder RTL

● Much bigger input artifact
● Already need much more automation
● Front end: Read in & update model of implementation automatically

○ Commercial synthesis tool dumps gate-level design

○ ACL2 parse, convert to E modules

● Back end: Proved automatically with G System (Boyer/Hunt), BDDs, split into 
many cases





Since then

● “Front end” rewritten in ACL2, then rewritten another time or 2
○ VL2014/Esim -- synthesizable subset of Verilog, no more commercial synthesis

○ Reworked to support synthesizable SystemVerilog: VL/SV

● G became GL (“G in the Logic”, 2009); lots of fancy features added (rewriter -- 2013)

● Improved support for AIG → SAT flow
○ SATLINK -- plug in any modern SAT solver

○ Fraiging (SAT sweeping) and other AIGNET transforms

○ Now preferred over BDDs in most cases





Outline

● Tour through a small demo example: bitcount SystemVerilog module
○ Front end: VL and SV
○ Lowering proofs to the Boolean domain: GL

● Little Tricks
○ Make the spec look more like the implementation
○ Make case splits count in AIG equivalence checks
○ Make GL proofs more general



Demo example: bitcount



     localparam integer shift = 1<<cycle;
     localparam logic [width-1:0] mask
          = { width>>(cycle+1)
              { { shift {1'b0}}, { shift {1'b1}} } };
     // The cycles proceed as follows:
     // cycle   shift    mask (bits)      mask (hex)
     //   0       1      01010101...    55555555.....
     //   1       2      00110011...    33333333.....
     //   2       4      00001111...    0F0F0F0F....
     //   3       8                     00FF00FF....
     
     logic [width-1:0] prevdata, indata,
               half0, half1, resdata;
     logic cyclevalid, prevvalid;
     if (cycle == 0) begin
       assign prevdata = data;
       assign prevvalid = valid;
     end else begin
       assign prevdata = cycleblock[cycle-1].resdata;
       assign prevvalid = cycleblock[cycle-1].cyclevalid;
     end
     
     always @(posedge clk) begin
       indata <= prevvalid ? prevdata : indata;
       cyclevalid <= prevvalid;
     end
     
     assign half0 = indata & mask;
     assign half1 = (indata >> shift) & mask;
     assign resdata = half0 + half1;
     

module bitcount #(integer logwidth = 5,
                  integer width = 1<<logwidth)
   (input clk,
    input valid,
    input [width-1:0] data,
    output resvalid,
    output [logwidth:0] count);

   generate
     genvar cycle;
     for (cycle=0; cycle<logwidth; cycle=cycle+1)
       begin : cycleblock

        .....

       end // block: cycleblock
   endgenerate

   assign count =
      ( logwidth+1 )'(cycleblock[logwidth-1].resdata);
   assign resvalid = cycleblock[logwidth-1].cyclevalid;

endmodule // bitcount



(def-gl-thm bitcount1024-correct

  :hyp (and (unsigned-byte-p 1024 data)
            (bitp valid))

  :concl (b* ((outs (sv::svtv-run (bitcount1024-run)
                                  `((data . ,data)
                                    (valid . ,valid))))
              ((assocs resvalid count) outs))
           (and (equal resvalid valid)
                (implies (equal valid 1)
                         (equal count (logcount data)))))

  :g-bindings (gl::auto-bindings
               (:nat data 1024)
               (:nat valid 1)))



VL: SystemVerilog Parsing and Syntax Analysis

● SystemVerilog spec is 1,275 pages; “formal” syntax is 42 pages

● VL encodes parse tree using ~200  type definitions from vl-design-p down to  vl-bit-p
● Tools built on VL (J. Davis):

○ Linter
○ Module browser
○ Parsetree → JSON

● “Formal semantics”: translate to SV modules ...



Parsing a SystemVerilog design

(defconsts (*vl-design* state)
  #!vl (b* (((mv loadres state)
             (vl-load
              (make-vl-loadconfig :start-files '("demo.sv")))))
         (mv (vl-loadresult->design loadres) state)))



(:VL-DESIGN
 ((("VL Syntax 2016-08-26"
    (:VL-MODULE
     (((("bitcount" 16777216 :VL-LOCATION . "demo.sv")
        (213909504 :VL-LOCATION . "demo.sv")
        "bitcount")
       (NIL)
       NIL
       ((:VL-ASSIGN
         ((:VL-INDEX ("count"))
          (:VL-CAST
           (:SIZE :VL-BINARY
                  (:VL-BINARY-PLUS :VL-INDEX ("logwidth"))
                  (:VL-LITERAL (:VL-CONSTINT (32 . 1) :VL-SIGNED . T))
                  ("VL_EXPLICIT_PARENS"))
           (:VL-INDEX ((("cycleblock" (:VL-BINARY (:VL-BINARY-MINUS :VL-INDEX ("logwidth"))
                                                  (:VL-LITERAL (:VL-CONSTINT (32 . 1)
                                                                             :VL-SIGNED . T))))
                        . "resdata"))))
          201326595 :VL-LOCATION . "demo.sv"))
        (:VL-ASSIGN
          ((:VL-INDEX ("resvalid"))
           (:VL-INDEX ((("cycleblock" (:VL-BINARY (:VL-BINARY-MINUS :VL-INDEX ("logwidth"))
                                                  (:VL-LITERAL (:VL-CONSTINT (32 . 1)
                                                                             :VL-SIGNED . T))))
                        . "cyclevalid")))
.....



VL Type 
Hierarchy



SV: Almost-Formal Hierarchical HDL

● Rich enough to be a translation target for (synthesizable) SystemVerilog

● Simple enough to someday have a formal semantics

● Every level of lexical hierarchy is expressed as a module

● No statements, only expressions assigned to parts of (wide) wires

● Simple expression format “SVEX” -- variable, quote, or operator call

● No port connections, only aliases and hierarchical references

● Sequential behavior via referencing delayed values of variables

● “Formal semantics”:

○ Flatten hierarchy and combine/split assignments to obtain one assignment for every (wide) wire

○ Compose assignments together to a fixpoint to get FSM next-states and update functions.



Translating to SV

(defconsts *bitcount-sv-design*
  (b* (((mv err sv-design ?good ?bad)
        (vl::vl-design->sv-design
         "bitcount"
         *vl-design*
         (vl::make-vl-simpconfig)))
       ((when err)
        (er hard? 'sv-design "~@0~%" err)))
    sv-design))



((SV::MODALIST
     ((("bitcount" :GENARRAY "cycleblock"
                   :GENBLOCK 2)
       (SV::WIRES (("prevdata" 32 . 0))
                  (("indata" 32 . 0))
                  (("half0" 32 . 0))
                  (("half1" 32 . 0))
                  (("resdata" 32 . 0))
                  (("cyclevalid" 1 . 0))
                  (("prevvalid" 1 . 0)))
       (SV::ASSIGNS (("cyclevalid")
                     (SV::? (SV::BITAND (SV::BITNOT (:VAR (:ADDRESS "clk" NIL 2) . 1))
                                        (SV::CONCAT 1 (:VAR (:ADDRESS "clk" NIL 2) . 0)
                                                    0))
                            (SV::CONCAT 1 (:VAR "prevvalid" . 1)
                                        (SV::RSH 1 (:VAR "cyclevalid" . 1)))
                            (:VAR "cyclevalid" . 1))
                     . 6)
                    (((32 . "indata"))
                     (SV::? (SV::BITAND (SV::BITNOT (:VAR (:ADDRESS "clk" NIL 2) . 1))
                                        (SV::CONCAT 1 (:VAR (:ADDRESS "clk" NIL 2) . 0)
                                                    0))
                            (SV::CONCAT 32
                                        (SV::? (SV::CONCAT 1 (:VAR "prevvalid" . 1) 0)
                                               (:VAR "prevdata" . 1)
                                               (:VAR "indata" . 1))
  .....



SV Type 
Hierarchy



Semantics for a finite run

● Defsvtv and derivatives compute symbolic formulas for certain signals after finite steps

● Specify (concrete or symbolic) inputs, delays, outputs to extract

● Flattens hierarchy, composes expessions for a single time slice, unrolls phases

● Result: essentially a mapping: output signals → SVEX expressions

(sv::defsvtv-phasewise bitcount-run
  :design *bitcount-sv-design*
  :phases ((:inputs (("clk" 0 :toggle 1)
                     ("valid" valid)
                     ("data" data)))
           (:delay 10  ;; 10 phases = 5 clk cycles 
            :outputs (("count" count)
                      ("resvalid" resvalid)))))



Simulation of a finite run

(sv::svtv-run (bitcount-run)
              '((data . #x38f0a500)
                (valid . 1)))

⇒ 

((COUNT . 11) (RESVALID . 1))



Proofs about SVTVs

● You could try opening up definitions & do proofs using The Method
○ I don’t recommend this

● Usual route: bit blast using GL
○ Intermediate form: convert SVEX objects to vectors of AIGs

○ Oftentimes, just prove it equivalent to a spec & be done

○ Sometimes split into cases

○ Sometimes decompose by proving lemmas about internal signals



GL Background

● Stands for “G in the Logic,” based on Boyer & Hunt’s “G system”

● Idea: Represent ACL2 conjecture as Boolean function (AIG, BDD)

● Express ACL2 objects containing symbolic Booleans and integers

● Operate on these objects using symbolic analogues of functions, e.g.:
(equal (+ (gl-obj-eval a env) (gl-obj-eval b env))
       (gl-obj-eval (gl-obj-+ a b) env))

● Symbolically interpret terms:
(equal (gl-obj-eval (gl-term-interp my-term bindings) env)
       (term-eval my-term (gl-obj-alist-eval bindings env))*

* (Some technical details elided…)



(def-gl-thm bitcount1024-correct

  :hyp (and (unsigned-byte-p 1024 data)
            (bitp valid))

  :concl (b* ((outs (sv::svtv-run (bitcount1024-run)
                                  `((data . ,data)
                                    (valid . ,valid))))
              ((assocs resvalid count) outs))
           (and (equal resvalid valid)
                (implies (equal valid 1)
                         (equal count (logcount data)))))

  :g-bindings (gl::auto-bindings
               (:nat data 1024)
               (:nat valid 1)))



GL Scaling

● Default: use BDDs --

● 128 bits: 2 sec

● 256 bits: 14 sec

● 512 bits: 95 sec

● Trend: 1024 > 10 minutes (too impatient!)

● Switching to SAT or FRAIGing + SAT → even worse (for this problem)

● How do we get there? Back to theorem proving?



Little Tricks



Trick 1: Make the spec like the implementation

● Don’t read the RTL more than necessary…

● But the algorithm is basically just summing the bits in a tree

● Logcount sums them in a linear scan:

  (defun logcount-of-natural (n)
    (if (zp n)
        0
      (+ (if (logbitp 0 n) 1 0)
         (logcount-of-natural (ash n -1)))))

● Maybe if we represent logcount as a more treelike sum...



  (define logcount-rec ((logwidth natp) (x integerp))
    (if (zp logwidth)
        (loghead 1 x)
      (+ (logcount-rec (1- logwidth) x)
         (logcount-rec (1- logwidth) (logtail (ash 1 (1- logwidth)) x))))
    ///
    (defthm logcount-rec-is-logcount
      (equal (logcount-rec logwidth x)
             (logcount (loghead (ash 1 (nfix logwidth)) x)))))

    (gl::def-gl-rewrite logcount-of-u1024
      (implies (unsigned-byte-p 1024 x)
               (equal (logcount x)
                      (logcount-rec 10 x))))



Close enough?

● SAT solving now solves 1024-bit case in 2.7 sec

● FRAIGing: 0.03 sec

Fraiging is very fast at comparing very similar formulas!

Relies on finding many exact functional matches between AIG nodes.

→ Trick 1: Prove your spec equivalent to something close to the implementation algorithm.



Trick 2: Make case splits count

● Fraiging only works if nodes have EXACTLY equivalent function

● Sometimes they’re equivalent EXCEPT in unimportant cases → Fraiging fails

● Example: FP addition paths: either normalize or round, depending on exponents and signs
○ If exponents within 1 and signs opposite (effective subtract), normalize
○ Otherwise round

● Don’t know what normalization path does when we’re going to round

● But if the spec does something different, then there won’t be full equivalences between the nodes!

A simple transformation can fix this...



Observability Transform

● Transform the inputs to the main formula so that they always satisfy the “hyp”
○ Mux: if hyp is satisfied, then original inputs, else arbitrary satisfying assignment

● Equivalent-under-hyp nodes within main formula are then fully equivalent

● Effects on performance:
○ Random simulation is less useful

○ Counterexample simulations are more important

● Transform available in aignet package
○ Configurable, but usually just works





Observability + Fraiging results

● Extended precision FP Add proved equivalent to spec in ~4 minutes
○ Four cases: Special, normalize, round effective add, round effective subtract

● For comparison, our previous result with BDDs (Use of Formal Verification at Centaur Technology, 

2010): 48 minutes, >800 cases

● Intel result (Universal Boolean Functional Vectors, 2015): double precision add verified in 30 minutes
○ No case splitting using BDD-based functional parametrization approach
○ Their previous result: 51.5 hours, 231 cases



Trick 3: Make GL Proofs More General

GL proofs are commonly written with rigid shape specs binding every free variable:
       :g-bindings (gl::auto-bindings
                    (:nat data 1024)
                    (:nat valid 1))

These have some disadvantages:

● Require otherwise unnecessary hyps

       :hyp (and (unsigned-byte-p 1024 data)
                 (bitp valid))

● Lead to overly specific objects, making composition difficult
        `((data . ,data)
          (valid . ,valid))

● In examples with too many variables, may be impractical to build shape specs or verify coverage



Ditching Shape Specs for Free Variables

● Decide on a set of accessors sufficient to extract relevant bits from your variables

● Make them uninterpreted (prevent function expansion) using gl-set-uninterpreted
● Prove any rewrite rules necessary

● Provide counterexample extraction rules for rebuilding objects from Boolean assignments

● Lots of work, but perhaps can just do it once and use it for lots of proofs…

● Useful GL rewriting theory for SV provided in centaur/sv/svex/gl-rules



With suitable GL rewrite rules (i.e. “centaur/sv/svex/gl-rules”)…  

(def-gl-thm bitcount1024-correct3
  :hyp (and (integerp (sv::svex-env-lookup 'data env))
            (integerp (sv::svex-env-lookup 'valid env)))
  :concl (b* ((outs (sv::svtv-run (bitcount1024-run) env
                                  :boolvars nil :allvars t))
              ((assocs resvalid count) outs)
              (data (loghead 1024 (sv::svex-env-lookup 'data env)))
              (valid (loghead 1 (sv::svex-env-lookup 'valid env))))
           (and (equal resvalid valid)
                (implies (equal valid 1)
                         (equal count (logcount data)))))
  :g-bindings nil)



Final Thoughts

● VL/SV show that big, ugly languages can be handled, “formalized” (given time & commitment)
○ Helpful to have a way to ramp up -- i.e. code that doesn’t use too many features
○ Some benefit to working directly from sources vs. using 3rd party tools to simplify

● Boolean equivalence checking is quite a hammer
○ (Granted, not everything is a nail.)
○ Several alternatives if it can’t get your whole proof:

■ Split into cases (and maybe use observability xform to make conditional equivalences useful)
■ Split spec/implementation into subparts
■ Lift implementation to something that can be proven equivalent to spec (or lower spec to something 

that can be proven equivalent to implementation)


