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This might be you if:

● You can’t be bothered to figure out a good rewriting strategy

● You just don’t know the right lemma to prove

● Your proofs are all done by luck and hackery

● You are a bad ACL2 user

This talk is for hint abusers



Awful Hints

A Short Compendium of Common Abominations



Awful Hints: The Unstable Subgoal

:hints ((“Goal” :induct t)
        (“Subgoal *1/2”
         “Subgoal *1/2.1”
         “Subgoal *1/2.2”
         “Subgoal *1/1.2”
         “Subgoal *1/1.3.2” ...))



Awful Hints: The Unreliable :expand

:hints ((“Goal” :induct (foo x y z)
                :expand ((foo x   y z)
                         (foo nil y z)
                         (foo t   y z))))



Awful Hints: The Unwieldy:use

      :use ((:instance my-lemma
             (a (MV-NTH 0 (FOOBAR X
                                  (MV-NTH 1 (BIZBAZ-WITNESS X Z))
                                  (BAR (BUZ Y) Z))))
             (b (MV-NTH 2 (FOOBAR X
                                  (MV-NTH 1 (BIZBAZ-WITNESS X Z))
                                  (BAR (BUZ Y) Z))))))



Awful Hints: The Untypable Translated Term

(and stable-under-simplificationp
     (member-equal '(not (equal (tag$inline x) ':g-call)) clause)
     '(...))



use-termhint

Solution to all these problems and more



use-termhint

Solution to all these problems and more
Hack that works around some of these problems



use-termhint

Solution to all these problems and more
Hack that works around some of these problems

(if you can’t be bothered to do things the RIGHT way.)



How to use use-termhint

● Write a term that produces the hints you want in the cases you want
○ There are a few nifty features to be aware of

● Give a hint (use-termhint my-term)

● That’s it



Offline Demo
(defun-sk nat-list-bounded-by-x (x y)
  (forall z
          (implies (member (nfix z) y)
                   (<= (nfix z) (nfix x)))))

(in-theory (disable nat-list-bounded-by-x
                    nat-list-bounded-by-x-necc))

(defthm nat-list-bounded-by-x-of-nfix
  (equal (nat-list-bounded-by-x (nfix x) y)
         (nat-list-bounded-by-x x y))
  :hints (...))



Handwavy Hand Proof

Two cases:

→: (implies (nat-list-bounded-by-x (nfix x) y) (nat-list-bounded-by-x x y))
←: (implies (nat-list-bounded-by-x x y) (nat-list-bounded-by-x (nfix x) y))

→: assume  (not (nat-list-bounded-by-x x y)), expand it to get a witness z such that

(member (nfix z) y) and (not (<= (nfix z) (nfix x))). Then this implies

(not (nat-list-bounded-by-x (nfix x) y)) by nat-list-bounded-by-x-necc, since 

(nfix (nfix x)) = (nfix x). ◻

←: same, swapping (nfix x) and x. ◻



Without use-termhint
(defthm nat-list-bounded-by-x-of-nfix
  (equal (nat-list-bounded-by-x (nfix x) y)
         (nat-list-bounded-by-x x y))
  :hints (("goal"
           :use ((:instance nat-list-bounded-by-x-necc
                  (z (nat-list-bounded-by-x-witness (nfix x) y))
                  (x x))
                 (:instance nat-list-bounded-by-x-necc
                  (z (nat-list-bounded-by-x-witness x y))
                  (x (nfix x))))
           :in-theory (enable nat-list-bounded-by-x))))



Make it a challenge?

● Break the proof into the two natural cases →, ← 

● Only :use each instance in the case where it’s needed

● Don’t enable nat-list-bounded-by-x, expand where needed

Artificial handicap for a small example, but practical for more complicated/expensive 

proofs…

Also produces a proof that’s easier to follow (if anyone cares).



Without use-termhint
(defthm nat-list-bounded-by-x-of-nfix
  (equal (nat-list-bounded-by-x (nfix x) y)
         (nat-list-bounded-by-x x y))
  :hints (("goal" :cases ((nat-list-bounded-by-x (nfix x) y)))
          (and stable-under-simplificationp
               (let ((lit (assoc 'nat-list-bounded-by-x clause)))
                 `(:expand (,lit)
                   :use ((:instance nat-list-bounded-by-x-necc
                          (z (nat-list-bounded-by-x-witness . ,(cdr lit)))
                          (x ,(if (eq (second lit) 'x) '(nfix x) 'x)))))))))



With use-termhint
(defthm nat-list-bounded-by-x-of-nfix
  (equal (nat-list-bounded-by-x (nfix x) y)
         (nat-list-bounded-by-x x y))
  :hints ((use-termhint
           (b* (((mv bounding-x other-x)
                 (if (nat-list-bounded-by-x (nfix x) y)
                     (mv (nfix x) x)  ;; →
                   (mv x (nfix x))))  ;; ←
                (witness (nat-list-bounded-by-x-witness other-x y)))
             `(:expand ((nat-list-bounded-by-x ,(hq other-x) y))
               :use ((:instance nat-list-bounded-by-x-necc
                      (x ,(hq bounding-x))
                      (z ,(hq witness)))))))))



Comparison

● Termhint version is a little longer, but just because I chose a bad example

● Termhint version is in the “object language” -- same kind of term as the goal itself

● Non-termhint version is in the “meta language” -- analyzing the representation of the goal

● Termhint version kind of describes how the proof works

● Non-termhint version says what to do based on the syntax of the clause.

● What is that HQ thing?
○ Stands for Hint Quote
○ Just some function
○ We treat it like QUOTE when we want to -- more later



Goal'
(IMPLIES
 (USE-TERMHINT-HYP
    (MV-LET (BOUNDING-X OTHER-X)
            (IF (NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
                (LIST (NFIX X) X)
                (LIST X (NFIX X)))
            (LET ((WITNESS (NAT-LIST-BOUNDED-BY-X-WITNESS OTHER-X Y)))
                 (LIST :EXPAND (LIST (LIST 'NAT-LIST-BOUNDED-BY-X
                                           (HQ OTHER-X)
                                           'Y))
                       :USE (LIST (LIST :INSTANCE 'NAT-LIST-BOUNDED-BY-X-NECC
                                        (LIST 'X (HQ BOUNDING-X))
                                        (LIST 'Z (HQ WITNESS))))))))
 (EQUAL (NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
        (NAT-LIST-BOUNDED-BY-X X Y))).



Subgoal 2'
(IMPLIES
 (AND
  (NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
  (USE-TERMHINT-HYP
   (LIST
        :EXPAND (LIST (LIST* 'NAT-LIST-BOUNDED-BY-X
                             (HQ X)
                             '(Y)))
        :USE (LIST (LIST :INSTANCE 'NAT-LIST-BOUNDED-BY-X-NECC
                         (LIST 'X (HQ (NFIX X)))
                         (LIST 'Z
                               (HQ (NAT-LIST-BOUNDED-BY-X-WITNESS X Y))))))))
 (NAT-LIST-BOUNDED-BY-X X Y)).



   (LIST
        :EXPAND (LIST (LIST* 'NAT-LIST-BOUNDED-BY-X
                             (HQ X)
                             '(Y)))
        :USE (LIST (LIST :INSTANCE 'NAT-LIST-BOUNDED-BY-X-NECC
                         (LIST 'X (HQ (NFIX X)))
                         (LIST 'Z
                               (HQ (NAT-LIST-BOUNDED-BY-X-WITNESS X Y))))))

After replacing HQ with QUOTE, this evaluates to:

(:EXPAND ((NAT-LIST-BOUNDED-BY-X X Y))
         :USE ((:INSTANCE NAT-LIST-BOUNDED-BY-X-NECC (X (NFIX X))
                          (Z (NAT-LIST-BOUNDED-BY-X-WITNESS X Y)))))



[Note:  A hint was supplied for our processing of the goal below.
Thanks!]

Subgoal 2''
(IMPLIES (NAT-LIST-BOUNDED-BY-X (NFIX X) Y)
         (NAT-LIST-BOUNDED-BY-X X Y)).

We augment the goal with the hypothesis provided by the :USE hint.
The hypothesis can be derived from NAT-LIST-BOUNDED-BY-X-NECC via instantiatio\
n.  We are left with the following subgoal.
...
Subgoal 2'''...
Subgoal 2'4'...

But simplification reduces this to T, using the :definitions
NAT-LIST-BOUNDED-BY-X and NOT, the :executable-counterpart of NOT and
the :type-prescription rule NAT-LIST-BOUNDED-BY-X.



Alternatives to Awful Hints



Alternatives: The Unstable Subgoal

:hints ((“Goal” :induct t)
        (“Subgoal *1/2”
         “Subgoal *1/2.1”
         “Subgoal *1/2.2”
         “Subgoal *1/1.2”
         “Subgoal *1/1.3.2” ...))

● Use-termhint lets you pick the case in which your hint applies via if tests in your term -- no 

subgoal numbers.



Alternatives: The Unreliable :expand

:hints ((“Goal” :induct (foo x y z)
                :expand ((foo x   y z)
                         (foo nil y z)
                         (foo t   y z))))

:hints ((“Goal” :induct (foo x y z))
        (use-termhint `(:expand ((foo ,(hq x) ,(hq y) ,(hq z))))))

● The x in the hint term is simplified similar to the x in the call of foo



Alternatives: The Unwieldy:use
      :use ((:instance my-lemma
             (a (MV-NTH 0 (FOOBAR X
                                  (MV-NTH 1 (BIZBAZ-WITNESS X Z))
                                  (BAR (BUZ Y) Z))))
             (b (MV-NTH 2 (FOOBAR X
                                  (MV-NTH 1 (BIZBAZ-WITNESS X Z))
                                  (BAR (BUZ Y) Z))))))

    ((use-termhint
      (b* (((mv ?biz baz) (bizbaz-witness x z))
           ((mv a ?b c) (foobar x biz (bar (buz y) z))))
         `(:use ((:instance my-lemma (a ,(hq a)) (b ,(hq c))))))))



Alternatives: The Untypable Translated Term

(and stable-under-simplificationp
     (member-equal '(not (equal (tag$inline x) ':g-call)) clause)
     '(...))

(use-termhint
  (and (eq (tag x) :g-call)
       ‘(...)))

● Choice of case via case splitting rather than clause membership

● Never need to deal with translated term syntax

● Object language, not metalanguage



Conclusion



When you have to use hints, use-termhint

Solves a few pernicious problems with hints:

● Triggers use of a hint on a particular assumption, not a subgoal number or syntactic property

● Allows binding variables & using those variables in hints to avoid term blowup and stay DRY

● Hint term is simplified so it doesn’t need to start in normal form for things like :expand
● Never need write a translated term.



Would be nice

● Induct + provide hints for various cases by writing a recursive function that produces 

hint terms

● Provide hints for goals created by processes other than case splitting
○ Functionally instantiate a theorem and provide hints for functional-instance obligations

○ Instantiate (:theorem (foo (bar x))) and give a hint for the proof of (foo (bar x))
○ Call a clause processor and give hints for its generated subgoals

● Give hints when not stable-under-simplification

I don’t see how to do these by building on use-termhint (but prove me wrong!)


