Hint Orchestration Using
ACL2's Simplifier

Sol Swords
Centaur Technology, Inc.
ACL2 Workshop 2018

This talk is for hint abusers

This might be you if:

You can’t be bothered to figure out a good rewriting strategy
You just don’t know the right lemma to prove

Your proofs are all done by luck and hackery

You are abad ACL2 user

Awful Hints

A Short Compendium of Common Abominations

Awful Hints: The Unstable Subgoal

:hints ((“Goal” :induct t)
(MS IEEEE; Iq !2"
MS IEEEE; Iq !2.4"
MS IEEEE; Iq !2.2"
MS IEEEE; Iq 14.2"
“Subgoal *1/1.3.2" ...))

Awful Hints: The Unreliable : expand

:hints ((“Goal” :induct (foo x y z)
:expand ((foo x vy z)
(foo nil y z)
(foo t vy z))))

Awful Hints: The Unwieldy:use

:use ((:instance my-lemma
(a (MV-NTH B (FOOBAR X
(MV-NTH 1 (BIZBAZ-WITNESS X Z))
(BAR (BUZ Y) Z))))
(b (MV-NTH B (FOOBAR X
(MV-NTH 1 (BIZBAZ-WITNESS X Z))
(BAR (BUZ Y) Z7))))))

Awful Hints: The Untypable Translated Term

(and stable-under-simplificationp
(member-equal F(not (equal (tagSinline Xx) "ig-call)) clause)

(..0)

use-termhint

Solution to all these problems and more

use-termhint

Setutionto-all-theseprobtems-and-mere

Hack that works around some of these problems

use-termhint

Setutionto-all-theseprobtems-and-mere

Hack that works around some of these problems

(if you can't be bothered to do things the RIGHT way.)

How to use use-termhint

e Write aterm that produces the hints you want in the cases you want
o There are a few nifty features to be aware of

e Giveahint (use-termhint my-term)

e That’sit

Offline Demo

(defun-sk nat-list-bounded-by-x (x y)
(forall z
(implies (member (nfix z) vy)
(<= (nfix z) (nfix x)))))

(in-theory (disable nat-list-bounded-by-x
nat-list-bounded-by-x-necc))

(defthm nat-list-bounded-by-x-of-nfix
(equal (nat-list-bounded-by-x (nfix x) vy)
(nat-list-bounded-by-x x y))
thints (...))

Handwavy Hand Proof

Two cases:

—: (implies (nat-list-bounded-by-x (nfix x) y) (nat-list-bounded-by-x x y))
—: (implies (nat-list-bounded-by-x x y) (nat-list-bounded-by-x (nfix x) y))

—:assume (not (nat-list-bounded-by-x x y)),expanditto getawitnesszsuch that
(member (nfix z) y) and (not (<= (nfix z) (nfix x))). Thenthisimplies

(not (nat-list-bounded-by-x (nfix x) y)) by nat-list-bounded-by-x-necc,since
(nfix (nfix x)) = (nfix x).o

—:same, swapping (nfix x) and x.O

Without use-termhint

(defthm nat-list-bounded-by-x-of-nfix
(equal (nat-list-bounded-by-x (nfix x) vy)
(nat-list-bounded-by-x x y))
:hints (("goal"
:use ((:instance nat-list-bounded-by-x-necc
(z (nat-list-bounded-by-x-witness (nfix x) y))
(x x))
(:instance nat-list-bounded-by-x-necc
(z (nat-list-bounded-by-x-witness x y))
(x (nfix x))))
:in-theory (enable nat-list-bounded-by-x))))

Make it a challenge?

e Break the proof into the two natural cases —, <
e Only:useeachinstance in the case where it’s needed
e Don’tenablenat-1list-bounded-by-Xx, expand where needed

Artificial handicap for a small example, but practical for more complicated/expensive
proofs...

Also produces a proof that’s easier to follow (if anyone cares).

Without use-termhint

(defthm nat-list-bounded-by-x-of-nfix
(equal (nat-list-bounded-by-x (nfix x) vy)
(nat-list-bounded-by-x x y))
:hints (("goal" :cases ((nat-list-bounded-by-x (nfix x) y)))
(and stable-under-simplificationp
(let ((1lit (assoc 'nat-1list-bounded-by-x clause)))
“(:expand (,1lit)
:use ((:instance nat-list-bounded-by-x-necc
(z (nat-list-bounded-by-x-witness . ,(cdr 1lit)))
(x ,(if (eq (second 1lit) 'x) '"(nfix x) 'x)))))))))

With use-termhint

(defthm nat-list-bounded-by-x-of-nfix
(equal (nat-list-bounded-by-x (nfix x) vy)
(nat-list-bounded-by-x x y))
:hints ((use-termhint
(b* (((mv bounding-x other-x)
(if (nat-list-bounded-by-x (nfix x) vy)
(mv (nfix x) x) ;; —
(mv x (nfix x)))) ;;
(witness (nat-list-bounded-by-x-witness other-x y)))
“(:expand ((nat-list-bounded-by-x , (hq other-x) y))
:use ((:instance nat-list-bounded-by-x-necc
(x , (hg bounding-x))
(z ,(hq witness)))))))))

<«

Comparison

e Termhint versionis alittle longer, but just because | chose a bad example

Termhint version is in the “object language” -- same kind of term as the goal itself
Non-termhint version is in the “meta language” -- analyzing the representation of the goal

Termhint version kind of describes how the proof works
Non-termhint version says what to do based on the syntax of the clause.

e Whatisthat HQ thing?
o Stands for Hint Quote
o Just some function
o Wetreatit like QUOTE when we want to -- more later

Goal'
(IMPLIES
(USE-TERMHINT-HYP
(MV-LET (BOUNDING-X OTHER-X)
(IF (NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
(LIST (NFIX X) X)
(LIST X (NFIX X)))
(LET ((WITNESS (NAT-LIST-BOUNDED-BY-X-WITNESS OTHER-X Y)))
(LIST :EXPAND (LIST (LIST 'NAT-LIST-BOUNDED-BY-X
(HQ OTHER-X)
'Y))
:USE (LIST (LIST :INSTANCE 'NAT-LIST-BOUNDED-BY-X-NECC
(LIST 'X (HQ BOUNDING-X))
(LIST 'Z (HQ WITNESS))))))))
(EQUAL (NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
(NAT-LIST-BOUNDED-BY-X X Y))).

Subgoal 2°
(IMPLIES
(AND
(NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
(USE-TERMHINT-HYP
(LIST
:EXPAND (LIST (LIST* 'NAT-LIST-BOUNDED-BY-X
(HQ X)
(Y)))
:USE (LIST (LIST :INSTANCE 'NAT-LIST-BOUNDED-BY-X-NECC
(LIST 'X (HQ (NFIX X)))
(LIST 'Z
(HQ (NAT-LIST-BOUNDED-BY-X-WITNESS X Y))))))))
(NAT-LIST-BOUNDED-BY-X X Y)).

(LIST
:EXPAND (LIST (LIST* 'NAT-LIST-BOUNDED-BY-X
(HQ X)
"(Y)))
:USE (LIST (LIST :INSTANCE 'NAT-LIST-BOUNDED-BY-X-NECC
(LIST 'X (HQ (NFIX X)))
(LIST 'Z
(HQ (NAT-LIST-BOUNDED-BY-X-WITNESS X Y))))))

After replacing HQ with QUOTE, this evaluates to:
(:EXPAND ((NAT-LIST-BOUNDED-BY-X X Y))

:USE ((:INSTANCE NAT-LIST-BOUNDED-BY-X-NECC (X (NFIX X))
(Z (NAT-LIST-BOUNDED-BY-X-WITNESS X Y)))))

[Note: A hint was supplied for our processing of the goal below.
Thanks!]

Subgoal 2"
(IMPLIES (NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
(NAT-LIST-BOUNDED-BY-X X Y)).

We augment the goal with the hypothesis provided by the :USE hint.
The hypothesis can be derived from NAT-LIST-BOUNDED-BY-X-NECC via instantiatio\
n. We are left with the following subgoal.

Subgoal 2'"'"'...
Subgoal 2'4' ...

But simplification reduces this to T, using the :definitions
NAT-LIST-BOUNDED-BY-X and NOT, the :executable-counterpart of NOT and
the :type-prescription rule NAT-LIST-BOUNDED-BY-X.

Alternatives to Awful Hints

Alternatives: The Unstable Subgoal

:hints ((“Goal” :induct t)
(MS IE?EE; Iq (2"
MS IE?EE; Iq (2.4"
MS IE?EE; Iq (2.2"
MS IE?EE; Iq (q.gﬂ
“Subgoal *1/1.3.2" ...))
([}

Use-termhint lets you pick the case in which your hint applies via if tests in your term -- no
subgoal numbers.

Alternatives: The Unreliable : expand

:hints ((“Goal” :induct (foo x y z)
:expand ((foo x vy z)

(foo t 'y z))))

:hints ((“Goal” :induct (foo x y z))
(use-termhint “(:expand ((foo ,(hq x) ,(hqy) ,(hg z))))))

e The xinthe hint termis simplified similar to the x in the call of foo

Alternatives: The Unwieldy:use

:use ((:instance my-lemma
(a (MV-NTH B (FOOBAR X
(MV-NTH 1 (BIZBAZ-WITNESS X Z))
(BAR (BUZ Y) Z))))
(b (MV-NTH B (FOOBAR X
(MV-NTH 1 (BIZBAZ-WITNESS X Z))
(BAR (BUZ Y) Z7))))))

((use-termhint
(b*x (((mv ?biz baz) (bizbaz-witness x z))
((mv a ?b c) (foobar x biz (bar (buz y) z))))
“(:use ((:instance my-lemma (a ,(hg a)) (b ,(hgc))))))))

Alternatives: The Untypable Translated Term

(and stable-under-simplificationp

(member-equal [CENEGUAINEAGSIRITRENNEGECAI clause)
()

(use-termhint
(and (eq (tag x) :g-call)
“(..2)))

e Choice of case via case splitting rather than clause membership
e Never need to deal with translated term syntax
e Object language, not metalanguage

Conclusion

When you have to use hints, use-termhint

Solves a few pernicious problems with hints:

Triggers use of a hint on a particular assumption, not a subgoal number or syntactic property
Allows binding variables & using those variables in hints to avoid term blowup and stay DRY
Hint term is simplified so it doesn’t need to start in normal form for things like :expand
Never need write a translated term.

Would be nice

e Induct + provide hints for various cases by writing a recursive function that produces
hint terms
e Provide hints for goals created by processes other than case splitting
o Functionally instantiate a theorem and provide hints for functional-instance obligations

o Instantiate (:theorem (foo (bar x))) andgive ahintfor the proof of (foo (bar x))
o Callaclause processor and give hints for its generated subgoals

e Give hints when not stable-under-simplification

| don’t see how to do these by building on use-termhint (but prove me wrong!)

