
i

CS313K Notes – Spring, 2010

J Strother Moore
The University of Texas at Austin

November 30, 2009

Copyright c©2009 by J Strother Moore

All rights reserved. I hereby grant permission for this publication to be photo-copied and/or
stored electronically for personal or classroom use.

To Jo

Contents

Preface (Jan 21) xi

0.1 About these Notes (Jan 21) xi

0.2 About this Course (Jan 21) xi

1 A Little Greek (Jan 21) 1

2 The ACL2 Programming Language (Jan 21) 3

2.1 Evaluating Simple Expressions (Jan 21) 4

2.2 Defining Functions (Jan 21) 8

2.3 True, False, Apples, and Firetrucks (Jan 26) 10

2.4 Evaluating Calls of Defined Functions (Jan 26) 11

2.5 Recursion (Jan 26) 13

2.6 Practice with Definitions (Jan 26) 15

2.7 Lessons from the Practice (Jan 28) 24

2.8 About Recursion (Jan 28) 25

2.9 Comments and Displaying Code (Jan 28) 26

2.10 The Five Types of Objects (Jan 28) 29

2.11 Primitive Functions (Feb 2) 42

2.12 Some Simple Definitions (Feb 2) 44

2.13 Defining New Functions (Feb 2) 51

2.14 Recursion on Lists (Feb 4) 53

2.15 Practice, Practice, Practice (Feb 9) 65

2.16 Abbreviations (Feb 9) 71

3 The Need for Logic (Feb 16) 75

3.1 An Informal Proof (Feb 16) 75

3.2 Implication (Feb 16) 83

3.3 Proving Another Simple Property (Feb 16) 84

viii

3.4 Replacement of “Equals” by “Equals” (Feb 18) 86

3.5 What’s Going On Here? (Feb 18) 90

3.6 Recognizing and Using Truths (Feb 18) 91

3.7 Useful Identities (Feb 18) 95

3.8 Summary (Feb 18) 97

4 Logic (Feb 23, Feb 25) 99

4.1 Preliminaries (Feb 23, Feb 25) 99

4.2 Syntax (Feb 23, Feb 25) 106

4.3 Axioms (Mar 2) 113

4.4 Rules of Inference (Mar 2) 115

4.5 Tautologies (Mar 2) 118

4.6 About the Rules of Inference (Mar 4, Mar 9) 121

4.7 Writing Proofs Down (Mar 4, Mar 9) 128

4.8 Proofs of Tautologies (Mar 4, Mar 9) 135

4.9 Counterexamples, Witnesses, and Models (Mar 11, Mar 23) 141

4.10 Practice Proofs (Mar 11, Mar 23) 142

5 Structural Induction (Mar 25, Mar 30) 151

5.1 New Rule of Inference (Mar 25, Mar 30) 151

5.2 Advice About Induction (Mar 25, Mar 30) 153

5.3 Practice Proofs (Mar 25, Mar 30) 157

6 The Elementary Arithmetic Waiver (Apr 6, Apr 8) 167

7 Quantifiers (Apr 6, Apr 8) 169

7.1 The Universal Quantifier (Apr 6, Apr 8) 169

7.2 The Existential Quantifier (Apr 6, Apr 8) 174

7.3 ASCII Substitutes for Quantifiers (Apr 6, Apr 8) 175

7.4 Talking About Quantifiers Precisely (Apr 13) 176

7.5 Imprecise Talk about the Rules of Inference (Apr 13) 180

7.6 Rules of Inference for Quantified Formulas (Apr 15, Apr 20) 186

7.7 Practice Proofs (Apr 15, Apr 20) 189

8 Set Theory (Apr 22) 213

8.1 Basic Set Notation (Apr 22) 215

8.2 Set Operations (Apr 22) 217

8.3 Extensions to Quantifier and Set Builder Notation (Apr 27) 222

ix

8.4 Pair Notation (Apr 27) 224

8.5 Generalized Union and Intersection (Apr 27) 225

8.6 Cross Product (Apr 27) 226

8.7 Relations (Apr 29, May 4) 227

8.8 Orders (Apr 29, May 4) 231

8.9 Equivalence Relations (Apr 29, May 4) 232

8.10 Uniqueness Notation (May 6) 233

8.11 Partitions (May 6) 233

8.12 The Characterization Theorem for Equivalence Relations (May 6) 235

8.13 Functions (May 6) 236

8.14 Cardinality (May 6) 239

Appendices 240

A A Potted History of Logic in CS 241

B On Congruences 243

C On Entailment 245

D ASCII Substitutes 247

Bibliography 249

Index 251

Preface (Jan 21)

0.1 About these Notes (Jan 21)

If you find omissions or mistakes in these notes, please point them out!

At every lecture I will discuss material from these notes. Every section in this book has a
date in its title, indicating when I will discuss that material. You must read that material
in advance of the lecture. Every class will start with a quiz over the reading. Then, I talk
about the stuff that the class didn’t understand. Do not come to class expecting me to read
the notes to you! It won’t happen. Read the material before class and bring this book to
every class!

I may change the assigned reading from what is shown here. Changes will be announced in
class. Pay attention and keep your book up-to-date.

To take the quizzes you will need an iClicker. Go buy one before Lecture 2! If you have
one already, make sure it is registered to you on the iClicker website! The iClicker company
de-registers iClickers (typically in the summer, so people can sell them). Even if you kept
an iClicker from last year, it may not be registered to you.

These notes are peppered with questions. I strongly recommend that you work some of the
problems as you read. Remember, you’re expected to spend at least 3 hours working on this
material for every hour we spend in lectures! Some of the questions call for you to prove
theorems. You’re free to use previously-posed theorems in your proofs, even if you didn’t
figure out their proofs.

The questions marked with stars (? ? ?) are the initially assigned homework! Homework is
due via turnin, before class on the date indicated on each marked problem. At the back of
this book there is a “homework” index entry that lists the page numbers on which homework
is assigned for each due date.

I may change the assigned homework from what is shown here. Changes will be announced
in class. Pay attention and keep your book up-to-date.

Learn how to define programs and run them in ACL2. See below.

0.2 About this Course (Jan 21)

This course is not about programming. It is about symbolic logic [4, 3, 2]. Symbolic
logic is the predominant mathematical system in computer science. As with other sciences
and engineering disciplines, we use mathematics to model and analyze complex systems.
Unlike those other disciplines, where the “right” mathematics is calculus or statistics, in
computer science the “right” mathematics is mathematical logic. It is perfect for modeling

xii CONTENTS

and analyzing digital systems.

To understand physics you must understand calculus. To understand computer science you
must understand mathematical logic.

For a potted history of logic and its role in computer science, see Appendix A.

But mathematical logic was designed by logicians to be studied by logicians, not used as
a practical mathematical system! In computer science, logic is used to establish truth: we
prove things with it.

I didn’t want to teach logic from a standard textbook. I decided to write these notes so
that I could stress how computer scientists use logic. My logician friends will find my
treatment of this glorious subject superficial. I deal with none of the deep philosophical
questions answered by the study of the logic. My rules of inference are incredibly elaborate
and complicated compared to the ones you’ll see in a typical introduction to logic. That’s
because they’re designed to be used, not studied. I have one goal: teach you how to prove
things about computational systems and I intend for you to be able to use the rules I give
you.

I start by teaching you a really simple programming language, called ACL2. The online
CS313K syllabus gives instructions for using ACL2 (or its Eclipse interface, called ACL2s).
You can use ACL2 on the department’s Windows machines or Linux machines, or you can
also install it on your own machine. But it is important that you get comfortable running
ACL2. All we’ll be doing with ACL2 is defining and running really simple programs, like
programs to search a list for an element, count the number of times an element occurs,
etc. While the ACL2 system supports much more than just defining and running programs,
that’s all you have to learn. But if you don’t learn how to write simple ACL2 programs,
you probably won’t pass the course!

Why am I making you learn another programming language? To learn to use logic to talk
about computer science applications we need some simple applications. You’re going to
write those simple applications in ACL2 because programs in it are much simpler to analyze
than those of other programming languages you might know. Here’s an analogy. When you
learn to use calculus to model the physical world, you start by using it to model objects
falling in a vacuum, not helicopters in hurricanes. I should add that no computer science
student should be worried about learning another programming language! You will learn a
dozen before you graduate and you will continue to learn new ones throughout your careers.
Get used to it!

Once you’ve learned how to write simple applications in ACL2, we’ll start talking and
reasoning about them with logic.

Acknowledgements: I would like to acknowledge the help I’ve received from Bob Boyer,
Matt Kaufmann, and Sandip Ray for developing parts of this book. In addition, I’m grateful
to the graduate teaching assistants from the Spring 2009 offering of CS 313K, namely David
Rager, Behnam Robatmili, Ian Wehrman, and Nathan Wetzler, for many helpful comments.
I also appreciate the efforts of my undergraduate assistants, including David Garcia, Sarah
Imboden, Jarmel James, Ryan King, Young-Suk Lee, Lon Nix, and Alian Rodriguez. I owe
a debt of gratitude to the many students who have read various editions of this book. Most
of all, I thank my wife, Jo, for putting up with me while I wrote and repeatedly revised this
text.

1

A Little Greek (Jan 21)

You will see a lot of Greek symbols in computer science. You should know their names.

name symbol alternative uppercase name symbol alternative uppercase

symbol version symbol version

alpha α A nu ν N
beta β B xi ξ Ξ
gamma γ Γ omicron o O
delta δ ∆ pi π $ Π
epsilon ε ε E rho ρ % P
zeta ζ Z sigma σ ς Σ
eta η H tau τ T
theta θ ϑ Θ upsilon υ Υ
iota ι I phi φ ϕ Φ
kappa κ K chi χ X
lambda λ Λ psi ψ Ψ
mu µ M omega ω Ω

• Question 1: What is the name of this symbol: φ? •
• Question 2: What is the name of this symbol: ψ? •
• Question 3: What is the name of this symbol: γ? •
• Question 4: What is the name of this symbol: α? •
• Question 5: What is the name of this symbol: ω? •
• Question 6: What is the name of this symbol: δ? •
• Question 7: What is the name of this symbol: π? •
• Question 8: What is the name of this symbol: σ? •
• Question 9: What is the name of this symbol: β? •
Why do we use Greek letters? In computer science, we spend a lot of time talking about
about languages, e.g., Java, HTML, C++, etc. This can get confusing because we use one
language (usually English) to talk about another language, e.g., Java. If we use English to
talk about Java, we say Java is the object language and English is the metalanguage. (Think
of “meta” meaning “about,” e.g., meta-data is data about the data in a file.)

So for example, a computer scientist might say “A ‘simple conditional assignment’ is a Java
statement of the form ‘if (φ) {α = β;};’ where α is a Java variable.”

According to this definition, the Java statements ‘if (k<0) {k=k+1;};’ and ‘if (x.name

== y.name) {temp=x.age;};’ are both simple conditional assignments because they match

2 A Little Logic

the description of the pattern shown in the English definition. In the first, φ is understood
to be the Java snippet ‘k<0’ and in the second φ is ‘x.name == y.name’.

• Question 10: In the simple conditional assignment statement ‘if (k<0) {k=k+1;};’,
what is α? •
• Question 11: In the simple conditional assignment statement ‘if (k<0) {k=k+1;};’,
what is β? •
• Question 12: In the simple conditional assignment statement ‘if (x.name == y.name)

{temp=x.age;};’, what is α? •
• Question 13: In the simple conditional assignment statement ‘if (x.name == y.name)

{temp=x.age;};’, what is β? •
Notice how we’re using English to talk about Java. The Greek letters in the definition
of a ‘simple conditional assignment’ are called metavariables because they are variables in
English (the metalanguage). Their values are snippets of Java (the object language).

So why do we use Greek letters for metavariables? Just imagine how confusing it would be
if I had said “A ‘simple conditional assignment’ is a Java statement of the form ‘if (test)

{v = expr;};’ where v is a Java variable.”

Do you see the problem? Now you can’t tell what part of my definition is meant to be Java
and what part is meant to be English. For example, does a simple conditional assignment
statement have to test the variable test or can it test any Java expression? Must it assign
to the Java variable v or can it assign to any Java variable? We can’t tell from my new
definition. Depending on my meaning, ‘if (k<0) {k=k+1;};’ may or may not be a simple
conditional assignment. Since we tend not to use Greek in our Java programs, using Greek
letters for metavariables helps clarify what we mean.

Sometimes we use italized variables for the metavariables. For example, we might write the
pattern as ‘if (test) {v=expr};.’

2

The ACL2 Programming Language (Jan 21)

ACL2 is a simple programming language. It is a variant of one of the oldest and most
important programming languages in the history of computing, Lisp. Created in 1958 to
provide a mathematical notation for programs, many innovations in computer science were
first explored in Lisp, including the notion of automatic storage allocation and garbage
collection, tree-structured data, and Object orientation. Lisp is often used in Artificial
Intelligence research and is extremely convenient for rapid prototyping. It has even flown
in space on Deep Space 1.

ACL2 is in fact an extension of a small subset of the ANSI standard programming language
named Common Lisp. But my goal is not to teach you Lisp or even ACL2. My goal is to
teach you how to think about computational concepts and how to reason formally about
them. With just a tiny subset of ACL2 we can pose some interesting computational problems
and then think about them. So I’m going to start by teaching you a tiny subset of ACL2,
just enough to let us pose some questions.

Like most programming languages, ACL2 has various kinds of data objects. Numbers, like
-1 and 23, are examples of ACL2 data objects. The two Boolean objects representing truth
and falsity are also data objects. In the first part of this introduction to ACL2, I will limit
myself to numbers and Booleans. That will make our examples sort of boring but familiar.

Aside: In these notes I use the word “object” to describe any data value. When I use the
capitalized version of the word, “Object,” I’m using it in the same sense that Java does, i.e.,
an Object is an instance of a class, with fields and inherited methods. ACL2 does not have
Objects. It only has objects. In the sense that I’m using the words, all Java Objects are
objects – they can be passed around and manipulated as data. Java also has objects that
are not Objects, namely its so-called “primitive values,” the Booleans and the numbers.
Another way to think of the distinction is that Objects are mutable (they can be changed)
and objects are Platonic, eternal, constant, mathematical entities. No operation will change
a mathematical object. I almost never use “Object” because ACL2 doesn’t have any. Just
remember, an “object” is any data value and ACL2 has several kinds of objects, including
Booleans, numbers, and others we’ll discuss later. End of Aside

Every ACL2 program is a mathematical function: it takes some inputs and produces an
output that depends only on the inputs. It produces the same output every time it is
called with given inputs. The output is determined by a simple expression that applies
other functions to the input in exactly the way you’d compute the value of sq(5) from the
definition

sq(n) = n× n
In particular, sq(5) = (5× 5) = 25.

In one sense, ACL2 is simple to learn because all a program can do is evaluate (calculate
the value of) an expression! There are no assignments, no classes or methods or fields or
Objects as you probably understand them, no while statements, no throws, no catches, no

4 A Little Logic

exceptions, no threads, etc. Expressions are built out of variables, constants, and functions
calls.

Once you know the constants and the primitive functions, you know everything.1

You’re probably asking yourself “what can I do with such a dumb language?” You’ll prob-
ably be surprised.

Learning how to program in such a language will help you program in any language. But
our real goal, recall, is learning how to think and reason.

While learning ACL2 it is helpful to write and run sample programs. The first homework
assignment will tell you how to do this within an Eclipse environment called ACL2s. In this
book I’m going to just assume you can do it.

??? (due Tue, Jan 26) •Question 14: Learn to use ACL2s by carrying out the instructions

in

http://www.cs.utexas.edu/users/moore/classes/cs313k/how-to-use-acl2s.html

Note that midway through the session you will be asked to save your work and quit Eclipse.
But there are other homework problems in this first reading assignment. When you get
to them, restart this same ACL2s session, as described, and add your solutions to those
problem to your “training session.” You will be asked to turn in a plain ASCII transcript
of the entire session. Warning: Many students find this a very hard assignment. You have
to learn to use the CS labs, learn to use ACL2s, learn to define recursive functions, learn to
save a plain text transcript, learn to edit it with a word processor to add your name, EID,
etc., and learn to use the department’s turnin facility. Do not wait until the last minute to
start this homework! This is the last time I’ll caution you to plan your time.

2.1 Evaluating Simple Expressions (Jan 21)

Instead of writing n× (1 + n), ACL2 programmers write (* n (+ 1 n)). ACL2 uses prefix
syntax, where the function symbol is written first and then the argument expressions are
listed, without commas, and the whole thing is enclosed in parentheses.

Let (f a1 . . . ak) be an ACL2 expression. Then f is a function symbol that takes k argu-
ments and each of the ai is an ACL2 expression that produces the corresponding argument
value. Such an expression is called an application of the function symbol f to the (values of
the) ai. Sometimes we say (f a1 . . . ak) is a call or invocation of f .

You may think of a function as a “machine” that takes inputs and produces an output.
Almost all the functions you learned about in high school deal with numbers. For example:

1ACL2 is a functional programming language . Functional programming languages are also sometimes
called “applicative” (because all you can do is apply functions) or “side-effect free” (because programs can
only return values, not change things in the environment). There are other functional languages, Haskell
being the most well known. But ACL2 is simpler than Haskell.

The ACL2 Programming Language 5

log2(x) the base-2 logarithm of x log2(32) = 5

sqrt(x) the square root of x sqrt(9) = 3
usually written

√
x

tan(x) the tangent of x tan(60◦) = 1.7317 . . .

f loor(x) the largest integer i such that i ≤ x floor(12.379) = 12
usually written bxc

gcd(x, y) greatest common divisor of x and y gcd(18, 27) = 9

Technically, an ACL2 expression is called a “term.” A term is a variable symbol, a constant,
or a function call, written (f a1 . . . an), where the ai are terms.

Any ACL2 object can be used as a constant in a program. If c is some ACL2 object, and
you wish to use it as a constant in a program, you may write ’c or (quote c). These are
constant expressions that evaluate to c. Some constants, like numbers, need not be quoted.
(By the way, to prevent (quote c) from being mistaken for a function call, quote may not
be defined as a function.) The necessity of quoting certain kinds of objects will become
clear later.

The number of arguments a function symbol “expects” is called its arity.

Calls can be nested. Suppose f, g, and h are function symbols of arity 1, 2, and 3 respectively.
Then here are some ACL2 expressions and the corresponding expressions in traditional
mathematical notation.

ACL2 traditional notation
(f x) f(x)
(f (g a b)) f(g(a, b))
(g (f a) b) g(f(a), b)
(h a (f a) (g b c)) h(a, f(a), g(b, c))

The following are not terms because they are ill-formed:

(f x y) too many arguments
(g x) too few arguments
(f (g x y)) ill-formed interior “term”

A more familiar example of a term is (* n (+ 1 n)). This is a function call of the function
symbol * with the two argument expressions n and (+ 1 n). The expression n is just a
variable symbol. The expression (+ 1 n) is a function call of the function symbol + on the
constant expression 1 and the variable n.

• Question 15: Assume the following function symbols have the arities given. Pretend
there are no other function symbols. You may assume that any contiguous sequence of
alphabetic characters used in this question, e.g., x and temp, is a legal variable symbol.
Mark with a check the legal terms below. Note that this doesn’t require that you know
what the terms mean!

All Known Functions (for now)

6 A Little Logic

symbol arity symbol arity
if 3 + 2
cons 2 * 2
first 1 zp 1
rest 1 nth 2
consp 1 prime-factors 1
filter 2

Alleged Terms

1. (if x y z)

2. nth(3,filter(u,temp))

3. (if p (if q t nil) t)

4. (cons (first x) (rest x))

5. (cons 1 2 3)

6. 3 + 4

7. (if (zp n)

(first x)

(nth (+ n -1) (rest x)))

8. (nth 3 (filter u v))

9. (filter (prime-factors x 7))

10. (filter (prime-factors x) 7)

11. (+ (* x x) (* -1 (* y y)))

12. (if (x 7) (y 8) (t 9))

13. (first rest)

14. (x cons y)

15. (if 1 2 3)

16. (first 17)

17. (if x y)

18. (cons x (confabulate x y))

•

The value of a function call (f a1 . . . ak) is obtained by applying the function f to the
values of the arguments.

So, for example, the value of (* n (+ 1 n)) is obtained by applying the multiplication
function (*) to the values of n and (+ 1 n).

The value of a constant, e.g., 1, is itself, of course.

But what about variables? The value of a variable must be given by the environment in
which we’re evaluating it. Think of the environment being a table that maps every variable
symbol to some value. To get the value of a variable we look it up in the environment. If
the value of variable v is some object c in the environment, we say v is bound to c. Variants
on this terminology are “the binding of v is c in the environment” and “the environment
binds v to c.”

Suppose the value of n in the environment is 5. Then the value of (* n (+ 1 n)) is 30.
We will write

(* n (+ 1 n)) =⇒ 30

or more generally

The ACL2 Programming Language 7

α =⇒ β.

to mean the “expression α evaluates to the object β.” Note that the environment used in
the evaluation is unspecified in this notation and will be made clear by context.

We can work out mechanically how to evaluate (* n (+ 1 n)), just based on the three
rules given above: how to evaluate a variable, a constant, and a function call.

• the value of the function call (* n (+ 1 n)),
obtained by applying the multiplication function (*) to
• the value of the variable n,

obtained from the environment,
is 5, and

• the value of the function call (+ 1 n),
obtained by applying the addition function (+) to
• the value of the constant 1,

is 1, and
• the value of the variable n,

obtained from the environment,
is 5,

is 6,
is 30.

Some students are helped by the following “trace” of the process:

(* n (+ 1 n))

= {environment}
(* 5 (+ 1 n))

= {environment}
(* 5 (+ 1 5))

= {evaluation of +}
(* 5 6)

= {evaluation of *}
30

The remarks in braces “{. . .}” are called justifications. When a justification is written
between two formulas it explains how the formula above the remark is manipulated to
produce the formula below the remark.

Because the value of an expression in a given environment never changes – there are no
side-effects – it doesn’t matter in what order we evaluate the sub-expressions. We could
have written it this way:

(* n (+ 1 n))

= {environment}
(* n (+ 1 5))

= {evaluation of +}
(* n 6)

= {environment}
(* 5 6)

= {evaluation of *}
30.

This explanation of how to evaluate expressions leaves implicit the question of how to

8 A Little Logic

“apply” the multiplication and addition functions. For such familiar functions you probably
understand. But how do we apply user defined functions? To explore that we have to learn
how to define functions in ACL2.

2.2 Defining Functions (Jan 21)

You learned how to define simple functions in high school, by writing equations. For exam-
ple, the area of a rectangle with width x and length y is given by:

area(x, y) = x× y.

If you are given a specific rectangle, say, with width 5 and length 7, then you can compute
area(5, 7) = 5× 7 = 35, by substituting 5 and 7 respectively for x and y in the definition of
area and doing the math.

Defining functions in ACL2 is no different. We could write

(defun area (x y) (* x y))

and then evaluate (area 5 7) and get 35.

A definition takes the form

(defun f (v1 . . . vn) β)

where f is the name of the new function, the vi are distinct variable symbols, and β is some
expression using those variables. The vi are called the formals or formal parameters of the
definition. The expression β is called the body of f .

A function definition in ACL2 is just an equation in math class. The definition above means

f(v1, . . . , vn) = β

except, of course, we write it

(f v1 . . . vn) = β.

Consider a function call, e.g., (f a1 . . . an). Here, f is a function symbol of n arguments
and the ai are expressions. The ai are called the actual expressions of the call. The actual
expressions have values – we obtain them by evaluating the actual expressions. Those values
are called the actual values or sometimes just the actuals. Note that when we refer to the
“actuals” of a call, we are referring to their values, not the expressions. For example, in
(area (+ 2 3) (+ 3 4)), the actuals are 5 and 7, not “(+ 2 3)” and “(+ 3 4)”.

To compute the value of a call of a defined function you evaluate the actual expressions
to obtain the actual values (the “actuals”), you then create a new environment where the
formals are bound to the actuals, and evaluate the body in that environment.

This is often abbreviated to “plug the actuals in for the formals and evaluate the body.”
You’ve done this thousands of times. It’s like turning a crank.

Let’s define a function, foo, that takes one argument, n. For the moment, let’s just suppose
that the input, n, is always a natural number (e.g., 0, 1, 2, . . .). As indicated by its iconic

The ACL2 Programming Language 9

name, foo is not meant to be an interesting function, just something concrete but arbitrary
that we can discuss. The value of foo on n will be defined to be n× (1 + n), unless n is 0,
in which case the value will be 1.

Here is the ACL2 definition:

(defun foo (n)

(if (zp n)

1

(* n (+ 1 n))))

The function foo has only one formal, n. The body of foo is just a call of the 3-argument
function symbol if. The first argument of the if-expression is a call of the function symbol
zp on one argument, the variable n. The second and third arguments of the if-expression
are familiar.

Note that except for the function symbols in the body of foo, there is nothing new here:
expressions are constants, variables, or calls of functions on other expressions. To learn
ACL2 all you have to do is learn how to write down the available constants (you’ve only
seen numeric ones so far), the names and interpretation of a few primitive function symbols,
and how to compose them, i.e., how to write nested calls of functions, to compute what you
intend.

So what are if and zp? To answer that, I’ll just tell you how to evaluate such expressions.

The value of (if α β γ) is either the value of β or the value of γ, depending on whether
the value of α is true or false. Thus, if is an if-then-else expression. We call α the test, β
the true branch, and γ the false branch.

Suppose the variable p is true in the current environment and suppose the variable n has
the value 5. Then the value of (if p (+ 1 n) k) has the value 6 and it doesn’t matter
what value k has.

The value of (zp α) is either true or false. Think of (zp α) as testing whether the value
of α is 0. In particular, if the value of α is 0, the value of (zp α) is true. If the value of α
is a natural number other than 0, the value of (zp α) is false. Notice that I haven’t told
you what the value of (zp α) is when the value of α is not a natural number. I’ll deal with
that later.

Note how cumbersome it is to keep talking about the values of expressions. Here’s the
description of if again:

The value of (if α β γ) is either the value of β or the value of γ, depending
on whether the value of α is true or false.

When it is clear we are talking about the value of an expression, we don’t keep repeating
“the value of” – because the value of an expression always depends only on the values of
the subexpressions, never on the expressions themselves.

In this style, the description of if is:

The value of (if α β γ) is either β or γ, depending on whether α is true or
false.

or even

10 A Little Logic

(if α β γ) is either β or γ, depending on whether α is true or false.

The description of zp is:

(zp α) is true if α is 0 and is false if α is a natural number other than 0. I
haven’t yet told you the value of (zp α) when α is not a natural number.

Sometimes we say zp is a recognizer for 0 in the sense that it returns true or false according
to whether its (natural number) argument is 0.

In general, a recognizer for a condition is a Boolean valued function that is true if the
condition is true and false otherwise. Technically, zp is the recognizer for the condition that
its argument is not a positive natural number. Often in ACL2, Boolean valued functions
have names ending in “p,” which stands for “predicate.” The name “zp” thus stands for
“zero predicate.”

2.3 True, False, Apples, and Firetrucks (Jan 26)

In writing about if and zp above I repeatedly talked about something being “true” or
“false.” ACL2 has two constants t and nil called the Booleans. These are data objects,
just like 0, 1, 2, . . . are. All these objects are different.

When I say some ACL2 value “is false” I mean that it is the object nil. When I say some
ACL2 value “is true” I mean it is not the object nil. Note that I did not say that “x is
true” means “x is t.” The sentence “x is true” means “x is not nil.”

Since t is not nil, then t is true. But 23 is not nil either. So 23 is true.

Many students get confused here! “If t is true and 23 is true, then t must be 23, right?”
Wrong! This confusion stems from misunderstanding what part of speech the word “true”
is in sentences such as “t is true.” I am using “true” as an adjective, not a noun.

Parse “t is true” the same way you would “the apple is red.” “Red” is an adjective, not a
noun. The apple is red. The firetruck is red. But that doesn’t mean the apple is necessarily
the firetruck. Just because t is true and 23 is true doesn’t mean t is 23!

Many ACL2 objects are true. In fact, every ACL2 object is true except nil!

Thus, every ACL2 object is either true or false, because every object is either not nil or is
nil.

I’m using “false” as an adjective too, in such sentences as “x is false”, but since there is
only one false thing, you can think of false as a noun naming that thing. Thus, if x is false
and y is false, then x is y, because they are both nil.

Reread the description of how to evaluate (if α β γ). It’s equivalent to this: Evaluate α.
If the result is nil, evaluate and return γ. Otherwise, evaluate and return β.

• Question 16: Suppose n has value 5 in the environment. What is the value of (if (+ n

1) (+ n 2) (+ n 3))? •
• Question 17: Suppose n has value 5 in the environment and x has value nil. What is
the value of (if x (+ n 2) (+ n 3))? •
It is very odd to use non-Boolean tests in if-expressions. We will do it rarely. But I’m
trying to make a point: if doesn’t “care” whether its argument is a Boolean or not. It tests

The ACL2 Programming Language 11

against nil and goes one way or the other. In a test, any true value will do. That is, (if
t β γ), (if 0 β γ), (if 1 β γ), etc., all have the same value, namely the value of β.

When an ACL2 programmer wants a canonical true object, he or she uses the constant t.

Recall my description of zp above:

(zp α) is true if α is 0 and is false if α is a natural number other than 0. I
haven’t yet told you the value of (zp α) when α is not a natural number.

This description is incomplete in a way you probably didn’t notice before: I didn’t tell you
which true thing (zp α) returns. In a sense, it doesn’t matter: if all our uses of zp are in
the tests of ifs, then one true thing is as good as another. But just to be more precise:

(zp α) is t if α is 0 and is nil if α is a natural number other than 0. I haven’t
yet told you the value of (zp α) when α is not a natural number.

Suppose we have a term and we’re only interested in whether it is true or false, but in what
object it computes when evaluated. We tend to call such terms formulas. A function whose
value is Boolean – or one whose value is frequently tested as true or false – is often called
a predicate. Zp is a predicate. But technically for us, “formula” is just another word for
“term,” “expression” is just another word for “term,” and “predicate” is just another word
for function.2

2.4 Evaluating Calls of Defined Functions (Jan 26)

Recall our definition of foo.

(defun foo (n)

(if (zp n)

1

(* n (+ 1 n))))

What is the value of (foo 5)? More generally, how do we evaluate calls of foo?

To make a long story short, the value of (foo 5) is 30.

If you fire up ACL2s and type the defun expression above you will define the foo function.
Ignore the output produced unless it is some kind of error; no error should happen if you
do it exactly right. Then if you type (foo 5) you will call foo on 5 and it will compute 30

and print it.

Here is how the ACL2s Eclipse session looks on my machine after I’ve submitted the defi-
nition of foo and run (foo 5).

ACL2 p>EVENT

(defun foo (n)

(if (zp n)

1

2This is unconventional. In most treatments of logic, the truth values are not objects. Terms evaluate to
objects and formulas are either “true” or “false.” A predicate is like a function but takes objects as input
and is either “true” or “false”. But in Lisp, the usage here is quite common.

12 A Little Logic

(* n (+ 1 n))))

Summary

Form: (DEFUN FOO ...)

Rules: NIL

Warnings: None

Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)

FOO

ACL2 p>(FOO 5)

30

For the purposes of this course, you can just ignore the Summary. All that matters is that
ACL2 accepted the definition. If it hadn’t accepted it, it would have printed an error
message.

Note also that ACL2 is not case sensitive when it comes to names of functions, variables,
and constants. For example, foo, Foo, and FOO are all ways of writing the same name. NIL,
nil, and NiL are the same.

While it is helpful to use ACL2s to evaluate function calls, you must know how to do it
yourself.

Here is the rule, again. Suppose we have defined (defun f (v1 . . . vk) β). Then to
evaluate (f a1 . . . ak) you evaluate the ai to obtain some values, ci. Then you create
an environment where the formals of f , namely v1, . . ., vk, have the values c1, . . ., ck,
respectively, and you evaluate β in that environment and return the result. The environment
you created for the evaluation of β may then be discarded.

Let’s evaluate (foo (+ n 30)) in an environment, env, where n is 5. The expression is
a call of the defined function foo on the expression (+ n 30). Evaluating the argument
expression in env produces 35. Next, we create a new environment, env′, where the local
of foo, which happens to also be named n, has the value 35. Finally, evaluate the body of
foo in env′ and return the result.

The body of foo is

(if (zp n)

1

(* n (+ 1 n)))

and n has the value of 35 in env′. The test of the if-expression, (zp n), evaluates to false
(nil), because the value of n in env′ is a positive natural. So the value of the if-expression
is the value of its false branch, (* n (+ 1 n)). You should be able to work out that the
value of the false branch in env′ is 1260.

Thus, the value of (foo (+ n 30)) in env is 1260.

Note that we don’t need env′ after we’ve finished the evaluation of the body of foo.

Note we don’t “modify” env to get env′. For example, consider the expression (+ (foo (+

n 30)) n). Note how this expression uses n again after the call of foo. The value of of
this expression in env is the sum of 1260 and 5. Some students might imagine we “modify”
env when we call foo and permanently set the value of n to 35. If so, when we return
from foo and continue evaluating we would get 35 as the (new) value of the second n. So
the (wrong) answer would be 1260 + 35 or 1295. That’s wrong! Calling a function never
changes anything in the caller’s environment.

Finally, note that the only variable symbols in env′ are the formals of foo. This would

The ACL2 Programming Language 13

raise problems if we encountered a variable in the body of foo that the environment didn’t
mention. But it will turn out that the only variables in the body of a defun are the formals.

Here is an evaluation of (foo (+ n 30)) written in equational form. Note that the starting
environment is env where n has value 5.

(foo (+ n 30))

= {environment env}
(foo (+ 5 30))

= {evaluation of +}
(foo 35)

= {definition of foo (in new environment env’)}
(if (zp 35)

1

(* 35 (+ 1 35)))

= {evaluation of (zp 35)}
(if nil

1

(* 35 (+ 1 35)))

= {evaluation of if}
(* 35 (+ 1 35))

= {evaluation of +}
(* 35 36)

= {evaluation of *}
1260

The step above justified “by definition of foo . . .” is actually quite subtle. Note that I
replaced the call of foo, namely (foo 35), by the body of foo in which I’d substituted the
actual, 35, for the symbolic formal, n.

This is a way to avoid talking explicitly about environments: To evaluate a function call,
evaluate the arguments, plug the actual values in for the formals in the body, and evaluate
the instantiated body. “Plugging in the actual values” is sometimes called instantiating the
body with the actuals.

Warning: There is a subtle problem with this short-cut description. When we evaluate the
instantiated body we re-evaluate the actuals each time we encounter them in the body. In
this case, the only actual is the constant 35 and every time we evaluate it we get 35. But just
imagine there is some object c that when evaluated produces something, d, different from c!
Right now you’ve only seen numbers and Booleans and they always evaluate to themselves.
But if c were the value of an actual expression, then upon plugging c into the body and
evaluating it, we’d get d in the places where the environment would have produced the
value c. Clearly, the plug-in-the-actuals scheme has to be understood in a way that avoids
this confusion. We’ll describe later. As long as the actuals are numbers and Booleans, the
plug-in-the-actuals scheme works perfectly.

2.5 Recursion (Jan 26)

That’s all there is to the ACL2 programming language, except that I must tell you the
various kinds of constants (besides the natural numbers and the two Booleans) and the
primitive functions (besides if, zp, +, and *).

14 A Little Logic

Before we dive into those things, it is helpful to illustrate the power of the language we’ve
got. Let’s define the factorial function, which is often introduced informally as

n! = n× (n− 1)× . . .× 2× 1

Many students who have focused on programming in such languages as Java will assume it’s
impossible to define factorial because we don’t have a while statement. That’s wrong. We
have function call, and that is much more powerful. What makes function call so powerful
is that we can define functions recursively. A definition of f is recursive if the body of f
calls f .

We’ll define fact to take one argument, n, which we’ll assume is a natural number. Here’s
how you define it in ACL2.

(defun fact (n)

(if (zp n)

1

(* n (fact (+ n -1)))))

So how does computation work in ACL2? Let’s figure out the value of (fact 3), step by
step.

(fact 3)

= {definition of fact}
(if (zp 3)

1

(* 3 (fact (+ 3 -1))))

= {since (zp 3) is nil (3 is not 0)}
(if nil

1

(* 3 (fact (+ 3 -1))))

= {evaluation of if}
(* 3 (fact (+ 3 -1)))

= {evaluation of +}
(* 3 (fact 2))

= {definition of fact}
(* 3 (if (zp 2)

1

(* 2 (fact (+ 2 -1)))))

= {since (zp 2) is nil (2 is not 0)}
(* 3 (if nil

1

(* 2 (fact (+ 2 -1)))))

= {evaluation of if}
(* 3 (* 2 (fact (+ 2 -1))))

= {evaluation of +}
(* 3 (* 2 (fact 1)))

= {definition of fact}
(* 3 (* 2 (if (zp 1)

1

(* 1 (fact (+ 1 -1))))))

= {since (zp 1) is nil (1 is not 0)}
(* 3 (* 2 (if nil

The ACL2 Programming Language 15

1

(* 1 (fact (+ 1 -1))))))

= {evaluation of if}
(* 3 (* 2 (* 1 (fact (+ 1 -1)))))

= {evaluation of +}
(* 3 (* 2 (* 1 (fact 0))))

= {definition of fact}
(* 3 (* 2 (* 1 (if (zp 0)

1

(* 0 (fact (+ 0 -1)))))))

= {since (zp 0) is t}
(* 3 (* 2 (* 1 (if t

1

(* 0 (fact (+ 0 -1)))))))

= {evaluation of if}
(* 3 (* 2 (* 1 1)))

= {evaluation of * three times}
6

To compute with ACL2, all you have to understand is how to evaluate constants, variables,
calls of function symbols.

2.6 Practice with Definitions (Jan 26)

In each of the problems in this section, you are to fill in the blanks to make the function
defined compute the answer described.

The only function symbols you may use in the blanks for a given question are if, zp, +,
and the functions defined in previous questions of this section. Note that I don’t want you
to use *. So, for example, below I define add1 and sub1, and you may use them in your
answers to subsequent questions.

In all cases below, you may assume we’ll only call the functions with natural numbers as
arguments. That is, I don’t care what your definition does if the function is applied to an
argument that is not a natural number.

I work the a couple of problems for you to teach you how to define recursive functions.

• Question 18: Fill in the blank to define add1 to return a number 1 greater than its
argument.

(defun add1 (n) α)

Show tests of your definition on these examples (at least):

(add1 0) =⇒ 1

(add1 1) =⇒ 2

(add1 2) =⇒ 3

(add1 17) =⇒ 18 •

My Answer:

α : (+ 1 n)

16 A Little Logic

Thus, I’m defining

(defun add1 (n) (+ 1 n))

and add1 returns a number 1 greater than its argument; for example, (add1 7) is 8. I don’t
care what (add1 nil) is because we are assuming n is a natural number.

To answer this question on a homework assignment you should turn in an extract of an
ACL2 session that looks like this:

ACL2 p>EVENT

(defun add1 (n)

(+ 1 n))

Summary

Form: (DEFUN ADD1 ...)

Rules: NIL

Warnings: None

Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)

LEN

ACL2 p>(add1 0)

1

ACL2 p>(add1 1)

2

ACL2 p>(add1 2)

3

ACL2 p>(add1 17)

18

Note that you don’t have to tell me what α is, just show me the final definition and some
executions of your function.

•Question 19: Fill in the blank to define sub1 to return a number 1 less than its argument,
unless its argument is 0 in which case it returns 0.

(defun sub1 (n)

(if α
0

(+ β n)))

Show tests of your definition on these examples (at least):

(sub1 0) =⇒ 0

(sub1 1) =⇒ 0

(sub1 2) =⇒ 1

(sub1 17) =⇒ 16 •

My Answer:

α : (zp n)

β : -1

Thus, I’m defining

(defun add1 (n)

(if (zp n)

The ACL2 Programming Language 17

0

(+ -1 n)))

Thus, (sub1 7) is 6 and (sub1 0) is 0.

Now here is an example requiring recursion. You might have to think about how this function
works.

• Question 20: Fill in the blank to define double so that it doubles its argument.

(defun double (n)

(if (zp n)

α
(+ β

(double (sub1 n))))) •

Show tests of your definition on these examples (at least):

(double 0) =⇒ 0

(double 1) =⇒ 2

(double 3) =⇒ 6

(double 17) =⇒ 34 •

Ok, this is tricky. I’m making you fill in the blanks and I’ve written some “glue code”
around the blanks. The game we’re playing is that you have nlive with my glue code and
make double double n.

So let’s think. The test asks whether n is 0 and α is the answer when it is. So what’s α?
Think! What’s the result of doubling 0, i.e., 2× 0?

Moving on, if the test is false, we have to add β to the value of (double (sub1 n)). First,
what is the value of (double (sub1 n))? Well, if we do our job right, it will be the double
of (sub1 n), i.e., 2× (n− 1) or 2n− 2. So what do we add to that to get the double of n?

My Answer:

α : 0

β : 2

So I’ve defined

(defun double (n)

(if (zp n)

0

(+ 2 (double (sub1 n)))))

Let’s test it on 3.

(double 3)

= {def double, eval of (zp 3), (if nil . . .), and (sub1 3)}
(+ 2 (double 2))

= {def double, eval of (zp 2), (if nil . . .), and (sub1 2)}
(+ 2 (+ 2 (double 1)))

= {def double, eval of (zp 1), (if nil . . .), and (sub1 1)}
(+ 2 (+ 2 (+ 2 (double 0))))

= {def double, eval of (zp 0) and (if t . . .)}
(+ 2 (+ 2 (+ 2 0)))

18 A Little Logic

= {arithmetic}
6

So it seems to work on 3 at least!

Now it’s your turn. Remember, you can only use the functions specified at the beginning
of this section (including the ones I’ve defined above). You can use any function defined
by a previous question, even if you are not required to answer that previous question on
a homework. Note that to answer these with ACL2s you will have to add my definitions
of add1, sub1, and double above to your session; you’ll also have to define any functions
from previous questions that you use. I don’t care what your functions do if applied to
arguments that are not natural numbers. Finally, as always with programming, there are
many different correct answers.

• Question 21: Fill in the blanks to define flip so that (flip 0) is 1, (flip 1) is 0, and
on any other natural numbers n, (flip n) is nil.

(defun flip (n)

(if (zp n)

α
(if β

γ
nil)))

Show tests of your definition on these examples (at least):

(flip 0) =⇒ 1

(flip 1) =⇒ 0

(flip 7) =⇒ NIL

Remember, NIL and nil are just two different ways to write the same symbol. •
• Question 22: Fill in the blank to define equal-1 so that (equal-1 n) is t if n is 1 and
nil if n is anything else. You may assume n is a natural number. Remember, you can only
use the functions described at the beginning of this section.

(defun equal-1 (n) α)

Show tests of your definition on these examples (at least):

(equal-1 0) =⇒ NIL

(equal-1 1) =⇒ T

(equal-1 2) =⇒ NIL

(equal-1 3) =⇒ NIL

Note: Of course, ACL2 has a primitive for asking whether two objects are the same. But
the game we’re playing here is to challenge you to use just the functions you’ve already seen
to answer the question whether n is 1. •
? ? ? (due Tue, Jan 26)• Question 23: Fill in the blanks to define plus so that it returns

the sum of the natural numbers n and m. Turn in an ACL2s transcript like that shown in
my discussion of Question 19 (page 16): the defun and the results of evaluating examples,
including those below.

(defun plus (n m)

The ACL2 Programming Language 19

(if (zp n)

α
(β

(plus (γ n) m))))

Note that β and γ above must be function symbols and each is of arity 1. Show tests of
your definition on these examples (at least):

(plus 2 2) =⇒ 4

(plus 7 5) =⇒ 12

(plus 0 3) =⇒ 3 •

??? (due Tue, Jan 26) • Question 24: Fill in the blanks to define times so that it returns

the product of the natural numbers n and m. Turn in an ACL2s transcript like that shown in
my discussion of Question 19 (page 16): the defun and the results of evaluating examples,
including those below.

(defun times (n m)

(if (zp n)

α
(β

δ
(times (γ n) m))))

Note that β must be a function symbol of arity 2 and γ must be a function symbol of arity
1. Show tests of your definition on these examples (at least):

(times 7 3) =⇒ 21

(times 3 5) =⇒ 15

(times 1 5) =⇒ 5

(times 0 3) =⇒ 0 •

??? (due Tue, Jan 26) • Question 25: Fill in the blanks to define power so that it returns

n raised to the power m, where n and m are naturals. Note that by convention, 00 is 1.
Turn in an ACL2s transcript like that shown in my discussion of Question 19 (page 16): the
defun and the results of evaluating examples, including those below.

(defun power (n m)

(if (zp m)

α
(β

δ
(power n (γ m)))))

Note that β must be a function symbol of arity 2 and γ must be a function symbol of arity
1. Show tests of your definition on these examples (at least):

(power 2 3) =⇒ 8

(power 2 4) =⇒ 16

(power 2 5) =⇒ 32

(power 5 2) =⇒ 25

(power 0 0) =⇒ 1

(power 0 1) =⇒ 0 •

20 A Little Logic

• Question 26: Fill in the blanks to define even-natp so that it returns t if its argument
is an even natural number and nil if its argument is an odd natural number.

(defun even-natp (n)

(if (zp n)

α
(if (equal-1 n)

β
(even-natp γ))))

Show tests of your definition on these examples (at least):

(even-natp 0) =⇒ T

(even-natp 1) =⇒ NIL

(even-natp 2) =⇒ T

(even-natp 5) =⇒ NIL

(even-natp 18) =⇒ T

(even-natp 25) =⇒ NIL

Hint: In past problems you’ve always decremented n by 1 but you don’t need to always
decrement by 1! •
• Question 27: Fill in the blanks to define even-natp1 so that it computes the same thing
that even-natp computes, but does it in a different way.

(defun even-natp1 (n)

(if (zp n)

α
(if (even-natp1 (sub1 n))

β
γ)))

Show tests of your definition on these examples (at least):

(even-natp1 0) =⇒ T

(even-natp1 1) =⇒ NIL

(even-natp1 2) =⇒ T

(even-natp1 5) =⇒ NIL

(even-natp1 18) =⇒ T

(even-natp1 25) =⇒ NIL •

• Question 28: Fill in the blanks to define half so that it returns the floor of n/2.

(defun half (n)

(if (zp n)

α
(if (equal-1 n)

β
(+ 1 (half γ))))) •

Show tests of your definition on these examples (at least):

The ACL2 Programming Language 21

(half 0) =⇒ 0

(half 1) =⇒ 0

(half 2) =⇒ 1

(half 5) =⇒ 2

(half 18) =⇒ 9

(half 25) =⇒ 12 •

??? (due Tue, Jan 26) • Question 29: Fill in the blanks to define lessp so that it returns

t if its first argument is strictly smaller than its second and nil otherwise. Turn in an
ACL2s transcript like that shown in my discussion of Question 19 (page 16): the defun and
the results of evaluating examples, including those below.

(defun lessp (n m)

(if (zp n)

α
(if (zp m)

β
(lessp (sub1 n) (sub1 m))))) •

Show tests of your definition on these examples (at least):

(lessp 1 2) =⇒ T

(lessp 2 1) =⇒ NIL

(lessp 3 5) =⇒ T

(lessp 17 13) =⇒ NIL

• Question 30: Fill in the blanks to define equal-natsp to return t if its two arguments
are equal and nil otherwise. Both arguments may be assumed to be naturals.

(defun equal-natsp (n m)

(if (zp n)

α
(if (zp m)

β
(equal-natsp (sub1 n) (sub1 m))))) •

Show tests of your definition on these examples (at least):

(equal-natsp 0 0) =⇒ T

(equal-natsp 1 1) =⇒ T

(equal-natsp 2 2) =⇒ T

(equal-natsp 17 17) =⇒ T

(equal-natsp 0 2) =⇒ NIL

(equal-natsp 2 0) =⇒ NIL

(equal-natsp 2 1) =⇒ NIL

(equal-natsp 17 13) =⇒ NIL

(equal-natsp 17 18) =⇒ NIL

Ok, here is a different kind of question. I’ll answer a couple to show you what I want and

22 A Little Logic

how to do it.

• Question 31: What value is returned by (fn-q31 5 7) if fn-q31 is defined this way:

(defun fn-q31 (n m)

(if (zp m)

n

(add1 (fn-q31 n (sub1 m))))) •

My Answer: The easiest way to answer this kind of question is to use ACL2s to define
fn-q31 and then to evaluate (fn-q31 5 7). If you do that, you learn that the answer is
12.

• Question 32: For the fn-q31 defined in the previous question, what is the value of
(fn-q31 x y) when x and y are natural numbers? Answer with an ACL2 arithmetic ex-
pression involving the two variables, constants, and the functions already mentioned in this
section. •
My Answer: By using ACL2s to evaluate different calls of fn-q31 I can learn:

(fn-q31 0 7) =⇒ 7

(fn-q31 1 7) =⇒ 8

(fn-q31 2 7) =⇒ 9

(fn-q31 3 7) =⇒ 10

So I can guess that (fn-q31 x y) adds x and y. A correct answer is thus (+ x y). Another
correct answer is (plus x y), since plus has been mentioned in this section and also adds
its arguments.

? ? ? (due Tue, Jan 26) • Question 33: For the definition of fn-q33 below, what is the

value of (fn-q33 x y) when x and y are natural numbers?

(defun fn-q33 (n m)

(if (zp n)

m

(fn-q33 (sub1 n) (add1 m))))

Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
• Question 34: For the definition of fn-q34 below, what is the value of (fn-q34 x y)

when x and y are natural numbers?

(defun fn-q34 (n)

(if (zp n)

0

(+ n (fn-q34 (sub1 n)))))

Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
• Question 35: For the definition of fn-q35 below, what is the value of (fn-q35 x y 0)

when x and y are natural numbers?

(defun fn-q35 (n m a)

(if (zp n)

The ACL2 Programming Language 23

a

(fn-q35 (sub1 n) m (+ m a))))

Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
• Question 36: For the definition of fn-q36 below, what is the value of (fn-q36 x y)

when x and y are natural numbers?

(defun fn-q36 (n m)

(if (zp m)

0

(+ n (fn-q36 n (sub1 m)))))

Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
• Question 37: For the definition of fn-q37 below, what is the value of (fn-q37 x y 1)

when x and y are natural numbers?

(defun fn-q37 (n m a)

(if (zp m)

a

(if (even-natp m)

(fn-q37 (times n n) (half m) a)

(fn-q37 n (sub1 m) (* n a)))))

Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
•Question 38: For the definition of fn-q37 used in the previous problem, what is the value
of (fn-q37 x y a) when x, y, and a are natural numbers? Answer with an ACL2 arithmetic
expression involving the two variables, constants, and the functions already mentioned in
this section. •
In the questions below, use the following definition of uaf.

(defun uaf (k n m)

(if (zp k)

(+ 1 n)

(if (zp m)

(if (equal k 2)

0

(if (equal k 3)

1

n))

(uaf (- k 1)

(uaf k n (- m 1))

n))))

Warning: If you play with this function in ACL2s you are advised to stick to very small
inputs, like (uaf 2 3 2). Believe it or not, for quite modest inputs, the amount of time
this function takes to compute and the numbers it creates are so large that no real computer
could compute using the definition above. For example, (uaf 4 3 5) has 116 digits:

24 A Little Logic

87189642485960958202911070585860771696964072404731750085525219437990967093723439943475549906831683116791055225665627.

• Question 39: For the definition of uaf above, what is the value of (uaf 1 3 5)? •
• Question 40: What is the value of (uaf 1 n m) when n and m are natural numbers?
Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
• Question 41: For the definition of uaf above, what is the value of (uaf 2 3 5)? •
• Question 42: What is the value of (uaf 2 n m) when n and m are natural numbers?
Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
• Question 43: For the definition of uaf above, what is the value of (uaf 3 3 5)? •
• Question 44: What is the value of (uaf 3 n m) when n and m are natural numbers?
Answer with an ACL2 arithmetic expression involving the two variables, constants, and the
functions already mentioned in this section. •
• Question 45: For the definition of uaf above, write an arithmetic expression in terms of
small constants that says what (uaf 4 3 5) is equal to. I do not want you to repeat to me
the 116 digit number shown above, which is indeed the value of (uaf 4 3 5)! To answer
this question you might want to answer the next question first. •
• Question 46: Describe the value of (uaf 4 n m) when n and m are natural numbers.
There are only two ways to answer this question. One would be to write an English descrip-
tion, possibly involving elipses (“. . .”). The other would be to define an ACL2 function of n
and m that computes the same thing in more familiar terms. Either answer is acceptable. •

2.7 Lessons from the Practice (Jan 28)

One lesson from the exercises above is that functions can be defined many different ways.
For example, plus in Question 23, fn-q31 in Question 31, fn-q33 in Question 33, fn-q35
in Question 35, and uaf in Question 38 are all different ways to add two naturals.

In addition, the defuns above should convince you that you can define all of the basic
arithmetic functions if you just know how to add and subtract 1, how to recognize 0, and
how to use recursion. The definitions above are not very efficient. For example, to compute
(power 10 3) we “build” 1,000 by a thousand additions of 1. But we are not concerned with
efficiency. We are concerned with using the language we have to say what we need to say.

The problems have been posed as programming problems: think of a computational process
to construct a certain number. But the answers have been expressed in a style that should
feel mathematical. Any computational problem can be reduced to a mathematical problem.
Sometimes your thought processes will be clearer if you eliminate the clutter of conven-
tional programming languages and think mathematically. Often times good programmers
conceive the solution in these terms and then just “code it up.” The creativity does not
lie in the coding! The creativity is in the algorithm and the algorithm can be expressed
mathematically.

Another lesson from Section 2.6 is that there are many different algorithms to solve a
given problem. For example, we saw several ways to add, to multiply, to exponentiate,

The ACL2 Programming Language 25

to determine if a number is even, etc. But how do you know two different algorithms
produce identical results? How do you know that even-natp and even-natp1 return the
same answer? Because we’ve expressed them mathematically we can prove they’re the same
using mathematics. That is something you’ll learn to do in this course.

You will often be confronted by hideously complicated computational problems. Knowing
that you can express them mathematically and use mathematical tools – substitution of
equals for equals, rearranging terms, etc. – to analyze them will empower you; the ability to
use mathematical tools to solve computational problems is the difference between a coder
and a computer scientist.

2.8 About Recursion (Jan 28)

Recursion is one of the most powerful ideas in computing, both theoretically and practically.
It is also one of the most confusing things for new students to grasp.

To define a function f to solve some “big” problem you think of a smaller problem of the
same kind, solve it by calling f , and then convert the solution of the smaller problem into
a solution of the bigger one. By repeatedly reducing the size of the problem you eventually
arrive at one you inherently know how to solve (the base case).

Every new programmer protests: “How can I call f when I haven’t defined it yet?” or “How
can I call f when I don’t know how it works?” Defining a function recursively takes a leap
of faith. When you finish defining it, f will be defined! You may not know how f works
when you first write that recursive call, but you must assume that it correctly solves the
smaller problem and get on with the task of converting the solution of the small problem to
the solution of the big one.

So to define a function to solve some problem recursively you have to think of several creative
things at once.

� a small version of the problem you can solve immediately

� a way to reduce any “big” problem to a smaller one so that doing this repeatedly
reduces any problem to the “small version” you know how to solve, and

� how to create a solution for a “big” problem from a solution for its smaller one.

Here’s a function to triple a number.

(defun triple (n)

(if (zp n)

0

(+ 3 (triple (sub1 n)))))

Consider the three creative points above. The “small version” of the problem we know how
to solve is how to triple 0. The answer is 0. This is called the base case of the recursion.
We use if and (zp n) to determine if we are in this special case. If we’re not, we’re in the
recursive case where we must reduce a “big” problem to a smaller one. But now we know
n > 0 and so n− 1 is a smaller problem. Just assume that calling triple on n− 1 returns
the correct answer to that question. Call the answer a. Can we find a way to convert the
answer for n − 1 to the answer for n? Yes! Since we assume the recursive call answers

26 A Little Logic

correctly, we know a = 3 ∗ (n − 1) = 3n − 3. So to get 3n, all we do is add 3. So we’ve
solved all three creative problems and have a function that triples any natural.

You don’t have to reduce the problem by just 1 every time. We saw in even-natp1 an
example where we reduce the problem by 2. To answer “is 7 even?” we ask “is 5 even?”.
This is a case where we picked a smaller problem with the same answer as the bigger one.
We answer “is 5 even?” by asking “is 3 even?”. We answer that by asking “is 1 even?” Now
if we continued and converted that to “is -1 even?” we would skip over our base case and
go running forever down the negatives: “is -3 even?”, “is -5 even?”, “is -7 even?” Clearly,
if we plan is to repeatedly reduce the problem by 2, then we have to stop when we get to
a problem whose size is smaller than 2! That means we have two base cases: 0 and 1. We
know how to answer “is 0 even?” (yes) and “is 1 even?” (no). So we’re done.

Believe it or not, ACL2 is an incredibly powerful programming language. In program mode it
is Turing complete meaning that it can compute any computable function! No programming
language can do more.

2.9 Comments and Displaying Code (Jan 28)

ACL2 code can be commented and displayed in various ways. Since we are allowed to quote
numeric constants (even though we don’t need to) we could write foo this way

(defun foo (n)

(if (zp n)

’1

(* n (+ ’1 n))))

without changing its meaning at all.

We could have also written it this way:

(defun foo (n)

(if (zp n)

(quote 1)

(* n (+ (quote 1) n))))

“Whitespace” can be freely interspersed between ACL2 expressions. Whitespace refers to
newlines, spaces, and tabs. Thus, we could write the definition of foo in any of these ways
if we wanted:

(defun foo (n)

(if (zp n)

1

(* n

(+ 1

n))))

(defun foo (n)

(if (zp n) 1 (* n

(+ 1 n))))

The ACL2 Programming Language 27

(defun foo (n)

(if (zp n) 1 (* n (+ 1 n))))

(defun foo (n) (if (zp n) 1 (* n (+ 1 n))))

I discourage you from using the second form above because it makes it unclear what the
false branch of the if-expression is.

Learn to “pretty print” your code. It is virtually impossible for me or you to read stuff like
this:

(defun uaf (k n m) (if (zp k) (+ 1 n) (if (zp m) (if (equal k 2) 0 (if (equal

k 3) 1 n))

(uaf (- k 1) (uaf k n (- m 1)) n))))

The first rule is never write beyond the 80th column. This causes “wrap-around” and makes
things very hard to read.

Always arrange your text so that it makes the structure of your thinking clear. I would
display the definition above this way:

(defun uaf (k n m)

(if (zp k)

(+ 1 n)

(if (zp m)

(if (equal k 2)

0

(if (equal k 3)

1

n))

(uaf (- k 1)

(uaf k n (- m 1))

n))))

This advice will help you avoid mistakes! The point is not to squeeze the text into the space
allowed. The point is to record and communicate your ideas. You will read your stuff more
often than anybody else does. I guarantee that if you learn to express yourself clearly to
others you will produce work that you understand better and that is more often correct.
If you carry these habits into your career as a programmer and designer, you will produce
designs that you can understand, maintain, and modify more reliably.

Here are three heuristic guidelines. (i) Look for ways to break up a line if it contains more
than about 25 non-blank characters and try never to produce a line with more than about
40 characters. (ii) If you have to break up any argument, first indent that argument and all
of its peers. (iii) Indent every argument equally.3

For example, while I would write this:

(if (zp k) (+ 1 n) (foo (+ 2 m) k m))

because the whole if-expression fits in 37 characters. But if I had to write something slightly

3Defun is an exception: it is conventional to write the “defun”, function name and list of formals on one
line and then indent the body a space or two.

28 A Little Logic

longer, like

(if (zp k) (+ 1 n) (foo (+ 2 n) (+ 1 (* (+ k k) j)) k))

I would break it up. One way to break it up would be:

(if (zp k) (+ 1 n) (foo (+ 2 n)

(+ 1 (* (+ k k) j)) k))

But this violates guideline (ii) because I broke up the third argument of the if-expression
(the foo-expression) but I tried to print its peers on one line, pushing the poor foo-
expression out to the right. Trying to solve the problem by squeezing the foo-expression
produces an ugly result. Instead, I could try to bring the foo-expression all the way in so
that lines up with its first peer, the (zp k).

(if (zp k) (+ 1 n)

(foo (+ 2 n) (+ 1 (* (+ k k) j)) k)).

But that would violate guideline (iii) because the arguments to the if would not be indented
equally. So I would indent the (+ 1 n) even though it “fits” where it is.

(if (zp k)

(+ 1 n)

(foo (+ 2 n) (+ 1 (* (+ k k) j)) k)).

If I felt the foo-expression was still too hard to read – what is its last argument? – I would
indent all of its arguments:

(if (zp k)

(+ 1 n)

(foo (+ 2 n)

(+ 1 (* (+ k k) j))

k)).

The point is not just to make the text fit in 80 columns! The point is to make the structure
of the formula clear. The indentation tells me which expressions belong to which function
call.

If you turn in stuff like this, the graders and I simply won’t read it:

(defun uaf (k n m)

(if (zp k)

(+ 1 n)

(if (zp m)

(if (equal k 2)

0

(if (equal k 3)

1

n))

(uaf (- k 1)

(uaf k n (- m 1))

n)))).

If you can’t be bothered to make your thoughts clear, we can’t be bothered to check them.

The ACL2 Programming Language 29

Remember: use the format of your code to communicate to the reader. Your job is to bring
the reader along with you. Most of the time you will be your own reader and this advice
helps you more than anybody else.

Finally, it is possible to add comments to ACL2 code. Comments are delimited on the left
by a semi-colon and on the right by the end of the line. So we could add comments to foo

this way:

(defun foo (n) ; This is a trivial

; example of a definition.

(if (zp n) ; if n is 0

1 ; return 1

(* n (+ 1 n)))) ; else, n*(1+n)

Warning: You will get a 0 for any answer that violates the following rules. Every “defi-
nition” must be syntactically well-formed. Nothing should extend beyond the 80th column
– lines should not be truncated or wrap around when viewed in a window 80 characters
wide. Finally, if the grader feels that insufficient effort has been made to display a formula
sensibly, he or she is free to assign a 0 for that answer even if it is otherwise correct!

Warning: If you play with ACL2 or Lisp, never write a comma! The program that reads
your type-in does something very special on commas and you don’t want to go there! There
are a few other “bad characters,” among them hash mark “#” and dot “.” but they are
occasionally used in certain situations. Also, when writing strings, "Hello, World!", the
rules are relaxed. But naked commas, hash marks, and dots can cause trouble. So don’t
type them unless you know what you’re doing! If you type one of these characters to ACL2s
and don’t know what you’re doing, it may print a scary warning including something like

************ ABORTING from raw Lisp ***********

Just ignore it and correct your input.

2.10 The Five Types of Objects (Jan 28)

You have only seen two kinds of objects so far: numbers and Booleans. ACL2 actually
provides five kinds or “types” of objects.

� numbers: ACL2 provides the integers and other kinds of numbers. We will only use
the integers here, especially the naturals, which are a subset of the integers.

� characters: ACL2 provides objects that represent characters like “upper case A” and
“space”, but we won’t use them.

� strings: A string is a finite sequence of characters delimited by the string quote (")
character, e.g., "Hello World!". You may see a few strings in my code but we won’t
make much use of them.

� symbols: A symbol may be thought of as an object representing a name. Monday,
Green, public, and int are all symbols that might be used in the data we manipulate.
For our purposes, case is unimportant: fact, Fact, and FACT all denote the same
symbol. The Booleans, t and nil, are just symbols. () is just another way you

30 A Little Logic

can write the symbol nil, although ACL2 will never print nil that way. Other
symbols involving “unusual” characters like spaces, parentheses, etc., must be specially
delimited but we do not use such symbols here. Symbols in ACL2 are actually very
complicated objects but in this course we treat symbols as simple atomic objects.

� conses: A cons is an object containing two other objects. The name cons in Lisp
is the name of the function that constructs a new object from its two constituent
parts, which are called the first and rest (sometimes informaly called the “left” and
“right”, “head” and “tail”, or “car” and “cdr”, respectively). Conses are written with
parentheses. We’ll discuss them at length below.

Any Lisp object that is not a cons is said to be an atom. Thus, 23 is an atom. So are the
string "Hi there" and the symbols t, Monday, and A. But (A), (A 1), and ((A 1) C D)

are not atoms. They are all conses. The rules for writing conses are discussed below. Just
remember that if you see an object that starts with an open parenthesis – other than nil

when you choose to write it as () – it is a cons. Any object that doesn’t start with an open
parenthesis is at atom.

Objects of different types are different. Thus, the strings "HELLO" and the symbol HELLO
and the cons (HELLO) are different. There is a function, equal, that takes two arbitrary
objects as input and returns t if they are the same object and nil otherwise.

It is possible for ACL2 programs to determine the type of each the object. You can think
of each object having a hidden tag field that contains the type. For each of the five types,
typ, there is a recognizer function that takes an object of any type as input and returns t if
the object is of type typ and nil otherwise. We discuss the primitive recognizers when we
present the primitive functions.

2.10.1 Lists

Conses are constructed by the two argument function cons. You can “cons together” any
two objects, x and y, and get an object, say, c. The object c is said to be a cons. If you
apply the function first to it you get x back, and if you apply the function rest you get
y back.4 The function consp is the recognizer for conses; it returns t if its argument was
constructed by cons and nil otherwise.

We will use conses and nil to represent lists. For example, the list of length 3 containing
1, 2, and 3 is built this way:

(cons 1 (cons 2 (cons 3 nil)))

and prints this way: (1 2 3).

Aside: ACL2 terms and ACL2 data objects are both written with parentheses but they are
different sorts of things. A term is something containing variables, constants, and function
calls and is meant to be evaluated. Data objects, on the other hand, are the values of terms,
including the values of variables in the environment. We will discuss it at length later,
but the list constructed by (cons ’first (cons ’x nil)) prints as (first x). If I write
“(first x)” you can’t tell a priori whether I mean the term that is the application of the
function symbol first to the variable symbol x, or whether I mean the cons data object

4It if helps, you can think of cons as a constructor for a new Object of class Cons with two fields, first
and rest. However, in ACL2 there is no way to modify the contents of the fields.

The ACL2 Programming Language 31

whose first element is the symbol first and whose second element is the symbol x. You have
to decide which I mean by context. For example, if I say “the value of (first x) is . . .”
I am clearly using “(first x)” as a term, because I’m evaluating it. On the other hand,
if I say “. . . evaluates to (first x),” the “(first x)” denotes a list data object because
I’m using it as a value. If I say “. . . evaluates to the same thing that (first x) does”, I’m
using it as a term. I believe you will always be able to tell whether I’m referring to a term
or a value. Just be aware that we’re dealing with two sorts of entities – terms and objects
– but using the same notation to denote them. The confusion could be totally avoided if
Lisp adopted the idea of denoting list data objects with, say, square brackets, e.g., “(cons
1 (cons 2 (cons 3 nil))) =⇒ [1 2 3].” But it doesn’t and there is a very good reason,
although we will not explore it in this course: in Lisp, terms are objects. This allows Lisp
programs to construct and run other Lisp programs. Lisp is its own metalanguage. This is
one of the most powerful features of Lisp. But we are not going to exploit this fact in this
course. End of Aside

Returning to the representation of lists by conses, suppose we wanted to build a list of the
squares of 1, 2, and 3. Then we could write:

(cons (* 1 1) (cons (* 2 2) (cons (* 3 3) nil)))

and construct the list (1 4 9).

More generally, suppose we have n > 0 expressions, α1, α2, . . ., αn and that the value of αi

is the object ci. Then

(cons α1

(cons α2

. . .
(cons αn

nil). . .))

constructs the list of the values and prints like this:

(c1 c2 . . . cn).

The list above has n elements; n is called the length of the list. The first element is c1,
the second c2, etc. The last element, the nth, is cn. The nil, supplied as the “very last”
argument in the cons-expression above, is not an element of the list.

I’ll say this several more times because students always have trouble with it!

To construct a list of n elements you need n conses, nested to the right as shown. This
means you have to supply a total of n+ 1 things to those conses, the αi and that final nil.

You can think of nil as a representative of the empty list and you can think of (cons x
y) as adding a new first element, namely, the value of x, to the list represented by the value
of y.

So to build (1 2 3), for example, you first build the “singleton” list containing just (3) by
consing 3 onto the empty list nil. To do this, you could evaluate (cons 3 nil). Then you
use another cons to add the element 2 to that, and then you use another cons to add the
element 1 onto that. The cons-expression is thus (cons 1 (cons 2 (cons 3 nil))).

One way to think of a cons object is that it is a binary tree. For example, (1 2 3) might be
drawn as shown below. Each big dot (•) in this picture is a cons that “points to” one element
(in its first component) and “points to” the rest of the elements (in its rest component):

32 A Little Logic

•

↙↘
1

•

↙↘
2

•

↙↘
3 nil ← this nil marks the end

The nil is a terminal marker that means “there are no more elements.” It is not an element
of the list represented by this structure!

The spine of the list is that chain of conses. (There would be other conses elsewhere if the
elements of our list had themselves been lists!) That spine is sometimes called the rest chain
because it is just the successive rests of the list until you run out of conses. The number of
conses in the spine is the length of the list because there is one element for every cons in
the spine.

The names “first” and “rest” come from the use of conses to represent non-empty lists.5

So how do you get the second element of a list? The second element of x is the first element
of the rest of x.

(defun second (x) (first (rest x)))

Suppose x is bound in the environment to the list object (1 2 3). Then

(first x) =⇒ 1

(rest x) =⇒ (2 3)

(second x) = (first (rest x)) =⇒ 2

Here are some example printed lists and an English description of them.

() the list of length 0, containing no elements, aka
nil; you may write nil

this way but ACL2 will never print it this way

(1) the list of length 1, containing the element 1

(1 2) the list of length 2, containing the element 1 fol-
lowed by the element 2

(() (1) (1 2)) the list of length 3, containing the three previously
shown lists as elements, in order; you will never see
ACL2 print this list this way; see the next example

(nil (1) (1 2)) same as the list immediately above, printed as
ACL2 will print it

If I were to draw the last list above as a binary tree, here is what I would draw:

5In Lisp the “primitives” are named car and cdr. The functions first and rest are defined, e.g., (defun
first (x) (car x)). You might see ACL2s talk about car or cdr for that reason.

The ACL2 Programming Language 33

nil

nil1

nil
1

2 nil

The dashed line is drawn along the spine, which contains three conses. Hanging off the spine
in the three “first” positions are the three elements, the first being nil, the second being
(1), and the third being (1 2).

• Question 47: Write the cons expression to construct (7 0). •
• Question 48: Write the cons expression to construct ((1) (2)). •
I’ll answer this question to show you how I work out such questions. The list we’re creating
has two elements, i.e., it is of the form (α β). So I know the answer will look like this:

(cons α
(cons β

nil))

where α is the cons-expression to create (1) and β is the cons-expression to create (2).
But each of these are singleton lists created by (cons δ nil), where δ is 1 for α and 2 for
β.

So the answer is:

(cons (cons 1 nil)

(cons (cons 2 nil)

nil))

I can test this by evaluating it in ACL2s. I’ll get ((1) (2)).

? ? ? (due Tue, Feb 2) • Question 49: Write the cons expression to construct (nil ((t

nil)) t). Test your answer with ACL2s. •
Many students are confused about whether the empty list, nil, is the same thing as the list
containing the empty list, (nil), or (()). Nil and (nil) are different! The first has no
conses in its spine. The second has one. The first has length 0 and the second has length
1. One would be “drawn” as nil and the other is drawn as

nilnil

I think the confusion that nil and (nil) are the same comes from the idea that “nil is
nothing”, so “the list containing nil” is misunderstood as “as the list containing nothing.”
But (nil) is the list that contains the list containing nothing, so it contains something.

34 A Little Logic

2.10.2 Dot Notation

What happens when we cons a new element, say 3, to something that doesn’t naturally
represent a list, like 45? What do we get?

We get a cons, whose first is 3 and whose rest is 45. But how do we print it?

Many students want to say that (cons 3 45) should print as (3 45) but that is wrong!
The length of the object constructed by (cons 3 45) is 1, because there is one cons in its
spine. But the length of (3 45) is 2. So they can’t be the same.

In this section, I tell you how to print and read such “weird” objects as the one constructed
by (cons 3 45). But I will never use them in this course and I will never expect you to
use them!

Nevertheless, you will encounter them because in some of the homeworks you’ll make mis-
takes (yes!) and do things like cons nil onto 3 instead of 3 onto nil. ACL2s won’t protest
because there is a perfectly good cons object with first nil and rest 3. But you should at
least be alert to how they appear when they print out because if you see such an object
you know your homework answer is wrong! It’s wrong because I won’t ask you to construct
such conses.

We can think of any object, c, as representing a sequence of objects. How? If c is a cons,
then it represents the sequence whose first element is the first of c and whose remaining
elements are those in the sequence represented by the rest of c. And if c is not a cons, then
it is a terminal marker that means “there are no more elements,” i.e., such a c represents
the empty sequence. By applying this process to a cons c you should be able to recover a
sequence of n > 1 elements, c1, c2, . . . cn, and a terminal marker.

So here is how to print any Lisp object c.

� If c is not a cons it is a number, symbol, string or something else you know how to
print.

� If c is a cons, then let c1, c2, . . ., cn be the n successive elements recovered from c by
the process above and let d be the terminal marker.

♦ If d is nil, print c the way I’ve already told you: (c1 c2 . . . cn).

♦ If d is not-nil, print c like this: (c1 c2 . . . cn . d).

So (cons 3 45) prints as (3 . 45).

(cons 1 (cons 2 (cons 3 45))) prints as (1 2 3 . 45).

Notice that there is always a dot in this printing. If you ever see a dot in your homework
output, you’ve answer my question incorrectly because I’ll never want you to construct any
list except one terminated by nil.

Lists terminated by nil are sometimes called true lists to distinguish them from lists like
(1 2 3 . 45). We’ll also call them nil-terminated lists.

2.10.3 Using Lists to Represent other Structures

Lists can be used to represent many structures. Here is a list of symbols that might be used
to name the days of the week.

The ACL2 Programming Language 35

(Sunday Monday Tuesday Wednesday Thursday Friday Saturday)

This same list could have been written

(sunday monday tuesday wednesday thursday friday saturday)

or

(SUNDAY MONDAY

TUESDAY WEDNESDAY

THURSDAY FRIDAY SATURDAY).

If we were writing an ACL2 program that took as input a symbol, x, and answered the
question “Is x the name of day of the week?” we might use this constant in our code. If I
were going to write such a function, I would first write the general-purpose function mem so
that (mem e lst) answers the question “is e an element of the list lst?” Then my code
for recognizing day names could be:

(defun day-namep (x)

(mem x ’(SUNDAY MONDAY

TUESDAY WEDNESDAY

THURSDAY FRIDAY SATURDAY)))

Note that I have to quote the list constant we’ve been talking about when I use it as an
expression in my code. Essentially I’m telling Lisp that I’m using this as an object rather
than as a term. Why? Because if if don’t quote it:

(defun day-namep (x)

(mem x (SUNDAY MONDAY

TUESDAY WEDNESDAY

THURSDAY FRIDAY SATURDAY)))

I would be asking whether x is an element of the list computed by the function SUNDAY

applied to the six “variables” after it. More on this later.

We might use lists to store alternative equivalent names for the days, e.g.,

((SUNDAY 1 SUN SU)

(MONDAY 2 MON M)

(TUESDAY 3 TUE TU)

(WEDNESDAY 4 WED W)

(THURSDAY 5 THU TH THUR THURS)

(FRIDAY 6 FRI F)

(SATURDAY 7 SAT SA)).

Note that we added white space to our display of the list to emphasize that for each day
name we give a number equivalent, a 3-letter equivalent, and then various short forms.
Using this list constant, we might write a function long-day-name that takes an alleged
day name and returns the long version of the name, e.g., both (long-day-name ’W) and
(long-day-name 4) could return the object WEDNESDAY. To write such a function we’d need
to search each element of our list, looking for the name we were given and then return the
first element of the element in which we found it.

Note that the example (long-day-name ’W) illustrates the need for quoting again. We

36 A Little Logic

mean to call long-day-name on the symbol W. But if we wrote (long-day-name W) then
we’d be calling long-day-name on the value of the variable W. More on this below.

What should long-day-name do if it is given an object that is not a day name? First, this
is not quite the right question in ACL2, because long-day-name doesn’t do anything! It
just returns a value. So what value should it return if it is given an unacceptable argument?
There are two common alternatives. One would be to “default” the argument to an accept-
able one, e.g., long-day-name could implement the convention that any unacceptable day
name is treated like it were SUNDAY. This would be quite surprising if you tried to make a
plane reservation on Saturday, typed S to specify the day, and unknowingly got a reservation
on Sunday because (long-day-name ’S) evaluated to SUNDAY.

A second common alternative would be for long-day-name to return nil if it is given
an unexpected input. The caller would then have to handle this case by asking whether
long-day-name returned nil or something else. This would be coded something like this:

(if (long-day-name day)

(. . .make a reservation. . .)
"You provided an illegal day name!")

This illustrates Lisp’s peculiar habit of using functions as predicates. That is, (long-day-name
day) can be treated as a predicate that returns true or false, and, when true, its value is
the long name of the given day. This works provided none of the days is named nil!

Here are some other examples of how an ACL2 programmer might use lists.

A table listing names and how many people in a class have a given name might be represented
by this list:

(("Emma" 4)

("Jacob" 2)

("Isabella" 2)

("Emily" 1)

("Michael" 1)

("Ethan" 0))

Given such a table, one might contemplate how to answer such questions as “How many
"Michael"s are in the class?” or “How many students are in the class?”; one might also
contemplate how to build a new table when a new student enters the class or two classes
are combined.

A normalized polynomial in the variable symbol “x”, such as 6x2 + 5x − 21 might be
represented as ((6 2) (5 1) (-21 0)). One might contemplate how to factor a normalized
polynomial in this form, to create, for example, the two factors, ((3 1) (7 0)) and ((2

1) (-3 0)), i.e., 3x+ 7 and 2x− 3.

An arbitrary algebraic expression, like (3x+7)×(2x−3), might be represented by (* (+ (*

3 x) 7) (+ (* 2 x) -3)), and one might contemplate how to put it into some cannonical
form.

A Java method, such as

public static int ifact(int n){
int a = 1;

while (n>0) {a = n*a; n = n-1;}
return a;

The ACL2 Programming Language 37

}

might be represented as

(public static int ifact ((int n))

(assign (int a) 1)

(while (> n 0) (assign a (* n a)) (assign n (- n 1)))

(return a))

and one might contemplate how to compile it (generate JVM byte code for it) or how to
answer such questions as whether it might divide by 0.

An English sentence like “The boy went home.” might be represented as (the boy went

home) and one might contemplate parsing it into a form like

(SENTENCE (NOUN-PHRASE (DETERMINER the) (NOUN boy))

(VERB-PHRASE (VERB went) (NOUN home)))

or even answering questions, like (where did the boy go ?).

2.10.4 When Do You Use Quote?

Recall the “Aside” on page 30 about the possible confusion of objects with terms.

If you want to use an object as term denoting that object, you must quote the object unless
it is a number, a Boolean (t or nil), or a string.

Putting a single quote mark in front of any ACL2 object creates an ACL2 term that evaluates
to that object. You may quote numbers, Booleans, and strings if you want, but there is no
need to because those objects always evaluate to themselves anyway.

Here are some examples just to drive home the point:

38 A Little Logic

ACL2 expression value

W value of the variable W in the environment

’W the symbol object W

(Mon Wed Fri) value of function Mon applied to
the values of the variables Wed and Fri

in the environment

’(Mon Wed Fri) the list of length 3, (Mon Wed Fri),
containing the symbols Mon, Wed, and Fri;
this object could be constructed by evaluating
(cons ’Mon (cons ’Wed (cons ’Fri nil)))

t the symbol t (a true object)

’t the symbol t (a true object)

nil the symbol nil (the false object)

’nil the symbol nil (the false object)

23 the integer 23

’23 the integer 23

What is the result of evaluating (rest ’(Mon Wed Fri))? It is the object (Wed Fri).

Does the equation

(rest ’(Mon Wed Fri)) = (Wed Fri)

express this idea? No! This is not an equation because an equation is supposed to have
expressions on both sides! This thing has an expression on one side and a value (object)
on the other. If I read it as an equation I’d be saying that applying rest to the value of
’(Mon Wed Fri), produces the same thing as applying the function Wed to the value of the
variable Fri. Not likely.

When we wish to say “expression α evaluates to the object β” we will write

α =⇒ β.

If I write that, then this is a true equation:

α = ’β.

This distinction doesn’t arise before we have list- and symbol-valued data. For example

(+ 2 2) =⇒ 4

(+ 2 2) = ’4

(+ 2 2) = 4

are all accurate statements.

The ACL2 Programming Language 39

If you are confused what a function does on a quoted list constant it is sometimes easier to
replace the quoted constant by the cons-expression that produces it.

’(Mon Wed Fri) = (cons ’Mon ’(Wed Fri))

= (cons ’Mon (cons ’Wed ’(Fri)))

= (cons ’Mon (cons ’Wed (cons ’Fri ’())))

= (cons ’Mon (cons ’Wed (cons ’Fri nil)))

We can compute with such equations. For example, here are three important equations
about consp and rest:

(consp nil) = nil

(consp (cons u v)) = t

(rest (cons u v)) = v

These hold no matter what expressions are put in for u and v.

So by equational reasoning:

(consp ’(Mon Wed Fri)) = (consp (cons ’Mon ’(Wed Fri)))

= t

(rest ’(Mon Wed Fri)) = (rest (cons ’Mon ’(Wed Fri)))

= ’(Wed Fri)

= (cons ’Wed (cons ’Fri nil))

(consp ’(Wed Fri)) = (consp (cons ’Wed ’(Fri)))

= t

(rest ’(Wed Fri)) = (rest (cons ’Wed ’(Fri)))

= ’(Fri)

= (cons ’Fri nil)

(consp ’(Fri)) = (consp (cons ’Fri nil))

= t

(rest ’(Fri)) = (rest (cons ’Fri nil))

= nil

(consp nil) = nil

Also recall the discussion of the “plug-in-the-actuals” evaluation scheme on page 13.

The official way to evaluate (f a1 . . . an), where f is a defined function, is to evaluate the
ai to obtain the actuals, bind the formals of f to the actuals to get a new environment, and
evaluate the body of f in that new environment.

But the plug-in-the-actuals scheme suggested we can just substitute the actual values for
the formals in the body and evaluate that. I said that was subtly flawed. Here I explain
why, and what to do about it.

Let foo be defined

(defun foo (x)

(if x t nil)).

40 A Little Logic

Let’s evaluate (foo (cons ’zp (cons 23 nil))) under the two schemes.

Official Scheme: Evaluate the actual expression to obtain the list object (zp 23). Bind
the formal x to this object to get a new environment env′. Evaluate (if x t nil) in this
environment. To evaluate the if, evaluate the test x. Since it is a variable, we look up its
value in env′ and get the list (zp 23). Since the list (zp 23) is not nil, the test is true
and we evaluate and return t. The official (correct) answer is the object t.

Bad plug-in-the-actuals: Evaluate the actual expression to obtain the list object (zp 23).
Substitute the actual for the formal, x, in the body of foo to get the instantiated body:

(if (zp 23) t nil).

To evaluate the instantiated body, evaluate the if, by evaluating the test (zp 23). Since
23 is a non-0 natural number, (zp 23) evaluates to nil. Thus the if takes the false branch
and evaluates and returns nil.

Note that the plug-in-the-actuals scheme produced the wrong answer. Why? Because when
we plugged in (zp 23) for x we started treating the data object (zp 23) as a piece of
program text and evaluated it.

The correct statement of the plug-in-the-values scheme is: evaluate the actual expressions
to obtain the actuals, substitute the quoted actuals for the formals in the body to obtain the
instantiated body, and evaluate that. Note that by quoting the actuals we turn them from
data objects to expressions that produce those data objects.

The instantiated body in the (foo (cons ’zp (cons 23 nil))) example above should
have been:

(if ’(zp 23) t nil).

The value of this expression is t, as it should be.

Finally, there is an even simpler “plug-in” evaluation scheme we could use: To evaluate (f
a1 . . . an) for a defined function f , plug in the actual expressions for the formals in the
body of f and evaluate the instantiated body.

That is, we could evaluate (foo (cons ’zp (cons 23 nil))) by producing the instanti-
ated body

(if (cons ’zp (cons 23 nil)) t nil)

and then evaluating that. Note that this produces the correct answer.

The official scheme I have adopted is called call-by-value because we evaluate the actuals
and then run the body on the actual values. The scheme just described is called call-by-
name because we don’t evaluate the actual expressions but just literally substitute them
into the body and evaluate them when we need to. In a language like ACL2, call-by-value
and call-by-name are equivalent.

Sometimes one method is more efficient than the other. Consider (bar (baz 23)) where
bar is defined as shown below. Suppose that (baz 23) is very expensive to evaluate (e.g.,
takes a long time).

(defun bar (x) (cons x (cons x nil)))

Let’s compare the cost of a call-by-value evaluation of (bar (baz 23)) and a call-by-name
evaluation.

The ACL2 Programming Language 41

Call-by-value evaluates (baz 23) first, binds x to that value, and then evaluates (cons x

(cons x nil)). But call-by-name substitutes (baz 23) for x and evaluates (cons (baz

23) (cons (baz 23) nil)). Thus, it will evaluate the super-expensive (baz 23) twice. In
this case, call-by-value is much more efficient than call-by-name.

On the other hand, if bar were defined to be

(defun bar (x) 45)

then call-by-value needlessly evaluates (baz 23) while call-by-name doesn’t evaluate it at
all. In this case, call-by-value is much less efficient than call-by-name.

Call-by-name is an example of what is called lazy evaluation because it delays evaluation
until the results are needed.

No matter what scheme you use with ACL2, if the scheme terminates and gives a value, the
answer is the same as the “official” scheme.

2.10.5 Practice Recognizing ACL2 Objects

? ? ? (due Tue, Feb 2) • Question 50: For each of the displays in the first column below,

classify it according to the type of object denoted. You cannot do this assignment in ACL2s.
Just edit your session transcript, after you’ve saved it, to insert a list of numbers from 1
to 21 and then write “num”, “char”, “str”, “sym”, “cons” or “none” according to the type
of the “object” displayed. If the display does not denote an ACL2 object, write “note”.
These notes are incomplete. You may have to guess on some of these! Here are a few clues:
ACL2 does not support numbers with decimal points; rational numbers may be written as
fractions, e.g., 3/5. Commas and dots are never used in the ACL2 objects in this book,
except possibly in strings such as "Hello, world." An alleged “object” can fail be an
object because it is really two or more objects. For example 123 45 is not an object, it is
two objects. Use your common sense and let’s see what happens.

42 A Little Logic

object num char str sym cons none
A B C D E

1 346

2 2.167

3 Hello

4 Mary Ann

5 (Hello Mary Ann)

6 ((A 1) (B 2))

7 "Error: Bad PC!"

8 π
9 360.

10 ((A 1) B C)

11 (A () (B C))

12 (A))(B C)

13 ((A B C)

14 UNDEF

15 -1000

16 (A B C π)
17 (NIL)

18 NIL

19 ()

20 00023

21 10,000
•

2.11 Primitive Functions (Feb 2)

Now that you know how to write down all the constants we will use, all that remains is to
list the primitive function symbols you can apply to them. We use a small subset of ACL2
in this booklet.

The ACL2 Programming Language 43

(if x y z) if x is true, then y, else z

(equal x1 x2) t or nil according to whether x1 and x2 are the same object.

(cons x1 x2) cons constructor; the value is the cons whose first component is x1

and whose rest component is x2. In this course, we’ll follow the
convention of insuring that x2 is a nil-terminated list.

(consp x) Boolean recognizer for conses.

(first x) first element x if x is a cons; nil if x is not a cons.

(rest x) rest component of x if x is a cons; nil if x is not a cons.

(symbolp x) Boolean recognizer for symbols.

(stringp x) Boolean recognizer for strings.

(integerp x) Boolean recognizer for integers.

(natp x) Boolean recognizer for non-negative integers.

(+ x1 x2) sum: x1 + x2; non-numeric arguments are treated as 0.

(- x1 x2) difference: x1 − x2; non-numeric arguments are treated as 0.

(* x1 x2) product: x1 × x2; non-numeric arguments are treated as 0.

(/ x1 x2) quotient: x1/x2; if x1 is non-numeric, it is treated as 0; if x2 is
non-numeric or 0 the value of (/ x1 x2) is 0.

(< x1 x2) less than: t or nil according to x1 < x2; non-numeric arguments
are treated as 0.

The talk above about non-numeric arguments highlights the fact that ACL2 is an untyped
language. What does that mean? It means you can apply any function to any type of object.
You can write weird expressions in ACL2 – like (+ T 3) and (< -2 ’MONDAY) – and they
have meaning. In particular, they have well-defined values6. In ACL2, (+ T 3) is equal to
3 and (< -2 ’MONDAY) is T.

In a typed language, like Java, such expressions are just ill-formed. They don’t mean anything
and never get evaluated because you’re not allowed to write them.

If you read the talk about non-numeric arguments above you can figure out that (+ T 3)

evaluates to 3 because the non-numeric argument T is treated as though it were 0. So (+ T

3) = (+ 0 3) = 3.

• Question 51: Explain the value of (< -2 ’MONDAY). •
Even though we will mainly use the natural numbers in this booklet, you should be aware

6By “well-defined” I don’t mean the values necessarily “make sense intuitively” but just that they are
completely specified. In some languages, inappropriate arguments lead to unpredictable answers or behavior.
That doesn’t happen in ACL2.

44 A Little Logic

that the arithmetic functions operate on all numbers. They are not limited to naturals
or “closed” on the naturals. That is, giving them natural numbers for arguments does not
guarantee their results are naturals. For example (- 5 7) is -2 and (/ 15 6) is the rational
5/2, which is a number between 2 and 3.

2.12 Some Simple Definitions (Feb 2)

Here are some functions we’ll use often.

2.12.1 Defined Propositional Functions

(defun and (p q) (if p q nil))

(defun or (p q) (if p p q))

(defun not (p) (if p nil t))

(defun implies (p q) (if p (if q t nil) t))

(defun iff (p q) (and (implies p q) (implies q p)))

(defun booleanp (x)

(or (equal x t)

(equal x nil)))

The first five are called the propositional functions, propositional connectors, or logical op-
erators because they’re used to form “propositions” like “x is a natural and less than y.”
Like all ACL2 functions, they can take any arguments you give them, but they’re meant to
be applied to Booleans.

A propositional formula is an ACL2 formula in which all the function symbols are propo-
sitional (and, or, not, implies, and iff) and the only constants are t and nil. Thus,
(implies (and a b) (not c)) is a propositional formula but (implies (and a (natp

i)) b) is not because it mentions the function natp.

The last function above, booleanp recognizes the two Boolean values, returning t if its
argument is a Boolean and nil otherwise. It is not considered a propositional function but
it is handy to define here.

(And p q) is the conjunction of p and q. It is true if both p and q are true and it is false
otherwise. In (and p q), p and q are called the conjuncts.

Think in terms of people making statements about what they think is true. Suppose I say
“p and q” and that I’m telling the truth. Then you know that p is true and you know that
q is true. Similarly, if either p or q is false, then saying “p and q” is false. The formalization
of “p and q” is (and p q).

What does it mean if I say “1 and 3” as though it were a proposition that was either true or
false? In normal usage, that would be nonsense. But its formalization in ACL2 as “(and 1

3)” has meaning because ACL2 is untyped: functions in ACL2 can be applied to anything,
so “(and 1 3)” means something. You might think (and 1 3) is true because both 1 and
3 are true objects. You would be right, provided you’re thinking of “true” as an adjective.

The ACL2 Programming Language 45

(And 1 3) evaluates to a non-nil object.

• Question 52: What is the value of (and 1 3)? •
It might be hard to work that out from the informal description of (and p q) as the
conjunction of p and q. But it is trivial to work it out from the definition of and.

Given

(defun and (p q) (if p q nil))

we know

(and 1 3)

= {definition}
(if 1 3 nil)

= {since 1 is different from nil}
3

• Question 53: What is (and nil 7)? •
• Question 54: What is (and ’Monday "Hi")? •
When you are not sure what something means, go back to the definition!

The fact that and is not Boolean is very unconventional. ACL2 does it this way only because
that is the ANSI standard for Lisp. We will not exploit the facts that Lisp’s and and or do
not return Booleans.

(Or p q) is the disjunction of p and q. It is true if either (or both) of them is true and
false otherwise. In (or p q), p and q are called the disjuncts.

(Not p) is the Boolean negation of p: (not t) is nil and (not nil) is t. This is also
called the negation or logical negation of p.

(Implies p q) is called an implication. We call p the hypothesis or antecedent and we call
q the conclusion or consequent.

(Implies p q) can be read “if p is true, then q is true.” So when is (implies p q) true?
The best way to answer that question is to look at the definition:

(defun implies (p q) (if p (if q t nil) t))

According to this definition:

1. (implies t t) =⇒ t

2. (implies t nil) =⇒ nil

3. (implies nil t) =⇒ t

4. (implies nil nil) =⇒ t

Remember, T and t are the same symbol; NIL and

nil are the same symbol.

We don’t have to consider other possibilities, such as when p is 23 and q is the string
"Hello, world!" because p and q are just tested by implies. All that matters about their
values is whether they are nil or non-nil.

Now let’s compare each of the four evaluations to the alleged English meaning of (implies
p q): “if p is true, then q is true.” When is such a sentence true?

1. (implies t t) means “if t is true, then t is true.” Surely that is a true statement,
so the evaluation to t makes sense.

46 A Little Logic

2. (implies t nil) means “if t is true, then nil is true.” Surely that is a false state-
ment, because t is true but the conclusion, “nil is true,” is false. This is like me
saying “If 2 + 2 = 4, then 1 = 3. It’s just not so! Thus, the evaluation to nil makes
sense.

3. (implies nil t) means “if nil is true, then t is true.” Clearly, nil is not true. But
it doesn’t matter, because all I conclude is that t is true, which it is. So the sentence
is true. For example, have I lied if I say “if 1 = 3, then 2+2 = 4?” No! The evaluation
to t makes sense. In fact, “if . . ., then t is true” is a true sentence, no matter what
“. . .” is. So (implies α t) is t, no matter what α is.

4. (implies nil nil) means “if nil is true, then nil is true.” Students often have
trouble with this one. But read it literally. If I said “if nil is true, then nil is true”
would I be lying? No! I wouldn’t be saying anything very interesting or informative,
but I’m telling the truth. There is an old English proverb you might have heard that
uses this same kind of reasoning: “If wishes were horses, beggers would ride.” It’s a
true saying because the hypothesis is false. The truth of (implies nil α) doesn’t
depend on α. No matter what you fill in for α, (implies nil α) is true because the
hypothesis is false. So the evaluation to t makes sense.

A valuable lesson is that if (implies p q) is true, it doesn’t mean q is true! Remember
that! It just means q is true if p is true – and it might be true anyway!

The converse of (implies p q) is (implies q p).

The contrapositive of (implies p q) is (implies (not q) (not p)).

Finally (iff p q) means the truth values of p and q are the same. Either they’re both true
or they’re both false. So (iff t t) and (iff nil nil) are both true and (iff t nil)

and (iff nil t) are both false. The name iff stands for “if and only if.” There are many
English phrasings of this. We might say “p is true if and only if q is true,” or “p and q are
propositionally equivalent,” or “p and q are propositionally indistinguishable.”

? ? ? (due Tue, Feb 2) • Question 55: The exclusive or of two arguments is true if exactly

one of the two arguments is true, and false otherwise. It is defined in ACL2 as

(defun xor (p q)

(if p

(if q nil t)

(if q t nil))).

Define an equivalent function, my-xor, whose body only calls the functions and, or, and
not. Evaluate these four calls of your function in ACL2s.

(my-xor nil nil) =⇒ nil

(my-xor nil t) =⇒ t

(my-xor t nil) =⇒ t

(my-xor t t) =⇒ nil •

• Question 56: Write a term that checks whether exactly one of p, q, and r is true. By
checks I mean the term returns true if the condition is true and false otherwise. Do not use
if. •
? ? ? (due Tue, Feb 2) • Question 57: We say x is a singleton if x is cons whose rest

is nil. Define singletonp to recognize singletons. Do not use if. Run your function on

The ACL2 Programming Language 47

these examples in ACL2s.

(singletonp ’()) =⇒ nil

(singletonp ’(Mon)) =⇒ t

(singletonp ’((Hi there))) =⇒ t

(singletonp ’(Hi there)) =⇒ nil

(singletonp 23) =⇒ nil •

• Question 58: We say x is a doublet if it is of the form (α β). Define the recognizer for
doublets, doubletp. Do not use if. Run your function on these examples.

(doubletp ’()) =⇒ nil

(doubletp ’(Mon)) =⇒ nil

(doubletp ’((Hi there))) =⇒ nil

(doubletp ’(Hi there)) =⇒ t

(doubletp ’(Mon Tue)) =⇒ t

(doubletp 23) =⇒ nil •

• Question 59: We say x is text-likep if x is a symbol or a string. However, we don’t
consider the symbols t and nil text-likep. Define the recognizer, text-likep, for text-likep
objects. Do not use if. Run your function on these examples.

(text-likep "Hi") =⇒ t

(text-likep ’temp) =⇒ t

(text-likep t) =⇒ nil

(text-likep nil) =⇒ nil •

? ? ? (due Tue, Feb 2) • Question 60: If something is a cons, then it is equal to the result

of consing its own first and rest together. This statement is always true. (a) Define
the function test-q60 to test this statement for a given object, i.e., to return t or nil to
indicate whether the statement is true for that particular object. Do not use if in your
definition. (b) Test your definition on the following examples.

(test-q60 ’(1 2 3)) =⇒ t

(test-q60 ’(Mon)) =⇒ t

(test-q60 ’((Mon) (Tue) (Wed))) =⇒ t

(test-q60 23) =⇒ t

(c) Is it possible for someone who cannot see how you defined test-q60 to determine whether
it tests the statement made at the beginning of this question? •
• Question 61: If x is not a cons then its first is nil. This statement is always true.
Define the function test-q61 to test it for a given object. Do not use if in your definition.
Test your definition on the following examples.

(test-q61 23) =⇒ t

(test-q61 nil) =⇒ t

(test-q61 ’(Mon)) =⇒ t

(test-q61 ’(Mon Tue)) =⇒ t •

• Question 62: X is equal to 0 or 1. This statement is not always true, but it can still
be said. Define test-q62 to test this statement for a given object. Do not use if in your

48 A Little Logic

definition. Then exhibit an example call that makes it true and an example call that makes
it false.

(test-q62 α) =⇒ t

(test-q62 β) =⇒ nil •

• Question 63: Exactly one of the following is true: x is a cons, a symbol, or a string. This
statement is not always true but it can still be said. Define test-q63 to test this statement
for a given object. Do not use if in your definition. Show an example that makes it true
and one that makes it false.

(test-q63 α) =⇒ t

(test-q63 β) =⇒ nil •

• Question 64: If you have three naturals and they are all different, then adding them up
never produces 0. Say that, without using if. •
??? (due Tue, Feb 2) • Question 65: If you have three naturals and they are all different,

then one is at least the sum of the other two. This statement is not always true. Define
the function test-q65 to test this statement; do not use if in the definition of test-q65.
Show an example that makes it true and an example that makes it false, using ACL2s.

(test-q65 α1 α2 α3) =⇒ t

(test-q65 β1 β2 β3) =⇒ nil •

• Question 66: If x is a cons whose first is y and z is a string, then if the first of x is z,
then y is a string. (a) Define test-q66 to take three arguments and test this statement.
Do not use if in the body of your definition. (b) Does test-q66 always return t? If not,
show an evaluation of (test-q66 α β γ) that is false. •
• Question 67: Conses and strings are disjoint. A way to say this is that if x is a cons
then it isn’t a string, and vice versa. Say that, without using if. •
• Question 68: If one of y and z is a cons and the other is a natural, and if x is either y or
z then x is not text-like. Say that, without using if. You can use the predicate text-likep
from Question 59 (page 47). •
• Question 69: The product of the sum and difference of x and y is positive, provided x

and y are naturals. Say that without using if. •
People are really good at inventing new ways to say the same old things. I guess we get
bored with repetition of patterns of speech. So we might say “if p then q,” but we might
also way “q, provided p,” “q if p,” “when p then q,” and even things like “q or else p is
false.” Get used to it!

• Question 70: Let the parity of a natural be the symbol even or odd with the obvious
meaning. Suppose the function parity returns the parity of its argument. You don’t have
to define parity, just pretend you have. The parity of the sum of two naturals is even if
they have the same parity. Say that, without using if. •
• Question 71: If x and y and their product all have the same parity then all three are
even. Say that, without using if. See the previous question for an explanation of the
function parity. •
There are a couple of natural ways to interpret the last question. People tend to drop
words and assume the reader will fill them in. Did the speaker mean all three are literally

The ACL2 Programming Language 49

even or did the speaker mean the parities of all three are even? There’s no way to know
except to ask. Get used to trying to say precisely what somebody else has said vaguely or
ambiguously!

2.12.2 Defined List Functions

(defun endp (x) (not (consp x)))

Note that (endp x) is just another way to write that x is not a cons. We typically use endp
to recognize when we’ve reached the terminal marker of a list.

• Question 72: We say a triple is a list of the form (x y z). We call the three components
of a triple trip1, trip2, and trip3. Define triplep to recogize triples. Additionally, define
the three accessor functions so that they return nil on non-triples and otherwise return the
respective components of the triple. Here are some examples:

(triplep ’(1 2 3)) =⇒ t

(triplep ’((A B) 2 (Mon Wed Fri))) =⇒ t

(triplep ’(1 2 3 4)) =⇒ nil

(triplep ’(1 2)) =⇒ nil

(triplep ’(1 2 3 . 45)) =⇒ nil

(triplep (cons 1 (cons 2 (cons 3 45)))) =⇒ nil

(trip1 ’(11 22 33)) =⇒ 11

(trip2 ’(11 22 33)) =⇒ 22

(trip3 ’(11 22 33)) =⇒ 33 •

• Question 73: Define set-trip1 so that (set-trip1 x y) returns a triple (see the
previous question) with the same components as x except for its trip1 which is set to y. If
x is not a triple, the set-trip1 returns x as is. Thus, (set-trip1 ’(1 2 3) 55) should
return (55 2 3). But (set-trip1 ’(1 2 3 4 5) 55) returns (1 2 3 4 5). •
•Question 74: Define set-trip2 and set-trip3 analogously to set-trip1 in the previous
question. •
• Question 75: Is the following formula true for all values x? If not, show a value for x

that makes it false.

(implies (consp x) (not (endp x))) •

• Question 76: Is the following formula true for all values x? If not, show a value for x

that makes it false.

(implies (consp x) (equal (endp x) nil)) •

• Question 77: Is the following formula true for all values x? If not, show a value for x

that makes it false.

(implies (and (consp x) (endp x)) (equal x nil)) •

• Question 78: Is the following formula true for all values x? If not, show a value for x

that makes it false.

50 A Little Logic

(implies (endp x) (equal x nil)) •

• Question 79: Is the following formula true for all values x? If not, show a value for x

that makes it false.

(implies (and (equal (first x) nil)

(equal (rest x) nil))

(endp x)) •

• Question 80: Is the following formula true for all values x and y? If not, show values for
x and y that make it false.

(implies (and (consp x)

(equal (first x) (first y))

(equal (rest x) (rest y)))

(and (consp y)

(equal x y)))

• Question 81: Is the following formula true for all values x and y? If not, show values for
x and y that make it false.

(implies (and (consp x)

(consp y)

(equal (first x) (first y))

(equal (rest x) (rest y)))

(equal x y))

2.12.3 Defined Arithmetic Functions

(defun <= (x y) (not (< y x)))

(defun > (x y) (< y x))

(defun >= (x y) (<= y x))

The functions above should be self-explanatory from your knowledge of algebra.

(defun zp (x)

(or (not (natp x)) (equal x 0)))

This definition finally tells you everything there is to know about zp: it is t if x is not a
natural number or is 0, and nil otherwise.

For example, recall

(defun fact (n)

(if (zp n)

1

(* n (fact (+ n -1)))))

We know (fact 3) is (* 3 (* 2 (* 1 1))) = 6, as previously computed on page 14. But
what is (fact -3)? If we had defined fact so that the test were (equal n 0) instead of

The ACL2 Programming Language 51

(zp n), then (fact -3) would run forever and try to compute (* -3 (* -4 (* -5 (* -6

. . .)))). By terminating when (zp n) is reached instead of when 0 is reached, we make
(fact -3) be 1. That is, fact treats all non-natural inputs just as it treats 0.

If we recurse by testing (zp n) and decrement n when the test fails then our recursive
function will always terminate.

A related and often useful function is

(defun nfix (x)

(if (natp x)

x

0))

We think of (nfix x) as “casting” x to a natural number by returning x if x is a natural
and returning 0 otherwise.

2.13 Defining New Functions (Feb 2)

You’ve seen the defun command. Here are a few brief tips.

To introduce a new function f of arity n, do

(defun f (v1 . . . vn)

β)

where

1. f is a symbol that has never been defined before,

2. the vi are variable symbols and no two are the same, and

3. β is an ACL2 term and

(a) every function called by β has already been defined (except for f itself), and

(b) there are no free variables in β except the vi.

4. some natural number measure of the arguments gets smaller every time the function
recurs.

If you try to define a function and ACL2s doesn’t accept it, you’ve probably violated one
of the rules above. The fourth condition insures that the function terminates when run on
any object. If the system rejects a defun because it could not prove termination, switch to
:program mode.

You can tell which mode ACL2 is in by the prompt. If the prompt is

ACL2 !>

then you are in logic mode and you should get into program mode by typing this to the
prompt:

ACL2 !>:program

52 A Little Logic

Then it will be in program mode and the prompt will look like this:

ACL2 p>

Here are some example bad definitions – ones that violate the rules.

(defun cons (x y) (+ x y)) ; Note 1
(defun f (x x) (+ x x)) ; Note 2
(defun even (n) ; Note 3(a)
(if (zp n) t (odd (- n 1))))

(defun odd (n)

(if (zp n) nil (even (- n 1))))

(defun f (x) y) ; Note 3(b)
(defun f (x) (not (f x))) ; Note 4

It should be clear that “definitions” 1 and 2 are “bad.” The first redefines an existing
function (however, see the ACL2 documentation topic u (for undoing a definition) or redef).
The second doesn’t tell us how to evaluate (f 1 2). The reason 3(a) is “bad” is that even
calls odd before odd is defined. But since odd calls even, we can’t introduce odd first either.
This is an example of mutual recursion. We will avoid mutual recursion in this course.
Definition 3(b) is “bad” because the value of (f 3) might be 5 in one execution and 7 in
another, depending on the value of y. Finally, definition 4 is bad because the nothing gets
smaller when we recur. If we were to accept this definition, then we’d have (f x) = (not

(f x)) and if that is true then t= nil.

The restriction that some natural number measure of the arguments get smaller in every
recursive call doesn’t mean some argument gets smaller. Can you think of why this function
terminates?

(defun f (x y)

(if (and (natp x)

(natp y)

(< x y))

(f (+ 1 x) y)

x))

It terminates because the absolute value of the difference of x and y decreases. Since the
“absolute value of the difference” of two naturals is a natural, that’s an acceptable “measure”
of the size of the arguments. The ACL2 definitional principle is actually more powerful than
described here but we won’t go into it.

You may occasionally want to define a function that ignores one or more of its arguments.
But for example, this definition

(defun foo (x) 23)

is rejected by ACL2s. You must tell ACL2 that you are intentionally ignoring an argument.

(defun foo (x)

(declare (ignore x))

23)

With this definition in place, (foo 3) =⇒ 23 and (foo 100) =⇒ 23; i.e., foo is a constant
function of one argument that returns 23.

The ACL2 Programming Language 53

2.14 Recursion on Lists (Feb 4)

In this section I ask you to define some recursive functions on lists. But I answer a few of
the questions myself first. Study my answers before you answer the other questions!

The basic ideas behind all of the recursive functions on lists here are that (a) we’ll use endp

to recognize whether the object we’re exploring is empty or non-empty, (b) if it is empty,
then it is just the terminal marker and we solve the problem for the empty list, (c) if it is
non-empty then it has a first element, accessed by first, and some remaining elements,
accessed by rest. In this case, (c1) we call the function recursively on the rest (when
necessary) and then (c2) process first (as necessary) to convert the smaller solution to the
bigger one. Our functions terminate because the length of the list keeps getting smaller.
Watch!

• Question 82: Define the function len so that (len x) is the number of elements in the
list x. (I.e., (len x) is the number of cons nodes in the spine of x.) For example,

(len nil) =⇒ 0

(len ’(A B C)) =⇒ 3

(len ’((A 1) (B 2) (C 3) (D 4))) =⇒ 4

(len ’((A B C D E F G H I J K L))) =⇒ 1 •

My Thinking: Instead of just giving my answer, I’ll explain my thinking. On this one
problem I will include my “official” answer at the end so you can see what I expect you to
turn in.

This function will be recursive. Is that obvious to you? For me, the intuition is “this
function counts things and I don’t know how many things there’ll be, so I will have to just
keep counting till I get to the end.” Anytime you have a thought like “keep doing something
till you get to the end” you’re going to need recursion to describe it. If you’re going to “keep
doing something” to a list, then you must consider (at least) two cases: is the list empty or
not?

So we can start by writing this:

(defun len (x)

(if (endp x)

α
β))

Now remember the three creative things we have to do: (a) find a small version of the
problem we can solve (the base case), (b) find a way to reduce a big problem to a smaller
one, and (c) find a way to convert the smaller solution to the big solution. Here, α will be
our solution to (a) and β will encode our solutions to (b) and (c). When dealing with lists,
step (b) is almost always to apply the function to the rest of the list.

(a) what is the length of the empty list? Clearly, α should be 0.

(b) If x is not empty, it has a first element and some other elements in (rest x). What
is a smaller version of the problem of finding the number of elements in x? Finding the
number of elements in (rest x) is a smaller problem. We can do that with (len (rest

x)): it is the number of elements in the rest of x.

(c) How can we convert the answer for the smaller problem into the answer for x? Put
differently, how many more elements are there in x than in the rest of x, when x is non-

54 A Little Logic

empty? There is 1 more element in x, namely (first x).

Here’s another way to approach the problem. If x is non-empty, then it is of the form (δ1 δ2
. . .), where δ1 is (first x) and (δ2 . . .) is (rest x). If you’re new at this, you probably
feel stymied because you can’t look at all the elements, you can just look at the “current”
one, δ1, and have an arbitrarily long list of things to go (δ2 . . .). But now imagine a friend
comes up and says, “Hey! I can tell you how many elements are in (δ2 . . .). The answer’s
a.” Your response would probably be a huge sigh of relief, “Cool! I don’t know how you
did that, but it means the answer to my question is a+ 1. Thanks!”

Now realize you always have that friend, ready to solve the smaller problem: it’s you! You
just have to realize that the friend is standing beside you ready to be asked! Furthermore,
your friend can correctly answer the question for any smaller problem!

Putting (b) and (c) together, we see that β is (+ 1 (len (rest x))).

The final answer is thus:

(defun len (x)

(if (endp x)

0

(+ 1 (len (rest x)))))

We can test this with (len ’(Mon Wed Fri)) and get the answer 3. If we try (len nil)

we get 0. These evaluations can be expressed

(len ’(Mon Wed Fri)) =⇒ 3

(len nil) =⇒ 0.

Since this is our first evaluation with lists, let’s go slowly.

The following equations should be obvious, given the definition of (endp x) as (not (consp

x)) and the table of equations on page 39.

(endp ’(Mon Wed Fri)) = nil

(rest ’(Mon Wed Fri)) = ’(Wed Fri)

(endp ’(Wed Fri)) = nil

(rest ’(Wed Fri)) = ’(Fri)

(endp ’(Fri)) = nil

(rest ’(Fri)) = nil

(endp nil) = t

Given those equations and the definition of len we can compute

(len ’(Mon Wed Fri))

= {def len}
(if (endp ’(Mon Wed Fri))

0

(+ 1 (len (rest ’(Mon Wed Fri)))))

= {endp and rest equations above}
(if nil

0

(+ 1 (len ’(Wed Fri))))

= {(if nil . . .)}
(+ 1 (len ’(Wed Fri)))

= {len and steps analogous to above}

The ACL2 Programming Language 55

(+ 1 (+ 1 (len ’(Fri))))

= {len and steps analogous to above}
(+ 1 (+ 1 (+ 1 (len nil))))

= {len}
(+ 1 (+ 1 (+ 1 (if (endp nil)

0

(+ 1 (len (rest nil)))))))

= {endp equation above}
(+ 1 (+ 1 (+ 1 (if t

0

(+ 1 (len (rest nil)))))))

= {(if t . . .)}
(+ 1 (+ 1 (+ 1 0)))

= {arithmetic}
3

Since

(endp x) = (not (consp x))

we could use replacement of equals by equals to derive this definition of len:

(defun len (x)

(if (not (consp x))

0

(+ 1 (len (rest x)))))

Since

(if (not x) y z) = (if x z y)

we could use replacement of equals by equals to derive this

(defun len (x)

(if (consp x)

(+ 1 (len (rest x)))

0))

All these definitions are equivalent, and we can use familiar replacement of equals by equals
to derive one from the other. This is a trivial illustration of why logic is so important to
computer science:

Programs are just mathematical statements and their properties can be derived
using symbolic manipulation like you learned in algebra.

The only problem is that the “mathematics” of Java and C++ and other commercial lan-
guages are so complicated you can’t easily learn the math skills by using them. But if you
learn the math skills in a simpler setting like ACL2, you can apply them to your program-
ming in other languages.

Returning to the question of defining len, a slightly different way to solve this problem
comes from thinking like this: “Suppose we want to find the number of elements in x by
scanning down x and counting. Let i be the number of elements we’ve seen so far. Then

56 A Little Logic

when we reach the end of x, the answer is i. Otherwise, we should step past the current
element of x, increment i by 1, and keep scanning.” This translates into the following code:

(defun len1 (x i)

(if (endp x)

i

(len1 (rest x) (+ 1 i))))

Note that the function len1 takes two arguments, the current x, and the current i. I claim
that (len1 x 0) is the same as (len x).

More generally, (len1 x i) is (len x)+i, that is, (len1 x i) computes the number of
elements of x plus whatever value of i you start with. We’ll see how to prove this later.

Functions like len1 are called accumulator functions because they have “extra” arguments
that accumulate the running answer. Those extra arguments are also called accumulators.
It is actually a little harder to reason about them than about functions like len, because
they come from thinking about a “process” for solving a problem rather than what the
“solution” is. But (len1 x 0) is a mathematically correct answer and is equivalent to all
the versions of (len x) we’ve seen.

My Answer: Finally, what would I turn in if asked to do this problem? I’d do the problem
in ACL2s and show the grader that I had done so. I’d also test my answer with the same
examples given the problem. (And maybe more if I felt that those examples didn’t illustrate
all the aspects of my definition.) Here is the transcript of my ACL2s Eclipse session after
defining one of the correct versions of len.

ACL2 p>EVENT

(defun len (x)

(if (endp x)

0

(+ 1 (len (rest x)))))

Summary

Form: (DEFUN LEN ...)

Rules: NIL

Warnings: None

Time: 0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)

LEN

ACL2 p>(len nil)

0

ACL2 p>(len ’(A B C))

3

ACL2 p>(len ’((A 1) (B 2) (C 3) (D 4)))

4

ACL2 p>(len ’((A B C D E F G H I J K L)))

1

ACL2 p>(len 45)

0

This transcript of my session shows the grader that my definition is syntactically ok and
that, whether right or wrong, it at least computes the expected answers on the examples
given in the problem.

Note: The above session can’t actually be carried out in ACL2 because the function len is

The ACL2 Programming Language 57

pre-defined. But you could carry out an analogous session if you changed the name len to
my-len.

• Question 83: We call a list whose terminal marker is nil a true list. Define true-listp

to recognize true lists. Here are some examples:

(true-listp nil) =⇒ t

(true-listp 45) =⇒ nil

(true-listp ’(Mon Wed Fri)) =⇒ t

(true-listp ’(1 2 3)) =⇒ t

(true-listp ’(1 2 3 . 45)) =⇒ nil •

Since I don’t want you to have to read dot notation, I could rephrase the last test as

(true-listp (cons 1 (cons 2 (cons 3 45)))) =⇒ nil •

My Thinking: I can think of two obvious ways to define this function. The first way is a
direct translation of the definition of “true list:” x is a true list if the terminal marker of x
is nil. Suppose I had already defined terminal-marker to return the terminal marker of
an object. Then here’s the “direct translation”

(defun true-listp (x)

(equal (terminal-marker x) nil))

This function clearly returns t if the terminal marker is nil and it returns nil if the terminal
marker is anything else. So it is a recognizer for the condition “is the terminal marker nil?”

But I must define terminal-marker. The terminal marker of something is the first non-cons
you encounter down the spine. So suppose we’re trying to find the terminal marker of x.
If x is empty, x is the terminal marker. Otherwise, we have an x of the form (δ1 δ2 . . .)
where we’re looking for the terminal marker at the end of those dots. What do we do? But
your friend is there and says “Hey, I can tell you the terminal marker of (δ2 . . .)! It’s a.”
And so, yet again, you say “Cool! I don’t know how you did that, but it means my answer
is a! Thanks!” So our definition is

(defun terminal-marker (x)

(if (endp x)

x

(terminal-marker (rest x))))

If we test this with (terminal-marker ’(1 2 3)) we get the correct answer, nil. That’s
reassuring but it would be nice to test it on some object whose terminal marker was not
nil. I promised I wouldn’t expect you to deal the printed forms of such objects. But here
is a test that avoids using the printed form:

(terminal-marker (cons 1 (cons 2 (cons 3 45)))) =⇒ 45.

So, testing the definition of true-listp

(true-listp ’(1 2 3)) =⇒ t

(true-listp ’(1 2 3 . 45)) =⇒ nil

(true-listp (cons 1 (cons 2 (cons 3 45)))) =⇒ nil

There’s a second way to define true-listp: forget about inventing terminal-marker and

58 A Little Logic

make true-listp answer the question itself. If x is empty, then it’s a true list if it’s nil.
Otherwise, . . . “Hey! I can tell you whether (rest x) is a true list.”

(defun true-listp (x)

(if (endp x) ; if we’re at the end,

(equal x nil) ; see if x is nil

(true-listp (rest x)))) ; else, look at rest

As before, we could rearrange this in numerous ways and still get the correct answer. Fur-
thermore, the first and second definitions of true-listp are equivalent and you’ll learn how
to prove that (see Question 224, page 157).

Note: The function true-listp is pre-defined in ACL2.

• Question 84: Define the function mem so that (mem e x) is t if e is an element of the
list x and nil otherwise. For example:

(mem 2 nil) =⇒ nil

(mem 2 ’(1 2 3)) =⇒ t

(mem 2 ’(1 3 5)) =⇒ nil

(mem 2 ’((A 1) (B 2) (C 3))) =⇒ nil

(mem ’(B 2) ’((A 1) (B 2) (C 3))) =⇒ t •

My Thinking: When you’re defining a function with more than one argument you have
to decide which argument to reduce. If you’re looking for e in x, the question is do you look
for the rest of e in x or do you look for e in the rest of x? I don’t see how looking for the
rest of e can help me. Even if I find it somewhere in x, it doesn’t mean that e is in x. So
I’m going to do my case analysis on x: either it’s empty or it’s not.

When x is empty, is e an element of it? No. So far we have:

(defun mem (e x)

(if (endp x)

nil

β))

Now what? At β we know that x is not empty. So x is of the form (δ1 δ2 . . .), where n > 0,
(first x) is δ1 and (rest x) is (δ2 . . .). How can we solve the problem of whether e is
among the δi if don’t even know how many δi there are? Don’t think like that!

Your friend can tell you if e is among the (δ2 . . .). So your thinking should be: “If e is
δ1, then the answer is t because e is in x; otherwise, I’ll ask my friend to solve the smaller
problem.”

Putting this reasoning into code gives

β:
(if (equal e (first x))

t

(mem e (rest x))).

Our answer is thus:

(defun mem (e x)

(if (endp x)

nil

The ACL2 Programming Language 59

(if (equal e (first x))

t

(mem e (rest x)))))

Thus, (mem ’Wed ’(Mon Wed Fri)) is t and (mem ’Sun ’(Mon Wed Fri)) is nil.

Is nil a member of (Mon Wed Fri)? Some students will say yes, because the see a nil in
this picture:

Fri

Mon

nil

Wed

But that nil is not an element! It is the terminal marker. The elements “hang off the
spine.”

Note that β is the same as “either e is (first x) or e is a member of (rest x).” This
could be written as β′ below:

β′:

(or (equal e (first x))

(mem e (rest x)))

I can convince you that β is the same as β′ as follows:

β′

=
(or (equal e (first x))

(mem e (rest x)))

= {def of}r (page 44)}
(if (equal e (first x))

(equal e (first x))

(mem e (rest x)))

= {since we know (equal e (first x)) is}
on the true branch of an if testing it}

(if (equal e (first x))

t

(mem e (rest x)))

=
β

So we could have written mem this way:

(defun mem (e x)

60 A Little Logic

(if (endp x)

nil

(or (equal e (first x))

(mem e (rest x)))))

and it would be correct. As we’ve seen, we could also rearrange this using the definitions of
endp, first, rest, properties of if, etc., and be sure our new code is equivalent to the old
code.

The definition of mem illustrates an important point: Sometimes to “convert the solution
to the smaller problem into the solution of the bigger problem” we have to do some case
analysis – we have to use if. Many students just look for “one thing” they can “do” to the
smaller solution to turn it into the bigger one. Don’t think that way. Your friend and you
are partners and you have to do your part!

Note: The function mem is not pre-defined in ACL2, but there is a very similar function
named member. However, I recommend that you define mem because it always returns t or
nil; member is more complicated and returns “where” it finds e in x.

• Question 85: Recall the discussion of the function long-day-name on page 35. This
function takes a “short day name” and returns the full name of the day, or nil if we
can’t make sense of the short name. It uses a built-in constant to establish the various
abbreviations:

((SUNDAY 1 SUN SU)

(MONDAY 2 MON M)

(TUESDAY 3 TUE TU)

(WEDNESDAY 4 WED W)

(THURSDAY 5 THU TH THUR THURS)

(FRIDAY 6 FRI F)

(SATURDAY 7 SAT SA)).

Define long-day-name. For example:

(long-day-name 4) =⇒ WEDNESDAY

(long-day-name ’WED) =⇒ WEDNESDAY

(long-day-name ’THUR) =⇒ THURSDAY

(long-day-name ’S) =⇒ NIL •

My Thinking: One way to solve this problem is so totally hideous I mention it only to
discourage you from doing such things:

(defun long-day-name (x)

(if (or (equal x ’SUNDAY)

(equal x 1)

(equal x ’SUN)

(equal x ’SU))

’SUNDAY

(if (or (equal x ’MONDAY)

(equal x 2)

. . .)
’MONDAY

. . .)))

The ACL2 Programming Language 61

where the function returns nil at the very bottom if x is not equal to any of the names.
This is a terrible way to code because if the database is changed, we might have to inspect
every line.

It is much more elegant to imagine that we don’t know what’s in the database. Elegance
matters. The simpler our definition, the more likely it’s correct and the easier it is to modify.

So I will choose to write a general purpose function that searches a list of list and finds the
first element containing the thing we’re looking for, or returns nil if it’s not there. Let’s
call the general function search-for-day-name. Then my definition of long-day-name will
be:

(defun long-day-name (x)

(search-for-day-name x

’((SUNDAY 1 SUN SU)

(MONDAY 2 MON M)

(TUESDAY 3 TUE TU)

(WEDNESDAY 4 WED W)

(THURSDAY 5 THU TH THUR THURS)

(FRIDAY 6 FRI F)

(SATURDAY 7 SAT SA))))

But now my problem is to define a search-for-day-name. The basic idea is to look for the
first argument, x, as an element of an element of second argument, db. If the database is
empty, then x isn’t an abbreviation for any day in it and I should return nil. Otherwise, I
have to determine whether the first element of db contains x and answer appropriately if
it does. Otherwise, I can ask my friend to search the rest of the database.

(defun search-for-day-name (x db)

(if (endp db)

nil

(if α
β
(search-for-day-name x (rest db)))))

This “glue code” searches down db and returns nil if I get to the end without ever finding
x. The test α determines if x is an element of the first element of db. If so, β returns the
“long day name” extracted from that element.

How do I determine if x is an element of some list? I use the function we already wrote,
mem! And what is the long day name corresponding to an element of the database? It is the
first element of that element. So my answer is

(defun search-for-day-name (x db)

(if (endp db)

nil

(if (mem x (first db))

(first (first db))

(search-for-day-name x (rest db)))))

This is a very elegant solution that allows us easily to change the abbreviations or even use
the function to resolve other kinds of abbreviations, like month names, nicknames, etc.

There were two keys to making this elegant. The first was deciding to tackle the general
problem of searching a list of lists instead of coding up the particular database we were

62 A Little Logic

given. The second was recognizing that we already had mem for answering the key question
of whether x is in one of the lists of abbreviations.

The sign of a good programmer is that he or she invents the functions needed to make
definitions elegant.

I can’t resist, however, showing you the code I’d write. First, I wouldn’t invent “search--
for-day-name” because my database might not be about day names! Since all my function
does is determine whether x is a member of a member of a list of lists, I’d call it mem-mem. I
would define it to return the “winning” element, not the first element of the winning element.
That way I could let the caller decide what to do with the list of equivalent abbreviations.
(Maybe some callers would want the “day number” rather than the long day name.) So my
subfunction would be

(defun mem-mem (x db)

(if (endp db)

nil

(if (mem x (first db))

(first db)

(mem-mem x (rest db)))))

• Question 86: Define nth so that (nth i x) is the ith element of x, where indexing
starts at 0. You may assume that i is a natural number that is not too big.

(nth 0 ’((A 1) (B 2) (C 3))) =⇒ (A 1)

(nth 1 ’((A 1) (B 2) (C 3))) =⇒ (B 2)

(nth 2 ’(A B C D)) =⇒ C

I don’t care what value is returned by (nth 7 ’(A B C D)) because 7 is too big an index
for that list. •
My Thinking: Once again, we have a two argument function. Will we recurse into i or
into x? We’ll consider both choices, starting with i.

Since i is a natural number, the obvious base case is when (zp i) is true. But we know
what the 0th element of x is: it is (first x) if x is non-empty. If x is empty, we don’t care
what the function returns and so I’ll return 23! So I’ve got this so far:

(defun nth (i x)

(if (zp i)

(if (endp x)

23

(first x))

β)).

where β handles the case for i> 0. If x is empty, then i is too big and I’ll return 23. But
now what?

Since (i-1) is smaller than i, we could ask our friend to give us the (i − 1)th element of
x. But that doesn’t help! If we’re looking for the 3rd element of x, it doesn’t help to know
what the 2nd element is! But, if x is not empty, then the 3rd element of x is the 2nd element
of (rest x).

The ACL2 Programming Language 63

x
︷ ︸︸ ︷

(δ0 δ1 δ2 δ3 . . .)
︸ ︷︷ ︸

(rest x)

So if x is not empty, we’ll ask our friend to give us the (i− 1)th element of (rest x). Re-
member he or she claims to be able to answer any smaller question of this kind. Translating
this to code and filling in β gives us:

(defun nth (i x)

(if (zp i)

(if (endp x)

23

(first x))

(if (endp x)

23

(nth (- i 1) (rest x)))))

If you test this definition you get these results:

(nth 0 ’(A B C D E)) =⇒ A

(nth 1 ’(A B C D E)) =⇒ B

(nth 3 ’(A B C D E)) =⇒ D

(nth 7 ’(A B C D E)) =⇒ 23

We can clean this definition up by making a different choice for our “don’t care” answer.
Take the case where i is 0. Why test whether x is empty? (first x) returns something
whether x is empty or not. We can just skip that first (endp x) test and let our “don’t care”
answer be whatever first returns when its argument is empty. Similiarly, if our notion of
the “size” of the problem is just the size of i, then the problem solved by (nth (- i 1)

(rest x)) is smaller than that solved by (nth i x), whether x is empty or not. We’re
giving our friend a smaller i and that is all that matters.

This reasoning gives rise to a new definition. This definition is not equivalent to the one
above because the “don’t care” answer is different. But I like this definition better and so
I’ll undo the definition above and use this one.

(defun nth (i x)

(if (zp i)

(first x)

(nth (- i 1) (rest x))))

If you test this definition you get the same results on all the normal tests but a different
“don’t care” result.

(nth 0 ’(A B C D E)) =⇒ A

(nth 1 ’(A B C D E)) =⇒ B

(nth 3 ’(A B C D E)) =⇒ D

(nth 7 ’(A B C D E)) =⇒ nil

The reason it returns nil is that (first nil) = (rest nil) = nil, by the definitions of
first and rest.

64 A Little Logic

Remember that we didn’t know whether to recur on i or x and we were going to consider
both choices. We’ve just finished considering i.

If we recur on x, we must ask whether it is empty. If so, we want its ith element, but there
isn’t one. Using our new “don’t care” choice of nil, the answer is nil. If x is non-empty,
then its ith element depends on i. If i is 0, then the ith element of x is (first x). If i
is not 0, we can recur just as before and ask our friend for the (i − 1)th element of (rest
x). The translation to code is:

(defun nth (i x)

(if (endp x)

nil

(if (zp i)

(first x)

(nth (- i 1) (rest x)))))

This function has exactly the same behavior as the previous definition. In fact, we can prove
they are equivalent.

Note: The function nth is pre-defined in ACL2.

• Question 87: Define del1 so that (del1 e x) returns a list with the same elements
as x except that the first occurrence of e is missing. If e isn’t a member of x, del1 should
return x. You may assume x is a true list. The name “del1” means “delete one occurrence.”

(del1 ’B ’(A B C B D)) =⇒ (A C B D)

(del1 ’B ’(A C B D)) =⇒ (A C D)

(del1 ’B ’(A C D)) =⇒ (A C D)

(del1 ’(B 2) ’((A 1) (B 2) (B 2 3) ((B 2)))) =⇒ ((A 1) (B 2 3) ((B 2)))

(del1 ’(B 2) ’((A 1) (B 2 3) ((B 2)))) =⇒ ((A 1) (B 2 3) ((B 2))) •

My Thinking: Recall mem

(defun mem (e x)

(if (endp x)

nil

(if (equal e (first x))

t

(mem e (rest x)))))

The function del1 will be like mem, so I’ll use it as a template:

(defun del1 (e x)

(if (endp x)

α
(if (equal e (first x))

β
γ)))

This is a common practice: find a function like the one you want and “modify” it.

There are three cases: α: x is empty, β: x is a cons whose first element is e, and γ: x is a
cons whose first element is not e. Remember what (del1 e x) is supposed to be: x with
the first e deleted.

The ACL2 Programming Language 65

α: If x is empty, (del1 e x) is x with the first e deleted. But there are no e’s in the empty
list, so we can return nil or (equivalently) x, since x is empty.

β: If x is (δ1 δ2 . . .), where e is δ1, then x with the first e deleted is just (δ2 . . .), which
is (rest x).

γ: If x is (δ1 δ2 . . .), where e is not δ1, then x with the first e deleted has δ1 as its first
element (because it is not e!) and then has the rest of x with the first e deleted. That
“rest” part is just delivered by our friend. We build our answer by using cons to add δ1
back onto the front of that answer.

(defun del1 (e x)

(if (endp x)

nil ; α
(if (equal e (first x))

(rest x) ; β
(cons (first x) ; γ

(del1 e (rest x))))))

If we test it we get the answers expected:

(del1 ’C ’(A B C A B C)) =⇒ (A B A B C)

(del1 ’C ’(A B A B C)) =⇒ (A B A B C)

(del1 ’C ’(A B A B)) =⇒ (A B A B)

2.15 Practice, Practice, Practice (Feb 9)

• Question 88: Define del* so that (del* e x) returns a list like x but with all occur-
rences of e missing. For example

(del* 1 NIL) =⇒ NIL

(del* 1 ’(1 2 3 1 4)) =⇒ (2 3 4)

(del* ’A ’(A A A)) =⇒ NIL

(del* 7 ’(1 2 3 1 4)) =⇒ (1 2 3 1 4) •

? ? ? (due Tue, Feb 9) • Question 89: The concatenation of two lists x and y is the

list whose first n elements are those of x and whose remaining elements are those of y,
where n is the number of elements in x. Define the function app so that (app x y) is the
concatentation of x and y and demonstrate your definition on the following examples.

(app NIL ’(1 2 3)) =⇒ (1 2 3)

(app ’(1 2 3) NIL) =⇒ (1 2 3)

(app ’(1 2 3) ’(4 5 6)) =⇒ (1 2 3 4 5 6)

(app ’(1 2 3) ’(1 2)) =⇒ • (1 2 3 1 2) •

• Question 90: Define no-dups so that (no-dups x) is true if and only iff x is a true list
containing no duplicate elements. For example

(no-dups ’(a b c)) =⇒ T

(no-dups ’(a b a c)) =⇒ NIL

(no-dups ’((a 1) a 1)) =⇒ T

66 A Little Logic

(no-dups ’((a 1) (a 1) (b 2)) =⇒ T •

• Question 91: Define rem-dups so that (rem-dups x) is list with the same elements as
x but in which no element occurs more than once. I don’t care which order the elements
are in when you’re done. For example

(rem-dups ’(a b a c b b d)) =⇒ (A B C D)

(rem-dups ’(1 1 1 2 2 2)) =⇒ (1 2)

(rem-dups ’(1 2 3 4)) =⇒ (1 2 3 4)

(rem-dups ’((A 1) (B 2) (A 1) (B 3))) =⇒ ((A 1) (B 2) (B 3))

Note that since I don’t care which order you list the surviving elements, a correct answer
might not pass the tests above. For example, another correct answer to the first evaluation
above could be

(rem-dups ’(a b a c b b d)) =⇒ (A C B D)

depending on the algorithm you use. Note also that since we don’t distinguish case in
symbols, I might have written this last example like this and meant the same thing:

(rem-dups ’(a b a c b b d)) =⇒ (a c b d) •

? ? ? (due Tue, Feb 9) • Question 92: Define the function rev so that (rev x) is the

reverse of the list x, and demonstrate your definition on the following examples. For example

(rev nil) =⇒ nil

(rev ’(A)) =⇒ (A)

(rev ’(A B C)) =⇒ (C B A)

(rev ’((A 1 2) (B 3 4) (C 5 6)) =⇒ ((C 5 6) (B 3 4) (A 1 2))

Hint: If your definition of rev behaves like this:

(rev ’(1 2 3)) =⇒ (((NIL . 3) . 2) . 1)

it is wrong!. The dots tell you you’re consing something onto a non-list. •
? ? ? (due Tue, Feb 9) • Question 93: Define the function how-many so that (how-many

e x) counts the number of times e occurs as an element of the list x, and demonstrate your
definition on the following examples.

(how-many ’A ’(A B A C A A)) =⇒ 4

(how-many ’Z ’(A B A C A A)) =⇒ 0

(how-many ’A ’((A 1) (B 2) (A 3))) =⇒ 0

(how-many ’(A 1) ’((A 1) (B 2) (A 3))) =⇒ 1 •

• Question 94: One list is said to be a subset of another if every element of the first list is
an element of the second. Define subeq so that (subeq x y) checks whether x is a subset
of y, returning t or nil. By the way, in normal mathematics, this relation is defined on
sets, not lists, and is written x ⊆ y. For example

(subeq ’(1 3 5) ’(1 2 3 4 5 6)) =⇒ t

(subeq ’(3 5 1) ’(1 2 3 4 5 6)) =⇒ t

(subeq ’(3 55 1) ’(1 2 3 4 5 6)) =⇒ nil

(subeq ’(3 3 3) ’(3 2)) =⇒ t •

The ACL2 Programming Language 67

• Question 95: The subset relation on lists is transitive. That is, if x is a subset of y and
y is a subset of z, then x is a subset of z. Say that in ACL2. •
• Question 96: Define same-elements so that (same-elements x y) is true if lists x

and y have the same elements, i.e., every element in x is in y and vice versa. Note that two
lists can have the same elements and not be equal! In fact, a short list can have the same
elements as a long list (because of duplications). For example

(same-elements ’(1 2) ’(2 2 2 1 1 1)) =⇒ t

(same-elements ’(1 2 3) ’(3 2 1)) =⇒ t

(same-elements ’(1 2 2 3) ’(3 3 3 2 1)) =⇒ t

(same-elements ’(1 2 2 4) ’(3 3 3 2 1)) =⇒ nil

(same-elements ’(1 2 2 3) ’(3 5 3 2 1)) =⇒ nil •

• Question 97: The union of two lists is the list that contains all the elements of each
and no other elements. Define unn so that (unn x y) is the union of x and y. I don’t care
what order you list the elements in nor whether you introduce duplications. By the way, in
normal mathematics, this operation is defined on sets and is written x ∪ y. For example

(unn ’(1 3 5) ’(0 2 4)) =⇒ (1 3 5 0 2 4)

(unn ’(1 3 5) ’(1 2 4)) =⇒ (3 5 1 2 4)

(unn ’(A B A) ’(B C D)) =⇒ (A B C D)

(unn ’(A B) ’((A B))) =⇒ (A B (A B))

Note that since I don’t care about the order or duplications among the elements in the
final answer, a correct function could evaluate differently. For example, this would also be
acceptable:

(unn ’(1 3 5) ’(0 2 4)) =⇒ (5 3 1 0 2 4) •

• Question 98: The intersection of two lists is the list that contains just the objects that
are in both. Define int so that (int x y) is the intersection of x and y. I don’t care about
order or duplications. By the way, in normal mathematics, this operation is defined on sets
and is written x ∩ y. For example

(int ’(1 3 5) ’(0 2 4)) =⇒ nil

(int ’(1 3 5) ’(1 2 3)) =⇒ (1 3)

(int ’(s m t w t f s) ’(s s)) =⇒ (S)

(int ’(A B) ’((A B))) =⇒ nil

Note that since I don’t care about order or duplications, your results may vary and still be
correct. •
• Question 99: The difference between two lists is the list that contains the elements of
the first that are not in the second. Define diff so that (diff x y) is the difference of x
and y. I don’t care about order or duplications. By the way, in normal mathematics, this
operation is defined on sets and is written x \ y. For example

(diff ’(1 2 3 4 5 6) ’(0 2 4)) =⇒ (1 3 5 6)

(diff ’(1 1 2 2 3 3) ’(2)) =⇒ (1 1 3 3)

(diff ’(A B C) nil) =⇒ (A B C)

(diff ’(1 1 2 2) ’(2 2)) =⇒ (1 1)

68 A Little Logic

Since I don’t care about order or duplications, your results may vary and still be correct. •
In the next few questions, I use the notion of a “2-column table.” A 2-column table is a list
in which each element is of the form (κ τ), where κ is called a key and τ is called a value.
For example, here is a 2-column table:

((A 27)

(B 14)

(D 33)

(A 7)

(E 45))

In the material below I will refer to “table” and mean a “2-column table.” You can imagine
what I mean by a 3-column table, etc.

Note that that a key may occur twice in a table. We say that the first element of the
table with key κ binds κ to the value associated with that κ in that element. For example,
the element (B 14) above binds B to 14. The element (A 27) binds A to 27. The second
occurrence of the key A above is irrelevant. Keys and values can be any kind of object.

It is not a coincidence that we say a “a variable is bound in the environment” and we say
that “a key is bound in a table.” An environment is just a 2-column table binding variable
symbols to their values.

• Question 100: Define tablep to recognize tables. For example

(tablep ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ t

(tablep ’((A 27) (B 14 15) (C 33) (A 7) (E 45))) =⇒ nil

(tablep ’((A 27) (B 14) (C) (A 7) (E 45))) =⇒ nil

(tablep ’(((A 1) 27) ((B 2) 14) (B 2))) =⇒ t •

• Question 101: Define in-tablep to take k and a table table and return t or nil

depending on whether k is bound in table. For example,

(in-tablep ’E ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ t

(in-tablep ’D ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ nil

(in-tablep ’(A 27) ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ nil

(in-tablep ’(B 2) ’(((A 1) 27) ((B 2) 14) (B 2))) =⇒ t •

• Question 102: Define lookup to take k and a table and to return the value to which k

is bound in table, if k is bound. I don’t care what value is returned if k is not bound. For
example,

(lookup ’E ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ 45

(lookup ’A ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ 27

(lookup ’B ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ 14

(lookup ’(B 2) ’(((A 1) 27) ((B 2) 14) (B 2))) =⇒ 14

(lookup ’B ’(((A 1) 27) ((B 2) 14) (B 2))) =⇒ 2 •

A table is often called a map in computer science, because it “maps” keys to values. Given
a map, the domain is the list (“set”) of keys. The range is the list (“set”) of values. The
image of x in a table table is the value associated with x if x is bound in table and is x

otherwise. (Note: More commonly in mathematics, the “image” of an object not bound in

The ACL2 Programming Language 69

the given table is left undefined.)

• Question 103: Define domain to take a table and return its domain. (I don’t care about
the order or duplications.) For example

(domain ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ (A B C E)

(domain ’(((A 1) 27) ((B 2) 14) (B 2))) =⇒ ((A 1) (B 2) B)

(domain ’((A 1) (B 2) (A 3) (B 4) (C 5)))=⇒ (A B C)

Since I don’t care about order or duplications, your results may vary and still be correct. •
• Question 104: Define range to take a table and return its range. (I don’t care about
the order or duplications.) For example

(range ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ (27 14 33 45)

(range ’(((A 1) 27) ((B 2) 14) (B 2))) =⇒ (27 14 2)

(range ’((A 1) (B 2) (A 3) (B 4) (C 5)))=⇒ (1 2 5)

Since I don’t care about order or duplications, your results may vary and still be correct.
Note however that “duplicate bindings” after the first do not contribute to the range! For
example, 7 is not in the range of the first table above, because there is no key that maps to
7. (A is mapped to 27.) •
• Question 105: Define image to take an object and a table and return the image of the
object. For example

(image ’C ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ 33

(image ’D ’((A 27) (B 14) (C 33) (A 7) (E 45))) =⇒ D

(image ’(B 2) ’(((A 1) 27) ((B 2) 14) (B 2))) =⇒ 14

(image ’(A 3) ’(((A 1) 27) ((B 2) 14) (B 2)))=⇒ (A 3) •

• Question 106: Define make-table so that given a list of keys and a list of values of
the same length, it returns a table in which each key is associated with the corresponding
value. For example

(make-table ’(A B C) ’(1 2 3)) =⇒ ((A 1) (B 2) (C 3))

(make-table ’(A B A C) ’(1 2 7 3)) =⇒ ((A 1) (B 2) (A 7) (C 3)) •

• Question 107: Define findpos so that (findpos e x) returns a natural number i such
that (nth i x) is e, if e is an element of x; if e is not an element of x, return nil. Note:
Lisp programmers use functions like this to answer “two questions at once:” Is e an element
of x? What’s the index of e in x? Such functions exploit Lisp’s ability to use non-Booleans
in tests. One might write

(if (findpos e x) (+ (findpos e x) . . .) . . .)

in which (findpos e x) is used as an expression of both “type Boolean” and “type Nat.”
For example

(findpos ’A ’(A B C D E C)) =⇒ 0

(findpos ’C ’(A B C D E C)) =⇒ 2

(findpos ’G ’(A B C D E C)) =⇒ nil

(findpos ’(A 2) ’((A 0) (A 1) (A 2) (A 3))) =⇒ 2

70 A Little Logic

Note there is some ambiguity in this specification. A correct answer to the second example
above could be 5 instead of 2. •
• Question 108: Suppose x is a list of lists, like ((a b) (c d e) (x y z)). Define
add-to-each so that (add-to-each e x) will cons e onto the front of each element in x.
For example

(add-to-each ’A ’(nil nil nil)) =⇒ ((A) (A) (A))

(add-to-each ’A ’((1) (2) (3))) =⇒ ((A 1) (A 2) (A 3))

(add-to-each ’B ’((A 1) (A 2) (A 3)) =⇒ ((B A 1) (B A 2) (B A 3))

(add-to-each nil ’((1) (1 2))) =⇒ ((NIL 1) (NIL 1 2)) •

? ? ? (due Tue, Feb 9) • Question 109: Two lists are permutations of each other if

you can get one of the lists by rearranging the order of the elements in the other. If x

is a permutation of y then it follows that y is a permutation of x. Define perm so that
(perm x y) recognizes whether x and y are permutations of each other, and demonstrate
your definition on the example evaluations given below. Hint: One way to do this is to
check that every element that occurs in either list occurs the same number of times in both.
Another way is to repeatedly find and delete identical elements from the two lists. Here is
a suggestive trace of a successful check:

(A B B C) versus (B A C B)

(B B C) versus (B C B)

(B C) versus (C B)

(C) versus (C)

() versus ()

(A B B C) versus (B A C C)

(B B C) versus (B C C)

(B C) versus (C C)

Success is when both lists are exhausted at the same time. Failure occurs if an element of
one list is not an element of the other.

(perm ’(A B C) ’(B C A)) =⇒ t

(perm ’(A B C) ’(B C A A)) =⇒ nil

(perm ’(A B C) ’(C A)) =⇒ nil

(perm ’(A B A C B) ’(A A B B C)) =⇒ t

To follow this suggestion you will need to define and use mem (page 58) and del1 (page 64).
•
• Question 110: How many permutations are there of the list (a b c)? •
• Question 111: Suppose list x contains no duplications. How many permutations of x

are there? •
In the following questions, you need to know about an ACL2 function we won’t use elsewhere.
Lexorder is like “less than or equal” except instead of just being able to determine if one
number is smaller than (or equal to) another, lexorder can consider any two ACL2 objects
and determine whether the first is smaller than (or equal to) the second. Lexorder imposes
what is called a “total ordering” on all ACL2 objects.

We discuss orderings later. But an important property of lexorder is that if (lexorder x

y) and (lexorder y x), then (equal x y). That is, if x “≤” y and y “≤” x, then x is y.

The ACL2 Programming Language 71

Lexorder considers numbers smaller than characters, characters smaller than strings, strings
smaller than symbols, and symbols smaller than lists; within those categories, lexorder
uses an alphabetic-like ordering. So 1 comes before ALPHA, which comes before Monday,
which comes before (APPLE). That is (lexorder 1 ’alpha) is t, as are (lexorder ’alpha

’monday) and (lexorder ’monday ’(APPLE)). (Lexorder ’BRAVO ’ALPHA) is nil.

??? (due Tue, Feb 9) • Question 112: Define ordp so that (ordp x) determines whether

the list x is in weakly ascending order, where the order is determined by lexorder. See
the paragraphs above this question for a discussion of that function. Demonstrate your
definition on the following examples.

(ordp ’(1 2 3 4)) =⇒ t

(ordp ’(1 1 1 2 2 4 5)) =⇒ t

(ordp ’(1 2 2 4 3 5)) =⇒ nil

(ordp ’(ALPHA BRAVE BRAVO CHARLIE DOG)) =⇒ t

(ordp ’(ALPHA BRAVO BRAVE CHARLIE DOG)) =⇒ nil •

• Question 113: How many ordered (in the sense of ordp) permutations of x are there?
See Question 109 (page 70) for the definition of perm. •
? ? ? (due Tue, Feb 9) • Question 114: Define insert so that (insert e x) returns the

list x with e added as a new element. In addition, if x is ordered (by ordp from Question 112,
page 71) then so is (insert e x). Demonstrate your definition on the following examples.

(insert 3 ’(1 1 2 2 4)) =⇒ (1 1 2 2 3 4)

(insert ’BRAVE ’(ALPHA BRAVO DOG)) =⇒ (ALPHA BRAVE BRAVO DOG)

(insert ’ZEBRA ’(ALPHA BRAVO DOG)) =⇒ (ALPHA BRAVO DOG ZEBRA) •

??? (due Tue, Feb 9) •Question 115: Define isort so that (isort x) takes an arbitrary

list and returns a rearrangement of it that is ordered according to ordp (Question 112, page
71). Demonstrate your definition on the following examples.

(isort ’(2 1 2 4 1)) =⇒ (1 1 2 2 4)

(isort ’(jane tom susan mary fred)) =⇒ (FRED JANE MARY SUSAN TOM)

(isort ’(BRAVE DOG ALPHA BRAVO)) =⇒ (ALPHA BRAVE BRAVO DOG)

(isort ’(GREEN 23 (A 1) 12 (A 44)) =⇒ (12 23 GREEN (A 1) (A 44)) •

2.16 Abbreviations (Feb 9)

In this section I introduce some abbreviation conventions. When I say something is a “term”
I mean it is a term after these conventions have been applied.

We allow and, or, +, and * to take more than 2 arguments. When they are given more than
2 arguments, “right-associate” the function. For example

abbreviated term actual term
(and a b c d) (and a (and b (and c d)))

(or a b c) (or a (or b c))

(+ i j k m) (+ i (+ j (+ k m)))

(* 2 i j) (* 2 (* i j))

(list x1 x2 . . . xk) is an abbreviation for

72 A Little Logic

(cons x1

(cons x2

. . .
(cons xk nil). . .))

Thus (list a b c) is an abbreviation for (cons a (cons b (cons c nil))). (list) is
an abbreviation for nil.

(let ((v1 a1) . . . (vk ak)) body), where the vi are distinct variable symbols and the ai

and body are terms, is an abbreviation for the term obtained from body by simultaneously
replacing all the vi by the corresponding ai.

So

(let ((x (+ a b))

(y (* 2 x)))

(list x y))

is an abbreviation for

(list (+ a b) (* 2 x))

which is an abbreviation for

(cons (+ a b) (cons (* 2 x) nil))

Note that in expanding a let-form we replace the variables simultaneously, not sequentially.
If we did it sequentially,

(let ((x (+ a b))

(y (* 2 x)))

(list x y))

would incorrectly expand to

(list (+ a b) (* 2 (+ a b))).

Note the difference.

• Question 116: What is the value of (list ’mon ’tue ’wed ’thu ’fri)? •
• Question 117: What is the first of (list x y z)? •
• Question 118: What is the rest of (list x y z)? •
• Question 119: Can (list x y z) be the same as (cons u v)? If so, what must be the
values of u and v? If not, why not? •
• Question 120: Can (list x y) and (list u v w) be the same? If so, what must be
the values of x and y? If not, why not? •
•Question 121: What is value of (list (list ’name "Susan") (list ’income 65000)

The ACL2 Programming Language 73

(list ’city ’austin))? •
• Question 122: What term does (and p q r) abbreviate? •
• Question 123: What term does (and (or p q r) u v) abbreviate? •
• Question 124: What term does this abbreviate?

(let ((x (+ a b))

(y (f 23)))

(+ (* x x) y)) •

Most of the conventions above are implemented with “macros.” The ACL2 user can intro-
duce new macros but we don’t discuss them here.

3

The Need for Logic (Feb 16)

This courses is not about programming. It is about symbolic logic. Symbolic logic is
mankind’s attempt to codify human thought: a system of rules with which we can deduce
truths.

We’re interested in determining whether a formula is “always true.” By that we mean that
it evaluates to true no matter what values the variables have.

A formula that is always true is said, by logicians, to be valid.1

It is possible to show that a formula is valid by proving it: by showing how to derive it
from valid “axioms” using validity-preserving “rules of inference.” Axioms are formulas we
just assume to be always true; rules of inference are formula-transformers with the property
that they produce valid formulas from valid formulas. So anything produced by rules of
inference from axioms is valid.

3.1 An Informal Proof (Feb 16)

Remember the function app from Question 89, page 65? It concatentates two lists. To
remind you, (app ’(1 2 3) ’(4 5 6)) evaluates to ’(1 2 3 4 5 6). Here is a formula
about app that is always true:

γ:
(equal (first (app a b))

(if (endp a)

(first b)

(first a)))

Call the formula γ. In γ, a and b are just variables. When I say γ is always true I mean
it will evaluate to true no matter what Lisp values we plug in for a and b. According to
γ, the first element of (app a b) is either the first element of b or the first element of a,
depending on whether a is empty. I hope your intuition tells you that γ is valid (i.e., true
for all values of a and b).

We can test the formula by binding a and b to particular values and evaluating the formula:

ACL2 p>(let ((a ’(1 2 3))

(b ’(4 5 6)))

(equal (first (app a b))

1Non-logicians are sloppy on this issue. They will say, for example, “the formula ‘x = x’ is true” meaning
that it is true for all values of x. The logician reserves the adjective “true” to refer to a particular evaluation
of a formula. I’ll tend to say “always true” or “valid” unless I’m referring to a formula with no variables.
So I might say “the formula ‘2+2=4’ is true.”

76 A Little Logic

(if (endp a)

(first b)

(first a))))

T

ACL2 p>(let ((a nil)

(b ’(Mon Tue Wed Thu Fri)))

(equal (first (app a b))

(if (endp a)

(first b)

(first a))))

T

ACL2 p>(let ((a 77)

(b 15))

(equal (first (app a b))

(if (endp a)

(first b)

(first a))))

T

But we cannot test all of the possibilities because there are infinite number of them! So how
can we possibly show that γ is always true? The answer is we can prove it.

To prove it, I need to tell you my definition of app:

(defun app (x y)

(if (endp x)

y

(cons (first x)

(app (rest x) y)))).

I hope my definition is equivalent to your solution to Question 89, page 65. Here’s my
thinking: app has to be recursive because I don’t know how long the list I’m constructing
will be. I don’t know right away whether to recur on x or y but just trying x first showed
me a solution. If x is empty, then concatenating it to y will produce y. Otherwise, x is (δ1
. . .x) and y is (. . .y). I’m using “. . .x” to mean the elements in (rest x) and “. . .y” to
mean the elements in y. I want to produce (δ1 . . .x . . .y). So I use recursion to concatenate
(rest x) to y, producing (. . .x . . .y) and then I use cons to add the first element of x, δ1,
onto the front of that to get my final answer.

A definition, such as of app above, is an equality that is valid, i.e., it is a “Truth,” true for
all values of the variables.

Truth 1:
(app x y)

=
(if (endp x)

y

(cons (first x)

(app (rest x) y)))).

My goal is to convince you that γ is also a Truth, where

γ:
(equal (first (app a b))

Need for Logic 77

(if (endp a)

(first b)

(first a)))

My plan is to transform it replacing equals by equals until I get t. This is sometimes called
rewriting and it is perhaps the most frequently used rule of inference. It is often denoted in
proofs with the justification “{rewriting with α},” where α is the name of some truth used
to transform the formula. Even more often is denoted simply as “{α}.”
The basic idea in rewriting is to use a previously established Truth, say the equality called
Truth 1 above, to replace a subterm of our goal by another subterm with the intention
of eventually reducing the goal to something obviously true. One rewrite step requires at
least four mini-steps: (a) choose a subterm of the goal as your target, (b) choose a known
equality, (c) instantiate the variables of the known equality so that its left-hand side matches
the target, (d) replace the target in the goal by the instantiated right-hand side of the known
equality. (I’ve just described substituting right for left, but you can substitute left for right
too.)

My first step in proving γ will be to (a) choose the (app a b) as my target, (b) choose
Truth 1 as the equality I will use, match the target to the left-hand side of the equality, (app
x y), by letting x be a and y be b, and (d) replace the target in γ by that instance of the
right-hand side of the equality. I know Truth 1 is always true, so it is true for the particular
choices I made for x and y. Thus, the target is equal to the instantiated right-hand side of
the equality. So if I transform γ to γ1 this way, I know they’re equal. Notice that if the
equality I use is the definition of app, this step is the symbolic counterpart of function call
are evaluated: replace the call by the body, with the formals replaced by the actuals.

γ1:

(equal (first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

I’ve underlined the instantiated body of app. Everything else in γ1 is identical to the
corresponding part of γ. Since (app a b) is equal to the instantiated body, we haven’t
changed the value of γ. So γ = γ1.

Because the underlining is distracting, I’m not going to use underlining in the subsequent
transformations.

Now here’s another truth.

Truth 2:
(first (if x y z)) = (if x (first y) (first z)).

Intuitively, when an if is delivering its value to first, the same result could be produced
by moving the first into the if and applying it to which ever answer the if will return.

We can rewrite with Truth 2, exactly analogous to the way we did with the definition of
app. (a) Choose the target:

(first (if (endp a)

78 A Little Logic

b

(cons (first a)

(app (rest a) b)))).

(b) Choose the equality Truth 2, with the left-hand side (first (if x y z)). (c) Match
the two, instantiating the variables of the equality to make its left-hand side be identical
to the target. In this case, we let x be (endp a), we let y be b, and we let z be the
cons-expression above. Thus, we know that the target is equal to:

(if (endp a)

(first b)

(first (cons (first a)

(app (rest a) b)))).

So mini-step (d) is to replace the target with the term above to get γ2.

γ2:

(equal (if (endp a)

(first b)

(first (cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

We know that γ1 = γ2.

Finally, we know

Truth 3:
(first (cons x y)) = x.

This just says applying first to an object created by cons returns the first argument
supplied to the cons. Using Truth 3, we can rewrite γ2, taking the four mini-steps illustrated
above, to get

γ3:

(equal (if (endp a)

(first b)

(first a))

(if (endp a)

(first b)

(first a)))

We know that γ2 = γ3. But look! Now the equal in γ3 is being applied to two identical
expressions. This brings to mind another truth:

Truth 4:
(equal x x) = t.

This says that the function equal returns t when its arguments are identical.

Using Truth 4, we can rewrite γ3 to t.

Since γ = γ1 = γ2 = γ3 = t, we know γ = t.

Need for Logic 79

This is a symbolic proof. We are not just testing our claim. We proved it. We wrote our
claim as a formula and then we manipulated the formula without knowing anything about
a and b. So γ holds for all possible values of a and b. Since γ is always true, we can call it
a Truth and use it in the future to establish other Truths.

The really cool thing about mathematical logic is that it is a framework in which you can
deduce truths about an infinite number of objects while doing a finite amount of work.
Furthermore, the total number of ideas you have to master is quite small. In the proof
above, all we needed was (a) some initial Truths, the rule that says any instance of a Truth
is a Truth, and substitution of equals for equals. A few more rules are enough to let us
deduce anything that can be deduced. That is what I meant when I said that mathematical
logic is mankind’s attempt to codify human thought.

Here is a succinct description of the proof just given:

Truth 5:
(equal (first (app a b))

(if (endp a)

(first b)

(first a)))

Proof: We will transform the above formula to t.

(equal (first (app a b))

(if (endp a)

(first b)

(first a)))

= {Truth 1}
(equal (first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

= {Truth 2}
(equal (if (endp a)

(first b)

(first (cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

= {Truth 3}
(equal (if (endp a)

(first b)

(first a))

(if (endp a)

(first b)

(first a)))

= {Truth 4}
t

2

80 A Little Logic

It should be clear that if I can prove that (equal α β) = t, then I could also prove α = β.
We have to use equal if we’re writing an ACL2 term or definition, but when I’m just giving
a mathematical argument I tend to use = instead. So I could have written the truth and
its proof this way. Note that I always start my proof with a brief sketch of what I’m going
to do.

Truth 5:
(first (app a b))

=
(if (endp a) (first b) (first a)))

Proof: We will transform the left-hand side, lhs, to the
right-hand side, rhs.

lhs
=
(first (app a b))

= {Truth 1}
(first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

= {Truth 2}
(if (endp a)

(first b)

(first (cons (first a)

(app (rest a) b))))

= {Truth 3}
(if (endp a)

(first b)

(first a))

=
rhs
2

This second proof of Truth 5 is easier to write out because I don’t have to keep writing the
right-hand side.

Finally, it is more convenient to give names to our Truths rather than just number them.
I would give the name “first-app” to Truth 5 because the name reminds me that I can
rearrange an expression of the form (first (app . . .)). I would typically refer to Truth 1
as “def app” meaning “definition of app.” I would refer to Truths 2 and 3 as first-if and
first-cons.

? ? ? (due Tue, Feb 23) • Question 125: Fill in the nine blanks to complete the proof

below. You will not need ACL2s to do this homework, just a word processor. But be extra
careful to type well formed terms! In your answer, just list the numbers from 1 to 9 and
write what belongs in the corresponding blank. Remember that when a term is required
you must type a well-formed, syntactically correct term and you must take care to display
it sensibly or else you’ll get no credit for the answer! Some relevant truths are listed below
the proof.

Theorem:

Need for Logic 81

(true-listp (rev a))

Proof:
(true-listp (rev a))

= {def rev}
(true-listp 1)

= { 2 }
(if (endp a)

(true-listp nil)

(true-listp (app (rev (rest a)) (cons (first a) nil))))

= {Computation}
(if (endp a)

t

(true-listp (app (rev (rest a)) (cons (first a) nil))))

= {true-listp-app}
(if (endp a)

t

3)

= { 4 }
(if (endp a)

t

(if (endp (cons (first a) nil))

(equal (cons (first a) nil) nil)

(true-listp (rest (cons (first a) nil)))))

= {def endp }
(if (endp a)

t

(if (not (consp (cons (first a) nil)))

(equal (cons (first a) nil) nil)

(true-listp (rest (cons (first a) nil)))))

= { 5 }
(if (endp a)

t

(if (not t)

(equal (cons (first a) nil) nil)

(true-listp (rest (cons (first a) nil)))))

= {Computation}
(if (endp a)

t

(if nil

(equal (cons (first a) nil) nil)

(true-listp (rest (cons (first a) nil)))))

= { 6 }
(if (endp a)

t

(true-listp (rest (cons (first a) nil))))

= {rest-cons}
(if (endp a)

t

(true-listp 7))

82 A Little Logic

= {Computation}
(if (endp a)

t

8)

= { 9 }
t

2

For the purposes of this question, you may assume the following truths. The first three are
definitions of app, rev, and true-listp.

Def app:

(app x y)

=
(if (endp x)

y

(cons (first x)

(app (rest x) y)))

Def rev:

(rev x)

=
(if (endp x)

nil

(app (rev (rest x))

(cons (first x) nil)))

Def true-listp:

(true-listp x)

=
(if (endp x)

(equal x nil)

(true-listp (rest x)))

if-nil

(if nil x y) = y

if-x-y-y:

(if x y y) = y

consp-cons:

(consp (cons x y)) = t

true-listp-if:

(true-listp (if x y z)) = (if x (true-listp y) (true-listp z))

Need for Logic 83

true-listp-app:

(true-listp (app x y)) = (true-listp y)

You should read these truths carefully; I believe you’ll agree that, intuitively, they are always
true. •

3.2 Implication (Feb 16)

Another property of app is that if a is empty, then (app a b) is b. I hope your intuition
agrees that this is always true.

• Question 126: Write an ACL2 term to capture the claim that “if a is empty, (app a b)

is b.” That is, we want an ACL2 term that is t if the claim is true and nil if the claim is
false. This is called formalizing the claim. •
This is a rhetorical question because I want to answer it and discuss the answer! In general,
we’re trying to formalize “if α is true, then β is true.” But the English might have been
rephrased “β is true when α is true”, or “β is true provided α is true” and any number of
other ways.

Clearly, the hypothesis α, “a is empty,” is formalized as (endp a). The conclusion, β,
“(app a b) is b” is captured by (equal (app a b) b), since I’m trying to write an ACL2
formula. But how do we glue them together?

I hope you remember the discussion of implies from page 45, because that is what we need.
“if a is empty, then (app a b) is b” is formalized by “(implies (endp a) (equal (app

a b) b))”. Call this formula γ.

I claim that γ is a Truth: true no matter what a and b are. Remember the discussion on
page 45. Suppose γ is a Truth. What does it tell us for a non-empty a? It tells us nothing,
because such an a makes the hypothesis false, so the implication is vacuously true.2 That’s
as it should be because in this statement we don’t care about non-empty a.

A useful fact about implication is that it is transitive. If α implies β and β implies γ, then
α implies γ. As a formula:

Truth trans-implies:

(implies (and (implies a b)

(implies b c))

(implies a c))

This can be proved by using a more basic fact mentioned in the next question.

• Question 127: : If it’s true that a implies b, and a is true, then b is true. Formalize that
as an ACL2 formula. •
The transitivity of implies can be proved by reasoning as follows: a is either nil or not.
If it’s nil, then the transitivity formula is easy to prove. On the other hand, if a is true,
then since (implies a b) is true, we know b is true. But since (implies b c) is true, we

2To students still troubled by the fact that (implies nil nil) is t, realize that if we changed the
definition of implies so that it returned nil here, γ wouldn’t be a Truth anymore!

84 A Little Logic

know c is true. But that means (implies a c) is true – because both a and c are true.
This is just a proof sketch that will guide the construction of a more careful proof later.

This is sometimes called chaining implications together.

3.3 Proving Another Simple Property (Feb 16)

Let’s prove that if a is empty, then (app a b) is b. This kind of conjecture is called an
identity because it tells us a condition under which (app a b) is identical to one of its
arguments.

Truth app-identity:

γ:
(implies (endp a)

(equal (app a b) b))

Again, we can expand the call of (app a b):

γ1:

(implies (endp a)

(equal (if (endp a)

b

(cons (first a)

(app (rest a) b)))

b))

Notice we have a hypothesis of (endp a) and another (endp a) buried in the conclusion.
That second (endp a) can be replaced by t. Look at it this way: Either (endp a) is t or
nil. If (endp a) is nil then γ is t because implies is t when its hypothesis is false. Since
we’re trying to prove γ is t, we’re done with that case. In short, in a proof of an implication,
we don’t have to consider the cases where the hypotheses are false.

That leaves the case where (endp a) is t. But if it’s t, we replace the second (endp a)

above with t, just as though we had the equation (endp a)= t. This is usually called using
a hypothesis or denoted in a proof with “by hyp. It is a another basic rule of inference and
we will describe it in detail in the next chapter. Using it here we get γ2.

γ2:

(implies (endp a)

(equal (if t

b

(cons (first a)

(app (rest a) b)))

b))

Here is another obvious

Truth if-t:

(if t x y) = x.

Using if-t, we can transform γ2 to

Need for Logic 85

γ3:

(implies (endp a)

(equal b

b))

which we can then transform to

γ4:

(implies (endp a)

t)

by what we called Truth 4, more commonly known as the Reflexivity of Equality.

Finally, here is a truth about implies:

Truth implies-t:

(implies x t) = t.

We’ll prove this later. But the intuition is the same as before: x is either nil or it’s not. If
x is nil, then (implies x t) reduces to t by computation. If x is not nil, then since x is
just tested by implies, we can replace it by any non-nil value and we choose to replace it
by t. But (implies t t) evaluates to t. Since (implies x t) reduces to t in both cases
and since the two cases we chose (“x is nil or it’s not”) cover all the possibilities, (implies
x t) is always equal to t. This style of reasoning is enshrined in another rule of inference,
called “proof by cases” or just “cases.”

Thus, we’ve shown γ = γ1 = γ2 = γ3 = γ4 = t. Again, no testing was used to establish an
interesting fact about app for an infinite number of inputs.

We could write this proof down as follows:

Truth app-identity:

(implies (endp a)

(equal (app a b) b))

Proof: I will transform the formula to t.

(implies (endp a)

(equal (app a b) b))

= {def app}
(implies (endp a)

(equal (if (endp a)

b

(cons (first a)

(app (rest a) b)))

b))

= {hyp}
(implies (endp a)

(equal (if t

b

(cons (first a)

(app (rest a) b)))

b))

= {if-t}
(implies (endp a)

86 A Little Logic

(equal b b))

= {Refl of Equality}
(implies (endp a)

t)

= {implies-t}
t

2

Another way to write the proof avoids having to write the (implies (endp a) (equal . . .
b)) over and over again. The idea behind this style of presentation is that I identify my
hypotheses and then just work on the conclusion.

Truth app-identity:

(implies (endp a)

(equal (app a b) b))

Proof: I transform the lhs of the conclusion to the rhs, given the hyp.

hyp: (endp a)

lhs
=
(app a b)

= {def app}
(if (endp a)

b

(cons (first a)

(app (rest a) b)))

= {hyp}
(if t

b

(cons (first a)

(app (rest a) b)))

= {if-t}
b

= {implies-t}
rhs
2

I have now described the proof of app-identity three times. But I’ve only described one
proof. My logical reasoning has been the same in each description; but the descriptions
have changed. You’re free to use whatever descriptive style you wish. Just remember that
a proof is intended to bring the reader along; the reader should be able to easily grasp how
you got from one formula to the next and be sure that every step is correct. Finding good
descriptions of your proofs is important – especially if you’re being graded!

3.4 Replacement of “Equals” by “Equals” (Feb 18)

We’ve been using replacement of equals by equals. But recall that (iff α β) tests propo-
sitional equivalence: α and β are both nil or both non-nil. In some situations it is possible
to do replacements of propositional equivalents by propositional equivalents. For example,

Need for Logic 87

because of the peculiar non-Boolean definition of and in Lisp, (and p q) is not necessarily
equal to (and q p). But you can clearly rewrite (if (and p q)) to (if (and q

p)) without changing the value of the if-expression. Why? Because (iff (and p

q) (and q p)) is true and the and-expression above is only tested by the if-expression:
only the propositional values matter.

• Question 128: In the following expression you can replace one of the (and p q) expres-
sions by (and q p), but not the other one. Given an example evaluation that shows that
replacing the wrong occurrence of (and p q) changes the value of the if-expression.

(if (and p q)

(cons (and p q) nil)

23) •

We are very interested in propositional equivalences, like the commutativity of and, precisely
because these equivalences allow us to simplify formulas. But as the previous question
question makes clear, you can replace propositional equivalents only in certain situations.

Roughly speaking, you can rearrange a propositional expression using propositional equiva-
lences, provided you only care about the truthvalue – not the actual value – of the expression.

I make this precise below. Please pay attention to the difference between “equal” and
“propositionally equivalent.” If I say “α and β are equal,” or “α and β are identical,” or “α
is β,” etc., I mean (equal α β) is true. But if I say α and β are propositionally equivalent,
I mean (iff α β) is true.

We say a particular occurrence of a subterm α is used propositionally if the occurrence is (i)
a formula to be proved, (ii) the test of an if-expression, (iii) the true- or false-branch of an
if-expression that is used propositionally, or (iv) an argument to a call of a propositional
function and that call is used propositionally.

Below, assume we’re trying to prove the formula shown. In all the examples, α is used
propositionally.

1. (implies (and (not α) . . .) . . .)
2. (iff α . . .)
3. (implies . . .

(equal (if α
β
. . .)

. . .))
4. (implies . . .

(iff (if α
β
. . .)

. . .))

Let’s look closely at example 1 above. The occurrence of α shown is an argument to the
propositional function not. That means that occurrence of α is being used propositionally
if the containing not-expression is being used propositionally. But the not-expression is an
argument to the propositional function and, which means the not-expression is being used
propositionally if the and-expression is being used propositionally. But the and-expression
is an argument to the propositional function implies, which means the and-expression is
being used propositionally if the implies-expression is being used propositionally. But the
implies-expression is something to be proved, so it is being used propositionally.

88 A Little Logic

In example 3, the α occurs as the test of an if, so it is being used propositionally. But look at
the occurrence of β. It occurs in the true-branch of that if. That would be a propositional
usage if the if-expression were being used propositionally, but the if-expression is not
being used propositionally! That if-expression is returning its value to equal, which is not
propositional. So β is not being used propositionally in example 3.

However, in example 4, both α and β are used propositionally. In particular, the β is the
true-branch of an if-expression that is being used propositionally in the iff expression.

Whether we can replace α in some larger formula γ by some propositional equivalent depends
on where the α occurs in γ, not on α itself.

For example, recall findpos (page 69) which returns the index, if any, of an item in a list,
or nil if the item is not an element. We might wish to prove this:

γ:
(implies (findpos e x)

(< (findpos e x) (len x)))

Note that (findpos e x) occurs twice here. But only the first occurrence is being used
propositionally. Using this theorem:

(iff (findpos e x)

(mem e x))

I could rewrite the formula γ to

γ′:
(implies (mem e x)

(< (findpos e x) (len x)))

but not to

γ′′:
(implies (findpos e x)

(< (mem e x) (len x))).

So whether we can replace propositional equivalents depends on where the occurrence is in
the larger formula, not on the two equivalents.

To be completely formal I would have to define what an occurrence is. Technically, an
occurrence of α in γ is an address in γ at which you find the subterm α. I am not going
to define exactly what an address is, but it is easy to illustrate how I could. For example,
I could say that an address is a subterm and a natural number, (α n), pointing to the nth

occurrence of of α in the larger expression. Or I could say that an address is a sequence of
numbers indicating how to “navigate” down to the subterm in question; for example, the
second occurrence of the findpos-expression in γ would be (2 1), indicating that it is in
the 1st argument of the 2nd argument of γ.

Regardless of how I represent addresses, there is a critical restriction I impose on them:
while an address may point to a constant in γ, there shall be no legal address that points
into the substructures of a constant. For example, there is no address that points to the
symbol Wed in (mem e ’(Mon Wed Fri)). I shall allow an address to point to the ’(Mon

Wed Fri) but not into it.

Given some address π in γ, then I will speak of replacing the occurrence of the subterm at

Need for Logic 89

π in γ by some other term. Again, I could precisely define this but it should be clear. For
example, if π points to the second (f x) in (g (f x) (h (f x) y)) and I say “replace the
subterm at π by b,” then the term I obtain is (g (f x) (h b x)).

Addresses never point into constants! For example,

(mem ele ’(I J K L M N))

↑π1
↑π2

↑π3

address π1 points to the variable ele and address π2 points to the constant expression ’(I

J K L M N). But there is no legal address π3 that points to the M within that constant! This
prevents us from using “replacement of equals by equals” to accidentally change a constant
or mistake a constant for a variable. For example, suppose I am proving a formula that has
the hypothesis that M is equal to 23. If I had an address for the M in the constant above, I
might use it to replace that M with 23:

(mem ele ’(I J K L 23 N))

which would be a logical mistake.

We say that an address admits propositional replacement if the subterm there is being used
propositionally, as defined above.

Having said this much about addresses, I’m not going to bother explaining how to represent
or use them because I trust that you understand enough for our purposes. If I want to
indicate a particular subterm in some specific formula I’ll just describe it (“the second (f

x)”) or point to it at the board, or mark it some way in the display.

• Question 129: Is α being used propositionally in γ below? You may assume γ is being
used propositionally. If α is not being used propositionally, demonstrate with two ACL2s
evaluations that it is possible to replace α by something that is propositionally equivalent
and get a different result. You will have to choose values for the other Greek letters.

γ:
(and ψ (or φ (iff α δ))) •

??? (due Tue, Feb 23) • Question 130: I have labeled each address in γ below. An arrow

pointing to an open parenthesis denotes the address of the subterm that starts with that
parenthesis. An arrow pointing to a variable means the occurrence of that variable. List
the addresses admitting propositional replacement. Assume you know nothing about the
function symbols f, g, and h. Just use your word processor to prepare list of i such that πi

admits propositional replacement.

γ:
(implies (and (consp x)

↑π1
↑π2

↑π3
↑π4

(or (stringp s)

↑π5
↑π6

↑π7

(natp s)))

↑π8
↑π9

(natp (if (and (f x) (g x))

↑π10
↑π11

↑π12
↑π13

↑π14
↑π15

↑π16

(h (f x))

↑π17
↑π18

↑π19

x)))

90 A Little Logic

↑π20

3.5 What’s Going On Here? (Feb 18)

Logic is mankind’s attempt to formalize how we reason. There are several key ideas.

First, we will only prove things that we can write as formulas in some fixed notation. For
the moment in this course, our notation is ACL2.

Second, we are told some basic truths, expressed as formulas. These basic truths are called
axioms. The axioms include all the definitions. We’re free to add new definitions provided
we follow certain rules. Every time we add a new definition, we get a new axiom.

Third, we are given some basic rules of inference. These are carefully described transforma-
tions on formulas. They have a key property: if used to transform a formula that is always
true, they produce a formula that is always true. The most basic rule of inference is that if
α = β then you can replace α by β or vice versa. Notice that if we start with axioms (which
are always true) and transform them with rules of inference, we get formulas that are always
true. These formulas, called theorems, can then participate in our transformations.

This is what we’ve been doing when we wrote things like:

Truth app-identity:

(implies (endp a)

(equal (app a b) b))

Proof: I will transform the formula to t.

(implies (endp a)

(equal (app a b) b))

= {def app}
(implies (endp a)

(equal (if (endp a)

b

(cons (first a)

(app (rest a) b)))

b))

= {hyp}
(implies (endp a)

(equal (if t

b

(cons (first a)

(app (rest a) b)))

b))

= {if-t}
(implies (endp a)

(equal b b))

= {Refl of Equality}
(implies (endp a)

t)

= {implies-t}
t

Need for Logic 91

2

except that these proofs should be read backwards, from bottom to top: You may think of
t as an axiom. Then we transform it to an equivalent formula, (implies (endp a) t). So
that formula must be a truth. Then we transform it to . . ., and so on. Eventually we reach
the goal formula. If the axioms we used are all truths and the rules of inference preserve
truth, then the goal formula is a truth too.

3.6 Recognizing and Using Truths (Feb 18)

Testing shows the presence, not the absence of bugs – Edsger W. Dijkstra, April
1970.

You have spent over a dozen years learning the truths of arithmetic. You know x+y = y+x,
x× 1 = x, x× (y/x) = y when x 6= 0, and (a+ b)× x = (a× x) + (b× x). etc.3

Of course, our intuitions are often wrong about truths. For example, many people would say
that x× (y/x) = y and leave off the crucial hypothesis that x is non-0. Many people would
say 0n = 0 when n is a natural, when in fact, 00 = 1. You can confirm that non-truths are
non-truths simply by exhibiting a counterexample – values for the variables that make the
formula evaluate to false. But the only way to be sure that something is a truth is to prove
it.

But even the activity of proving things requires an intuitive sense of what’s true. There’s
no point in wasting your time trying to prove that (a× b) + x = (a+ x)× (b+ x) when you
can show it’s not always true by letting a be 1, b be 2, and x be 3.

Furthermore, during proofs you will often be seeking some way to simplify the formula
you’re staring at and to do that you will need to know – or intuit – other truths.

Let me do an example from algebra. Let’s prove that (a+ b)2 is (a2 +2ab+ b2). Since we’re
being formal, we have to write this as (a2 + ((2× (a× b)) + b2)). Let’s assume the following
truths:

def-sq: x2 = x× x
associativity-of-+: ((x + y) + z) = (x + (y + z))
commutativity-of-×: (x× y) = (y × x)
×-2: (2× x) = x+ x
left-distributivity: x× (y + z) = (x× y) + (x × z)
right-distributivity: (y + z)× x = (y × x) + (z × x)

Theorem (a+ b)2 = (a2 + ((2× (a× b)) + b2))

Proof:
(a+ b)2

= {def-sq}
(a+ b)× (a+ b)
= {left-distributivity}

3All of these truths implicitly assume the only objects in existence are the numbers or at least that the
variables are understood to range only over numbers.

92 A Little Logic

((a+ b)× a) + ((a+ b)× b)
= {right-distributivity}
((a× a) + (b× a)) + ((a+ b)× b)
= {right-distributivity}
((a× a) + (b× a)) + ((a× b) + (b× b))
= {commutativity-of-×}
((a× a) + (a× b)) + ((a× b) + (b× b))
= {associativity-of-+ }
(a× a) + ((a× b) + ((a× b) + (b× b)))
= {associativity-of-+ }
(a× a) + (((a× b) + (a× b)) + (b× b))
= {×-2}
(a× a) + ((2× (a× b)) + (b× b))
= {def-sq}
a2 + ((2× (a× b)) + (b× b))
= {def-sq}
a2 + ((2× (a× b)) + b2)
2

This is a classic example of using previously established truths to derive a new truth. The
basic strategy is to rewrite the formula (or, in this case, its left-hand side) repeatedly, using
previously established truths. Each step above is an example of rewriting. We’ve discussed
rewriting already but it is so basic it doesn’t hurt to do it again. Recall that each rewrite
step can be broken down into several mini-steps and you have to do all of them correctly to
be confident of the result. Let’s look at the mini-steps of just one rewrite step.

Consider the step justified by the second use of associativity-of-+ above. The formula
above the justification is transformed into the formula below it.

. . .
(a× a) + ((a× b) + ((a× b) + (b× b)))
= {associativity-of-+ }
(a× a) + (((a× b) + (a× b)) + (b× b))
. . .

Here are the mini-steps involved in this single step.

Need for Logic 93

general idea applied to our selected step

(a) identify a target term to rewrite we chose to focus on
((a× b) + ((a× b) + (b× b)))

(b) choose a previously proved truth
to use; we’ll assume for now that
the truth is an equality

we chose
associativity-of-+:
((x + y) + z) = (x + (y + z))

(c) match the target with one side or
the other of the chosen equality;
choosing values for the variables
in the equality truth

we matched our target with
the right-hand side (rhs) of our
equality truth;
target: ((a× b)

︸ ︷︷ ︸
+ ((a× b)

︸ ︷︷ ︸
+ (b× b)

︸ ︷︷ ︸
))

rhs: (x + (y + z))
So let x be (a×b), let y be (a×b),
and let z be (b × b). Since the
equality is known to be true for
all values of the variables, it is
true for these values. Thus, we
know this is true:
(((a× b) + (a× b)) + (b× b))
=
((a× b) + ((a× b) + (b× b)))
and the right-hand side of this
new equality is identical to our
target

(d) replace the target by the new
term we know it is equal to

we replaced the target by the left-
hand side of the new equality,
namely (((a×b)+(a×b))+(b×b))

These four mini-steps are repeated every time we rewrite. If the truth we’re using is not just
an equality but something more complicated, there are additional mini-steps. For example,
if you want to use the truth that (x × (y/x)) = y when x 6= 0 to rewrite (a × (b/a)) to b,
you must be sure to prove that a 6= 0.

Since the whole purpose of mathematical logic is to make sure we reason without mistakes,
it is necessary to describe the rules of inference precisely. I do that in the next chapter. But
in this chapter I’m just foreshadowing the things we’ll need.

But while I can explain the mini-steps in great detail, the real challenge in doing a proof is
coming up with a broad strategy and finding the truths you need to carry it out. The broad
strategy of the proof above is to “multiply-out (a + b)2 and then collect like terms”. To
multiply a sum by a sum we’ll need both left- and right-distributivity. To collect terms we
generally need associativity and commutativity to rearrange the parentheses. We also need
the definitions some basic operations, like how to square or double something. In algebra
you have been taught these truths. But in our more general setting – where you are dealing
with unfamiliar functions with unfamiliar properties – you have to rely on your intuitions
about what is true and what isn’t. You have to simultaneously imagine a broad strategy,
invent the necessary truths, use them to carry out your strategy, and prove the truths you
need. Often, this involves some “search” on your part: you might find a strategy that works
but discover that the necessary “truths” aren’t true!

94 A Little Logic

So it’s important to develop your intutitions about what is always true and what isn’t, and
to develop your intuitions about how to find counterexamples.

By the way, the very same observations apply to debugging programs. You can demonstrate
the existence of a bug with a suitable test. But you can’t demonstrate the absence of a bug
by testing. To know there are no bugs, you have to prove it.

? ? ? (due Tue, Feb 23) • Question 131: For each of the formulas below, decide whether

it is always true or not. In ACL2, the variables range over all possible ACL2 objects. For
each formula below that is not always true, show an ACL2s transcript in which the formula
evaluates to false for chosen values of the variables. By the way, if you have a formula ψ
with variables p and q, and want to test it for particular values of the variables, you could
evaluate (let ((p α) (q β)) ψ), where α and β are expressions that produce the values
you want to try for p and q respectively. You can list as many such variable bindings as you
want. For example,

(let ((a 1) (b 2) (x 3))

(equal (+ (* a b) x)

(* (+ a x) (+ b x)))) =⇒ nil

Start your answer by clearly indicating the numbers of the formulas that are not always
true. After that, paste the ACL2s transcript showing one false evaluation of each indicated
formula. Do not turn in irrelevant evaluations.

1. (equal (not (not p)) p)

2. (iff (not (not p)) p)

3. (equal (and p q) (and q p))

4. (iff (and p q) (and q p))

5. (iff (and p (or q r)) (or p (and q r)))

6. (iff (and p (or q r)) (or (and p q) (and p r)))

7. (iff (or p (and a b)) (and (or p a) (or p b)))

8. (iff (not (and p q)) (or (not p) (not q)))

9. (iff (or (or p q) r) (or p (or q r)))

10. (iff (implies p q) (or (and p q) (and (not p) (not q))))

11. (iff (implies p q) (implies (not q) (not p)))

12. (iff (implies p q) (or (not p) q)) •
? ? ? (due Tue, Feb 23) • Question 132: For each of the formulas below, decide whether

it is always true or not. In ACL2, the variables range over all possible ACL2 objects. For
each formula below that is not always true, show an ACL2s transcript in which the formula
evaluates to false for chosen values of the variables. See the discussion in previous question
about the use of let to run examples. You will need to add the definitions of app, rev,
and mem, which are below. Start your answer by clearly indicating the numbers of the
formulas that are not always true. After that, paste the ACL2s transcript showing one false
evaluation of each indicated formula. Do not turn in irrelevant evaluations.

Need for Logic 95

1. (equal (app nil x) x)

2. (equal (app x nil) x)

3. (equal (app (app x y) z) (app x (app y z)))

4. (equal (rev (rev x)) x)

5. (equal (rev (rev (rev x))) (rev x))

6. (equal (rev (app x y)) (app (rev x) (rev y)))

7. (not (equal (rev x) x))

8. (iff (mem e (app a b)) (or (mem e a) (mem e b)))

9. (implies (mem e (app a b)) (mem e a))

Here are the relevant definitions.

(defun app (x y)

(if (endp x)

y

(cons (first x)

(app (rest x) y))))

(defun mem (x y)

(if (endp y)

nil

(if (equal x (first y))

t

(mem e (rest y)))))

(defun rev (x)

(if (endp x)

nil

(app (rev (rest x))

(cons (first x) nil)))) •

3.7 Useful Identities (Feb 18)

Among the most useful identities are those relating the propositional functions, and, or,
not, implies, and iff. You will use them over and over again. Until now, when you
thought of “identities” in math you probably thought of equations. But the identities below
are propositional identities, written with iff. They are typically used just like equalities:
they tell you two expressions are propositionally equivalent and so you can replace one by
the other in occurrences admitting propositional replacement.

96 A Little Logic

Familiar Boolean Identities

identity name
(iff (not (not p)) p) Double Negation
(iff (not (and p q)) De Morgan

(or (not p) (not q)))

(iff (not (or p q)) De Morgan
(and (not p) (not q)))

(iff (and p q) (and q p)) Commutativity
(iff (or p q) (or q p)) Commutativity
(iff (iff p q) (iff q p)) Commutativity
(iff (and (and p q) r) Associativity

(and p (and q r)))

(iff (or (or p q) r) Associativity
(or p (or q r)))

(iff (and p (or a b)) Distributivity
(or (and p a) (and p b)))

(iff (or p (and a b)) Distributivity
(and (or p a) (or p b)))

(iff (implies p q) Contraposition
(implies (not q) (not p)))

(iff (implies p q) Implicative Disjunction
(or (not p) q))

(iff (not (implies p q)) Negated Implication
(and p (not q)))

How do we know these identities hold? We could test them for all possible values of p, q,
and r. Technically, there are an infinite number of possibile values for the variables. But
every occurrence of every variable admits propositional replacement. Thus, rather than test
them for the infinite number of true objects, we can limit our true test to the object t.

So we can establish these identities on all possible values of their variables by testing them
on all combinations of t and nil.

A tautology is a propositional formula that evaluates to t for all combinations of Boolean
values for its variables. All of the identities given above are tautologies.

??? (due Tue, Feb 23) •Question 133: Below are two columns of expressions labeled A and

B. For each expression in column A, find an expression in column B that is propositionally
equivalent to it and note the familiar identity that establishes that equivalence, or else note
that no expression in column B is equivalent. Just use a word processor to list the labels
A1, . . ., A9, and write down one of the B labels and an identity name beside each, or else
write “none”.

A1: (not (not (endp a))) B1: (and (endp x)

(not (equal x y)))

A2: (or (not (mem e a))

(mem e (app a b))) B2: (endp a)

A3: (not (and (or a b) c)) B3: (and (and (or a b) c) d)

A4: (or (and x y) (and x z)) B4: (or (not (or a b)) (not c))

A5: (not (or (endp x) (natp x))) B5: (implies (endp x) (natp x))

A6: (implies (endp x) B6: (or (mem e (app a b))

(not (natp x))) (mem e a))

Need for Logic 97

A7: (and (or a b) (and c d)) B7: (and x (or y z))

A8: (not (implies (endp x) B8: (implies (mem e a)

(equal x y))) (mem e (app a b)))

A9: (and (or (endp x) (and p q)) B9: (implies (not (not (natp x)))

(or (endp x) r)) (not (endp x)))

B10: (or (endp x)

(and (and p q) r))

B11: (or (and a b) (endp x))

•

• Question 134: This question is really a mini-project that will challenge the best of you.
The problem is to define an ACL2 function that can decide whether a propositional formula
is always true or not. A propositional formula that evaluates to true for all combinations
of Boolean values for its variables is called a tautology. We will deal with tautologies at
length later. It is probably obvious to you how propositional formulas can be represented as
objects. For example, we can represent the formula (implies (and p q) (or p q)) with
the list (implies (and p q) (or p q)), i.e., the value of the expression ’(implies (and

p q) (or p q)). If you can imagine that, you can imagine a function tautp (“tautology
predicate”) that takes one input, a list representing a propositional formula, and returns
t or nil to indicate whether the formula is a tautology. Define tautp. Hint: Implement
a function, say propositional-eval, that takes a list representing a formula and a table
binding variables to values, and returns the value of the formula. So, for example:

(propositional-eval ’(implies (and p q) (or p q))

’((p t)

(q nil)))

evaluates to t. Also, implement the function all-propositional-vars, that takes a propo-
sitional formula and returns the list of all the variables in it, e.g.,

(all-propositional-vars ’(implies (and p q) (or p q))) =⇒ (p q).

Then create a function that takes a list of variable symbols and returns the list of tables
binding those variables to t and nil in all possible ways. Finally, tautp uses all of these
functions to test each formula under each table. •

3.8 Summary (Feb 18)

In this chapter we saw the need for some basic truths, called “axioms,” from which we derive
others. We also saw a variety of “rules of inference,” which are the tools we use to transform
formulas. The ones we saw were

� rewriting, in which we use a previously proved truth to replace one term by another

� hypothesis, in which a hypothesis of the formula we’re proving is used to replace one
term by another

� cases, in which we consider an exhaustive set of possibilities and prove the formula in
each case

� computation, in which we simply evaluate a term with no variables

98 A Little Logic

There are two other rules we’ll use. One is called “Tautology” and it just allows us to stop
when the formula we’re trying to prove is an instance of a previously proved truth. This is
really just a special case of rewriting. The other is called “Constant Expansion” and allows
us to express a constant in terms of function calls, e.g., 2 is (+ 1 1).

One of the main complications we have to confront is dealing with formulas that are not just
equalities. In particular, we need to deal with implications and propositional equivalences.
To make our dealings with them simpler later, we build certain propositional identities
directly into our terminology. For example, we will be able to treat

(implies (and p (and (not q) (not r))) s)

just as though it were

(implies (and p (and (not s) (not r))) q)

so that we can use the hypotheses p, (not s) and (not r) when working on q.

We describe our terminology and the rules in great detail in the next chapter.

4

Logic (Feb 23, Feb 25)

4.1 Preliminaries (Feb 23, Feb 25)

To state the rules of inference we need to speak precisely about terms.1 In this section I
define some notation and concepts that let us do that. We have already introduced several
very important concepts for stating the rules of inference: the concept of an occurrence in
a formula and the concept that an occurrence admits propositional replacement.

A substitution is a mathematical object that indicates how to replace certain variables by
certain terms. The notation {v1 ← α1, . . . , vk ← αk} denotes a substitution that replaces
the vi by the αi. In this notation, the vi must be variables, they must all be distinct (no
two the same), and the αi must all be terms. We say the vi are hit by the substitution. The
elements of a substitution, i.e., each “vi ← αi,” is called a binding for the variable it hits,
vi. The domain of the substitution is the list of vi; the range is the list of αi.

Let σ be the substitution above. Then to apply σ to a term γ we simultaneously replace each
occurrence of each vi in γ by the corresponding αi. Any variable not hit by the substitution
is left unchanged. We denote by γ/σ the result of applying σ to γ. This is sometimes called
instantiating γ with σ.

For example, let γ and σ be as shown below:

γ:
(g (f x y) x)

σ:
{ x ← (first a),
y ← (rest a) ,
a ← b }

Then

γ/σ:
(g (f (first a) (rest a)) (first a)).

There are two common mistakes students make when applying substitutions. The first is
to fail to replace every occurrence of every variable hit by the substitution. The following
attempt to instantiate γ with σ is wrong!

(g (f (first a) (rest a)) x)

because we replaced the first occurrence of x but not the second. We have to replace every
variable that is hit by the substitition.

1The ACL2 logic is much richer and more complex than described here. See [1].

100 A Little Logic

The second common mistake is to replace each variable one at a time. For example, if we
first replace x by (first a), and then replace y by (rest a), and then replace a by b, we
get

(g (f (first b) (rest b)) (first b))

and that is wrong!. We must replace the variables simultaneously.

If there is a substitution σ such that γ/σ is γ ′, then we say γ′ is an instance of γ. For
example,

γ′:
(iff (not (not (mem e (rev a))))

(mem e (rev a)))

is an instance of γ, the Double Negation tautology,

γ:
(iff (not (not p)) p)

because γ′ is γ/σ, where σ = {p← (mem e (rev a))}.
? ? ? (due Tue, Mar 2) • Question 135: What is γ/σ if:

γ: (equal (app (app a b) c)

(app a (app b c)))

σ: {a← (f b), b← (f b), c← (f b)}

You do not need ACL2s to answer this question; use a word processor. But be extra careful
to type well formed, sensibly formatted text or else you’ll get no credit! •
• Question 136: What is γ/σ if:

γ: (cons ’a a)

σ: {a← (f b)} •

? ? ? (due Tue, Mar 2) • Question 137: Is there a substitution σ such that (f x (h y

z))/σ is (f (g a) (h b 33))? If so, what is it? If not, why? Just use a word processor;
no ACL2s. But make sure your answer is syntactically well-formed or you’ll get no credit!
•
• Question 138: Is there a substitution σ such that (f x (h y y))/σ is (f (g a) (h b

33))? If so, what is it? If not, why? •
• Question 139: Is (rev1 (rest x) (cons a b)) an instance of (rev1 x a)? •
• Question 140: Is (rev1 (rest x) (cons a b)) an instance of (rev1 x (rest a))? •
•Question 141: (mem (first a) (unn (int a b) (diff c d))) is a σ instance of (mem
e (unn x y)). What is σ? •
The conjuncts list of a term γ is a list of terms defined as follows. If γ is of the form (and p
q), its conjuncts list is the concatentation of the conjuncts list of p with the conjuncts list
of q. The conjuncts list of the constant t (or ’t) is the empty list. The conjuncts list of
any other γ is the singleton list containing just γ.

For example, the conjuncts list of (and a b c d), which you will recall is just an abbrevi-

Logic 101

ation for (and a (and b (and c d))), is (a b c d). The conjuncts list for (and (and p

t) (and q (or a b))) is the list (p q (or a b)). The conjuncts list of (equal x y) is
((equal x y)).

• Question 142: What is the conjuncts list of (and (and a b) (and (or p q) d))? •
Note: This concept is a little strange because it mixes ACL2 data objects (namely lists) with
ACL2 syntactic objects (namely terms). Because terms look just like lists, this shouldn’t
cause you any trouble.

Given a list of terms, their conjunction (or the result of conjoining the terms in the list) is
a term defined as follows. If the list is empty, its conjunction is the term t; if the list is a
singleton containing α, the conjunction is α; otherwise, the conjunction is the term (and α
β), where α is the first term in the list and β is the conjunction of the rest of the list.

Thus, the conjunction of the list of the terms (a b c) is (and a (and b c)). I could
alternatively say: the result of conjoining the list of terms (a b c) is (and a (and b c)).

Before going on with such definitions, let me illustrate how we’ll use them. Suppose I said
“to and-right-associate any expression, conjoin its conjunction list.” Then you should be
able to and-right-associate expressions:

expression and-right-associated version
(and (and a (and b c)) d) (and a (and b (and c d)))

(and a b) (and a b)

(mem e x) (mem e x)

t t

Notice that an expression and its and-right associated version are propositionally equivalent,
by the Associativity tautology for and. Our use of conjunct lists and conjoining is a way to
implicitly “build in” to our reasoning applications of the Associative tautology.

Here is another typical use of this terminology. Suppose I wrote:

Given a term other than t, obtain its conjuncts list, select one element, α, and
let β be the result of conjoining the remaining elements.

Then you should be able to carry out this process. For example, if the term in question is
(and (and a b) (and c d)) and you select c for α, then β will be (and a (and b d)).

I now continue introducing new notation.

The negation of a term, α, is defined as follows. If α is of the form (not α′) its negation is
α′. Otherwise, its negation is (not α).

Thus, the negation of (not (mem e a)) is (mem e a) and the negation of (equal a b) is
(not (equal a b)). Obviously, the Double Negation identity is built into this syntactic
concept.

The pointwise negation of a list of terms is the list of negations of each member of the list.

Thus, the pointwise negation of the list of terms (a (not b) c) is ((not a) b (not c)).

The disjuncts list of a term γ is defined as follows. If γ is of the form (or p q), its disjuncts
list is the concatentation of the disjuncts list of p with the disjuncts list of q. If γ is of the
form (implies p q), its disjuncts list is the pointwise negation of the conjuncts list of p
concatenated with the disjuncts list of q. Otherwise, the disjuncts list of γ is the singleton
list containing γ.

For example, the disjuncts list of (or (or a b) c) is (a b c).

102 A Little Logic

The disjuncts list of

(implies (and (not p) q)

(or (or a b) c))

is obtained by concatenating two parts:

� the pointwise negation of the conjuncts list of (and (not p) q), which is (p (not

q)), and

� the disjuncts list of (or (or a b) c), which is (a b c).

Concatenating these two produces the answer:

(p (not q) a b c).

Notice that implies is treated sort of like an or. In fact, we can use the propositional
identities to justify this:

(implies (and (not p) q)

(or (or a b) c))

is propositionally equivalent, by Implicative Disjunction, to

(or (not (and (not p) q))

(or (or a b) c))

which is propositionally equivalent, by De Morgan, to

(or (or (not (not p)) (not q))

(or (or a b) c))

which is propositionally equivalent, by Double Negation, to

(or (or p (not q))

(or (or a b) c))

which is propositionally equivalent, by Associativity, to

(or p

(or (not q)

(or a

(or b c)))),

and the disjuncts list of the last formula is (p (not q) a b c) as described. Thus, this
definition of “disjuncts list” has several propositional identities built into it.

We will speak of two kinds of “factoring” of a formula. In one, we factor the formula
into a “hypothesis” and a “conclusion.” In the other, we factor it into a “pattern,” a
“replacement,” and “maintained equivalence.” In both cases, we build in various identities.

To factor formula φ into a hypothesis and a conclusion means to decompose the formula into
two parts as follows. The decomposition isn’t uniquely determined below – a formula can
usually be factored more than one way. You are free to choose any of the options that apply
to your φ. Let x be the disjunction list of φ. Then you may choose any element of x as
the conclusion of your factoring of φ. Suppose you choose β as your conclusion. Then the
hypothesis of this factoring of φ is the conjunction of the pointwise negation of the result of
deleting β from x.

Logic 103

Wow! That’s complicated! Ok, let’s take it one step at a time. Let φ be (implies (and

(and a (not b)) c) d). Its disjunction list, called x above, is ((not a) b (not c) d).
Now suppose we choose d for the conclusion of this factoring of φ. So β above is d. Now we
have figure out the conjunction of the pointwise negation of the result of deleting β from
x. The result of deleting β is ((not a) b (not c)). If we take the pointwise negation of
that, we get (a (not b) c). And then if we take the conjunction of that, we get (and a

(and (not b) c)). So that’s the hypothesis of this factoring.

Thus, here is one way to factor φ:

φ: (implies (and (and a (not b)) c) d)

hypothesis: (and a (and (not b) c))

conclusion: d

But if we choose (not c) as the conclusion of our factoring, then we get:

φ: (implies (and (and a (not b)) c) d)

hypothesis: (and a (and (not b) (not d)))

conclusion: (not c)

Suppose we factor φ into a hypothesis φh and a conclusion φc. Then I claim that φ is
propositionally equivalent to (implies φh φc). Here’s an explanation.

Start with φ

(implies (and p . . .) q)

and use Implicative Disjunction to change it to

(or (not (and p . . .)) q).

Then use De Morgan and Double Negation repeatedly to drive the not through all the
conjuncts in the hypothesis and remove double negations (thus the “pointwise negation of
the conjuncts”) to get:

(or (or (not p) (not . . .)) q).

Then, use Associativity of or to flatten it into a right-associated or-nest:

(or (not p) (or . . . δ . . . (or . . . q). . .)).

Now pick which of the disjuncts you want to use for your conclusion. Let’s suppose it’s δ
above. By the Associativity and Distributivity of or we can move the δ to the last argument
of the outermost or to get:

(or (or (not p) (or . . . (or . . . q). . .)) δ).

Now use Implicative Disjunction again to turn that into

(implies (not (or (not p) (or . . . (or . . . q). . .))) δ)

and then drive the not through the ors with De Morgan and use Double Negation to get

(implies (and p (and . . . (and . . . (not q)). . .)) δ).

Note that the hypothesis above, (and p (and . . . (and . . . (not q)). . .)), is the hypoth-
esis created by factoring φ with conclusion δ. At every step we preserved propositional
equivalence.

104 A Little Logic

By defining the notion of factoring, we save ourselves all the work of those repeated little
rewrites.

• Question 143: Can you factor (implies (and a b) c) so that the conclusion is (not

c)? If so, show the hypothesis. If not, explain why not. •
• Question 144: Can you factor (implies (and (not a) b) c) so that the conclusion is
(not a)? If so, show the hypothesis. If not, explain why not. •
• Question 145: Can you factor (implies (and (not a) b) c) so that the conclusion is
a? If so, show the hypothesis. If not, explain why not. •
? ? ? (due Tue, Mar 2) • Question 146: Can you factor (implies (and (not a) b) (or

c (not d))) so that the conclusion is c? If so, show the hypothesis. If not, explain why
not. •
• Question 147: Can you factor (mem e (rev a)) so the conclusion is (mem e (rev a))?
If so, show the hypothesis. If not, explain why not. •
A refactoring of a formula φ is any formula φ′ that can be factored into the same hypothesis
and conclusion as φ can be.

For example, a refactoring of (implies (and a (and (not b) (not d))) (not c)) is
(implies (and (and a (not b)) c) d). Name these two formulas γ and γ ′. We can
factor γ into hypothesis (and a (and (not b) (not d))) and conclusion (not c). But
we can factor γ′ into the same hypothesis and conclusion.

A formula φ may also be factored into three parts we call the pattern, the replacement, and
the maintained equivalence as follows according to the form of φ. However, the options
below are not uniquely determined by the form of φ. You are free to choose any of these
options:

� if φ is of the form (equal x y), the pattern is x, the replacement is y, and the
maintained equivalence is equal.

� if φ is of the form (iff x y), the pattern is x, the replacement is y, and the maintained
equivalence is iff.

� if φ is of the form (not x), the pattern is x, the replacement is nil, and the maintained
equivalence is equal.

� regardless of the form of φ, the pattern is φ, the replacement is t, and the maintained
equivalence is iff.

Furthermore, in all cases above, you may interchange the pattern and replacement.

Thus, if we say “factor” (iff (consp x) (stringp y)) into pattern pat, replacement rep
and maintained equivalence eqv, you might choose to let pat be (consp x), rep be (stringp
y), and eqv be iff. But you could just as well let pat be (stringp y), rep be (consp x),
and eqv be iff. Or, you could even let pat be (iff (consp x) (stringp y)), rep be t,
and eqv be iff. You just have to decide how you want to factor it.

Here is how we’ll use factoring and refactoring. How would you prove?

γ:
(implies (and (true-listp a)

(equal b nil))

Logic 105

(true-listp b))?

The formula reads “if a is a true list, and b is nil, then b is a true list.” Intuitively, the proof
would go something like “replace b in the conclusion by nil, creating (true-listp nil),
and then just evaluate it to t.” Such an proof is justified by a rule of inference allowing us
to “use” an equivalence hypothesis, by substituting one side for the other in the conclusion.

But now imagine you’ve been asked to prove

γ′:
(implies (and (true-listp a)

(not (true-listp b)))

(not (equal b nil))).

Note that γ and γ′ are propositionally equivalent. (This can be proved by repeatedly
using the propositional identities Implicative Disjunction, De Morgan, Double Negation,
Associativity, and Commutativity.) But in γ ′ we don’t have an equality hypothesis. If the
rule of inference for using an equivalence hypothesis is stated in the most straightforward
way, it won’t apply to γ ′ because there is no equality hypothesis in γ ′. To solve this problem,
our rule is stated very generally. It allows us to factor the formula, identify a hypothesis,
substitute one side for the other, and then create any refactoring of the result. Thus, in one
step, we can substitute nil for b to get:

(implies (and (true-listp a)

(not (true-listp nil)))

(not (equal b nil))).

This one step takes the place of the following sequence of steps:

(implies (and (true-listp a)

(not (true-listp b)))

(not (equal b nil)))

is propositionally equivalent, by Implicative Disjunction, De Morgan, Double Negation,
Associativity, and Commutativity, to

(implies (and (true-listp a)

(equal b nil))

(true-listp b)),

which, by replacement of equals for equals, is equivalent to

(implies (and (true-listp a)

(equal b nil))

(true-listp nil)),

which, by Implicative Disjunction, De Morgan, Double Negation, Associativity, and Com-
mutativity, is propositionally equivalent to

(implies (and (true-listp a)

(not (true-listp nil)))

(not (equal b nil))).

106 A Little Logic

? ? ? (due Tue, Mar 2) • Question 148: Factor

(iff (or (findpos e a)

(findpos e b))

(findpos e (app a b)))

so the pattern is (findpos e (app a b)). What is the replacement? What is the main-
tained equivalence? •
• Question 149: Factor (mem e (app a b)) so the target is (mem e (app a b)). What
is the replacement? What is the maintained equivalence? •

4.2 Syntax (Feb 23, Feb 25)

Now for a shocking revelation: most computer scientists do not use ACL2 notation! We’ve
stuck to ACL2 notation so far because it makes it easier (I think) for you to understand such
ideas as how to do substitution, address a subterm, factor a formula into a certain forms,
etc. ACL2 also takes you out of your “comfort” zone with arithmetic and lets us prove
simple but non-obvious theorems about lists. But now it is time to learn the traditional
notation.

Most computer scientists write in “infix” notation, writing x+y instead of (+ x y). You’re
familiar with infix notation for addition (+), subtraction (−), multiplication (×), and divi-
sion (/), as well as equality (=) and dis-equality (6=) and the standard inequalities (<, ≤,
≥, and >). You are free to use them on your homeworks. I’ll tell you how I want symbols
like ≤ typed below. Please understand that the ACL2 system does not accept infix!

The familiar notation, e.g., “x+ y”, is an example of what computer scientists call concrete
syntax. It is the syntax of the “source language.” The ACL2 notation, e.g., “(+ x y)”, is an
example of abstract syntax. It is the deep, underlying syntactic structure of the utterance.
Typically, the concrete syntax provides all sorts of conveniences while the abstract syntax
is very regular and uniform. For example, in traditional concrete syntax one might write
“x + y”, “xy,” “xy”, “mod(x, y)”, and “ x

√
y” where the corresponding abstract syntactic

structures would be “(+ x y)”, “(* x y)”, “(expt x y)”, “(mod x y)”, and “(root x

y)”. Note that the concrete syntax varies wildly: the operator (the function symbol) is
written between the operands, the operator is not written at all (!), conveyed by raising or
lowering the symbols, written before the operands, or written as a squiggly mark around
the operands depending on what the operator is. But regardless of the concrete syntax, the
abstract syntax is very regular: a function symbol applied to two arguments.

Even though ACL2 doesn’t accept infix notation, I will use it interchangeably with ACL2
notation in this course. I may well write, (x+ (6× y)) 6= j to mean (not (equal (+ x (*

6 y)) j)). Note how “6=” turns into an equal expression embedded in a not.

We will always give our terms the meaning that ACL2 gives them. So you should not be
surprised if I say nil+ 6 = 6. We hope such weird expressions don’t arise! But if they do,
don’t argue with me about what they mean! Infix notation is just shorthand for ACL2 and
infix expressions mean whatever ACL2 says their ACL2-translations mean!

Computer scientists use a lot more symbols than the arithmetic ones you’ve seen before.
We will also start to use those symbols and infix notation. Sometimes people will use other
symbols for these connectives and we show common alternatives below. If someone uses a
symbol you don’t recognize, ask them what it means! In this booklet, we’ll either write in

Logic 107

ACL2 or we will use the infix column of symbols and write in infix.

ACL2 infix ASCII other alternatives

t True 1

nil False 0

(equal x y) x = y x = y

(not (equal x y)) x 6= y x != y

(and p q) (p ∧ q) (p && q) (p * q)

(p & q)

(or p q) (p ∨ q) (p || q) (p | q)

(not p) (¬p) (∼ p) p
(- p)

(! p)

(implies p q) (p→ q) (p --> q) (p ⊃ q)
(p⇒ q)
(p ==> q)

(iff p q) (p↔ q) (p <--> q) (p ≡ q)

Your homeworks should be typed in plain text. You may mix ASCII infix notation for equal
(“=”), and (“&&”) or (“||”), not (“∼” aka “tilde”), implies (“-->”), iff (“<-->”) and
arithmetic (+, -, *, <, >, <= and >=). (The last two are the ASCII substitutes for “≤” and
“≥”. Use normal ACL2 notation for all other function calls.

Substitutions, such as

{ x ← (first x), y ← (second x) }

should be displayed in ASCII as

{ x <-- (first x), y <-- (second x) }.

Do not use alternative notation, e.g., don’t write 0 for false! Do not put non-ASCII symbols,
like “⇒” in your homework! Spell out Greek letters. Thus, if you want to write “(α∧β)→
(γ ∨ δ)” type “(alpha && beta) --> (gamma || delta)” and avoid using Greek letter
names as variables!

Use parentheses to disambiguate. For example, instead of writing “∼A || B” write either
“(∼ A) || B” or “∼ (A || B),” depending on which you mean. You may write “A &&

B && C” instead of “A && (B && C)” or “(A && B) && C” since and is associative. The
same flexibility is allowed for “||”, “+,” and “*,” since they are also associative. Otherwise,
make sure that you provide the right number of arguments to every function whether you’re
writing in infix or ACL2.

108 A Little Logic

When writing infix you may drop the outermost pair of parentheses. Thus, instead of writing

((x = y) → ((first x) = (first y)))

you may write

(x = y) → ((first x) = (first y)).

But if the formula is not at the top level, you should write the parentheses around it. For
example, if I wanted to conjoin the formula above with (natp x) I would have to write:

(natp x) ∧ ((x = y) → ((first x) = (first y))).

not

(natp x) ∧ (x = y) → ((first x) = (first y))

since the latter could ambiguously also mean ((natp x) ∧ (x = y)) → ((first x) = (first y)).

Recall the earlier lesson on pretty printing. It is simply impossible to read stuff like this:

(defun insert (e x) (if (endp x) (cons e x) (if (lexorder e (first x)) (cons e x

) (cons (first x) (insert e (rest x))))))

For what it is worth, here is that text along-side an 80 column “ruler”

10 20 30 40 50 60 70 80

123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|

(defun insert (e x) (if (endp x) (cons e x) (if (lexorder e (first x)) (cons e x

) (cons (first x) (insert e (rest x))))))

Learn to “pretty print” your text so that the format of the text helps convey the structure
of the formula! I would display the definition above this way:

(defun insert (e x)

(if (endp x)

(cons e x)

(if (lexorder e (first x))

(cons e x)

(cons (first x)

(insert e (rest x))))))

This advice will help you avoid mistakes! The point is not to squeeze the text into the space
allowed. The point is to record and communicate your ideas. Remember: You read your
stuff more often than anybody else does and if you express yourself clearly you’ll understand
your own thinking better. Habits developed now will help you throughout your career.

I will repeat the three heuristic guidelines given earlier. (i) Look for ways to break up a line
if it contains more than about 25 non-blank characters and try never to produce a line with
more than about 40 characters. (ii) If you have to break up any argument, first indent that
argument and all of its peers. (iii) Indent every argument equally.2

2Defun is an exception: it is conventional to write the “defun”, function name and list of formals on one
line and then indent the body a space or two.

Logic 109

For example, while I would write this:

(if (endp y) nil (equal x (first y)))

because the whole if-expression fits in less than 40 characters. But if I had to write
something slightly longer, like

(if (endp y) nil (cons (first x) (app (cdr x) y)))

I would break it up. I would not do this:

(if (endp y) nil (cons (first x)

(app (cdr x) y)))

because it violates guideline (ii). Instead, I would indent the cons-expression and indent
the nil equally:

(if (endp y)

nil

(cons (first x) (app (cdr x) y)))

If I felt the cons-expression was still too hard to read, I would indent its arguments:

(if (endp y)

nil

(cons (first x)

(app (cdr x) y)))

The point is not just to make the text fit in 80 columns! The point is to make the structure
of the formula clear. The indentation tells me which expressions belong to which function
call.

When you use infix, follow similar guidelines. In particular, don’t type stuff like this:

((true-listp a) && (true-listp b)) --> (first (if (endp a) b (cons (first a) (ap

p (rest a) b)))) = (if (endp a) (first b) (first a))

If it’s hard for you to read, you’ll make mistakes. In any case, the graders and I won’t read
it.

Instead, pretty print your infix too:

((true-listp a)

&&

(true-listp b))

-->

((first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

=

(if (endp a) (first b) (first a))).

Notice how all the arguments to the “&&” and to the “=” are indented, they are indented

110 A Little Logic

equally, and they are indented more than the “-->” so, again, the indentation helps the
reader understand the structure.

Some people prefer to indent the infix operators and their arguments equally. That’s ok
too.

((true-listp a)

&&

(true-listp b))

-->

((first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

=

(if (endp a) (first b) (first a))).

Sometimes when you use infix to write a proof, you try to line up the terms on adjacent
lines of the proof to help show how a line is derived from the previous one:

((∼(endp x)) && (perm (rest x) (rest x))) --> (perm x x)

<--> {perm, hyp, if-nil}
((∼(endp x)) && (perm (rest x) (rest x))) --> ((mem (first x) x)

&&

(perm (rest x)

(del1 (first x) x)))

The display above clearly shows that the hypotheses of the formula remained the same and
I only changed the conclusion. It violates the guideline of not breaking up a subformula if
you print its peers on a single line. But the overarching consideration has to be clarity of
the totality, not strict rules for how to print (other than avoiding lines extending past the
80th column). So I would tend to display the transformation as shown above, which just fits
in 80 columns. However, since the (perm (rest x) (del1 (first x) x)) is now close to
the right margin, I would be in trouble if I had to keep expanding it. So if I need more
space for subsequent transformations, I’d redisplay the formula to gain some room on the
right. I would note explicitly that I was doing so, so that the display above would become:

((∼(endp x)) && (perm (rest x) (rest x))) --> (perm x x)

<--> {perm, hyp, if-nil}
((∼(endp x)) && (perm (rest x) (rest x))) --> ((mem (first x) x)

&&

(perm (rest x)

(del1 (first x) x)))

<--> {redisplaying}
((∼(endp x))

&&

(perm (rest x) (rest x)))

-->

((mem (first x) x)

&&

(perm (rest x)

(del1 (first x) x)))

Logic 111

If you learn nothing else from this course than the value of communicating complicated
ideas clearly you will benefit!

When in doubt about how to display a formula, talk to me or your TA. But the bottom line
is this: use every opportunity to help the reader understand your ideas. This advice applies
as much to your mathematical ideas as your programming and your software design.

Warning: You will get a 0 for any answer that violates the following rules. Every “formula”
must be syntactically well-formed. Nothing should extend beyond the 80th column – lines
should not be truncated or wrap around when viewed in a window 80 characters wide.
Finally, if the grader feels that insufficient effort has been made to display a formula sensibly,
he or she is free to assign a 0 for that answer even if it is otherwise correct!

In the rest of these notes, we may well write the propositional formula

(implies (and p (or q (not r)))

(iff u v))

as (p ∧ (q ∨ (¬r))) → (u↔ v). I try to follow the same rules I gave you above.

You should just get used to the idea that “(p∧ q)→ r” is an often-used concrete syntax for
the abstract syntax “(implies (and p q) r).” I think of the former as merely a way to
display the latter.

The truth values (more commonly called Booleans) are True and False. In these notes when
I write infix formulas, I’ll use True and False as synonymous with t and nil, respectively.3

ACL2 is an unconventional logic due to its treatment of the Booleans: in ACL2 Booleans
are treated like any other objects.

In conventional logics, the truth values are given special treatment. Truth values are not
among the “conventional” objects like numbers and conses. The logical operators (“∧”,
“∨”, “¬”, “→”, and “↔”) are applied exclusively to (expressions yielding) truth values.
Predicates and relations, like equality (“=”) and less than (“<”) operate exclusively on
the conventional objects but return truth values. Functions, like “+” and cons, operate
exclusively on conventional objects and return conventional objects. Thus, in a conventional
logic you would never see anyone write “(x < 23) = (y = z)”.

But such formulas have meaning in ACL2. The formula above, translated to ACL2, (equal
(< 23) (equal y z)), means that the values of “(x < 23)” and “(y = z)” are identical.
The fact that the values in question happen to be “truth values” is unimportant in ACL2.
One reason ACL2 (and Lisp) allow this is so that we can write logical operators inside the
bodies of “conventional” function definitions.

But out of respect for conventions, in this book I will avoid using these features of ACL2
except to make certain important points (about the role of “congruences” in reasoning).
When I use the features, I’ll highlight the fact that I’m doing so.

The following truth is very useful in this regard:

(implies (and (booleanp p)

(booleanp q))

(iff (equal p q)

(iff p q)))

or, in our new notation

3In ACL2, t is a different symbol from True. But note the font difference between ACL2’s symbol True
and True, my abbreviation for the symbol t in infix formulas.

112 A Little Logic

((booleanp p) ∧ (booleanp q)) → ((p = q) ↔ (p ↔ q)).

Recall the unconventional expression (x < 23) = (y = z). This can be written conventionally
as (x < 23)↔ (y = z), since both sides of the “↔” are Boolean.

• Question 150: Write the infix form of the propositional formula.

(iff (not (and p q))

(or (not p) (not q))) •

? ? ? (due Tue, Mar 2) • Question 151: Write the infix form of the propositional formula.

(implies (and (not c)

(implies (implies b (not c)) a))

(implies (implies a c) nil)) •

• Question 152: Write the ACL2 form of the following propositional formula.

((p→ q) ∧ (q → r))→ (p→ r) •

• Question 153: Write the ACL2 form of the following propositional formula.

((B → (¬C))→ A)↔ (((¬A) → B) ∧ ((¬A)→ C)) •

• Question 154: Write the ACL2 form of (p ∨ (¬p))↔ True. •
• Question 155: What is the conjuncts list of a ∧ ((b ∨ c) ∧ (¬d))? •
• Question 156: Is (a ∧ (b ∨ c)) → (a → b) a σ instance of (p ∧ q) → r? If so, what is σ?
If not, why? •
• Question 157: Let σ be the substitution {x ← (a + b), y ← c, z ← (i × j)}. Let α be
x+ 2× y ≤ 25× z. What is α/σ? •
• Question 158: If σ is the substitution {p ← (ENDP A), q ← (ENDP (APPEND X Y))}
what is (p→ q)/σ? •
• Question 159: Factor (a∧b)→ c so that the conclusion is (¬a). What is the hypothesis?
•
??? (due Tue, Mar 2) • Question 160: Factor ((a∧b)∧ (¬(p↔ q)))→ c so the conclusion

is (p↔ q). What is the hypothesis? •
• Question 161: Factor (rev (append a b)) = (append (rev b) (rev a)) so that the
pattern is (append (rev b) (rev a)). What is the replacement? What is the maintained
relation? •
• Question 162: Factor (ordp (isort x)) so that the pattern is (ordp (isort x)).
What is the replacement? What is the maintained equivalence? •
•Question 163: Factor (evenp (+ x y))↔ ((evenp x)∧(evenp y)) so that the pattern
is (evenp (+ x y)). What is the replacement? What is the maintained equivalence? •
? ? ? (due Tue, Mar 2) • Question 164: Factor (¬ (mem e x)) so the pattern is (mem e

x). What is the replacement? What is the maintained equivalence? •
• Question 165: Factor (rev (rev x)) = x so that the pattern is (rev (rev x)) = x.
What is the replacement? What is the maintained equivalence? •

Logic 113

Technically, in the next section, we ought to include axioms for the symbol = (equal).
But we assume you know about equality. The key facts about equality (that aren’t written
elsewhere here) are:

� The function symbol equal is Boolean, it returns t or nil.

� Different constants are unequal: t 6= nil, 0 6= 1, 17 6= -23, etc.

Those familiar with axiomatizations of equality might wonder about the Symmetry and
Transitivity of Equality. Those can be proved using our rules of inference. So can the usual
infinity of axioms about functional reflexivity, e.g., ((x1 = y1) ∧ (x2 = y2)) → (+ x1 x2) =
(+ y1 y2).

4.3 Axioms (Mar 2)

In this section I present the axioms we’ll use.4

Recall that “axioms” are our “ground truths,” formulas that we accept as truths: true for
all values of the variables in them.

You can think of the axioms of a system as describing the properties that the symbols have.
For example, you know that if you build a cons with (cons x y) and then take its first,
you’ll get x, no matter what values for x and y you use. That gives rise to the axiom named
first-cons below.

Axiom equal-reflexive:
x = x

Axiom equal-boolean:
((x = y) = t) ∨ ((x = y) = nil).

Axiom if-ax1:
(x 6= nil) → ((if x y z) = y).

Axiom if-ax2:
(x = nil) → ((if x y z) = z).

Axiom first-cons:
(first (cons x y)) = x.

Axiom rest-cons:
(rest (cons x y)) = y.

Axiom cons-first-rest:
((consp x) = t) → ((cons (first x) (rest x)) = x).

Axiom consp-cons:
(consp (cons x y)) = t.

Axiom first-atom:
(¬(consp x)) → ((first x) = nil).

Axiom rest-atom:
(¬(consp x)) → ((rest x) = nil).

4I omit many axioms of the ACL2 logic – about rationals, complex rationals, characters, strings, and
symbols. I just don’t think we’ll need them. If we do, I’ll add them!

114 A Little Logic

The recognizers are all Boolean.

Axiom natp-boolean:
((natp x) = t) ∨ ((natp x) = nil).

Axiom stringp-boolean:
((stringp x) = t) ∨ ((stringp x) = nil).

Axiom symbolp-boolean:
((symbolp x) = t) ∨ ((symbolp x) = nil).

Axiom consp-boolean:
((consp x) = t) ∨ ((consp x) = nil).

The naturals, strings, symbols, and conses are disjoint. We refer to all of all these axioms
by the single name “disjointness.”

Axiom disjointness:
((consp x) = t) → ((natp x) = nil).

Axiom disjointness:
((consp x) = t) → ((stringp x) = nil).

Axiom disjointness:
((consp x) = t) → ((symbolp x) = nil).

Axiom disjointness:
((natp x) = t) → ((stringp x) = nil).

Axiom disjointness:
((natp x) = t) → ((symbolp x) = nil).

Axiom disjointness:
((stringp x) = t) → ((symbolp x) = nil).

In addition, we assume an infinite number of axioms about the “types” of our constants.
We refer to all these axioms by a single name, type.

Axiom Schema type:
(natp n) = t

for every natural number object n.

Axiom Schema type:
(stringp str) = t

for every string object str.

Axiom Schema type:
(symbolp ’sym) = t

for every symbol object sym.

Axiom Schema type:
(consp ’x) = t

for every cons object x.

Finally, every defun introduces an axiom.

Definitional Axiom Schema: Any admissible definition of the form

(defun f (v1 . . . vn) β)

introduces the definitional axiom:
Def Ax f : (f v1 . . . vn) = β.

Logic 115

Recall that the definitional principle has four conditions for admissibility. These conditions
insure that the logic stays sound: only valid formulas can be proved. But we won’t discuss
this.

We may add additional axioms later.

4.4 Rules of Inference (Mar 2)

I wrote this section succinctly – no cluttering examples – so you could come back to it again
and again as a reference manual. I recommend you put a bookmark here and refer back
every time we use an inference rule until you know them cold! In Section 4.6 I work through
many examples.

Each Rule of Inference tells that you can replace a goal, ψ, by a new goal, ψ′, while preserving
propositional equivalence. Thus, if a rule is applied correctly, ψ ↔ ψ′ is true. We will see
that “↔” (iff) is transitive. So if you can get a chain of replacements:

ψ
↔ {Rule1}
ψ1

↔ {Rule2}
.
↔ {Rulek}
ψk

in which each step is justified by one of the Rules of Inference below, then you have shown
that formula ψ ↔ ψk. If ψk is True, then you’ve proved ψ.

A proof of ψ is a reduction of ψ to True by a finite number of applications of the Rules of
Inference below.

The same proof may be described in many styles. I do not restrict you to any particular
style.

A Theorem is any axiom, definitional axiom, or formula that can be proved. A Tautology
is a propositional theorem, i.e., a formula that only involves the propositional connectives
and variables and that can be proved. Sometimes theorems are called by other names,
including Lemma (a theorem proved in order to use it as a stepping-stone in another proof)
and Corollary (a theorem whose proof follows easily from a theorem just proved).

There are six rules: Tautology (or Theorem), Rewrite, Hypothesis, Cases, Constant Expan-
sion, and Computation. Tautology (or Theorem) and Computation are just special cases of
Rewrite.

Rule of Inference Tautology (or Theorem) (“Taut” or “Thm”):

Summary: This rule allows you to prove your goal ψ if it is an instance of a theorem φ.
When φ is actually a tautology, we call this the Tautology rule. Otherwise, it is the Theorem
rule.

Description: If you can carry out all of the following steps:

1. find a theorem φ

2. find a substitution σ such that goal ψ is φ/σ

116 A Little Logic

then ψ ↔ True.

End of Rule

Rule of Inference Rewrite (“Re”):

Summary: This rule allows you to rewrite part of the goal ψ using a previously established
theorem (including an axiom or definition) φ.

Description: If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc so that the term you wish
to replace is in the goal’s conclusion ψc

2. let π be the address in ψc pointing to the subterm you want to replace

3. factor the previously proved theorem φ into a hypothesis φh and conclusion φc

4. factor φc into pattern α, replacement β, and maintained equivalvence eqv such that
the term you want to replace (at π in ψc) is an instance of α under some substitution
σ

5. if eqv is iff, confirm that address π admits a propositional replacement in ψc

6. prove ψh → (φh/σ)

7. obtain ψ′
c by replacing the term at π in ψc by β/σ

then ψ ↔ ψ′, where ψ′ is any refactoring of ψh → ψ′
c.

End of Rule

Note: Step 6 is called relieving the hypotheses of the theorem φ. Forgetting or misunder-
standing this step is probably the most common mistake students make. Using an implication,
like φh → (α = β) or φh → (α ↔ β), to rewrite with is called conditional rewriting. Most
rewriting is conditional.

The Relieve-Hyps Waiver: If the formula of step 6 is a tautology or can be proved merely
by rewriting with axioms and definitions, evaluation (see below), and tautologies, you need
not mention its proof. Otherwise, describe how that formula is proved when you cite the
use of the Rewrite rule of inference.

Please Note: Recall the mini-steps of rewriting (page 77 and 92). If you compare the
informal discussion of the mini-steps to the precise one you should be able to see the corre-
spondence, except that the precise description must make allowances for using propositional
equivalence to do replacement and must deal with relieving the hypotheses of conditional
rewrites. These step-by-step rules are incredibly detailed and precise. Use the examples in
Section 4.6 to debug your understanding. Practice until you can carry out each rule cor-
rectly. I am not interested in the individual steps involved in using a rule, just in whether
the end result is exactly as described here.

Rule of Inference Hypothesis (or “Hyp”):

Summary: This rule allows you to use one of the hypotheses of the goal ψ by replacing some
term in its conclusion with an equivalent term.

Description: If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc

Logic 117

2. let δ be one of the conjuncts of ψh (a hypothesis of goal ψ)

3. factor hypothesis δ into pattern α, replacement β, and maintained equivalence eqv

4. let π be an address in ψc at which you find α

5. if eqv is iff, confirm that address π admits a propositional replacement in ψc

6. obtain ψ′
c by replacing the term at π in ψc by β

then ψ ↔ ψ′, where ψ′ is any refactoring of ψh → ψ′
c.

Warning: Unlike Rewrite, the Hypothesis rule does not allow you to instantiate α! There
is no substitution σ in this rule!

End of Rule

Rule of Inference Cases (“Cases”):

Summary: This rule allows you to prove ψ by splitting the proof into several cases. The
case-split is justified by some theorem φ which establishes that all possibilities have been
considered.

Description: If you can carry out all of the following steps:

1. choose some theorem φ

2. let σ be a substitution that instantiates the variables of theorem φ

3. let φ′1, φ
′
2, . . . φ

′
k be the disjuncts of φ/σ

4. prove φ′i → ψ, for each 1 ≤ i ≤ k

then ψ ↔ True.

End of Rule

Rule of Inference Constant Expansion (“Const”):

Summary: This rule allows you to replace certain constants by function calls, or vice versa.
There are several variants.

Description of Variant 1: If you can carry out both of the following steps:

1. let π be a legal address in ψ that points to a non-empty list constant c

2. let ψ′ be the result of replacing the term at address π in ψ by (cons ’c1 ’c2), where
c1 is the first element of c and c2 is the rest of c

then ψ ↔ ψ′.

Description of Variant 2: If you can carry out both of the following steps:

1. let π be a legal address in ψ that points to constant term ’n, where n is a positive
natural number

2. let ψ′ be the result of replacing the term at address π in ψ by (+ 1 ’n′), where n′ is
n− 1

118 A Little Logic

then ψ ↔ ψ′.

End of Rule

Note: Thus, the constant ’(M W F) may be replaced by (cons ’M ’(W F)). The two
forms above essentially tell us how to build all list constants and naturals by the primitive
operations cons and +. We omit forms of this rule that reveal the structures of strings,
symbols, characters, or non-natural numbers because we won’t use them.

Rule of Inference Computation (“Comp”):

Summary: This rule allows you to replace certain function calls by constants.

Description: If you can carry out all of the following steps:

1. let π be a legal address in ψ that points to a function call (f c1 . . . cn) where all the
ci are constant terms

2. the function f is defined and it is possible to compute the value, c, returned by
(f c1 . . . cn) from axioms and definitions by repeated use of Rewrite and Constant
Expansion and the definitional axioms

3. c is a constant

4. ψ′ is obtained from ψ by replacing the term at π in ψ by ’c

Then ψ ↔ ψ′.

End of Rule

We will add other rules of inference later.

4.5 Tautologies (Mar 2)

4.5.1 Familiar Tautologies

You must be able to recognize many common tautologies at a glance! You will note that
the first fourteen below are the previoiusly mentioned named identities (page 96), with a
more commonly used variant of Contraposition included.

Logic 119

(¬(¬p))↔ p Double Negation
(¬(p ∧ q))↔ ((¬p) ∨ (¬q)) De Morgan
(¬(p ∨ q))↔ ((¬p) ∧ (¬q)) De Morgan
(p ∧ q)↔ (q ∧ p) Commutativity
(p ∨ q)↔ (q ∨ p) Commutativity
(p↔ q)↔ (q ↔ p) Commutativity
((p ∧ q) ∧ r)↔ (p ∧ (q ∧ r)) Associativity
((p ∨ q) ∨ r)↔ (p ∨ (q ∨ r)) Associativity
(p ∧ (q ∨ r))↔ ((p ∧ q) ∨ (p ∧ r)) Distributivity
(p ∨ (q ∧ r))↔ ((p ∨ q) ∧ (p ∨ r)) Distributivity
(p→ q)↔ ((¬q) → (¬p)) Contraposition
((p ∧ r) → q)↔ (((¬q) ∧ r)→ (¬p)) Contraposition
(p→ q)↔ ((¬p) ∨ q) Implicative Disjunction
(¬(p→ q))↔ (p ∧ (¬q)) Negated Implication
p ∨ (¬p) Basic
p→ p Basic
(p ∧ q)→ p Basic
(False ∧ p)↔ False Short-Circuit
(False ∨ p)↔ p Short-Circuit
(True ∧ p)↔ p Short-Circuit
(True ∨ p)↔ True Short-Circuit
(True→ p)↔ p Short-Circuit
(False→ p)↔ True Short-Circuit
(p→ True)↔ True Short-Circuit
(p→ False)↔ (¬p) Short-Circuit
(p↔ q)↔ ((p→ q) ∧ (q → p)) Def ↔
(p ∧ p)↔ p Contraction
(p ∨ p)↔ p Contraction
(p ∧ (p→ q))↔ (p ∧ q) Forward Chaining
(p ∧ (p→ q))↔ (p ∧ (p→ q) ∧ q) Forward Chaining
((p→ q) ∧ (q → r)) → (p→ r) Transitivity
((p↔ q) ∧ (q ↔ r)) → (p↔ r) Transitivity
(p→ (q → r)) ↔ ((p ∧ q)→ r) Promotion

These formulas should be second nature to you as a computer scientist! You should recognize
them not because you’ve memorized them but because they are obvious truths to you because
you understand what the symbols mean.

4.5.2 Truth Tables

You will need to identify other tautologies. How do you show that a formula is a tautology?
When this is done “by hand” a “truth table” is constructed. A truth table is a disciplined
approach to enumerating all the combinations of Boolean values for the variables in a formula
and for keeping track of the evaluations of subexpressions.

Truth tables are excruciatingly boring. No self-respecting computer science student who had
to construct a lot of truth tables would do it by hand. That’s why on Question 134, page
97 I challenged you write the function tautp to recognize tautologies for you. There are
many tools on the web to check tautologies. Many companies sell very expensive, industrial-
strength tools for checking tautologies.

120 A Little Logic

Except on exams prohibiting the use of computers, you should use software to check unfa-
miliar tautologies!

But ok, because others will expect it of you, I’m going to show you a few truth tables and
expect you to be able to do more.

To make a truth table, set up a column for each variable and each subformula, building
up to the formula you want to check. That formula is in the far right-hand column. Then
make a row for every combination of values of the variables. Then calculate and write into
the cells the values of the respective subformulas in the corresponding cells. For brevity it
is conventional to use T and F instead of True and False.

Here is the truth table for one of the Basic tautologies, “(p ∧ q)→ p.”

p q (p ∧ q) (p ∧ q) → p

T T T T

T F F T

F T F T

F F F T

Notice how the first two columns show all combinations of truth values for the variables p
and q. Notice how the last column shows the truth value “(p∧ q)→ p. And notice how the
value in the last column is always T . The formula is True under all combinations of values
for its variables. It is a tautology.

Here is a non-tautology.

p q (p ∨ q) (p ∧ q) (p ∨ q) → (p ∧ q)
T T T T T

T F T F F

F T T F F

F F F F T

Note that the last column contains some Falses. This formula is not a tautology.

• Question 166: The formula checked above is the converse of one of our well-known
tautologies. Which one? •
Here is the last one of these boring things I’m going to do! Below is a truth table to show
that the transitivity of implication is really a tautology.

P Q R (P → Q) (Q → R) ((P → Q) ∧ (Q → R)) (P → R) (((P → Q) ∧ (Q → R)) → (P → R))
T T T T T T T T

T T F T F F F T

T F T F T F T T

T F F F T F F T

F T T T T T T T

F T F T F F T T

F F T T T T T T

F F F T T T T T

? ? ? (due Tue, Mar 9) • Question 167: If you have a formula with n different variables

in it, how many rows do you need in its truth table? •
? ? ? (due Tue, Mar 9) • Question 168: A femtosecond is 10−15 seconds. In order to

perform one operation per femtosecond a sequential processor would have to operate at one
million gigahertz – so a femtosecond is a very fast cycle length! Suppose you could fill in all
the cells in one row of a given truth table in 1 femtosecond. Suppose the truth table was
for a formula containing 1,000 propositional variables. About how long would it take to fill
in the entire truth table? •
Today we have industrial-strength tools that can easily check formulas containing hundreds
of thousands of variables. Sometimes they can check formulas containing many millions of
variables. Use of such tools is standard practice in the hardware industry: microprocessors

Logic 121

are essentially just big propositional formulas connected by memory devices. I’ll explain
that if you’re interested.

How do computers check propositional formulas with millions of variables? They do not do
it with truth tables!

4.6 About the Rules of Inference (Mar 4, Mar 9)

In this section, I discuss the informal proof from section 3.1 (page 75) again. I mimic the
proof there, but I’ll use the rules to carry out several of the “big steps” in that proof and
I explain what I’m doing in great detail so that you understand exactly what these rules
force you to do. If you don’t understand the individual steps in each rule, you are liable to
make logical mistakes. Please start by re-reading the succinct informal proof on page 79.

As you read this section, refer back pages 115–118 every time I mention a rule. You must
learn to apply these rules flawlessly.

In the next section I present proofs in the notation you’ll use most often but in this section
I explore the minutia of each rule.

4.6.1 An Exploration of Rewrite

We want to prove

Theorem first-app (γ):
(equal (first (app a b))

(if (endp a)

(first b)

(first a)))

which I will refer to as formula γ and transform through γ ′, etc., to t.

We have the definitional axiom

Def Ax app:

(app x y)

=
(if (endp x)

y

(cons (first x)

(app (rest x) y))).

Big Step 1: We’ll use the Rewrite rule to replace (app a b) by the body of app. Re-read
the Rewrite rule of inference, page 116. The rule requires that we carry out seven steps. In
this application of the rule, ψ will be γ above and π is an address that points to the (app

a b) in γ.

ψ:
(equal (first (app a b))

↑π
(if (endp a)

122 A Little Logic

(first b)

(first a)))

We factor goal ψ into the True hypothesis (ψh) and the conclusion (ψc) shown above as ψ.
Note that the term we want to rewrite is in the conclusion. Think about why we got the
True hypothesis. Hint: Re-read how to factor, page 102, and how to form the conjunction
of a list of term, page 101.

The “previously proved theorem” φ we will use is the definitional axiom of app. We factor
it into a hypothesis True (φh) and the equality conclusion shown in Def Ax app (φc). We
further factor φc into the pattern (app x y), the replacement

β:
(if (endp x)

y

(cons (first x)

(app (rest x) y)))

and the maintained equivalence equal.

Note that the term at π in ψc is (app a b) and that is a σ instance of the pattern, with σ
being {x← a; y← b}.
Since the maintained equivalence is equal, we are not required to check that π admits a
propositional replacement: we’re doing a replacement of equals by equals and we can do
that anywhere.

In step 6, we have to relieve the hypotheses of the theorem or axiom we’re using, i.e., to
prove that the hypothesis of our goal implies the hypothesis of the axiom we’re using. In this
case, ψh → φh/σ is just True → True. Can we prove that? Yes! Think of it in its ACL2
form: (implies t t). We can compute that it is equal to t. So the proof of this required
theorem is just an application of the Computation rule of inference. By the Relieve-Hyps
Waiver (page 116) we don’t have to mention this.

So we obtain ψ′
c by replacing the term at π in ψc by β/σ, which produces:

ψ′
c:

(equal (first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

Having carried out all seven steps required by the Rewrite rule, we create True → ψ ′
c and

refactor it any way we want to obtain our new goal ψ′. In our case, ψ′ is just ψ′
c above. We

call the final result γ′:

γ′:
(equal (first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

(if (endp a)

Logic 123

(first b)

(first a)))

That completes Big Step 1.

Big Step 2 is to move the first into the two branches of the first if. To carry out this step,
we need a lemma – a little “stepping stone” theorem just to help us make the transformation.
The lemma is

Lemma first-if:

(first (if u v w))

=
(if u (first v) (first w)).

We’ll prove it later. For the moment, let’s assume we have proved it.

? ? ? (due Tue, Mar 9) • Question 169: Describe how to use the Rewrite rule of inference

to transform the above formula, γ ′, to

γ′′:
(equal (if (endp a)

(first b)

(first (cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

In particular, specify each of the 13 choices you have to make to apply the rule, by selecting,
for each number from 1 to 13, one of the letters from A to Y corresponding to your choice.

Choices to make:

i choice (A–Y)
1. ψ
2. π
3. ψh

4. ψc

5. φ
6. φh

7. φc

8. pattern
9. replacement

10. maintained equivalence
11. σ
12. how step 6 is proved
13. final refactoring of ψh → ψ′

c

Possible selections

124 A Little Logic

A. True
B. False
C. the formula of γ′

D. the formula of γ′′

E. the formula of the first-if lemma
F. the formula defining app

G. the formula of the first-cons axiom
H. the occurrence of (first (if . . .))
I. the first occurrence (endp a)

J. the occurrence of (first (cons . . .))
K. u

L. (if u v w)

M. (first v)

N. (first (if u v w))

O. (if u (first v) (first w))

P. equal (“=”)
Q. iff (“↔”)
R. {u← (endp a), v← b, w← a}
S. {u← (endp a), v← (first b), w← (first a)}
T. {u← (endp a), v← b, w← (cons (first a) (app (rest a) b))}
U. {u← (endp a), v← b, w← (cons v (app a b))}
V. De Morgan
W. Short-Circuit
X. Contraction
Y. Promotion

Some letters may be used multiple times; others won’t be used at all. In the future I will
not expect this level of detail when you use a rule! But I want to make sure that you have
actually read and understood the rule. •
? ? ? (due Tue, Mar 9) • Question 170: Big Step 3 is to Rewrite again to produce γ ′′′

below. Answer all three of these questions: What subterm of γ ′′ do we replace? What
theorem or axiom do we use? What is the σ? •
The step above leaves us with:

γ′′′:
(equal (if (endp a)

(first b)

(first a))

(if (endp a)

(first b)

(first a)))

Big Step 4 reduces this to True, via the Tautology Rule (page 115) using

Axiom equal-reflexive: x = x

Recall that “x = x” is just infix for (equal x x).

That completes the proof of the first-app theorem – provided we prove the lemma first-if
used above. I will show a succinct proof of first-app in the next section.

But while we’re exploring the rules of inference, let’s continue in this careful vein and look
at the proof of the lemma used above.

Logic 125

4.6.2 An Exploration of Cases and Hypothesis

Lemma first-if:

(first (if u v w))

=
(if u (first v) (first w)).

To prove this, I’ll appeal to the Cases rule. Re-read the Cases rule (page 117).

Our ψ is the first-if lemma above. I want to consider two cases: u is true or u is false.

Why did I decide on a case split and why this one? First-if tests u twice, once on the
left-hand side and once on the right-hand side. By splitting on u I give myself the chance
to get rid of those if-expressions. Watch.

To split on u as above, I need a disjunctive theorem like this:

(x↔ True) ∨ (x↔ False)

that I can instantiate with u to obtain the two cases. (The rule allows an arbitrary number
of cases, as long as their disjunction is a theorem.) Since we have the Basic tautology,
p ∨ (¬p), I’ll use it.

In the Cases rule, let φ be p∨ (¬p). Let σ be {p← u}. The disjuncts of φ/σ, called φ′
1 and

φ′2 in the statement of the rule, are u and (¬ u). We have to prove φ′
1 → ψ and φ′2 → ψ.

Thus, we have two cases to deal with.

Case 1:
u → ((first (if u v w)) = (if u (first v) (first w))).

Case 2:
(¬ u) → ((first (if u v w)) = (if u (first v) (first w))).

To prove Case 1, we use the Hypothesis rule (page 116). Since this is the first time we’ve
used it, we’ll carry it out carefully.

We factor the formula of Case 1 into hypothesis u, and conclusion ((first (if u v w))

= (if u (first v) (first w))). The δ of the Hypothesis rule is u, the only hypothesis.
We factor δ into pattern u, replacement t, and maintained equivalence iff. We let π be
the address of the u in (if u v w). Note that since the maintained equivalence is iff, we
must confirm that π admits a propositional replacement. It does, because it points to the
test of an if. Therefore, we replace u by the replacement chosen in the factoring above, t.
This produces

Case 1′:
u → ((first (if t v w)) = (if u (first v) (first w))).

We can then use Rewrite, with

Axiom if-ax1: x 6= nil → ((if x y z) = y).

to reduce Case 1′′ to:

Case 1′′′:
u → ((first v) = (if u (first v) (first w))).

This application of Rewrite is actually a little interesting, because it is the first time we’ve

126 A Little Logic

applied Rewrite on a theorem with a hypothesis. Recall the “Relieving the Hypotheses”
step, step 6 (page 116), of the Rewrite rule of inference. Step 6 says we have to prove the
instantiated hypothesis of the theorem we’re using, if-ax1, and we get whatever hypotheses
govern the address we’re rewriting. So our “proof obligation” under step 6 is x→ t 6= nil.
We can reduce the conclusion of that implication to t by the Computation rule (page 118)
and then Rewrite with the Short-Circuit tautology to reduce our proof obligation to True,
thus “relieving the hypotheses.” Again, the Relieve-Hyps Waiver allows us not to mention
this.

To complete the proof of Case 1′′′ we have to simplify the other side of the equality, (if
u (first v) (first w)). That is done very similarly: use the Hypothesis rule to replace
the u by t and then rewrite again with Axiom if-ax1. The proof obligation to relieve the
hypotheses is the same as before: True→ t 6= nil.

• Question 171: Prove Case 2 at a similar level of detail. •

4.6.3 Another Exploration of Rewrite

Before moving on, let me show a non-trivial use of Rewrite. It is undoubtedly the most
frequently used rule of inference in our collection.

Suppose we know this is a theorem:

rev-rev:

φ:
(true-listp x) → ((rev (rev x)) = x).

Suppose we’re trying to prove:

ψ:
((true-listp a) ∧ (mem e (rev (rev (copy a))))) → (mem e a).

We want to use φ to simplify the (rev (rev (copy a))) to (copy a). How do we do it?

First, we factor ψ so the hypothesis ψh is ((true-listp a) ∧ (¬(mem e a))) and the
conclusion, ψc is (¬(mem e (rev (rev (copy a))))). We do this because we must rewrite
something in the conclusion. We’ll see why in a moment.

The π we choose points to (rev (rev (copy a))) in ψc.

We factor theorem φ into hypothesis, φh, (true-listp x) and conclusion φc (rev (rev

x))=x. We further factor φc into pattern (rev (rev x)), replacement x, and maintained
equivalence equal. If we let σ be {x ← (copy a)}, then we see that φc/σ is (rev (rev

(copy a))), which is indeed the term pointed to by π in ψc.

Since the maintained equivalence is equal, we don’t have to check that π admits proposi-
tional replacement.

This brings us to step 6 of the use of Rewrite, the step in which we “relieve the hypotheses”
of φ. We must prove

ψh → (φh/σ):
((true-listp a) ∧ (¬(mem e a))) → (true-listp (copy a)).

This is not a trivial theorem; the Relieve-Hyps Waiver doesn’t excuse us from explaining

Logic 127

the proof. However, we’re not in a position to prove this right now. What I would do in
this situation is write a new lemma, perhaps the slightly simpler but sufficient:

true-listp-copy:

(true-listp a) → (true-listp (copy a))

and cite this lemma in my mention of Rewrite with rev-rev. I would then complete my
proof of what I was working on and then do a proof of the lemma.

But I wanted to write down the proof obligation of this step 6 so you get a feel for what
that step is all about. The theorem φ, does not tell us (rev (rev x)) is equal to x! It
tells us that (rev (rev x)) is equal to x provided (true-listp x). To use it to rewrite
(rev (rev (copy a))) to (copy a), we must prove that (copy a) is a true-list. When
we prove that, we get to use as hypotheses all the hypotheses that are known to be true at
address π. That is why we factored ψ to put the target term in the conclusion!

If we could prove the theorem required by step 6, then we could rewrite the term at π to
x/σ, which is (copy a). That would give us

ψ′
c:

(¬(mem e (copy a)))

But we’re not done yet! According to the Rewrite rule, we can return any refactoring of

ψh → ψ′
c:

((true-listp a) ∧ (¬(mem e a))) → (¬(mem e (copy a))).

We could return that very formula. But since we started with

ψ:
((true-listp a) ∧ (mem e (rev (rev (copy a))))) → (mem e a)

it would be nice to put things back where they were, by refactoring to

ψ′:

((true-listp a) ∧ (mem e (copy a))) → (mem e a).

I would describe this proof step with:

((true-listp a) ∧ (mem e (rev (rev (copy a))))) → (mem e a)

↔ {rev-rev and true-listp-copy}
((true-listp a) ∧ (mem e (copy a))) → (mem e a).

Note that since the Relieve-Hyp Waiver does not apply, I have to mention how I relieved
the hypothesis.

Note that it looks like we used the Rewrite rule to rewrite one of our hypotheses. And we
did! But we temporarily moved it into the conclusion so we could know what hypotheses
we could use while relieving the hypotheses of φ in step 6. Then we put it back with the
final refactoring.

Of course, we haven’t finished the proof of ψ. To finish it, we’d have to prove ψ′ above. But
I don’t do that here because I just wanted to illustrate the Rewrite rule of inference.

128 A Little Logic

4.6.4 An Exploration of Constant Expansion

Let’s prove that (first (rest ’(A B C))) returns B. Of course, that’s easy by the Com-
putation rule. But I want to show you that we don’t need the Computation rule to work
with list constants. We can use the Constant Expansion (“Const”) rule (page 117) and
axioms.

Theorem (first (rest ’(A B C))) = ’B.

Proof:
lhs =
(first (rest ’(A B C)))

= {Const)}
(first (rest (cons ’A ’(B C))))

= {Const}
(first (rest (cons ’A (cons ’B ’(C)))))

= {rest-cons}
(first (cons ’B ’(C)))

= {first-cons}
’B

= rhs
2

• Question 172: “Compute” the value of (app ’(A) ’(B C)) by doing a proof of (equal
(app ’(A) ’(B C)) ’(A B C)), without using the Computation rule. •
Computation is just the disciplined use of symbolic rewriting using the axioms and defini-
tions.

I included the Computation rule of inference simply because it is convenient.

4.7 Writing Proofs Down (Mar 4, Mar 9)

Computer scientists give proofs in many different notations. If a professor asks you to give
a proof, let’s hope you’ve seen an example of his or her proof style! When writing a proof
your goal is to make it clear to the reader that the formula is always true. Your goal is not
to shoehorn your argument into some fixed format or to make the proof look like a secret
language! You want the reader to understand your steps.

Here are several proofs of first-app. They’re all identical in my opinion and I don’t care
which style you adopt.

Let’s prove:

Theorem:

(equal (first (app a b))

(if (endp a)

(first b)

(first a))).

Here is the most straightforward translation of the proof we just did.

Proof 1:

Logic 129

(equal (first (app a b))

(if (endp a)

(first b)

(first a)))

= {app}
(equal (first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

= first-if}
(equal (if (endp a)

(first b)

(first (cons (first a)

(app (rest a) b))))

(if (endp a)

(first b)

(first a)))

= {first-cons}
(equal (if (endp a)

(first b)

(first a))

(if (endp a)

(first b)

(first a)))

↔ {Taut with Axiom equal-reflexive}
True.
2

The “box” is like saying “mate” in chess. It declares the game over. Some people write
“Q.E.D.” instead, which stands for the Latin phrase “quod erat demonstrandum” meaning
“that which was to be demonstrated.”

Classically, a proof starts with truths and manipulates them to derive the goal. Our proofs
are backwards. We start with the goal we’re trying to prove and manipulate it until we get
True. Of course, the two systems are symmetric and most proofs actually take the form
given here.

The proof above involves a lot of writing! With copy-and-paste editing it is easy to produce
a proof like this: copy the last formula in the proof, paste it down, and then edit it slightly
to perform your next rewrite and to add the justification. Then repeat.

But a closer inspection of our proof reveals that all of our rewrites, except the last, main-
tained equal and operated on the first argument of the goal equality. So here is another
way to describe this same proof. Note that we write the theorem with an infix equality
below, just to make the proof style more familiar.

Theorem:

(first (app a b)) = (if (endp a) (first a) (first b))).

130 A Little Logic

Proof 2: We will transform the left-hand side (lhs) into the right-hand side (rhs).

lhs
=
(first (app a b))

= {app}
(first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

= {first-if}
(if (endp a)

(first b)

(first (cons (first a)

(app (rest a) b))))

= {first-cons}
(if (endp a)

(first b)

(first a))

=
rhs
2

It should be clear to you that given a proof like Proof 2 we can produce a proof like Proof
1 using our rules.

In any case, these proofs are basically of the form “simplify the left-hand side to the right-
hand side,” e.g., lhs = lhs1 = lhs2 = . . . lhsk = rhs. Of course, sometimes it is easiest to
simplify the right-hand side to the left-hand side. But most of the time you need to work on
both sides; so I recommend just simplifying the two sides separately and then showing that
the results are the same: “We first simplify the left-hand side: lhs = lhs1 = lhs2 = . . . = α.
Now we simplify the right-hand side: rhs = rhs1 = rhs2 = . . . α. Notice they simplify to
the same term. Hence lhs = rhs.”

Sometimes your proofs are clearer if you skip over some steps! Some professors would
actually prefer a “proof sketch” like this:

Theorem:

(equal (first (app a b))

(if (endp a)

(first b)

(first a))).

Proof 3:
Use the definitions of app to rewrite the left-hand side to

(first (if (endp a)

b

(cons (first a)

(app (rest a) b))))

Then rewrite with first-if and Axiom first-cons to get

Logic 131

(if (endp a)

(first b)

(first a))

which is the right-hand side.

2

When you give a proof sketch like Proof 3, it is up to you to decide how big the steps can
be. I’ve seen proof sketches like:

Proof 4:
Rewrite with the definitions of app, the lemma first-if and Axiom first-cons to get an
instance of x = x. 2

The trouble with such succinct sketches is that if you don’t explicitly name a lemma you
used then the reader can’t follow it. But if you write some of the intermediate formulas, the
reader might be able to figure out what you really did. This is important if your proofs are
being graded!

To illustrate how to write a proof involving Cases and Hypothesis rules, let me prove this
useful theorem about if:

Theorem if-swap:

(if (not a) b c) = (if a c b).

Proof 5:

Case 1:
a → ((if (not a) b c) = (if a c b)).

↔ {Hyp (twice)}
a → ((if (not t) b c) = (if t c b)).

↔ {Comp}
a → ((if nil b c) = (if t c b)).

↔ {if-ax2}
a → (c = (if t c b)).

↔ {if-ax1}
a → (c = c).

↔ {equal-reflexive}
a → True.
↔ {Short-Circuit}
True

Case 2:
(¬ a) → ((if (not a) b c) = (if a c b)).

↔ {Hyp (twice)}
(¬ a) → ((if (not nil) b c) = (if nil c b)).

↔ {Comp}
(¬ a) → ((if t b c) = (if nil c b)).

↔ {if-ax1}
(¬ a) → (b = (if nil c b)).

↔ {if-ax2 }
(¬ a) → (b = b).

↔ {equal-reflexive}
(¬ a) → True.

132 A Little Logic

↔ {Short-Circuit}
True
2

This proof, as detailed as it is, omits certain simple steps, like relieving the hypothesis of
Axiom if-ax1, which requires that we prove True → t 6= nil. I’m content to ignore the
omission of such simple steps – computation on constants and uses of such things as the
Basic and Short-Circuit tautologies.

Eventually in this course, a proof like Proof 5 will be written really succinctly: “Case split
on a and simplify.” But not yet!

Often when proving an implication, whether one generated by the Cases rule or otherwise,
it is often useful to pull the hypotheses out, give them names, and not keep writing them
down. For example, to prove (α1 ∧ α2)→ β I might write this:

Proof:
H1: α1

H2: α2

I will reduce β to True under these hyps.
β
↔ {. . .}
β1

. . .
↔ {. . .}
True
2

and in the justifications refer to H1 and H2 to identify the hypotheses I’m using.

Using this notation I can make the proof of if-swap more succint. Note below that instead
of naming the hypotheses (a in one case and (¬ a) in the other) I label them with “Case
1” or “Case 2”. I don’t actually use their names below because there is only one hypothesis
in each case, so it is clear which hypothesis the Hyp rule refers to.

Theorem if-swap:

(if (not a) b c) = (if a c b).

Proof 6:

Case 1: a

(if (not a) b c) = (if a c b).

↔ {Hyp (twice)}
(if (not t) b c) = (if t c b).

↔ {Comp}
(if nil b c) = (if t c b).

↔ {if-ax2}
c = (if t c b).

↔ {if-ax1}
c = c.

↔ {equal-reflexive}
True.

Case 2: (¬ a)

Logic 133

(if (not a) b c) = (if a c b).

↔ {Hyp (twice)}
(if (not nil) b c) = (if nil c b).

↔ {Comp}
(if t b c) = (if nil c b).

↔ {if-ax1}
b = (if nil c b).

↔ {if-ax2}
b = b.

↔ { equal-reflexive}
True.
2

Note that we didn’t keep writing “a → . . .” or “(¬ a) → . . .” the way we did in Proof 5.
This can save a lot of writing if you split on a big formula instead of a variable like a.

Let’s prove

Theorem true-listp-nil:

((true-listp x) ∧ (endp x)) → (x=nil).

Proof:
Given
H1: (true-listp x)

H2: (endp x)

I will prove
Concl: x=nil

H1
= {true-listp}
(if (endp x)

(equal x nil)

(true-listp (rest x)))

= {Hyp H2}
(if t

(equal x nil)

(true-listp (rest x)))

= {if-ax1}
(equal x nil)

=
H1’

Now, I turn my attention to Concl:
Concl

=
x=nil

↔ {Hyp H1’}
True
2

Notice how I rewrote hypothesis H1 (with the definition of true-listp and using hypothesis
H2) to get a “new” hypothesis which I named H1’. Then I used H1’ in my proof that Concl
↔ True. Remember that if you’re rewriting a hypothesis you can use the other hypotheses

134 A Little Logic

as hypotheses, and you can use the negation of the conclusion as a hypothesis (but I didn’t
above).

• Question 173: Explain why you can use the negation of the conclusion of your goal as a
hypothesis when using the Hyp rule with an address that points into a hypothesis of your
goal. •
Warning: There is a danger many students fall into when writing proofs this way. Below
I “prove” the non-theorem ((x=y) → (1=2)). You can see this is not always true: let x
be 1 and let y be 1. In this environment ((x=y) → (1=2)) =⇒ nil. So I shouldn’t be
able to prove it!

Non-Theorem!
(x=y) → (1=2)

Proof:
H1: x=y

Concl: 1=2

↔ {Hyp H1 with σ = {x← 1, y← 2}}
True
2?

The mistake in this “proof” is that the Hyp rule has no σ: you can’t instantiate the (free)
variables5. I think this mistake happens because students confuse the Hypothesis rule with
the Rewrite rule. In the Rewrite rule, you’re using a previously proved theorem, known
to be true for all values of the variables, so you can instantiate the (free) variables in that
theorem.

When the conclusion we’re manipulating is an equality or propositional equivalence, we
might use the “lhs = . . . = rhs” or “lhs↔ . . . ↔ rhs” style within this notation. Here’s a
proof outline that mixes the idea of “Givens”, cases, and a chain of equalities.

Theorem: (α1 ∧ (α2 ∧ α3))→ (δ = γ)

Proof:
I’ll take the hypotheses as given and transform the left-hand side
of the conclusion to the right-hand side.
Given
H1: α1

H2: α2

H3: α3

Let

lhs: δ
rhs: γ

To reduce the lhs to the rhs, I will case split on β:

Case 1 β
lhs = δ

= { justification }
. . .
= γ

5Eventually we will introduce notation that involves variables you may instantiate. I’ll explain in Chapter
7.

Logic 135

= rhs

Case 2 (¬β)
lhs = δ

= { justification }
. . .
= γ
= rhs

2

You will undoubtedly have to make up additional proof notation to explain some of your
proofs. Just remember that the point of a proof is to establish that something is true – and
usually to convince another person that your argument is correct. It is helpful if you say
what you’re doing or planning to do in a proof. Don’t feel compelled to make your proof look
like some secret language!

4.8 Proofs of Tautologies (Mar 4, Mar 9)

We’ve seen that tautologies can be established using truth tables. In fact, a truth table is
just a succinct way to present a proof by Cases, in which you case split on every variable.
Suppose you’re trying to prove some propositional formula involving just the variables p

and q, e.g., (φ p q). An outline of a proof by Cases would be:

Proof:
Case 1 p:

Case 1.1 q:

(φ t t)= t {Hyps and Comp}
Case 1.2 (¬ q):

(φ t nil) = t {Hyps and Comp}
Case 2 (¬ p):

Case 2.1 q:

(φ nil t) = t {Hyps and Comp}
Case 2.2 (¬ q):

(φ nil nil) = t {Hyps and Comp}
2

Basically we split on the variables and then used the Hyp rule repeatedly to replace the
variables by t or nil according to whichever case we’re in, and then compute the value with
the Comp rule. That’s just the truth table method in proof form.

But you don’t have to use truth tables or exhaustive case analysis to prove propositional
tautologies! You can prove them by symbolic manipulation.

? ? ? (due Tue, Mar 9) • Question 174: Prove the following theorem:

((A ∧ ((B ∨ C) ∧ (D → (¬(E ∧ (G ∧ H))))))

∧
((U ∨ V) ↔ (X ∧ (¬(X ∨ Y)))))

→
(A ∧ ((B ∨ C) ∧ (D → (¬(E ∧ (G ∧ H))))))

Hint: A truth table will have 212 rows. Maybe you should consider using a tautology. •

136 A Little Logic

Sometimes the easiest way to prove a tautology is to rearrange it using other tautologies to
show that it is an instance of some tautology. But to do that you have to be good at using
tautologies to rearrange formulas.

•Question 175: Prove the following by using tautologies with the Rewrite rule of inference.

(D ∧ ((A ∧ C) ∧ B)) ↔ (A ∧ (B ∧ (C ∧ D))). •

•Question 176: Prove the following by using tautologies with the Rewrite rule of inference.

((D ∨ C) ∨ (B ∨ A)) ↔ (A ∨ (B ∨ (C ∨ D))). •

I assume that given any nest of ands on a given set of variables you can rearrange it to any
equivalent set of ands on those variables. Same for ors.

And so from now on we’re not necessarily going to write “∧” and “∨” with just two argu-
ments. That is, I might write

(D ∧ (¬ A) ∧ C ∧ (¬ B))

and then say I’ve applied De Morgan to get

(D ∧ C ∧ (¬(A ∨ B))).

What did I really do? I did this:

(D ∧ (¬ A) ∧ C ∧ (¬ B))

↔ {Associativity and Commutativity}
(D ∧ C ∧ ((¬ A) ∧ (¬ B)))

↔ {De Morgan}
(D ∧ C ∧ (¬(A ∨ B))).

That is, in the future I’m going to use Associativity and Commutativity of “∧” and “∨”
freely and implicitly. But I assume you can fill in the gaps! I’ll also use Double Negation
freely and implicitly.

Let’s prove the following tautology, without using a truth table.

Theorem.
(¬C ∧ ((B → (¬ C)) → A)) → ((A → C) → False)

I don’t like thinking about implications involving implications, i.e., things of the form (p→
(q → r)) or of the form ((p→ q)→ r). The theorem above has subformulas of each of these
two forms in it!

I know that I can transform subformulas of the first form (p → (q → r)) to (p ∧ q) → r.
This is called Promotion and is justified by a tautology of that name on page 118. This
tranformation is good because it gets rid of an implication and gives me another hypothesis,
q, to work with as I work on r.

As for the other form, ((p→ q)→ r), there’s not a tautology in our list to handle it. But I
can prove one. I’ll prove this as a lemma and then return to our theorem.

Lemma double-implies:

((p → q) → r) ↔ (((¬ r) → p) ∧ ((¬ r) → (¬ q)))

Proof:
I will transform the left-hand side into the right-hand side.

Logic 137

lhs =
((p → q) → r)

↔ {Implicative Disjunction}
(((¬ p) ∨ q) → r)

↔ {Implicative Disjunction}
((¬((¬ p) ∨ q)) ∨ r)

↔ {De Morgan}
((p ∧ (¬ q)) ∨ r)

↔ {Distributivity}
((p ∨ r) ∧ ((¬ q) ∨ r))

↔ {Implicative Disjunction (twice)}
(((¬ r) → p) ∧ ((¬ r) → (¬ q)))

= rhs
2

• Question 177: Show a step in the proof above in which Commutativity was used implic-
itly. •
• Question 178: Show a step in the proof above in which Double Negation was used
implicitly. •
Now let’s return to the theorem we were working on.

Theorem.

((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)

Proof:
((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)
↔ {double-implies}
((¬ C) ∧ ((¬ A) → B) ∧ ((¬ A) → C)) → ((A → C) → False)
↔ {Promotion}
((¬ C) ∧ ((¬ A) → B) ∧ ((¬ A) → C) ∧ (A → C)) → False
↔ {Contraposition}
((¬ C) ∧ ((¬ A) → B) ∧ ((¬ C) → A) ∧ (A → C)) → False
↔ {Forward Chaining}
((¬ C) ∧ ((¬ A) → B) ∧ A ∧ (A → C)) → False
↔ {Forward Chaining}
((¬ C) ∧ ((¬ A) → B) ∧ A ∧ C) → False
↔ {Contraposition }
(((¬ A) → B) ∧ A ∧ C) → C

↔ {Taut Basic}
True
2

• Question 179: Explain what really happened on the first Forward Chaining step in the
proof above. •
You will be expected to be able to explain any step in a proof.

Now we will prove our theorem again, only this time we will use case analysis too.

Theorem.

((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)

Proof:

138 A Little Logic

Case 1 C:

((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)
↔ {Hyp Case 1}
((¬ True) ∧ ((B → (¬ True)) → A)) → ((A → True) → False)
↔ {Comp}
(False ∧ ((B → (¬ True)) → A)) → ((A → True) → False)
↔ {Short-Circuits}
True

Case 2 (¬ C):

((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)
↔ {Hyp Case 2}
((¬ False) ∧ ((B → (¬ False)) → A)) → ((A → False) → False)
↔ {Comp}
(True ∧ ((B → True) → A)) → ((A → False) → False)
↔ {Short-Circuits}
(True ∧ (True → A)) → (¬ A) → False
↔ {Short-Circuits}
A → A

↔ {Basic}
True
2

Note that when I used the Hyp rule I cited “Case 1” or “Case 2” meaning I used the
hypothesis introduced by that case.

The repeated uses of Short-Circuit and Computation are so monotonous that I’ll frequently
abbreviate them as “Prop Simp” meaning propositional simplification. I show intermediate
steps only so you can follow along. I recommend that you show intermediate steps when
you do it too. Here’s that same proof, somewhat more succinctly.

Theorem.

((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)

Proof:
Case 1 C:

((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)
↔ {Hyp Case 1}
((¬ True) ∧ ((B → (¬ True)) → A)) → ((A → True) → False)
↔ {Prop Simp}
True
Case 2 (¬ C):

((¬ C) ∧ ((B → (¬ C)) → A)) → ((A → C) → False)
↔ {Hyp Case 2}
((¬ False) ∧ ((B → (¬ False)) → A)) → ((A → False) → False)
↔ {Prop Simp}
(True ∧ (True → A)) → ((¬ A) → False)
↔ {Prop Simp}
A → A

↔ {Basic}
True
2

Logic 139

By doing a case analysis on the “right” variable you can sometimes drastically simplify the
two formulas you have to prove. Doing it on the “wrong” variable can help very little.

•Question 180: Prove the theorem just proved again, by doing a case analysis on A instead
of C. •
Commercial software systems designed to recognize tautologies containing thousands or
millions of variables use a combination of case splitting and rewriting.

??? (due Tue, Mar 9) •Question 181: Fill in the eight blanks below to make the following

a proof. You may use the propositional identities on page 118. Just turn in a list of numbers
from 1–8 with the appropriate content for each blank.

Theorem
(((A → (B ∨ C))

∧
A

∧
((¬ D)→(¬ B))

∧
(C → D))

→
D)

Proof:
(((A → (B ∨ C))

∧
A

∧
((¬ D)→(¬ B))

∧
(C → D))

→
D)

↔ { 1 }
(((B ∨ C)

∧
A

∧
((¬ D)→(¬ B))

∧
(C → D))

→
D)

↔ {Hyp (twice)}
(((B ∨ C)

∧
A

∧
((¬ False)→(¬ B))

∧

140 A Little Logic

(C → 2))

→
D)

↔ {Computation, 3 (twice)}
(((B ∨ C)

∧
A

∧
(¬ B)

∧
(¬ C))

→
D)

↔ {Hyp}
(((4 ∨ C)

∧
A

∧
(¬ B)

∧
(¬ C))

→
D)

↔ {Short-Circuit}
((5

∧
A

∧
(¬ B)

∧
(¬ C))

→
D)

↔ {Hyp}
((6

∧
A

∧
(¬ B)

∧
(¬ C))

→
D)

↔ { 7 }
(False

Logic 141

→
D)

↔ { 8 }
True
2 •

4.9 Counterexamples, Witnesses, and Models (Mar 11, Mar 23)

Proofs are the best way to show that a formula φ is valid or always true.

Sometimes you might want to show that a formula is not valid. That is, you might want to
show that there are values of the variables that make the formula evaluate to false. That’s
called a “counterexample” to the formula. Technically, a counterexample is a substitution σ
such that φ/σ contains no variables and evaluates to false. (Sometimes counterexamples are
not exhibited as substitutions but just as equalities that specify the values of the variables,
e.g., “let x be 7 and y be -7.”)

Sometimes formula φ contains undefined functions. For example, you might someday wish
to add a new axiom corresponding to the informal remark “suppose f returns a natural
greater than its argument.” E.g., (and (natp (f n)) (< n (f n))). You might want to
establish that there really is such a function! You do that by providing a witness for the
undefined function in φ that makes it a theorem. More generally the new axiom might
contain several undefined functions and a collection of witnesses for them that make the
formula a theorem is called a satisfying model or simply model of the formula.

For example, to model the proposed axiom about f above I might use (defun f (x) (if

(zp n) 1 (+ 1 n))). It is useful to model your axioms to make sure you’re not talking
nonsense. For example, if I said “suppose f returns a natural number between its two
arguments” and I formalized it with

(and (natp (f i j))

(< i (f i j))

(< (f i j) j))

then the logic makes no sense. Why? There is no such function f. How do I know? If I had
the formula above as an axiom then I could instantiate it to get:

(and (natp (f 3 3))

(< 3 (f 3 3))

(< (f 3 3) 3))

and derive (< 3 3). But that formula evaluates to False, so I’ve just proved False. From
False I can derive anything.

Sometimes you might wish to show that a formula φ containing undefined functions is not
valid (i.e., is invalid). You usually can’t exhibit a counterexample because you cannot
compute the values of the undefined functions. To show that such a φ is invalid you have
to provide example definitions for the undefined functions and then show a counterexample
that makes φ evaluate to false under those definitions. Such a collection of definitions is
called a countermodel.

142 A Little Logic

4.10 Practice Proofs (Mar 11, Mar 23)

Throughout this whole book, when I state a question as a formula, I mean for you to prove
it or exhibit a counterexample and/or a countermodel.

Many of the formulas below are very useful in your later proofs. I recommend that you read
and think about every question, even those not assigned for homework. You should learn
to rely on these theorems.

When I follow a question’s number with a symbol, that symbol is the name I’ll use for that
formula later. I find the names easier to remember than the numbers.

In this section, please write your proofs at the level of detail shown in Proofs 1, 2, 5, and 6 of
the previous section. In your proofs you may use any of the previously mentioned theorems
by name (or number). You may wish to state and prove lemmas to help simplify your proofs.
But do not use truth tables below. If you want to prove a tautology, do it symbolically, by
using other tautologies to rearrange formulas. The unfamiliar function symbols, f, g, etc.,
may be assumed to be legitimate functions of the appropriate arity; you just don’t know
their definitions. For your convenience, at the end of the section I’ve included the definitions
of the defined functions mentioned below.

• Question 182: (if-t)

(if t x y) = x •

• Question 183: (if-nil)

(if nil x y) = y •

• Question 184: (if-if)

(if (if a b c) x y) = (if a (if b x y) (if c x y)) •

• Question 185: (if-distrib)

(f x (if a b c)) = (if a (f x b) (f x c))

You do not need to know a definition for f to prove this theorem. Note that in general you
can distribute if over any function symbols as suggested by the theorem above. •
• Question 186: (if-split)

(if p q r) ↔ ((p → q) ∧ ((¬ p) → r)) •

Note that questions 184–186 establish that if we expand terms in a formula and get some
ifs we can distribute the function symbols over the ifs to lift all the ifs to the top and
then we can split the goal into a conjunction of new formulas.

• Question 187: (endp-nil)

(endp nil) = t •

• Question 188: (endp-cons)

(endp (cons x y)) = nil •

Logic 143

• Question 189: (consp-endp-nil)

(consp x) → ((endp x) = nil) •

• Question 190: (consp-endp-t)

(¬(consp x)) → ((endp x) = t) •

• Question 191: (not-endp-consp)

(¬(endp x)) → ((consp x) = t) •

• Question 192: (first-7)

(first 7)= nil •

• Question 193: (rest-nil)

(rest nil) = nil •

? ? ? (due Tue, Mar 16) • Question 194: (app-cons)

(app (cons e a) b) = (cons e (app a b))

Make sure you type only well-formed terms in your proof, and format them sensibly! •
• Question 195: (app-of-non-endp)

(¬(endp x)) → ((app x y) = (cons (first x) (app (rest x) y)))

The relevant definitions are below. •
• Question 196: (app-commutative-wrong!) The following “identity” is invalid. Provide
a counterexample.

(app a b) = (app b a)

The relevant definitions are below. •
• Question 197: (app-left-id)

(app nil b) = b

The relevant definitions are below. •
• Question 198: (app-right-id-wrong1) The following “identity” is invalid. Provide a
counterexample.

(app a nil)= a

The relevant definitions are below. •
??? (due Tue, Mar 16) •Question 199: (app-right-id-wrong2) The following “identity”

is invalid. Provide a counterexample. of “counterexample.”)

144 A Little Logic

(¬(endp a)) → ((app a nil)= a)

The relevant definitions are below. You may just type the counterexample (you do not have
to use ACL2s to evaluate the formula). •
• Question 200: (true-listp-cons)

(true-listp y) → (true-listp (cons x y))

The relevant definitions are below. •
• Question 201: (mem-singleton)

(mem e (cons d nil)) ↔ ((e = d))

The relevant definitions are below. •
• Question 202:

(e 6= d) ∧ (mem e (cons d x)) → (mem e x)

The relevant definitions are below. •
• Question 203:

(((consp x) → (stringp y))

∧
((symbolp z) ∧ (consp x)))

→
(stringp y) •

• Question 204:

((P → Q)

∧
(P → R))

→
(P → (Q ∧ R)) •

• Question 205:

((A → (B ∨ C))

∧
(A ∨ C)

∧
(C → (¬ B)))

→
C •

• Question 206:

((A → D)

∧
(B → E)

∧

Logic 145

(D → (E → C)))

→
((A ∧ B) → C) •

• Question 207:

((R ∧ Q) → (Q → R)) •

• Question 208:

((A → B) ∨ (B → A)) •

• Question 209:

((R → (¬ P)) → ((P ∧ R) → S)) •

• Question 210:

((R ∧ (((¬ P) → (¬ R)) ∧ (P → (S ∨ U)))) → (S ∨ U)) •

• Question 211:

(((A → (B ∨ C)) ∧ (A ∧ (((¬ D) → (¬ B)) ∧ (C → D)))) → D) •

• Question 212:

((A → (B ∨ C))

∧
(D → A))

→
(B ∨ (D → C)) •

• Question 213:

(endp a)

→
((app (app a b) c) = (app a (app b c))) •

• Question 214:

(¬(endp a)

∧
((app (app (rest a) b) c) = (app (rest a) (app b c))))

→
((app (app a b) c) = (app a (app b c))) •

The relevant definitions are below. •
? ? ? (due Tue, Mar 16) • Question 215: Fill in the seven blanks below to make this a

proof. Just turn in a list of numbers from 1–7 with the appropriate content for each blank.
The relevant definitions are below. As usual, take care with your syntax.

Theorem:

146 A Little Logic

(endp a)

→
((true-listp a) → ((app a nil) = a))

Proof:
(endp a)

→
((true-listp a) → ((app a nil) = a))

↔ {Promotion}
(1)

→
((app a nil) = a)

↔ {def true-listp}
((endp a)

∧
2)

→
((app a nil) = a)

↔ { 3 and 4 }
((endp a)

∧
(equal a nil))

→
((app a nil) = a)

↔ {Hyp (twice)}
((endp a)

∧
(equal a nil))

→
5

↔ {Computation}
((endp a)

∧
(equal a nil))

→
6

↔ { 7 }
True
2 •

? ? ? (due Tue, Mar 16) • Question 216: Fill in the nine blanks below to make this a

proof. Just turn in a list of numbers from 1–9 with the appropriate content for each blank.
As usual, take care with your syntax. The relevant definitions are below.

Theorem:

Logic 147

((¬ (endp a))

∧
((true-listp (rest a)) → ((app (rest a) nil) = (rest a))))

→
((true-listp a) → ((app a nil) = a))

Proof:
((¬ (endp a))

∧
((true-listp (rest a)) → ((app (rest a) nil) = (rest a))))

→
((true-listp a) → ((app a nil) = a))

↔ { 1 }
((¬ (endp a))

∧
((true-listp (rest a)) → ((app (rest a) nil) = (rest a)))

∧
2)

→
((app a nil) = a)

↔ { 3 }
((¬ (endp a))

∧
((true-listp (rest a)) → ((app (rest a) nil) = (rest a)))

∧
(if (endp a)

(equal a nil)

(true-listp (rest a))))

→
((app a nil) = a)

↔ { 4 and 5 }
((¬ (endp a))

∧
((true-listp (rest a)) → ((app (rest a) nil) = (rest a)))

∧
(true-listp (rest a)))

→
((app a nil) = a)

↔ {Forward Chaining }
((¬ (endp a))

∧
6

∧
(true-listp (rest a)))

→
((app a nil) = a)

148 A Little Logic

↔ {app-of-non-endp}
((¬ (endp a))

∧
((app (rest a) nil) = (rest a))

∧
(true-listp (rest a)))

→
(7 = a)

↔ { 8 }
((¬ (endp a))

∧
((app (rest a) nil) = (rest a))

∧
(true-listp (rest a)))

→
((cons (first a) (rest a)) = a)

↔ {Axiom cons-first-rest (page 113)}
((¬ (endp a))

∧
((app (rest a) nil) = (rest a))

∧
(true-listp (rest a)))

→
(a = a)

↔ {Axiom 9 and Short-Circuit }
True
2 •

• Question 217:

((a = b)

∧
((p a) → ((f a) = (g a))))

→
((p b) → ((h (f b)) = (h (g b))))

You do not need definitions for f, g, h, and p. •
• Question 218:

(endp a)

→
((true-listp a) → ((rev (rev a)) = a))

The relevant definitions are below. •
? ? ? (due Tue, Mar 16) • Question 219: Give a proof of the following, comparable to the

proof of sketched in Question 216 (page 146). Take care with your syntax; remember, your

Logic 149

job is to provide a clear and convincing proof.

(¬(endp a)

∧
((true-listp (rest a)) → ((rev (rev (rest a))) = (rest a))))

→
((true-listp a) → ((rev (rev a)) = a))

The relevant definitions are below. In addition, you may use the following theorems in your
proof:

not-endp-true-listp:

(¬ (endp x)) → ((true-listp x) = (true-listp (rest x)))

not-endp-rev:

(¬ (endp x)) → ((rev x) = (app (rev (rest x)) (cons (first x) nil)))

app-singleton:

(app (cons x nil) y) = (cons x y)

rev-singleton:

(rev (cons x nil)) = (cons x nil)

rev-app:

(rev (app x y)) = (app (rev y) (rev x)) •

The definitions below are listed alphabetically.

(defun app (x y)

(if (endp x)

y

(cons (first x)

(app (rest x) y))))

(defun mem (x y)

(if (endp y)

nil

(if (equal x (first y))

t

(mem e (rest y)))))

(defun rev (x)

(if (endp x)

nil

(app (rev (rest x))

(cons (first x) nil))))

(defun true-listp (x)

(if (endp x)

(equal x nil)

(true-listp (rest x))))

5

Structural Induction (Mar 25, Mar 30)

We have seen how to prove some very simple theorems about recursive functions. Suppose
we have:

(defun f (x)

(if (endp x)

t

(f (rest x))))

Then you should be able to prove:

• Question 220:

(f (cons e a)) = (f a) •

And I bet your intuition tells you the answer to this question:

• Question 221: What value does (f x) return? •
I suspect you’re thinking “(f x) can’t return anything but t!” Or, to be a little more
operational, “(f x) scans down x til it gets to the end and then returns t.”

But the logical machinery we have set up doesn’t allow you to prove what your intuition
rightly tells you. We can do case analysis ad infinitum, on whether (endp x), (endp (rest

x)), (endp (rest (rest x))), etc. And in each case we can use the definition of f to
rewrite (f x) to t. But we canot produce a finite number of cases to cover all possible x.

To cope with this – to prove interesting things about recursive functions – we must introduce
a new rule of inference that mimics your intuition. Expressed in terms of (f x) above, the
intuition goes like this: “I think f always returns t. It certainly does when it takes the easy
way out. And if the recursive call, (f (rest x)), returns t, then the main branch returns
t too. So I’m right: f can’t do anything but return t.”

In this section we state a rule of inference, called “induction,” that formalizes this kind of
thinking. It is absolutely fundamental to computer science because virtually everything in
CS involves repeatedly doing something and we must understand what the ultimate result
will be. Induction is the mathematical tool for thinking about repetition and recursion.

The version of induction we state below is a very special case of a much more general idea.
But we don’t deal with generalized induction in this course.

5.1 New Rule of Inference (Mar 25, Mar 30)

We say δ is a rest-nest around v if δ is (rest v), or δ is a rest-nest around (rest v).

152 A Little Logic

Thus, all of the following are rest nests around x: (rest x), (rest (rest x)), (rest
(rest (rest x))).

A substitution σ is a rest-nest substitution on v if the image of v under σ is a rest-nest
around v. How σ maps other variables is irrelevant. For example, {x ← (rest x), a ←
(cons (first x) a)} is a rest-nest substitution on x.

Warning: Remember that a substitution may only substitute for variables! While {x ←
(rest x), a← (cons (first x) a)} is a perfectly good rest-nest substitution on x, {x←
(rest x), nil← (cons (first x) nil)} isn’t even a substitution!

Rule of Inference Structural Induction (“Struct Ind”):

Summary: This rule allows you to prove ψ for all values of a variable v.

Description: If you can carry out all of the following steps:

1. select a variable v that occurs in ψ

2. let σ1, . . . , σk be rest-nest substitutions on v

3. prove the Base Case:
(endp v) → ψ

4. prove the Induction Step:
(¬(endp v) ∧ ψ/σ1 ∧ . . . ∧ ψ/σk) → ψ

Then ψ ↔ True.

End of Rule

Here is an inductive proof that (f x), as defined above, returns t.

Theorem: (f x) = t.

Proof:
Struct ind on x. (So let v be x. Let k be 1. Let σ1 be {x← (rest x)}.)

Base Case: (endp x):

lhs
=
(f x)

= {f}
(if (endp x)

t

(f (rest x)))

= {Hyp Base Case and if-t}
t = rhs.

Induction Step (¬(endp x)):

Given:
IH1: (f (rest x)) = t {IH stands for Induction Hypothesis}
lhs
=
(f x)

= {f}
(if (endp x)

t

Structural Induction 153

(f (rest x)))

= {Hyp Step and if-nil}
(f (rest x))

= {Hyp IH1}
t = rhs.

2

In this proof, IH1 is “(f (rest x)) = t,” because it is ψ/σ1, where ψ is “(f x) = t” and
σ1 maps x to (rest x).

Note that you get one induction hypothesis for each σi and you can assume as many as
you’d like, as long as they’re all rest-nest substitutions on your chosen variable.

5.2 Advice About Induction (Mar 25, Mar 30)

When you write a proof by induction, always name the variable you’re inducting on and
always write down all of the induction hypotheses in full!

Let me illustrate the most common mistake students make when they do induction. I will do
it by “proving” a non-theorem. In this example, I’ll first try to prove a certain non-theorem,
fail, modify my non-theorem to another non-theorem, and then “prove” it. I’ll point out
where I make the mistake in my second proof attempt. In the meantime, use this example
to see how induction works.

Recall the definition of app.

(defun app (x y)

(if (endp x)

y

(cons (first x)

(app (rest x) y))))

Note that (app 45 nil) is nil. So ψ below is definitely not a theorem. But I will try to
prove it.

ψ:
(app x nil) = x

We’ll induct on x to “unwind” the recursive function app. That means we let σ1 be {x ←
(rest x)}.
The Base Case is:

(endp x) → ((app x nil) = x)

The Induction Step is

((¬ (endp x)) ∧ ((app (rest x) nil) = (rest x))) → ((app x nil) = x).

It’s always a good idea to work on the Base Case first because it’s usually simplest. So,
expand the (app x nil) in the conclusion of the Base Case, use the (endp x) hypothesis,
and rewrite with if-t:

154 A Little Logic

Base Case’
(endp x) → (nil = x)

Can we prove this? Clearly not! A counterexample to this goal is x = 45, because (endp

45) is true but nil 6= 45.

So much for that attempt! Finding a counterexample to either the Base Case or the Induc-
tion Step means that the formula you’re trying to prove isn’t a theorem.

Learning from this failed proof attempt, we think to ourselves: “Ok, nil is not a right
identity for app when x is empty! Let’s make a new conjecture: nil is a right identity for
app provided x is non-empty.”

ψ:
(¬(endp x)) → ((app x nil) = x).

Now I’ll “prove” that. Again, we’ll induct on x with the same σ1. Now the Base Case,
(endp x) → ψ, is trivial:

(endp x) → ((¬(endp x)) → ((app x nil) = x)),

because it becomes

((endp x) ∧ (¬(endp x))) → ((app x nil) = x),

which is a tautology because the hypotheses contradict one another.

So onto the Induction Step and the fatal mistake many students make. The correct induction
step is to prove ((¬(endp x)) ∧ ψ/σ1) → ψ. But many students set it up incorrectly, this
way:

Bogus Induction Step:
((¬(endp x))

∧
((app (rest x) nil) = (rest x))) {Bad IH}

→
((app x nil) = x).

We can prove this by expanding the (app x nil) in the conclusion and using the Induction
Hypothesis, labeled above as Bad IH. The proof below is perfectly correct; the fatal mistake
was setting up the wrong formula to prove. Check every step to convince yourself we really
can prove Bogus Induction Step.

Bogus Induction Step Proof:
((¬(endp x))

∧
((app (rest x) nil) = (rest x)))

→
((app x nil) = x).

↔ {app-of-non-endp}
((¬(endp x))

∧
((app (rest x) nil) = (rest x)))

Structural Induction 155

→
((cons (first x) (app (rest x) nil)) = x).

↔ {Hyp}
((¬(endp x))

∧
((app (rest x) nil) = (rest x)))

→
((cons (first x) (rest x)) = x).

↔ {cons-first-rest}
((¬(endp x))

∧
((app (rest x) nil) = (rest x)))

→
(x = x).

↔ {Equal Reflexivity and Short-Ciruit}
True

Since we proved the Base Case and the (Bogus) Induction Step, it seems we proved

ψ:
(¬(endp x)) → ((app x nil) = x).

But surprise! This ψ is not a theorem either! Test it for x = (cons 1 45). The hypothesis
is true, because (cons 1 45) is a cons and hence not empty. But (app (cons 1 45) nil)

= (cons 1 nil), which is different from (cons 1 45).

So how did we prove a non-theorem? We screwed up the Induction Step. Here is the correct
setup of the induction step for ψ:

Correct Induction Step:
(¬(endp x))

∧
((¬(endp (rest x))) → ((app (rest x) nil) = (rest x))) {Correct IH}
→
((¬(endp x)) → ((app x nil) = x)).

Note the difference between Bad IH and the correct Correct IH. The Induction Hypotheses
are supposed to be the σi instances of the entire formula being proved. But in the Bogus
Induction Step, we only wrote down the instance of the conclusion of our goal. We should
have written down ψ/σ1, where

ψ:
(¬(endp x)) → ((app x nil) = x).

instead of ((app x nil) = x)/σ1.

• Question 222: Can you prove the Correct Induction Step? If so, do it. If not, why not?
•
This mistake can be avoided if you follow the advice I gave at the beginning of the section:
“When you write a proof by induction, always name the variable you’re inducting on and

156 A Little Logic

always write down all of the induction hypotheses in full!” The induction step is always

(¬(endp x)) ∧ ψ/σ1 . . . ψ/σk → ψ.

Don’t forget that. Remember, each Induction Hypothesis is an instance of the entire formula
ψ, not some part of it! If you forget this you can “prove” non-theorems.

Almost always in this course you’ll have only one induction hypothesis (i.e., σ1 will be your
only substitution). So the typical induction step for ψh → ψc when inducting on x will be:

γ:
((¬(endp x))

∧
(ψh/σ1 → ψc/σ1))

→
(ψh → ψc).

Almost always, the way these proofs go is that you promote ψh:

γ′:
((¬(endp x))

∧
(ψh/σ1 → ψc/σ1)

∧
ψh)

→
ψc.

and then use it to establish ψh/σ1, which allows you to “detach” the conclusion of your
induction hypothesis, ψc/σ1, and then you use that to prove ψc. That is, if you can prove

(¬(endp x))

∧
ψh

→
ψh/σ1

then you can convert γ ′ to

γ′′:
(¬(endp x))

∧
ψc/σ1 {detached conclusion of IH}
∧
ψh

→
ψc.

At that point, and not before, you have ψc/σ1 available to use in ψc.

A handy way to think of it is that you have to prove

hyp→hyp: ((¬(endp x)) ∧ ψh)→ ψh/σ1

and

Structural Induction 157

concl→concl: ((¬(endp x)) ∧ ψc/σ1)→ ψc.

Note the symmetry: you prove an implication between the hypotheses and an implication
between the conclusions, but the σ1 is on opposite sides in the two formulas. Most students
forget to prove the “hyp→hyp” part. As we saw, that is unsound.

Here is some heuristic advice about inductions. When doing an inductive proof, identify
some function, f , in ψ that you want to “unwind.” We picked app above, because it was
the only function. The function you choose should be “controlled” by the variable, v, that
you choose. We picked x for v. Then provide as many induction hypotheses as there are
different recursive calls of that function in its definition. In almost all of our problems there
will only be one recursive call, on (rest v). So you’ll generally want only one substitution
mapping v to (rest v).

Your substitution can map other variables to any values you want. That will come in handy
when your f has other arguments. For example, if the recursive call from (f u v) is (f
(+ 1 u) (rest v)), then your substitution should be {u← (+ 1 u), v ← (rest v)}. Of
course, you can do this only if u is a variable different from v. This may force you to change
the formula you’re trying to prove. Your strategy in choosing the substitution is simple:
you want ψ/σ1 to provide information about the recursive call of f . So you want σ1 to do
the same things to the arguments of f as the recursion does. If you have more than one
recursive call, you’ll need more than one σi.

By doing this, you will provide yourself with an induction hypothesis about every recursive
call of the function you’re unwinding. Then, in the Base Case and the Induction Step,
unwind your function, use the hypotheses controlling the function to simplify what you get,
and then use your induction hypotheses.

5.3 Practice Proofs (Mar 25, Mar 30)

At the end of this section are some recursive definitions. Some are very interesting programs
and the theorems in the questions below state some very important properties of these
programs. You might learn some valuable lessons about programming by studying these
definitions and playing with them in ACL2.

You should read every question and look at every definition, even the ones not among the
assigned homework problems!

When I state a question as a formula, I mean for you to prove it or exhibit a counterexample
and/or countermodel.

To prove some of these theorems you will have to prove some lemmas. You can use any
previously stated theorem, even if you didn’t prove it. Sometimes these previously stated
lemmas are crucial. Thus, it is really important for you to at least read each question because
they might give you valuable hints for how to attack something I’ve asked you to prove.

• Question 223: (listcopy-id)

(list-copy x) = x

The relevant definition is below. •
• Question 224: (alternative-true-listp)

158 A Little Logic

(true-listp x) = (not (terminal-marker x))

The relevant definition is below. •
? ? ? (due Tue, Mar 30) • Question 225: (assoc-of-app) Fill in the eight blanks below

to make this a proof. Just provide a list of the numbers 1–8 and write the appropriate
contents for each blank. Make sure your terms are all perfectly formed! Note that some
of the blanks appear multiple times; e.g., the blank labelled “2” appears twice. The same
thing goes in each time a blank is duplicated. The relevant definition is below.

Theorem assoc-of-app:

(app (app a b) c) = (app a (app b c))

Proof
Induct on 1 .

Base Case
(endp a) → (2).

↔ {app-identity (page 90), twice}
(endp a) → ((app 3 c) = 4)

↔ {Taut}
True

Induction Step
((¬ (endp a))

∧
(5))

→
(2)

↔ {app-of-non-endp (page 143)}
((¬ (endp a))

∧
(5))

→
((app 6 c)

=
(app a (app b c)))

↔ {app-cons (page 143), first-cons, rest-cons}
((¬ (endp a))

∧
(5))

→
(7

=
(app a (app b c)))

↔ {app-of-non-endp (page 143)}
((¬ (endp a))

Structural Induction 159

∧
(5))

→
(7

=
8)

↔ {Hyp}
((¬ (endp a))

∧
(5))

→
(8

=
8)

↔ {Taut}
True
2 •

? ? ? (due Tue, Mar 30) • Question 226: (app-right-id)

Fill in the five blanks below to make this a proof. Just list the numbers 1–5 and write the
contents of the corresponding blanks. Make sure your syntax is correct!

Theorem app-right-id:

(true-listp a) → ((app a nil) = a)

Proof Induct on 1 .

Base Case

2

↔ { 3 (see hint below)}
True

Induction Step

4

↔ { 5 (see hint below)}
True
2

The relevant definition is below. Hint: Consider the previously proved lemmas in Questions
215 (page 145) and 216 (page 146). •
• Question 227: (mapnil-app)

(mapnil (app a b)) = (app (mapnil a) (mapnil b))

The relevant definitions are below. •
• Question 228: (mapnil-rev)

160 A Little Logic

(rev (mapnil a)) = (mapnil (rev a))

The relevant definitions are below. Hint: Some previously stated theorems may be of help.
•
• Question 229: (rev-app)

(rev (app a b)) = (app (rev b) (rev a))

The relevant definitions are below. Hint: Some previously stated theorems may be of help.
•
? ? ? (due Tue, Mar 30) • Question 230: (rev-rev)

(true-listp a) → ((rev (rev a)) = a)

The relevant definitions are below. Hint: Some previously stated theorems may be of help.
•
• Question 231: (mem-app)

(mem e (app a b)) ↔ ((mem e a) ∨ (mem e b))

The relevant definitions are below. •
The amount of consing a function does is very important to efficiency. Cons, like new in
Java, is expensive because it allocates new memory.

• Question 232: Study the function app (see the definition at the end of this section).
How many times is cons called to evaluate (app ’(4 3 2) ’(1))? More generally, how
many times is cons called to evaluate (app a b) when the length of a is n? •
• Question 233: Study the function rev (see the definitions at the end of this section).
How many times is cons called to evaluate (rev ’(1 2 3 4))? I want you to include the
cons created explicitly in the body of rev and also the conses created by the call of app,
since they’re done on behalf of the rev. More generally, how many times is cons called to
evaluate (rev a) when the length of a is n?

• Question 234: Study the function rev1 (see the definitions at the end of this section).
How many times is cons called to evaluate (rev1 ’(1 2 3 4) nil)? More generally, how
many times is cons called to evaluate (rev1 a nil) when the length of a is n? •
Note that by comparing the answers to Questions 233 and 234 we see that rev1 is more
efficient in terms of the amount of consing it does.

Rev1 has another interesting property. It can be executed without using much space on
the “call stack.” This is because rev1 is tail-recursive : the result of every recursive call is
returned as the result of the main call.

To understand tail-recursion it is nice to know what a “call stack” is. A “call stack” is a
special case of a “push down stack.” Imagine a pile of boxes, where each box is called a
“frame.” If you have a lot of tasks to do to complete a chore, you might write them down
and put them in a box. If while doing one of the tasks, you spawn more things to do, you
could write them down and put them in another box. Then you could stack the new box on
top of the old. This is called “pushing” a new box or frame. You always pay attention to
the top-most box. When you’ve done all the tasks in the top box, you “pop” by throwing
away the now empty top box. What will you find? The list of things to do to complete the

Structural Induction 161

chore that spawned the one you just finished. So a stack is an excellent way to organize
your work.

Now consider rev. Every time the recursive branch in rev is taken by the machine executing
(rev x), the machine must compute the values, v1 and v2, of (rev (rest x)) and (cons

(first x) nil). Then, when those computations are done, it must remember to compute
the value of applying app to v1 and v2 to get the value v that it will return. To do this, it
uses a call stack. To compute (rev x), the machine uses the top-most box on this pile to
remember whatever intermediate results it has to store. Its “notes” are the program, the
“program counter” which records where it is right now, and the values of its local variables,
including spaces to hold the intermediate and final results, v1, v2, and v. Upon arriving
at the recursive call, (rev (rest x)), it pushes a new box and starts over, with a new
value for x and new spaces for v1, v2, and v. It uses that box until it reaches the end of
that computation. Then it takes the value computed, v, out of top-most box, pops the now
empty top-most box, and records that returned value into v1 in the newly exposed top-most
box. Recall that v1 is the space to hold the value of (rev (rest x)). Note that it is now
poised to continue, by computing the value of v2, (cons (first x) nil), and then (app

v1 v2).

It is not necessary to use a push down stack to compute (rev1 x nil)! You can think of
this expression as being computed like this:

a = nil;

while ((endp x) = nil){
a = (cons (first x) a);

x = (rest x);

}
return a;

? ? ? (due Tue, Mar 30) • Question 235: (rev1-rev-general)

(rev1 x a) = (app (rev x) a)

The relevant definitions are below. Hint: Some previously stated theorems may be of help.
•
• Question 236: (true-listp-rev)

(true-listp (rev x))

The relevant definitions are below. Hint: Some previously stated theorems may be of help.
•
? ? ? (due Tue, Mar 30) • Question 237: (rev1-rev)

(rev1 x nil) = (rev x)

The relevant definitions are below. Hint: Some previously stated theorems may be of help.
•
• Question 238: Pretend you hadn’t proved rev1-rev-general. Try to prove rev1-rev

directly. Why can’t you? It is often hard to reason about accumulator-using functions
because of this. If you want to reason about such a function, what must you do? Hint:
What is the difference between rev1-rev-general and rev1-rev, as far as the accumulator

162 A Little Logic

is concerned? Why is rev1-rev-general easy to prove? •
• Question 239: (app-rev-nil)

(app (rev x) nil) = (rev x)

The relevant definitions are below. Hint: Do not use induction! Think about why this is
true and write down your reasoning.

• Question 240: (ordp-insert)

(ordp x) → (ordp (insert e x))

The relevant definitions are below. Note that this theorem establishes that my definition of
insert returns an ordered list if given one. •
• Question 241: (ordp-isort)

(ordp (isort x))

The relevant definitions are below. Note that this theorem establishes that my insertion
sort function returns an ordered list. Hint: Use the lemma in the previous question in your
proof. •
•Question 242: Suppose you’re a software vendor and a customer says he wants a “sorting
program.” You insist that he be more specific and he replies “I want you to deliver a function,
isort, with the property formalized in Question 241.” How could you make a quick buck?
Exhibit a trivial definition of isort that would satisfy the customer’s specification without
actually satisfying the cutomer’s real requirements. The moral of this question is that the
formal specification of software requires clear thinking. •
• Question 243: (isort-id)

(ordp x) → ((isort x) = x)

The relevant definitions are below. •
• Question 244: (isort-isort)

(isort (isort x)) = (isort x)

The relevant definitions are below. Hint: Some previously stated theorems may be of help.
•
• Question 245: (perm-reflexive)

(perm x x)

The relevant definitions are below. You may assume without proof the following trivial
lemmas. You ought to be able to prove them.

mem-first:

(¬(endp x)) → (mem (first x) x)

del1-first:

(¬(endp x)) → ((del1 (first x) x) = (rest x)) •

• Question 246: (perm-symmetric)

Structural Induction 163

(perm x y) → (perm y x)

The relevant definitions are below. You may assume without proof the following lemmas.

endp-perm:

(endp x) → ((perm x y) = (endp y))

not-endp-perm:

(¬(endp x))

→
((perm x y)

↔
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y))))

mem-implies-endp:

(mem e x) → (¬(endp x))

perm-del1-rest:

((¬(endp x))

∧
(mem (first x) y))

→
((perm (del1 (first x) y) (rest x))

↔
(perm y x))

The first three are easy to prove. The last is an interesting challenge but you don’t have to
prove it to use it in this question. •
• Question 247:

((perm x y) ∧ (perm y z)) → (perm x z)

The relevant definitions are below. You may assume without proof the following lemmas.

endp-perm:

(endp x) → ((perm x y) = (endp y))

not-endp-perm:

(¬(endp x))

→
((perm x y)

↔
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y))))

perm-mem:

((perm x y) ∧ (mem a x)) → (mem a y)

perm-del1:

(perm x y) → (perm (del1 a x) (del1 a y))

164 A Little Logic

The last two are interesting challenges but you may use them here without proving them. •
• Question 248: (perm-cons)

(perm x y) → (perm (cons e x) (cons e y))

The relevant definitions are below. •
• Question 249: (perm-app1)

(perm x y) → (perm (app x z) (app y z))

The relevant definitions are below. •
• Question 250: (perm-app2) Prove

(perm x y) → (perm (app z x) (app z y))

The relevant definitions are below. •
• Question 251: (perm-rev)

(perm x y) → (perm (rev x) (rev y))

The relevant definitions are below. •
• Question 252: (perm-rev-id)

(perm (rev x) x)

The relevant definitions are below. •
• Question 253: (perm-isort)

(perm (isort x) x)

The relevant definitions are below. •
• Question 254: There are, of course, many ways to sort a list. Insertion sort (isort)
successively inserts each element at the right spot in the evolving answer. Merge sort splits
the list into two partitions, e.g., the elements that occur in the even numbered positions
and the elements that occur in the odd. Then it sorts each list. Finally, it merges the two
ordered list, “shuffling” them together. Define msort to be a merge sort function. •
• Question 255: Suppose you’ve proved that both isort and msort are correct in the
sense that each returns an ordered permutation of its input. That is, you may assume

ordp-isort: (ordp (isort x))

perm-isort: (perm (isort x) x)

ordp-msort: (ordp (msort x))

perm-msort: (perm (msort x) x)

Prove (equal (isort x) (msort x)) from these assumptions together with any other
valid lemmas you’d like to use. You will not need definitions for isort and msort to
answer this question. You do not need to prove the lemmas you invent for this proof, just
make sure every lemma you assume is always true! Hints: There is only one ordered per-
mutation of a list. Formalize that lemma and use it together with the assumptions above

Structural Induction 165

and the lemmas of Questions 246 and 247 stating that perm relationship is symmetric and
transitive. •
Here are the relevant definitions, listed alphabetically.

(defun app (x y)

(if (endp x)

y

(cons (first x)

(app (rest x) y))))

(defun del1 (x y)

(if (endp y)

y

(if (equal x (first y))

(rest y)

(cons (first y)

(del1 x (rest y))))))

(defun insert (e x)

(if (endp x)

(cons e x)

(if (lexorder e (first x))

(cons e x)

(cons (first x)

(insert e (rest x))))))

(defun isort (x)

(if (endp x)

nil

(insert (first x)

(isort (rest x)))))

(defun list-copy (x)

(if (endp x)

x

(cons (first x)

(list-copy (rest x)))))

(defun mapnil (x)

(if (endp x)

nil

(cons nil (mapnil (rest x)))))

(defun mem (x y)

(if (endp y)

166 A Little Logic

nil

(if (equal x (first y))

t

(mem x (rest y)))))

(defun ordp (x)

(if (endp x)

t

(if (endp (rest x))

t

(and (lexorder (first x) (first (rest x)))

(ordp (rest x))))))

(defun perm (x y)

(if (endp x)

(endp y)

(and (mem (first x) y)

(perm (rest x)

(del1 (first x) y)))))

(defun rev (x)

(if (endp x)

nil

(app (rev (rest x))

(cons (first x) nil))))

(defun rev1 (x a)

(if (consp x)

(rev1 (rest x) (cons (first x) a))

a))

(defun terminal-marker (x)

(if (endp x)

x

(terminal-marker (rest x))))

(defun true-listp (x)

(if (consp x)

(true-listp (rest x))

(equal x nil)))

6

The Elementary Arithmetic Waiver (Apr 6,

Apr 8)

I have chosen not to distract you with the axioms for arithmetic. Just trust me: elementary
arithmetic can be formalized in ways analogous to our formalization of lists.

In proofs for this course: you may assume without proof any theorem you want about ACL2
arithmetic provided

1. you state the theorem as a formula,

2. the formula mentions no function symbols other than: addition (+), difference (-),
product (*), rational division (/), exponentiation (expt), the modular arithmetic func-
tions floor and mod, equality (equal), the standard inequalities (<, <=, >=, and >),
the recognizers natp, integerp, and zp, the function nfix for casting into the natu-
rals (page 51), the propositional functions and, or, not, implies, and iff (possibly
written as ∧, ∨, ¬, →, and ↔), and numeric constants.

3. the formula you write really is always true of the ACL2 functions in it!

Because the ACL2 logic is untyped, the ACL2 arithmetic functions have some strange
properties: e.g., (+ nil 6) is 6 and (/ 25 0) is 0. It is always a good idea to err on
the safe side and add hypotheses about the variables in your “theorems” to insure they’re
integers or appropriate naturals.

7

Quantifiers (Apr 6, Apr 8)

Traditional first order logics provide two features that ACL2 does not provide directly,
namely “universal” and “existential” quantifiers. These are traditionally written as an
upside-down “A” (∀) and a backwards “E” (∃). You will see these symbols often in your
CS education. So I’ll teach you the rudiments here.

However, if you are asked to prove a statement of the form (∀x∀y . . . : ψ), where all of the
quantifiers are “∀” and ψ is an ACL2 formula (and thus has no quantifiers in it) then you
can prove the quantified formula by proving ψ the way we’ve been doing. That is, if ψ is a
theorem, then (∀x∀y . . . : ψ) is a theorem.

So, when you proved:

(app (app x y) z) = (app x (app y z))

you also proved

(∀ x ∀ y ∀ z : (app (app x y) z) = (app x (app y z))).

But beware! ψ and (∀x∀y . . . : ψ) are not equivalent: You can’t just replace any occurrence
of one by the other.

In a sense, to prove any quantified formula you reduce it to a different formula without
quantifiers and then you prove that formula using the techniques we’ve already studied.
The question is “how do you get rid of the quantifiers?”

But we’re getting ahead of ourselves because you probably don’t know what “∀” and “∃”
mean. So we’ll start at the beginning now.

7.1 The Universal Quantifier (Apr 6, Apr 8)

If φ is a formula and v is a variable symbol, then in standard first order logic, (∀v : φ) is
also a formula. This is is read as “for all v, it is always the case that φ” or simply “for all
v, φ”.

For example, since this is a formula:

(how-many e x) = (how-many e y)

then, in standard first order logic, so is this:

(∀ e : (how-many e x) = (how-many e y))

In some books, instead of “(∀v : φ),” you’ll see variations like

170 A Little Logic

(∀vφ)
(∀(v)φ)
(∀v.φ)
(∀v)φ

and other variations.

Regardless of the notation, there is the quantifier symbol (the “for all” sign (“∀”)), a bound
variable (v), and a formula, φ, often called the matrix, but here called the body of the
quantified formula.

The bound variable, v, is understood to range over some fixed non-empty universe of objects,
typically called the universe (or “domain”) and denoted by D. D contains all the objects we
can “talk about” in the logic. So it is not unusual to see people say, “suppose the universe
contains only the natural numbers,” or “The domain is the set of real numbers, Booleans,
and ordered pairs constructed from elements of the domain.” Once a domain is designated
or understood, the variable symbols in formulas are understood to take on values from D.
Since D is non-empty, at least we know our variables denote something. The idea is that
“(∀v : φ)” means that φ holds for every value of v chosen from D.

The ACL2 universe contains all the natural numbers, rationals, and complex rationals, all
the character objects, all the strings, all the symbols, and all the lists (conses) you can build
from elements of that universe. In ACL2, the universe is infinite. But whether the universe
is infinite or finite, the basic laws for manipulating quantifiers will be unaffected.

So what does “(∀v : φ)” mean? Questions of this kind often stump new CS students, because
it’s hard to come to grips with the meaning of the verb “to mean.” But in the context of
logic, the meaning of a formula is synonymous with its truth value. So let me rephrase the
question: given a particular v and φ, how do we determine whether “(∀v : φ)” is True or
False? This should at least be easy for you to think about because it’s equivalent to: how
do you evaluate “(∀v : φ)”?

To evaluate “(∀v : φ),” map over D and for each element, d, bind v to d and evaluate φ.
If the result is False, then the value of “(∀v : φ)” is False. Otherwise, keep going. If φ
returns True for every d in D, then the value of “(∀v : φ)” is True.

Of course you see the problem with this description of a “computation:” if D is infinite this
“algorithm” will never terminate. There’s nothing we can do about that! To understand
“(∀v : φ)” you just have to be able to imagine evaluating φ on a possibly infinite number of
different values of v. Mathematicians do it all the time. Get used to it.

We can make quantification very concrete if we focus on a finite domain and pick a particular
φ. Imagine for a moment that D is the list (0 1 2 3) and let’s consider

(∀ e : (how-many e x) = (how-many e y))

Then the meaning of this quantified statement is just:

(((how-many 0 x) = (how-many 0 y))

∧
((how-many 1 x) = (how-many 1 y))

∧
((how-many 2 x) = (how-many 2 y))

∧
((how-many 3 x) = (how-many 3 y)))

Quantifiers 171

You may think of the universal quantifier as a big and (∧) with one conjunct for each element
of D.

If the universe can be expressed as a list in ACL2, then we could write down an ACL2
expression that is equivalent to

(∀ v : φ)

as follows:

� let x1, . . . , xn be the variables in φ other than v (actually, we want x1, . . . , xn to be
the “free” variables in φ, but I’ll explain below)

� make up a new function symbol, f ,

� define

(defun f (lst x1 . . . xn)

(if (endp lst)

t

(and (let ((v (first lst))) φ)
(f (rest lst) x1 . . . xn))))

Then (∀ v : φ) is equivalent to (f D x1 . . . xn).

So if φ is ((how-many e x) = (how-many e y)) and we let f be the symbol foo, then

(∀ e : (how-many e x) = (how-many e y))

is just (foo D x y), where

(defun foo (lst x y)

(if (endp lst)

t

(and (let ((e (first lst)))

(equal (how-many e x) (how-many e y)))

(foo (rest lst) x y))))

Suppose I asked the question: “Write an ACL2 expression that determines, for given values
of x and y, whether ((how-many e x) = (how-many e y)) is true for all values of v in
D. You are free to define a function if you wish.” What would you have done? I hope you
would have defined a version of foo above and answered the question with “(foo D x y).”

• Question 256: Write an ACL2 expression that determines whether every element in D

is a natural number. You are free to define a function if you wish. If you answer correctly,
that expression is the meaning of “∀v : (natp v),” if the domain D were D. •
• Question 257: Write an ACL2 expression that determines whether every element in D is
a natural number larger than x, for some given value of x. You are free to define a function
if you wish. •
• Question 258: Assuming D is D, write the quantified expression corresponding to Ques-
tion 257, page 171. See section 7.3 (page 175) for instructions on how to denote quantifiers
in your typed homework. •

172 A Little Logic

The biggest trap in dealing with quantifiers is handling the notion that v is “bound” by the
expression.

You know we can use the hypothesis below to transform

(x = 3) → (A x (p x))

to any of the following:

(x = 3) → (A 3 (p x))

(x = 3) → (A x (p 3))

(x = 3) → (A 3 (p 3)).

That’s just replacement of equals by equals using our Hypothesis rule.

But now imagine “turning the A upside down” and see how different the situation is. Suppose
D contains the natural numbers. I hope you see that it would be crazy to transform

(x = 3) → (∀ x : (p x))

to

(x = 3) → (∀ 3 : (p x))

or to

(x = 3) → (∀ x : (p 3))

or to

((x = 3) → (∀ 3 : (p 3)).

The first and third transformations simply make no sense at all. How can we imagine letting
3 take on different values from D? Whatever follows the “∀” must be a variable symbol! The
second transformation radically changes the meaning (value) of the formula. For example,
this formula always evaluates to true:

(x = 3) → (∀ x : ((x = 2) → (x 6= 3))).

Why? The conclusion is true. For every x in D, if x is 2 then obviously it is not 3. When the
conclusion of an implication is true, the implication is true, no matter what the hypothesis
is.

However, this formula:

(x = 3) → (∀ x : ((x = 2) → (3 6= 3))).

is false. Why? Because the body of the quantified expression is false for at least one of the
values for x chosen from D, namely 2.

So if we transformed

(x = 3) → (∀ x : ((x = 2) → (x 6= 3)))

to

(x = 3) → (∀ x : ((x = 2) → (3 6= 3)))

Quantifiers 173

“by replacement of equals by equals” we would be making a real mistake! Something
is wrong with our interpretation of “replacement of equals by equals” in the context of
quantified expressions.

Those occurrences of x in the conclusion are very different from the usual occurrences of x:
they are “bound” by the quantifier. We define those concepts formally in Section 7.4. But
you can think of the bound variables like locals of a method, invisible to the outside.

There is a similar problem about using previously proved theorems to rewrite our goal. We
know (¬(consp x)) → ((first x) = nil) is a theorem (actually, an axiom). So can we
use the Rewrite rule of inference (page 116) to transform

(¬(consp x)) → (∀ x : (first x) = nil)

to

(¬(consp x)) → (∀ x : nil = nil)?

Clearly not. The problem is with relieving the hypothesis of the axiom. We know (¬(consp
x)) from our goal and according to step 6 of the Rewrite rule of inference, we have to prove
(¬(consp x)). But the x in the first one represents a different thing from the x in the
second! We are going to severely restrict the Rewrite rule of inference when rewriting inside
quantified expressions.

Warning: Just remember, you can’t substitute equals for equals inside quantifiers without
checking some extra conditions!

I bet that most of the mistakes you’ll make when dealing with quantifiers will have to do
with bound variables. Be careful and pay attention! This kind of trap is just one of many
we’ll discuss later.

We now have two classes of variables: those that are “bound” and those that are “free.”

For example, suppose p is a predicate of arity 3 and consider (p x y z). Then x, y, and z

are free variables of (p x y z). But only x and z are free variables in (∀y : (p x y z)).
To make matters worse, it’s really not variables that are free or bound but occurrences of
variables. Of course, to talk about “occurrences” we’ll resort yet again to our notion of
addresses.

Consider the formula below, which I’ll call γ. There are eight places that variables occur in
γ and I point to each below.

γ:
(∀ y : (p x y z)) ∧ (∀ x : (p x y z))

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
π1 π2 π3 π4 π5 π6 π7 π8

We say the y at π1 is a “binding” occurrence of y. The y at π3 is a “bound” occurrence
of y. The variables at π2 and π4 are “free” occurrences. Thus, in the first conjunct of γ,
y occurs bound and x and z occur free. In the second conjunct, x is bound by the binding
occurrence at π5 and occurs bound at π6. Both y and z occur free at π7 and π8. (By the
way, we will never need to point to a binding occurrence and so π1 and π5 above are actually
going to be illegal addresses.)

Thus, x, y, and z appear free in γ, and x and y also appear bound (in other occurrences).

174 A Little Logic

7.2 The Existential Quantifier (Apr 6, Apr 8)

The existential quantifier is the dual of the universal. If you think of (∀v : φ) as a big and

(∧) with one conjunct for each element of D, then think of (∃v : φ) as a big or (∨) with one
disjunct for each element of D.

We needn’t explain the existential quantifier at all: many logic books just define existential
quantification in terms of universal:

(∃v : φ)↔ (¬(∀v : (¬φ))).

But it can be awkward to work with “∃” as an abbreviation for a negated universal of a
negation.

If φ is a formula and v is a variable symbol, then in standard first order logic, (∃v : φ) is
also a formula. This is is read as “there exists a v such that φ is true” or “there is a v such
that φ.”

As with the universal quantifier, you see many different notations.

(∃vφ)
(∃(v)φ)
(∃v.φ)
(∃v)φ

but in all of them we see the quantifier symbol (the “exists” sign (∃)), a bound variable (v)
and a body formula (φ). As with the universal quantifier, the bound variable ranges over
D, so that “(∃v : φ)” means that for some value of v chosen from D, φ holds.

To evaluate “(∃v : φ),” map over D and for each element, d, bind v to d and evaluate φ. If
the result is True, then the value of “(∃v : φ)” is True. Otherwise, keep going. If φ returns
False for every d in D, then the value of “(∃v : φ)” is False.

Imagine for a moment that D is the list ’(0 1 2 3) and let’s consider

(∃ e : (how-many e x) = (how-many e y))

Then the meaning of this quantified statement is just:

(((how-many 0 x) = (how-many 0 y))

∨
((how-many 1 x) = (how-many 1 y))

∨
((how-many 2 x) = (how-many 2 y))

∨
((how-many 3 x) = (how-many 3 y)))

If the universe can be expressed as a list in ACL2, then we could write down an ACL2
expression that is equivalent to

(∃ v : φ)

as follows:

� let x1, . . . , xn be the free variables in φ other than v

Quantifiers 175

� make up a new function symbol, f ,

� define

(defun f (lst x1 . . . xn)

(if (endp lst)

nil

(or (let ((v (first lst))) φ)
(f (rest lst) x1 . . . xn))))

Then (∃ v : φ) is equivalent to (f D).
We could define the existential quantifier in terms of the universal one:

(∃ v : φ) ↔ (¬(∀ v : (¬φ))).

• Question 259: Write down an informal argument that the values returned by the two
sides of the “↔” above are identical, given the fact that a quantified formula is a “big
conjunct” and an existentially quantified formula is a “big disjunct.” See section 7.3 (page
175) for instructions on how to denote quantifiers in your typed homework. •
• Question 260: We could also define the universal quantifier in terms of the existential
one. Write the formula. See section 7.3 (page 175) for instructions on how to denote
quantifiers in your typed homework. •
• Question 261: Paraphrase the following formula in English.

(∃ y : (natp y) ∧ x * y > 0) •

• Question 262: Is the statement in the question above true for all possible values of x
false for all possible falues of x, or true for some values of x and false for others? •
• Question 263: Paraphrase the following in English.

(∀ x : (∃ y : (natp x) → ((natp y) ∧ ((x + y) = 0)))) •

• Question 264: Is the statement above always true, always false, or sometimes true and
sometimes false? •
• Question 265: Write the quantified statement that means “for every x and y, there is a
list that contains x as its first element and y as its second.” See section 7.3 (page 175) for
instructions on how to denote quantifiers in your typed homework. •

7.3 ASCII Substitutes for Quantifiers (Apr 6, Apr 8)

This chapter introduces three symbols that are not in the ASCII character set, “∀”, “∃”,
and (later in the chapter) “a” (sometimes called a reversed turnstyle). Please use these
substitutions in your homeworks:

ASCII substitute
(∀ v : ψ) (all v ψ)
(∃ v : ψ) (exists v ψ)
ψ a ψ′ ψ –! ψ′

176 A Little Logic

Note that I do not want you to type the colon that I use in the text. Note also that
the substitute for reversed turnstyle uses an exclamation point, not a vertical bar. These
conventions are necessary due to Lisp’s treatment of so-called “signs” in symbol names.

Warning: If you type a colon to ACL2s and don’t know what you’re doing (!) it may print
a scary warning including something like

************ ABORTING from raw Lisp ***********

Just ignore it and correct your input.

Thus, you may type

(∀ x : (∃ y : (natp x) → ((x × y)= x)))

as:

(all x (exists y (natp x) --> ((x * y) = x)))

and you may type

(∀ x : (∃ y : (x + y) = x) → (natp x))

as:

(all x (exists y (x + y) = 0) --> (natp x)).

7.4 Talking About Quantifiers Precisely (Apr 13)

With both quantifiers, the occurrence of v immediately after the quantifier in (∀v : φ) and
in (∃v : φ) is a binding occurrence. Any occurrence of v inside φ is a bound occurrence. Any
occurrence of a variable that is neither a binding occurrence nor a bound occurrence is a
free occurrence.

A variable is free in a formula if there is a free occurrence of the variable. A variable is
bound in a formula if there is a bound occurrence of the variable.

? ? ? (due Tue, Apr 13) • Question 266: Write a formula in which the variable s is both

bound and free. •
• Question 267: What are the free variables in

((natp p) ∧ (∃ n : (* 2 n) = p))? •

A formula is closed if it contains no free variables. In a closed formula is also said to be
a sentence, but we won’t use that terminology here. The universal closure of a formula
ψ containing the free variables v1, v2, . . . , vn, listed in left-to-right order of appearance, is
(∀v1 : (∀v2 : . . . (∀vk : ψ) . . .)).

A variable v is in the bound variable list for an address π in ψ if a bound occurrence of v
would be created by replacing the subformula at π in ψ by v.

For example, let ψ be (p z) ∧ (∀x : (q z) ∧ (∃y : (r z))). At the address that points to
(p z), the bound variable list is empty: the bound variable list contains only symbols that
would appear bound if put at that address and there are no such symbols. At the address

Quantifiers 177

that points to (q z), the bound variable list is just (x) because if we put an x at that
address, it would be a bound occurrence; no other variable would be bound. At the address
that points to (r z), the bound variable list is (x y) – or (y x) since I haven’t specified
order. Another way to put it is that the bound variable list includes a variable only if the
formula at π appears in the scope of a quantifier that binds that variable.

We say an address π in ψ is in the scope of a quantifier if the bound variables list at π is
non-empty.

We need to update our notion what equivalence relation must hold between α and β in order
to replace α at π by β in γ while maintaining either equal or iff for γ. The body of a
quantifier is just tested, so propositional equivalence of the quantified formula is maintained
by preserving the propositional equivalence of the body. To prevent the replacement of
binding occurrences of variables, such as the x in (∀x : ψ), we don’t allow addresses to point
to such locations (just as we don’t allow them to point into constants).

? ? ? (due Tue, Apr 13) • Question 268: Suppose π is the address of the (* p v) in the

formula below.

((natp p) ∧ ((natp q) ∧ (divides p q))) → (∃ v : (* p v) = q)?

What is the equivalence relation admitted by π in that formula to maintain propositional
equivalence? Does π admit propositional replacement? •
? ? ? (due Tue, Apr 13) • Question 269: Let π be the address of the equality subterm in

the formula above. Does π admit propositional replacement? •
We’ve already observed that there is a problem with “replacement of equals for equals” in
the scope of a quantifier. You can’t use the hypothesis below to substitute 3 for x in the
conclusion and transform

(x = 3) → (∀ x : (p x))

to something like

(x = 3) → (∀ x : (p 3)).

The existence of free and bound variables in our formulas also raises problems with instan-
tiation, i.e., applying substitutions.

First, when we apply a substitution we must not replace bound occurrences of variables
even if they are mentioned in the substitution. If we have proved the theorem

γ:
(∀ x : (p x)) → (q x y)

and we wish to instantiate it with the substitution σ = {x ← 3}, we cannot just replace
the bound occurrence of x. That is, it would be wrong to conclude from the theorem γ that

γ′:
(∀ x : (p 3)) → (q 3 y)

is a theorem!

? ? ? (due Tue, Apr 13) • Question 270: Define p and q so that γ, above, is always true

but so that γ′ is not always true. You may assume that D consists of the natural numbers.
That is produce a model for γ and a counterexample to γ ′ under that model. Note: You

178 A Little Logic

will not be able to evaluate either γ or γ ′ in ACL2s (since quantified formulas cannot be
evaluated over infinite domains), but I recommend that you define your p and q in ACL2s
and experiment with them. At least that will insure that your syntax is correct. Just turn
in the two defuns. •
Summary Warning: You can’t instantiate bound variables!

The second problem is illustrated below. It should be clear to you that the formula γ is
valid, even if we don’t have the machinery yet to prove it:

γ:
(∀ x : x=y) → (u = v).

Recall that D is non-empty. So it has one or more objects in it. If there is only one object
in the universe, then the hypothesis is true and so is the conclusion: all the variables denote
that one object. If there are multiple objects in the universe, then the hypothesis is false
– not every object in D is equal to which ever object y denotes – so the implication holds
vacuously. In both cases, γ is always true.

Since γ is valid, we ought to be able to instantiate it and obtain a valid formula. Let γ ′ be
γ/σ, where σ is {y← x}. If we use our old notion of instantiation γ/σ is:

γ′:
(∀ x : x=x) → (u = v).

This is clearly not valid! The hypothesis is always true – of course each element of D is
equal to itself – and so γ ′ is equivalent to u= v. But that formula isn’t valid.

What happened? How did we produce a non-theorem by instantiation of a theorem?

The answer is that the x in our substitution σ was captured by the quantifier when we
plugged it in for y. Before the instantiation, that y was free – not bound by the quantifier.
Afterwards, the variable at that address was bound. This is bad.

Summary Warning: You can’t let your free variables be captured!

To avoid it, we redefine the notion of instantiation to avoid capture. Since the bound
variables are “local” their names shouldn’t matter and we simply rename them as necessary
to avoid capturing free variables brought in by the substitution. A proper instantiation of
γ by σ is

γ′:
(∀ x0 : x0=x) → u = v.

So to apply substitution σ to ψ, you dive through ψ doing what you normally would until
you encounter a quantifier. That is, when you encounter a variable, you return its image in
σ (or the variable itself if it is not hit by σ). When you encounter a constant, you return
the constant. When you encounter a function application, (f ai . . . an) you apply the
subsitution to each argument and return the result: (f ai/σ . . . an/σ). But when you
encounter (∀ v : β) you behave very differently. I’ll explain that case. The case for (∃ v
: β) is exactly analogous.

When you encounter (∀ v : β), first, compute the free variables in that formula. Call that
list Υ. (Note that v is never a member of Υ.) Υ lists the variables that the substitution
can legitimately replace, so next “restrict” the substitution to those variables by deleting
the bindings of all other variables. Call restricted substitution σ′.

Next, make up a new variable name, v′, to be used in place of v; your v′ must have two

Quantifiers 179

properties: (i) v′ must not be among the variables in Υ and (ii) it should not be free in any
of the terms in the range of σ′. If v itself has those properties, you can let v′ be v.

Once you’ve chosen a suitable v′, you will have to replace free occurrences of v in β by v′.
You can do that by extending σ′ to contain one more binding, namely “v ← v′”. Let that
extended σ′ be σ′′. Finally, to finish, return (∀ v′ : β/σ′′).

The ∃-expression is handled analogously.

Here is an example. Let σ be the substitution {x ← (f a), y ← (g a b)}. The result of
applying σ to the formula below:

(p x y) ∧ (∀ x : (r x) ∧ (∃ a : (q x y a)))

is

(p x y) ∧ (∀ x : (r x) ∧ (∃ a : (q x y a)))/σ

which is

(p (f a) (g a b)) ∧ (∀ x : (r x) ∧ (∃ a1 : (q x (g a b) a1)))

Here is the blow-by-blow. When we apply σ to the first conjunct, (p x y), we have not yet
encountered any quantifiers and so just apply the substitution as before. When we move
over to the (∀ x : . . .) we delete the binding “x ← (f a)” from the substitution we’re
using on the body of the quantifier expression. That leaves us with {y ← (g a b)}. Υ,
the free variables in the body, is (y) because the other variables in the body, x and a, are
bound. We consider renaming x and first just consider whether x itself will do for v′. (i)
x is not in Υ and (ii) x is not free in any of the terms in the range of our substitution –
the only free variables in the range of our substitution are a and b. So we just let v′ be x.
Applying that to the body, we first encounter the (r x), which is unchanged because x is
not hit by the modified substitution in this scope. We next encounter (∃ a : (q x y a)).
The Υ for this expression is (x y). We restrict our substitution to those variables but that
doesn’t change it, since only y is hit. Next, we consider renaming the bound variable a. (i)
a isn’t a member of Υ, so it looks like a candidate, but (ii) a is a free variable in the range
of our substitution, {y ← (g a b)}. So we can’t use a. We’re also unable to use x and y

(they’re in Υ) and b (it is free in the range of the substitution). So we ultimately choose
a1. We change our substitution to {y ← (g a b), a ← a1}. Applying that to the body of
the ∃-expression gives (q x (g a b) a1) and we return a new ∃-expression with binding
occurrence a1 and that instantiated body. And we’re done!

The above description is very subtle. Even logicians who study this stuff have gotten the
definition wrong. More troubling, students who try to carry out the instantiation algorithm
frequently take short-cuts and make mistakes. The two common mistakes in dealing with
quantifiers are

� substituting for bound variables, e.g., transforming (x = 3) → (∀x : (p x y)) to
(x = 3)→ (∀x : (p 3 y))

� allowing your free variables to be captured when you instantiate, e.g., instantiating
the y in (∀x : (p x y)) with (f x) to erroneously get (∀x : (p x (f x))) instead of
the correct (∀x0 : (p x0 (f x))).

• Question 271: What is γ/σ where:

180 A Little Logic

γ: (∀ x : (p x y))

σ: { x ← a, y ← b } •

• Question 272: What is γ/σ where:

γ: (∀ x : (p x y))

σ: { x ← a, y ← (f x)} •

• Question 273: What is γ/σ where:

γ: (∀ x : ((p x y) ∧ (∃ y : (q x y z))))

σ: { x ← a, y ← (g x), z ← (h a x)} •

? ? ? (due Tue, Apr 13) • Question 274: What is γ/σ where:

γ: (∀ x : (p x y)) ∧ (∀ x : (∃ y : (q x y z)))

σ: { x ← a, y ← (g x), z ← (h a x)} •

• Question 275: What is γ/σ where:

γ: (∀ x : (p x y)) ∧ (∀ x : (∃ y : (q x y z)))

σ: { x ← a, y ← (g x), z ← (h a y)} •

7.5 Imprecise Talk about the Rules of Inference (Apr 13)

We have to add some new rules of inference to deal with quantifiers. In this section I’ll
introduce the new rules informally and with examples. In the next section I’ll be precise.

One rule will allow us to rename the bound variables in a formula. For example, we can
transform (∃ x : (p x y)) to (∃ z : (p z y)) without changing its meaning (value).
Note however that we could not change the bound variable from x to y; (∃ y : (p y y))

means something different.

• Question 276: Define a function p so that (∃ x : (p x y)) is always true but (∃ y :

(p y y)) is false, assuming D contains the natural numbers. •
The rule that allows this is called “alpha conversion” and it corresponds exactly to the
phenomenon in programming where you decide to rename a local variable – but you have
to be careful that your “new” variable name is really new! You can change the meaning
(value) of your program if you replace a local variable name by the name of some other
variable in the same scope.

In programming, “inlining” is the idea of replacing a procedure or method call by its body
to save the overhead of an invocation. When you inline, you have to be careful to avoid
over-writing the variables in the caller’s code. Imagine if the caller has the local variable x

and the called procedure has a local variable x which it initializes to 0. If you inlined the
procedure you might smash the value of the caller’s x. To avoid this, you might do alpha
conversion on the procedure first – rename its local variable to z, but you must avoid using
any name already in use in the procedure. In logic, we use alpha conversion in a very similar
situation.

There are four main rules for manipulating quantifiers, two that deal with the universal
symbol and two that deal with the existential. The reason there are two of each is that

Quantifiers 181

how you deal with those quantifiers depends on whether they occur in the hypothesis or the
conclusion of what you’re proving.

The rule for dealing with a “∀” in the hypothesis is symmetric with the rule for dealing with
an “∃” in the conclusion; the rule for dealing with a “∀” in the conclusion is symmetric with
the rule for dealing with an “∃” in the hypothsis.

• Question 277: Why should this symmetry be present? •
In all of the examples below, let’s assume D contains the integers.

For example, suppose you’re trying to prove

(∀ x : (p x)) → (p 3)

This should feel like an obvious truth: if p is true for all x, then of course it is true for 3.
To prove such a rule, we need to be able to instantiate a universally quantified hypothesis.
Before we show that, consider this formula:

(∀ x : (p x)) → ((p 3) ∧ (p 7)).

It should be just-as-obviously true!

When you have a universally quantified hypothesis you can drop the quantifier and replace
the bound variable by any term you want. What’s more, you can have your cake and eat it
too! You can keep the quantified hypothesis around in case you need it again! We call this
copying the hypothesis.

So we will be able to transform

(∀ x : (p x)) → ((p 3) ∧ (p 7)).

first into

((p 3) ∧ (∀ x : (p x))) → ((p 3) ∧ (p 7)).

and then into

((p 3) ∧ (p 7) ∧ (∀ x : (p x))) → ((p 3) ∧ (p 7)).

by using this rule for dealing with a “∀” in the hypothesis. Of course, once we have made
the second transformation above, the goal formula is an instance of a tautology.

Earlier we talked about the symmetry of a “∀” in the hypothesis with an “∃” in the conclu-
sion. Here’s an example. How can we prove this?

(p 3) → (∃ x : (p x))?

The truth of the formula should be obvious: if p holds for 3 then of course there is an x that
makes p true, namely 3! The rule of inference is symmetric with the one we just saw. If
your conclusion is an existential, you can drop the quantifier and replace the bound variable
by anything you want.

Basically, if you’re trying to prove that something exists, just write down a term that
computes it. For example, to prove

(integerp x) → (∃ y : (+ x y) = 0)

you could just drop the “∃” and let y be (- x), the negative of x. Then you’re left to prove

182 A Little Logic

(integerp x) → ((+ x (- x)) = 0).

The claim is that if you succeed in proving that, then you know

(integerp x) → (∃ y : (+ x y) = 0)

because the y that is alleged to exist has been exemplified.

•Question 278: The foregoing discussion of how to handle an “∃” in the conclusion doesn’t
quite show the symmetry we talked about. When we instantiate a “∀” in the hypothesis,
we get to copy the hypothesis and add an instance as a new conjunct, e.g., we transform
the hypothesis (∀ x: (p x)) to ((p 3) ∧ (∀ x: (p x))). What must we do for an “∃”
in the conclusion? •
• Question 279: Give an example formula that requires the fully-symmetric treatment of
“∃” to prove. •
When you instantiate a universal hypothesis or existential conclusion you may have to be
creative!

• Question 280: Explain the strategy for proving

(¬(endp x)) → (∃ e : (mem e x))?

Hint: Since we haven’t seen the rule of inference for quantifiers, you can’t give a precise
proof yet. But I’ve told you (above) how one goes about proving α → (∃ v : β), namely,
show me a substitution σ = {v ← δ} such that you can prove α→ β/σ. •
Sometimes the “creativity” requires you to define a new function just to say what you’re
thinking.

? ? ? (due Tue, Apr 13) • Question 281: Explain the strategy for proving

(mem e x) → (∃ i : (nth i x) = e)

In particular, what formula would you transform this into? Hint: See the hint from Question
280 but you’ll need to define a new function to express your strategy! •
? ? ? (due Tue, Apr 13) • Question 282: Suppose natsp is an arity 1 function that

recognizes lists of natural numbers, suppose ordp is an arity 1 function that recognizes lists
in weakly ascending order such as (1 2 2 4 12), and suppose perm is an arity 2 function
that recognizes when two lists are permutations of each other as are (1 2 2 4 12) and (4

1 2 12 2). How would you prove

(natsp x) → (∃ y : (ordp y) ∧ (perm x y))?

Hint: See the hint from Question 281. •
Now let’s go around to the other side. Suppose we have a “∀” in the conclusion. What do
we do? How could we prove a formula that looks like this?

γ:
(p x) → (∀ y : (q x y))

Another way to put the question is this: what other formula could we prove that would
convince a skeptical friend that the formula above is always true? One answer is to prove

Quantifiers 183

that when (p x) is true then (q x z) is true, for some “complete unknown” z, a variable
we know absolutely nothing about. That is, we could prove

γ′:
(p x) → (q x z).

Suppose we proved γ′. Then why is γ true? Let’s evaluate γ for some particular values of
the existentially quantified y. Is (p x) → (q x 3) true? Yes, because γ ′ is true. Is (p x)

→ (q x 7) true? Yes. Is (p x) → (q x ’(a b c)) true? Yes. Is (p x) → (q x nil)

true? Yes. The reason is always the same: γ ′ is true. Put another way, if we prove γ ′, then
it is true for every value in D. But that is what γ says.

We didn’t really have to introduce z. One way to prove

γ:
(p x) → (∀ y : (q x y))

is to just drop the “∀” and prove

(p x) → (q x y)

instead. But this works only because we don’t know anything about y. That is, the only
place y appears in γ is in the scope of the “∀.” Put another way, the variable y is not free
in γ. Think about it!

If we wanted to prove this γ instead:

γ:
((p x) ∧ (p y)) → (∀ y : (q x y)).

We could not just drop the “∀” and re-use “y” as our “complete unknown” because we know
something about y in this γ. But we could transform γ with an alpha conversion to

γ′:
((p x) ∧ (p y)) → (∀ z : (q x z))

and then drop the “∀” to get this goal to prove

γ′′:
((p x) ∧ (p y)) → (q x z).

Warning: A really common mistake is for students to think that

γ:
(p x) → (∀ y : (q x y))

and

γ′:
(p x) → (q x y)

are equivalent, i.e.,

((p x) → (∀ y : (q x y)))

↔

184 A Little Logic

((p x) → (q x y))

The above equivalence does not hold! What we’re saying is that if you prove γ ′ then you
can consider γ proved. Another way to put it is: to prove γ, you can try to prove γ ′. Still
another version of the basic idea is that if γ ′ is valid (always true) then γ is valid (always
true).

But γ and γ′ are not equivalent! In particular, it is not the case that γ ↔ γ ′.

??? (due Tue, Apr 13) • Question 283: Define p and q so that, for some particular x and

y, γ′ is true but γ is false. Note that if you can do this, then the “↔” doesn’t hold. You
may assume D is the set of all natural numbers. Exhibit definitions of p and q, and values
for x and y. •
To restate the warning: don’t just drop a universal quantifier in the conclusion and think
you haven’t changed the value of the formula!

The symmetric case, of an “∃” in the hypothesis, is handled analogously. So how would you
convince a skeptical friend that

(∃ y : (p x y)) → (q x)

is always true? You’d prove

(p x z) → (q x)

where z is a complete unknown. That is if the hypothesis tells you there is some y that
makes (p x y) true, then you may assume (p x z) for some z you know nothing else about.

What do we do when the formula we’re proving has nested quantifiers? Be careful! Order
matters!

Suppose D consists of the integers. Then the following formula is false.

γ:
(∀ x : (∃ y : (+ x y) = 0)) → (1=2)

The conclusion of γ is manifestly false. So the only way γ could always be true is if the
hypothesis is always false. But the hypothesis is true. The hypothesis says that for every
integer x there is an integer y such that their sum is 0. This is clearly true: let y be the
negative of x. Read it again: for every integer x, there is an integer, namely (- x), such
that (+ x (- x)) is 0. So γ is not a theorem.

Now imagine trying to prove this non-theorem by dropping the existential quantifier. This
transformation is not allowed! Our rule will insist that the “∃” we drop in the hypothesis
be the outermost quantifier of that hypothesis. But let’s persist and mis-use the rule to see
what happens. So, after checking that y is a complete unknown, we just drop the “∃” to
transform γ to

γ′:
(∀ x : (+ x y) = 0) → (1=2).

This formula is always true because the hypothesis is always false. In particular, if (+ x y)

is 0 for all x, then (+ -1 y) is 0 and so is (+ -2 y). But that means y is 1 and y is also 2.

In a good logic, we won’t be able to prove γ and we ought not to be able to prove γ ′. That
means we must not be able to transform γ to γ ′ to prove γ!

Quantifiers 185

The mistake we made in producing γ ′ is that we dropped an interior quantifier. All of the
transformations we’ve sketched operate only on the outermost quantifier of a hypothesis or
conclusion.

Warning: Don’t mess with interior quantifiers!

Before we introduced quantifiers, our rules of inference all preserved propositional equiva-
lence: if an old rule reduces ψ to ψ′, then ψ ↔ ψ′ is provable. Thus, many our proofs took
the form ψ ↔ ψ1 ↔ . . .↔ True.

But with some of the new quantifier-equipped rules, this propositional equivalence no longer
hold. For example, as I’ve already said (but am happy to repeat because it is so important): a
legal way to prove (∀ x : (p x)) will be to prove (p z), where z is a “complete unknown.”
But those two formulas are not propositionally equivalent. The first certainly implies the
second. But the second doesn’t imply the first: it is not generally a theorem that (p x)

→ (∀ x : (p x)). To be very precise, the truth of (p x) under an assignment does not
necessarily imply the truth of (∀ x : (p x)) under that assignment; the validity of (p x)

implies the validity of (∀ x : (p x)).

We need a way to denote, in our proofs, that ψ can be proved by proving ψ′. The notation
we use is “ψ a ψ′”. In this notation, here is a legal proof sketch for ψ: ψ ↔ ψ1 ↔ ψ2 a
ψ3 ↔ ψ4 a True. Starting at the right-hand end of the chain, it means from True we can
prove ψ4, which is equivalent to ψ3 from which we can prove ψ2 which is equivalent to ψ1

which is equivalent to our goal ψ.

Note: In usual treatments of logic, “ψ′ ` ψ” is used to mean that ψ can be proved from
ψ′. More generally and precisely, “ψ1, . . . , ψk ` ψ” means that ψ can be proved from the
conjunction of the universal closures of the ψi. The symbol “`” is called a turnstyle. By
reversing it, “ψ a ψ′” we allow ψ to be written on the left, and ψ′ on the right. That allows
proofs to be written as a sequence of formulas starting with the goal and ending with True,
each of which is sufficient to prove its neighbor on the left: ψ ↔ ψ′ ↔ ψ′′ a ψ′′′ ↔ . . . T rue.

In summary, to change our old logic – where there were no quantifiers – to a logic where
there are quantifiers, we have to

� change the definition of “instantiation” so that when we instantiate a formula we don’t
instantiate or capture free variables (remember: you can’t instantiate bound variables
and you can’t let your free variables be captured)

� change our old rules for replacement and rewriting so we don’t use them inside the
scope of a quantifier (remember: you can’t substitute equals for equals inside of quan-
tifiers without checking extra conditions)

� introduce the alpha-conversion rule

� introduce rules for handling a “∀” in the hypothesis and a “∃” in the conclusion, and

� introduce rules for handling an “∃” in the hypothesis and an “∀” in the conclusion.

Only the two rules that deal with ∀ in the conclusion and ∃ in the hypothesis require the
“a” notation. All the others preserve propositional equivalence.

186 A Little Logic

7.6 Rules of Inference for Quantified Formulas (Apr 15, Apr 20)

Henceforth, when we use the notation φ/σ or speak of instantiating formula φ with substi-
tution σ, we mean as substitution is defined on page 178. Please re-read the statements of
the Tautology rule (page 115), the Cases rule (page 117), the Constant rule (page 117), the
Computation rule (page 118), and the Induction rule (page 152) with this new definition of
instantiation in mind. These rules do not change otherwise.

We will re-state the Rewrite and Hypotheses rules below to deal with the possible presence
of quantifiers.

Rule of Inference Rewrite (for Quantified Formulas) (“qRe”):

Summary: This rule allows you to rewrite part of the goal ψ using a previously established
theorem (including an axiom or definition) φ.

Description: If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc so that the term you wish
to replace is in goal’s conclusion ψc

2. let π be the address in ψc pointing to the subterm you want to replace

3. factor the previously proved theorem φ into a hypothesis φh and conclusion φc

4. factor φc into pattern α, replacement β, and maintained equivalvence eqv such that
the term you want to replace (at π in ψc) is an instance of α under some substitution
σ

5. if eqv is iff, confirm that address π admits a propositional replacement in ψc

6. if π is in the scope of a quantifier, prove (φh/σ); otherwise, prove ψh → (φh/σ)

7. obtain ψ′
c by replacing the term at π in ψc by β/σ

then ψ ↔ ψ′, where ψ′ is any refactoring of ψh → ψ′
c.

End of Rule

Note: The Rewrite rule for quantified formulas is just like its quantifier-free version except
for step 6. In the quantified version of the rule, if you are replacing a target within the
scope of a quantifier, you must relieve the hypotheses of the theorem without using any of
the hypotheses of the goal.

Rule of Inference Hypothesis (for Quantified Formulas) (or “qHyp”):

Summary: This rule allows you to use one of the hypotheses of the goal ψ by replacing some
term in its conclusion with an equivalent term.

Description: If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc

2. let δ be one of the conjuncts of ψh (a hypothesis of goal ψ)

3. factor hypothesis δ into pattern α, replacement β, and maintained equivalence eqv

4. let π be an address in ψc at which you find α

Quantifiers 187

5. if eqv is iff, confirm that address π admits a propositional replacement in ψc

6. confirm that no variable in the bound variable list at π is free in δ

7. obtain ψ′
c by replacing the term at π in ψc by β

then ψ ↔ ψ′, where ψ′ is any refactoring of ψh → ψ′
c.

Note: The Hypothesis rule for quantified formulas has an extra step (namely 6) that prevents
you from using hypotheses whose variables are captured.

We add five new rules of inference to deal with quantifiers.

Rule of Inference Alpha Conversion (“α-Conv”)

Summary: This rule allows you to change the name of the bound variable of a quantified
expression occuring in a goal ψ.

Description: If you can carry out all of the following steps:

1. let π be a legal address in ψ pointing to a quantified expression (Q v : φ), where Q
is either “∀” or “∃”

2. let u be a variable symbol that is not free in φ

3. let φ′ be the result of replacing all free occurrences of v in φ by u

4. let ψ′ be the result of replacing the expression at π in ψ by (Q u : φ′)

then ψ ↔ ψ′.

End of Rule

Rule of Inference Universal Hypothesis (“∀-Hyp)

Summary: This rule allows you to copy and instantiate the outermost universal quantifier
in the jth hypothesis of your goal ψ, converting ψ from (ψh1

∧ . . .∧ (∀v : φ)∧ . . .∧ψhk
)→ ψc

to (ψh1
∧ . . . ∧ φ/σ ∧ φhj

∧ . . . ∧ ψhk
)→ ψc.

Description: If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc

2. let the conjuncts of ψh be ψh1
, . . . , ψhj

, . . . , ψhk

3. choose j so that ψhj
is of the form (∀ v : φ)

4. choose any term α and let σ be the substitution {v ← α}

5. let ψ′
h be the result of replacing the jth conjunct of φh by (φ/σ ∧ φhj

)

then ψ ↔ ψ′, where ψ′ is any refactoring of ψ′
h → ψc.

End of Rule

Rule of Inference Existential Conclusion (“∃-Concl)

Summary: This rule allows you to copy and instantiate the existentially quantified con-
clusion in a goal ψ, converting (ψh → (∃v : φ)) to (ψh → (φ/σ ∨ (∃v : φ))).

188 A Little Logic

Description:

If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc so that ψc is of the form
(∃ v : φ)

2. choose any term α and let σ be the substitution {v ← α}

then ψ ↔ ψ′, where ψ′ is any refactoring of ψh → (φ/σ ∨ ψc).

End of Rule

Rule of Inference Universal Conclusion (“∀-Concl”)

Summary: This rule allows you to drop the outermost universal quantifier in the conclusion
of your goal, converting ψ from ψh → (∀v : φ) to ψh → φ provided v is not free in ψ. This
rule does not preserve propositional equivlence, just “a.”
Description: If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc so that ψc is of the form
(∀ v : φ)

2. confirm that v is not free in ψ (if v is free in ψ then you could use α-Conv first to
rename v to some other variable symbol)

then ψ a ψ′, where ψ′ is any refactoring of ψh → φ.

End of Rule

Rule of Inference Existential Hypothesis (“∃-Hyp”)

Summary: This rule allows you to drop the outermost existential quantifier in the jth

hypothesis of your goal ψ, converting ψ from (ψh1
∧ . . . ∧ (∃v : φ) ∧ . . . ∧ ψhk

) → ψc to
(ψh1

∧ . . . ∧ φ ∧ . . . ∧ ψhk
) → ψc, provided v is not free in ψ. This rule does not preserve

propositional equivlence, just “a.”
Description: If you can carry out all of the following steps:

1. factor the goal ψ into a hypothesis ψh and a conclusion ψc

2. let the conjuncts of ψh be ψh1
, . . . , ψhj

, . . . , ψhk

3. choose j so that ψhj
is of the form (∃ v : φ)

4. confirm that v is not free in ψ (if v is free in ψ then you could use α-Conv first to
rename v to some other variable symbol)

5. let ψ′
h be the result of replacing the jth conjunct of φh by φ

then ψ a ψ′, where ψ′ is any refactoring of ψ′
h → φc.

End of Rule

Quantifiers 189

7.7 Practice Proofs (Apr 15, Apr 20)

In the problems below, the function symbols p and q are undefined and used with different
arities in different problems. The other functions mentioned in these problems are defined
at the end of this section.

This section contains much more material than just problems. It teaches you a lot about
quantifier manipulation. I strongly recommend that you read every problem and the text in
between without thinking about your homework assignment! I show you how these theorems
about undefined ps and qs can be used to do quantifier manipulation about terms we really
care about.

I’ll do two problems as a reminder of what I’m looking for in the way of quantifier proofs.

• Question 284:

(∀ x : (∃ y : (p x) ∧ (q y))) → (∀ x : (p x))

My Proof:

(∀ x : (∃ y : (p x) ∧ (q y))) → (∀ x : (p x))

a {∀-Concl (see note 1 below)}
(∀ x : (∃ y : (p x) ∧ (q y))) → (p a)

↔ {∀-Hyp (see note 2 below)}
((∃ y : (p a) ∧ (q y)) ∧ (∀ x : (∃ y : (p x) ∧ (q y)))) → (p a)

a {∃-Hyp (see note 3 below)}
((p a) ∧ (q b) ∧ (∀ x : (∃ y : (p x) ∧ (q y)))) → (p a)

↔ {Taut (see note 4 below)}
True

2

Notes: In these notes I explain what motivated me to take each step. I don’t expect you to
provide such notes with your proofs. I recommend reading a formula from the proof and the
justification, then comparing the upper formula to the next one to see what transformation
I made, and then reading the note for that justification.

1. I’m trying to prove a universal conclusion. I can prove it by proving it for a complete
unknown, a. I tend to use variables from the beginning of the alphabet for those that have
to be new.

2. I have a universal hypothesis that can tell me about (p a). So I make that explicit by
using the ∀-Hyp rule and choosing a for x. I couldn’t have used ∀-Hyp effectively had I
tried to before I introduced a! I had to take step 1 and then step 2 in that order. Step 1
introduced a complete unknown and then step 2 provided a useful fact about that unknown.
I didn’t have a name for the unknown before step 1. If you try to do the steps in the other
order and “anticipate” the introduction of the name “a” you will be foiled by the ∀-Concl
rule’s insistence on a complete unknown. With the name “a” no longer unknown, it would
have introduced a different variable.

3. I have an existential hypothesis. It is actually irrelevant. But my (p a) is buried inside
the ∃-term. So I use ∃-hyp to get rid of the quantifier. I have to choose a new variable for

190 A Little Logic

y and I choose b.

4. Now my formula is a tautology of the form (u ∧ w) → u. So I’m done.

As you can see, the order in which you apply the quantifier elimination rules is important.

Here is another version of the same proof. Recall that the ∀-Hyp rule copies the universally
quantified hypothesis and drops the quantifier from one of the copies. It preserves the
original quantified hypothesis in case you need another instance. But I know I don’t actually
need it again. So I drop it in the proof below. I can do that because of the Tautology (u →
v) → ((u ∧ w) → v). The formula I write after the ∀-Hyp justification below is no longer
propositionally equivalent to the earlier one, but implies it. Note I changed the connector
on this line from “↔” to “←” to denote this.

If you need to type “←” in ASCII, use “<--”.

Theorem:

(∀ x : (∃ y : (p x) ∧ (q y))) → (∀ x : (p x))

My Proof:

(∀ x : (∃ y : (p x) ∧ (q y))) → (∀ x : (p x))

a {∀-Concl}
(∀ x : (∃ y : (p x) ∧ (q y))) → (p a)

← {∀-Hyp and Taut}
(∃ y : (p a) ∧ (q y)) → (p a)

a {∃-Hyp}
((p a) ∧ (q b)) → (p a)

↔ {Taut}
True
2

Here is a rather long but illustrative inductive proof about a quantified expression. I will
prove the hard part of the theorem:

Theorem:

(perm x y)↔ (∀e : (how-many e x) = (how-many e y)) •

The relevant definitions are at the end of this section. I’ll consider the two directions of the
“↔” separately.

The left-to-right implication,

Theorem γ1:

(perm x y) → (∀ e : (how-many e x) = (how-many e y)),

is the easier. In particular, by ∀-Concl we could convert this to

γ′1:
(perm x y) → (how-many e x) = (how-many e y)

which is a formula we could in principle have proved before we introduced quantifiers.

It should also be clear that the converse of γ ′1

γ′2:
(how-many e x) = (how-many e y) → (perm x y)

Quantifiers 191

is not valid. For example, if e is 1 and x is the list (1 2 3) and y is the list (1 2 2), then
γ′2 is false. However, it is the case that

γ2:

(∀ e : (how-many e x) = (how-many e y)) → (perm x y)

is a theorem. Clearly, if we could prove the ACL2 formula γ ′1 and the quantified formula γ2

then we would know:

(perm x y) ↔ (∀ e : (how-many e x) = (how-many e y)).

This is a wonderful result because it allows us to reason about the rather complicated
function perm by reasoning about counting. Put another way, it allows us to look at perm in
two ways. The first is the recursive definition of perm, which is a program we can execute. It
considers a finite number of elements and announces whether two lists are permutations of
each other. The program perm involves membership and deletion of elements from lists. The
second way of looking at perm is the universally quantified how-many formula. How-many is
very simple: it just counts how many times an element appears in a list. But the quantified
expression can’t be executed because it considers an infinite number of possible elements to
count. Perhaps surprisingly, it is easier to reason about the quantified how-many expression.
But you can’t use it in a program.

I assume you can prove γ ′1 and so I’ll focus on γ2.

For my proof of γ2 I will use the following quantifier-free lemmas, all of which you should
be able to prove.

how-many-endp: {Trivial case from def of how-many}
(endp x) → ((how-many e x) = 0)

not-endp-how-many: {Trivial case from def of how-many}
(¬ (endp x))

→
((how-many e x)

=
(if (equal e (first x))

(1 + (how-many e (rest x)))

(how-many e (rest x))))

not-endp-perm: {Trivial case from def of perm}
(¬(endp x))

→
((perm x y)

↔
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y))))

how-many-first-0: {Trivial from def of how-many}
(0 = (how-many (first y) y)) → (endp y)

natp-how-many: {Nice little induction. Try it!}
(natp (how-many e x))

non-0-how-many: {Nice result linking how-many and mem}

192 A Little Logic

(0 < (how-many e x)) ↔ (mem e x)

how-many-general: {Very cool generalization of how-many. Try it!}
(how-many e x)

=
(if (mem e x)

(+ 1 (how-many e (del1 e x)))

0)))

how-many-del1: {Nice little fact. Try it!}
(e 6= d)

→
((how-many e (del1 d y))

=
(how-many e y))

None of these involve quantification and the ones noted are worth your attention. But let
me get on with my proof.

Theorem perm-how-many:

(∀ e : (how-many e x) = (how-many e y)) → (perm x y).

Proof
Induct on x, using σ1 = {x← (rest x), y← (del1 (first x) y)}.
Base Case:

(endp x)

→
((∀ e : (how-many e x) = (how-many e y))

→
(perm x y))

↔ {Promotion}
((endp x)

∧
(∀ e : (how-many e x) = (how-many e y)))

→
(perm x y)

↔ { perm-endp}
((endp x)

∧
(∀ e : (how-many e x) = (how-many e y)))

→
(endp y)

{Strategy: I need to prove (endp y). I know x is empty. The quantified hypothesis tells
me that, regardless of what e I choose, e occurs as many times in x as in y. I must choose
something for e to demonstrate that y is empty. It must be something that must be in y if
y is non-empty.}

a {∀-Hyp (choose (first y) for e}
((endp x)

Quantifiers 193

∧
((how-many (first y) x) = (how-many (first y) y)))

→
(endp y)

↔ { how-many-endp}
((endp x)

∧
(0 = (how-many (first y) y)))

→
(endp y)

↔ {how-many-first-0}
True

{Strategy: That finishes the Base Case. Before proving the Induction Step, consider the
σ1 I chose: {x ← (rest x), y ← (del1 (first x) y)}. It “unwinds” (perm x y). In
particular, note that the call of perm in my induction hypothesis below is exactly the recursive
call of perm I’ll get when I expand (perm x y).

The induction step to prove γ2 is, of course, just ((¬(endp x) ∧ γ2/σ1) → γ2). But
since γ2 has a quantifier in it, the Induction Hypothesis will have a quantifier in it, making
it look more complicated than usual. And I must pay attention when applying σ1 to the
quantified γ2, athough in this case, no captures are threatened.

Since γ2 is of the form ((∀ e : . . .) → . . .), the Induction Step is of the form:

((¬(endp x) ∧ ((∀ e : . . .) → . . .)) → γ2)

and not of the form

((¬(endp x) ∧ (∀ e : . . .) . . .) → γ2)

Pay attention to the parentheses. The quantifier in the hypothesis of the goal above is
“buried” in an implication. So I can’t just do ∀-Hyp on it! I have to “lift” that quantifier
out somehow. You’ll see that when I do, it becomes an existential! But I’m getting ahead of
myself.

In any case, my first few moves are conventional. I just promote and open the conclusion
to see what I’ve got to prove. Then I’ll think about the quantifiers.

194 A Little Logic

Induction Step:
((¬(endp x))

∧
((∀ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y))))

→
((∀ e : (how-many e x) = (how-many e y)) → (perm x y))

↔ {Promotion}
((¬(endp x))

∧
((∀ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y)))

∧
(∀ e : (how-many e x) = (how-many e y)))

→
(perm x y)

↔ {not-endp-perm}
((¬(endp x)) {Hyp 1}
∧
((∀ e : {Hyp 2 (IH): IHh → IHc}

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y))) {IHc}
∧
(∀ e : (how-many e x) = (how-many e y))) {Hyp 3}

→
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y)))

{Strategy: Look at the conclusion. We need to prove a mem-expression and a perm-expression.
We have three hyps, Hyp 1, Hyp 2, and Hyp 3. Hyp 2 is our Induction Hypothesis and is of
the form (IHh → IHc). Note that IHc is the very perm-expression we wish to prove. That
is due to my choice of σ1.

So there will be two big phases of the proof. (a) We can use Hyp 3 to establish the mem-
expression, because we know (first x) appears non-0 times in the non-empty x and so
must appear non-0 times in y. (b) To use (IHh → IHc) to prove the perm-expresion we
have to detatch IHc from IH with Forward Chaining from Hyp 3. But IHh and Hyp 3 are

Quantifiers 195

different. We’ll need to rearrange those two appropriately.

Resuming the proof from where we left off, and entering phase (a), . . .}

↔ {∀-Hyp, choosing (first x) for e}
((¬(endp x))

∧
((∀ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y)))

∧
((how-many (first x) x) = (how-many (first x) y))

∧
(∀ e : (how-many e x) = (how-many e y)))

→
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y)))

↔ {not-endp-how-many, Equal Reflexivity, if-t}
((¬(endp x))

∧
((∀ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y)))

∧
((1 + (how-many (first x) (rest x))) = (how-many (first x) y))

∧
(∀ e : (how-many e x) = (how-many e y)))

→
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y)))

↔ {Arithmetic and natp-how-many}
((¬(endp x))

∧
((∀ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y)))

∧
(0 < (how-many (first x) y))

196 A Little Logic

∧
(∀ e : (how-many e x) = (how-many e y)))

→
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y)))

↔ {non-0-how-many}
((¬(endp x))

∧
((∀ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
(∀ e : (how-many e x) = (how-many e y)))

→
((mem (first x) y)

∧
(perm (rest x) (del1 (first x) y)))

↔ {Hyp and Short-Circuit}
((¬(endp x))

∧
((∀ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
(∀ e : (how-many e x) = (how-many e y)))

→
(perm (rest x) (del1 (first x) y))

{Strategy: That completes phase (a). Now we work on the perm-expression as phase (b).
Note that if we could forward chain into the second hypothesis, we would be done because
it’s conclusion is the perm-expression we wish to establish. To forward chain, we need to
make the third hypothesis above match the hypothesis of the second hypothesis. We do that
by rearranging both. But we can’t work freely within the scope of the quantifier in the second
hypothesis. Furthermore, that quantifier is in the hypothesis of a hypothesis so we can’t use
∀-Hyp on it! We have to lift that quantifier out so that it at the level of our hypotheses.
Then we can eliminate it, and then we can work on it. Resuming the proof from where we
left off, and entering phase (b), . . .}

Quantifiers 197

↔ {implies-all}
((¬(endp x))

∧
(∃ e :

((how-many e (rest x))

=
(how-many e (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
(∀ e : (how-many e x) = (how-many e y)))

→
(perm (rest x) (del1 (first x) y))

↔ {∃-Hyp (note e is a “complete unknown”) }
((¬(endp x))

∧
(((how-many e (rest x))

=
(how-many e (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
(∀ e : (how-many e x) = (how-many e y)))

→
(perm (rest x) (del1 (first x) y))

a {∀-Hyp (choose e for e)}
((¬(endp x))

∧
(((how-many e (rest x)) {IHh}

=
(how-many e (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((how-many e x) = (how-many e y))) {Hyp 3}

→
(perm (rest x) (del1 (first x) y))

{Strategy: Now I’ve gotten rid of the quantifiers and can go to work on trying to make IHh

and Hyp 3 match. That means I need to relate (how-many e x) to (how-many e (rest

x)) and I need to relate (how-many e y) to (how-many e (del1 (first x) y)). The
first is easy but the relationship depends on whether e is (first x). The second is less

198 A Little Logic

obvious, but depends on the same question. If e is (first x), then (del1 (first x) y)

has one less e than y, and if e is not (first x), the number of es in both is the same.
So I need to know whether e is (first x). That suggests I do a case split and consider
the two cases separately. When you see me finally do the Forward Chaining steps in the two
cases below you’ll know that I’ve succeeded in making IHh and Hyp 3 match! . . .}

↔ {Cases on whether (e=(first x)) is True or False}
Case 1:

((e = (first x))

∧
(¬(endp x))

∧
(((how-many e (rest x))

=
(how-many e (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((how-many e x) = (how-many e y)))

→
(perm (rest x) (del1 (first x) y))

↔ {Hyp (4 times)}
((e = (first x))

∧
(¬(endp x))

∧
(((how-many (first x) (rest x))

=
(how-many (first x) (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((how-many (first x) x) = (how-many (first x) y)))

→
(perm (rest x) (del1 (first x) y))

↔ {not-endp-how-many}
((e = (first x))

∧
(¬(endp x))

∧
(((how-many (first x) (rest x))

=
(how-many (first x) (del1 (first x) y)))

→

Quantifiers 199

(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((if (equal (first x) (first x))

(1 + (how-many (first x) (rest x)))

(how-many (first x) (rest x)))

=
(how-many (first x) y)))

→
(perm (rest x) (del1 (first x) y))

↔ {Equal Reflexive, if-t}
((e = (first x))

∧
(¬(endp x))

∧
(((how-many (first x) (rest x))

=
(how-many (first x) (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((1 + (how-many (first x) (rest x)))

=
(how-many (first x) y)))

→
(perm (rest x) (del1 (first x) y))

↔ {how-many-general}
((e = (first x))

∧
(¬(endp x))

∧
(((how-many (first x) (rest x))

=
(how-many (first x) (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((1 + (how-many (first x) (rest x)))

=
(if (mem (first x) y)

(1 + (how-many (first x) (del1 (first x) y)))

(how-many (first x) (del1 (first x) y)))))

→
(perm (rest x) (del1 (first x) y))

200 A Little Logic

↔ {Hyp and if-t}
((e = (first x))

∧
(¬(endp x))

∧
(((how-many (first x) (rest x))

=
(how-many (first x) (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((1 + (how-many (first x) (rest x)))

=
(1 + (how-many (first x) (del1 (first x) y)))))

→
(perm (rest x) (del1 (first x) y))

↔ {Arithmetic and natp-how-many}
((e = (first x))

∧
(¬(endp x))

∧
(((how-many (first x) (rest x))

=
(how-many (first x) (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((how-many (first x) (rest x))

=
(how-many (first x) (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y))

↔ {Forward Chaining (!!!)}
((e = (first x))

∧
(¬(endp x))

∧
(perm (rest x) (del1 (first x) y))

∧
(mem (first x) y)

∧
((how-many (first x) (rest x))

=

Quantifiers 201

(how-many (first x) (del1 (first x) y))))

→
(perm (rest x) (del1 (first x) y))

↔ {Taut}
True

Case 2:
((e 6= (first x))

∧
(¬(endp x))

∧
(((how-many e (rest x))

=
(how-many e (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((how-many e x) = (how-many e y)))

→
(perm (rest x) (del1 (first x) y))

↔ {not-endp-how-many}
((e 6= (first x))

∧
(¬(endp x))

∧
(((how-many e (rest x))

=
(how-many e (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((if (equal e (first x))

(1 + (how-many e (rest x)))

(how-many e (rest x)))

=
(how-many e y)))

→
(perm (rest x) (del1 (first x) y))

↔ {Hyp and if-nil}
((e 6= (first x))

∧
(¬(endp x))

202 A Little Logic

∧
(((how-many e (rest x))

=
(how-many e (del1 (first x) y)))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((how-many e (rest x))

=
(how-many e y)))

→
(perm (rest x) (del1 (first x) y))

↔ {how-many-del1}
((e 6= (first x))

∧
(¬(endp x))

∧
(((how-many e (rest x))

=
(how-many e y))

→
(perm (rest x) (del1 (first x) y)))

∧
(mem (first x) y)

∧
((how-many e (rest x))

=
(how-many e y)))

→
(perm (rest x) (del1 (first x) y))

↔ {Forward Chaining (!!!)}
((e 6= (first x))

∧
(¬(endp x))

∧
(perm (rest x) (del1 (first x) y))

∧
(mem (first x) y)

∧
((how-many e (rest x))

=
(how-many e y)))

→
(perm (rest x) (del1 (first x) y))

↔ {Taut}

Quantifiers 203

True

2

Prove or show counterexamples and/or countermodels to the alleged theorems below.

• Question 285:

(∃ v : (p v)) ↔ (¬(∀ v : (¬(p v)))).

• Question 286:

(p x) → (∀ x : (p x)) •

• Question 287:

(∀ x : (p x)) → (p x) •

• Question 288:

(p x) → (∃ x : (p x)) •

? ? ? (due Tue, Apr 20) • Question 289:

(∃ x : (p x)) → (p x) •

• Question 290:

(∀ x : (p x)) → ((p i) ∧ (p (cons u v))) •

• Question 291:

((p (+ 1 x)) ∨ (p (rest v))) → (∃ x : (p x)) •

The following problems show how quantifiers can – and cannot – be “moved” around con-
junctions and disjunctions. Study these carefully even if they are not assigned on the
homeworks because they suggest transformations that are useful in other proofs.

? ? ? (due Tue, Apr 20) • Question 292: (all-and-1)

(∀ x : ((p x y) ∧ (q x y))) → ((∀ x : (p x y)) ∧ (∀ x : (q x y))) •

? ? ? (due Tue, Apr 20) • Question 293: (all-and-2)

((∀ x : (p x y)) ∧ (∀ x : (q x y))) → (∀ x : ((p x y) ∧ (q x y))) •

Note that the combination Questions 292 (page 203) and 293 (page 203) show that

all-and:

((∀ x : (p x y)) ∧ (∀ x : (q x y)))

↔
(∀ x : ((p x y) ∧ (q x y))).

Thus, the universal quantifier distributes over conjunction.

This can be used to replace one universally quantified expression by another. The all-and

theorem literally requires the two conjuncts to be “(p x y)” and “(q x y)” and thus looks
fairly useless. But the fact that it can be proved without knowing anything about p and q

means that we could prove the analogous theorem about terms of real interest. For example,

204 A Little Logic

in exact analogy to the proofs in Questions 292 (page 203) and 293 (page 203) we could
prove:

((∀ e : (mem e (app a b))) ∧ (∀ e : (natp e)))

↔
(∀ e : (mem e (app a b)) ∧ (natp e))

Here’s a way to see that. Since we proved Questions 292 (page 203) and 293 (page 203)
without any knowledge of p and q, they could have been defined to be:

(defun p (x y)

(mem x (app (first y) (second y))))

(defun q (x y)

(natp x))

Thus, from the “useless” theorem

((∀ x : (p x y)) ∧ (∀ x : (q x y)))

↔
(∀ x : ((p x y) ∧ (q x y)))

we could derive, by Alpha Conversion,

((∀ e : (p e y)) ∧ (∀ e : (q e y)))

↔
(∀ e : ((p e y) ∧ (q e y)))

and by instantiation

((∀ e : (p e (list a b))) ∧ (∀ e : (q e (list a b))))

↔
(∀ e : ((p e (list a b)) ∧ (q e (list a b))))

and then by expanding the definitions of p and q

((∀ e : (mem e (app a b))) ∧ (∀ e : (natp e)))

↔
(∀ e : (mem e (app a b)) ∧ (natp e)).

Thus, even though all-and appears practically useless (since it talks about p and q and we
don’t really care about them) it actually serves as kind of template or schema giving us a
way to distribute universal quantifiers over conjunctions.

I will allow you to cite all-and and the related quantifier manipulation theorems below as
justification for legitimate quantifier rearrangements. But make sure your rearrangements
can be explained by an argument (which you don’t have to write down) like that given
above. Of particular concern is where the bound and free variables appear. The surest way
to convince yourself is to make sure you could define the p and q in the cited theorem so
that the theorem justifies the transformation made.

• Question 294: (exist-and-1)

(∃ x : ((p x y) ∧ (q x y))) → ((∃ x : (p x y)) ∧ (∃ x : (q x y))) •

• Question 295: You won’t be able to prove this because it isn’t valid! But trying to prove

Quantifiers 205

it will teach you about the rules of inference and I encourage you to follow your instincts and
see where the proof breaks down. In any case, show a countermodel and counterexample.

((∃ x : (p x y)) ∧ (∃ x : (q x y))) → (∃ x : ((p x y) ∧ (q x y))) •

Thus, the existential quantifier does not distribute over conjunctions, though you do get one
of the two directions: if you know there is an x that satisfies p and q, then you know there
is an x that satisfies p and there is an x that satisfies q. But you don’t know the converse
and if you answer Question 295 (page 204) you’ll understand why.

? ? ? (due Tue, Apr 20) • Question 296: You won’t be able to prove this because it isn’t

valid! But trying to prove it will teach you about the rules of inference and I encourage
you to follow your instincts and see where the proof breaks down. In any case, show a
countermodel and counterexample.

(∀ x : ((p x y) ∨ (q x y))) → ((∀ x : (p x y)) ∨ (∀ x : (q x y))) •

and• Question 297: (all-or-2)

((∀ x : (p x y)) ∨ (∀ x : (q x y))) → (∀ x : ((p x y) ∨ (q x y))) •

Thus, the universal quantifier does not distribute over disjunction, but you get one of the
directions: if you know that all x satisfy p or that all x satisfy q, then clearly all x satisfy
their disjunction. But not vice versa: if all x satisfy either p or q, it doesn’t mean that all
x satisfy just one of them. By thinking of an answer to Question 296 (page 205) you’ll see
why.

• Question 298: (exists-or-1)

(∃ x : ((p x y) ∨ (q x y))) → ((∃ x : (p x y)) ∨ (∃ x : (q x y))) •

• Question 299: (exists-or-2)

((∃ x : (p x y)) ∨ (∃ x : (q x y))) → (∃ x : ((p x y) ∨ (q x y))) •

Thus, the existential quantifier distributes over disjunction.

exists-or:

((∃ x : (p x y)) ∨ (∃ x : (q x y)))

↔
(∃ x : ((p x y) ∨ (q x y))).

The symmetries – universal distributes over conjuncts, existential distributes over disjuncts,
and symmetric implications hold in the “mixed” cases – make intuitive sense if you think of
universal quantification as a “big ∧,” existential as a “big ∨,” and realize that conjunction
implies disjunction but not vice versa.

• Question 300: (all-not, exists-not, not-all, and not-exists)
It should be clear that neither universal nor existential quantification distributes over nega-
tion! The following is not a theorem!

(∀ x : (¬ (p x y))) ↔ (¬ (∀ x : (p x y))) {Wrong!}

In fact, you should remember that when you move a quantifier through a negation, the
quantifier changes its “kind”, from universal to existential and vice versa. Prove the first
but remember them all:

206 A Little Logic

all-not:

(∀ x : (¬ (p x y))) ↔ (¬ (∃ x : (p x y)))

exists-not:

(∃ x : (¬ (p x y))) ↔ (¬ (∀ x : (p x y)))

not-all:

(¬ (∀ x : (p x y))) ↔ (∃ x : (¬ (p x y)))

not-exists:

(¬ (∃ x : (p x y))) ↔ (∀ x : (¬ (p x y))) •)

• Question 301: (implies-all)

((∀ x : (p x y)) → (q y))

↔
(∃ x : (p x y) → (q y))

Hint: Prove and then use appropriately the lemma that (q y) ↔ (∃ x : (q y)). •
Warning: The implies-all theorem above is subtle because (q y) is in the scope of the
(∃ x : . . .) but not in the scope of the (∀ x : . . .). Note that (q y) doesn’t have an x

in it. To be more precise, ((∀ x : ψ) → φ) is equivalent to (∃ x : ψ → φ), provided x is not
free in φ. The lemma given in the hint makes this clear too.

The next series of questions sheds light on when we can rearrange the order of a string of
quantifiers. For example can we rearrange (∀ x : (∀ y : (∃ z : . . .))) to (∀ y : (∀ x

: (∃ z : . . .))) or to (∃ z : (∀ x : (∀ y : . . .)))? These are sometimes called “quan-
tifier swap” theorems because they concern switching the order of two adjacent quantifiers.

• Question 302: (all-all)

(∀ y : (∀ x : (p x y z))) → (∀ x : (∀ y : (p x y z))) •

Of course, from the theorem in Question 302 (page 206), by Alpha Conversion, we know
the converse:

(∀ x : (∀ y : (p x y z))) → (∀ y : (∀ x : (p x y z))) •

So we have the equivalence:

(∀ x : (∀ y : (p x y z)))

↔
(∀ y : (∀ x : (p x y z)))

and can swap two adjacent universal quantifiers.

• Question 303: (exists-exists)

(∃ y : (∃ x : (p x y z))) → (∃ x : (∃ y : (p x y z))) •

Following the same line of reasoning used after Question 302 (page 206), we see from Ques-
tion 303 (page 206) that we can also swap adjacent existentials.

(∃ y : (∃ x : (p x y z)))

↔
(∃ x : (∃ y : (p x y z)))

Quantifiers 207

• Question 304: (exists-all-1)

(∃ y : (∀ x : (p x y z))) → (∀ x : (∃ y : (p x y z))) •

• Question 305: You won’t be able to prove this because it isn’t valid! But trying to prove
it will teach you about the rules of inference and I encourage you to follow your instincts and
see where the proof breaks down. In any case, show a countermodel and counterexample.

(∀ x : (∃ y : (p x y z))) → (∃ y : (∀ x : (p x y z))) •

Intuitively, Question 304 tells us that if you can find a y that “works” for every x, then for
every x you can find a y that works: just use the y that works for everyone. But Question
305 shows that the converse isn’t true: knowing that for every x you can find a y that works
for that x is not enough to establish that you can find a y that works for all x. (∃ y : (∀
x : (p x y z))) is stronger than (∀ x : (∃ y : (p x y z))).

A summary of the “quantifier swap” theorems is that you can swap the order of adjacent
quantifiers of the same kind while preserving equivalence, but if you move an existential
quantifier from inside a universal to outside of it, you strengthen the formula.

• Question 306:

((∀ x : (p x y)) ∧ (∃ x : (q x y))) → (∃ x : ((p x y) ∧ (q x y))) •

• Question 307:

(¬(endp x)) → (∃ e : (mem e x)) •

• Question 308:

(mem e x) → (∃ i : ((natp i) ∧ (< i (len x)) ∧ ((nth i x) = e))) •

• Question 309:

(∀ e : ((mem e x) → (mem e y))) → (subeq x y) •

• Question 310:

(∃ e : (mem e x)) → (¬(endp x)) •

• Question 311:

((∀ j : (((natp j) ∧ (< j (len x))) → (symbolp (nth j x))))

∧
(∀ e : ((mem e y) → (∃ i : ((natp i) ∧ (< i (len x)) ∧ ((nth i x) = e)))))

∧
(¬(endp y)))

→
(symbolp (first y)) •

• Question 312:

(subeq x y) → (∀ e : ((mem e x) → (mem e y))) •

• Question 313:

208 A Little Logic

(∀ e : ((mem e x) → (mem e y)))

→
(∀ e : ((mem e (rest x)) → (mem e y))) •

? ? ? (due Tue, Apr 20) • Question 314:

(∀ e : ((mem e x) → (mem e y))) → (subeq x y)

Hint: Induction works with quantified formulas! Look at the proof of perm-how-many (page
192) for a similar problem. Also consider using the theorem of Question 313. The relevant
definitions are at the end of this section. Note that this question together with Question
312 establish that

(subeq x y) ↔ (∀ e : ((mem e x) → (mem e y))) •

• Question 315:

(∀ x : (f x) = (if (zp x) 1 (* x (f (- x 1)))))

→
((f x) = (fact x)) •

? ? ? (due Tue, Apr 20) • Question 316: This is a long question. Ultimately you will

be asked to prove that reachability in a finite directed graph is transitive. But let me
introduce the basics first. Intuitively, a “finite directed graph” is a finite collection of
“nodes” connected by “arrows” or “directed arcs” from one node to another. Formally in
mathematics and computer science, a finite directed graph is a doublet (v e), where v is
the finite set of nodes or vertices and e is the set of edges. We represent the “sets” of nodes
and edges as lists here. An edge is a doublet containing the names of two nodes, the source
and a destination and denotes an arc from the one to the other.

For example, the graph in Figure 7.1 could be represented by the following list of edges on
the nodes (A B C D E F G).

((A B C D E F G) ; nodes
((A B) (A C) (A D) ; edges
(B A) (B G)

(C D)

(D A) (D E)

(E D) (E G) (E F)

(G F)))

Given that order does not matter, there are many other lists representing this same graph.

A finite path, p, in a graph g is a non-empty sequence (list) of nodes of g such that each
adjacent pair of nodes in p are connected by an edge in g from the earlier element of p to
the later element of p. A singleton list containing a single node of g is an empty path. The
function pathp is defined so that (pathp p g) returns t iff p is a finite path in the finite
directed graph g. All the relevant definitions are listed at the end of this section.

(defun pathp (p g)

(if (endp p)

nil

(if (endp (rest p))

(mem (first p) (nodes g))

(and (mem (list (first p) (second p))

Quantifiers 209

G

A B

C

D

E

F

Figure 7.1: A Finite Directed Graph

(edges g))

(pathp (rest p) g)))))

We define start-node and end-node to return the first and last nodes in a path; see below.

For example, (A B G F) is a finite path from A to F in Figure 7.1. Its start-node is A and
its end-node is F. Another path from A to F is (A D A C D E F). Note that there may be
an infinite number of finite paths from one node to another in a finite directed graph. For
example, (A B G F), (A B A B G F), (A B A B A B G F), . . . are distinct paths from A to
F.

Given a graph g and two nodes x and y, we say y is reachable from x if there is a path from
x to y in g.

(reachablep y x g) ↔ (∃ p : (pathp p g) ∧ ((start-node p) = x) ∧ ((end-node

p) = y))

Prove that reachability is transitive.

Theorem reachablep-trans:

((graphp g)

∧
(reachablep b a g)

∧
(reachablep c b g))

→
(reachablep c a g).

You may provide only the first part of the proof in the following sense: reduce the theorem
above to a provable formula that does not involve quantification (note that reachability
involves quantification). You need not prove the resulting formula but it must be a theorem!
•
•Question 317: To understand the terminology in this question, see the previous question.
A path is simple if it does not include the same node twice. A suitable definition of simplep
is shown among the definitions at the end of the section. If a path is not simple then it
has some kind of a loop in it. Formalize and prove that if there is a path from a to b in

210 A Little Logic

graph g, then there is a simple path. The theorem will involve an existential quantifier.
You should use the functions defined below, e.g., graphp, pathp, simplep, start-node,
end-node, as necessary in your formalization. You may define additional functions if they
are not included below. You may provide only the first part of the proof in the following
sense: reduce your theorem to a provable formula that does not involve quantification. You
need not prove the resulting formula but it must be a theorem! •
Here are some relevant definitions in alphabetical order.

(defun del1 (x y)

(if (endp y)

y

(if (equal x (first y))

(rest y)

(cons (first y)

(del1 x (rest y))))))

(defun edgep (edge nodes)

(and (true-listp edge)

(equal (len edge) 2)

(mem (first edge) nodes)

(mem (second edge) nodes)))

(defun edges (g) (second g))

(defun end-node (p)

(if (endp p)

nil

(if (endp (rest p))

(first p)

(end-node (rest p)))))

(defun fact (n)

(if (zp n)

1

(* n (fact (- n 1)))))

(defun graphp (g)

(and (true-listp g)

(equal (len g) 2)

(list-of-edgesp (second g) (first g))))

(defun how-many (e x)

(if (endp x)

0

(if (equal e (first x))

Quantifiers 211

(+ 1 (how-many e (rest x)))

(how-many e (rest x)))))

(defun len (x)

(if (endp x)

0

(+ 1 (len (rest x)))))

(defun list-of-edgesp (edges nodes)

(if (endp edges)

t

(and (edgep (first edges) nodes)

(list-of-edgesp (rest edges) nodes))))

(defun mem (x y)

(if (endp y)

nil

(if (equal x (first y))

t

(mem e (rest y)))))

(defun nodes (g) (first g))

(defun nth (n x)

(if (zp n)

(first x)

(nth (- n 1) (rest x))))

(defun pathp (p g)

(and (not (endp p))

(mem (first p) (nodes g))

(or (endp (rest p))

(and (mem (list (first p) (second p))

(edges g))

(pathp (rest p) g)))))

(defun perm (x y)

(if (endp x)

(endp y)

(and (mem (first x) y)

(perm (rest x)

(del1 (first x) y)))))

212 A Little Logic

(defun simplep (p)

(if (endp p)

nil

(if (endp (rest p))

t

(if (mem (first p) (rest p))

nil

(simplep (rest p))))))

(defun start-node (p) (first p))

(defun subeq (x y)

(if (endp x)

t

(and (mem (first x) y)

(subeq (rest x) y))))

8

Set Theory (Apr 22)

Sets are collections of objects. Sets are themselves objects. In those two senses, sets are like
lists.

Sets are different from lists in three respects:

� sets are unordered; there is no sense in which a set has a “first element,” a “second,”
and so on;

� sets do not contain duplicates; an object is either in a set or not in the set, but it may
not appear in the set multiple times; and

� sets may contain an infinite number of objects.

The basic operations on sets are familar from lists: we can

� determine if an object is an element of a set (e.g., mem for lists)

� determine whether one set is a subset of another (e.g., subeq)

� determine if two sets are equal (e.g., equal)

� determine the number of elements of a set (e.g., len)

� (possibly) add an element to a set (e.g., cons)

� exhibit a particular set by writing down its elements (e.g., a quoted list constant)

� create a (possibly) new set by unioning two sets (e.g., unn)

� create a (possibly) new set by intersecting two sets (e.g., int)

� create a (possibly) new set by taking the difference of one set with another (e.g. diff)

In fact, we can mimic finite sets with lists, by listing the elements in some canonical ordering.
But if x is a list that contains all and only the elements of some finite set s I wanted to
mimic, I could remove the duplicates from x and then sort it into lexorder to produce a
canonical (unique) representation of the set I had in mind. That is done by make-set below.

(defun make-set (x)

(isort (rem-dups x)))

(See Questions 91 (page 66) and 115 (page 71).) If we use make-set to convert (3 1 3 2

1 4) into a set, we get (1 2 3 4). If we convert (1 4 3 2 2) into a set, we also get (1 2

3 4). Note that the two lists, (3 1 3 2 1 4) and (1 4 3 2 2) are different objects, i.e.,
they are un-equal. But their set counterparts are equal.

214 A Little Logic

We could define set-unn, set-int, and set-diff to returns “sets,” by calling make-set

on the lists returned by unn, int, and diff respectively (see Questions 97 (page 67), 98
(page 67), and 99 (page 67)). If we did that, then (set-unn ’(1 4 1) ’(3 2 1 2)) would
be equal to (set-unn ’(3 2 1 2) (1 4 1)): they would both return (1 2 3 4). Thus,
set-unn would be commutative.

But no matter what we do, we cannot represent infinite sets as lists. In set theory there is
an object – a set – that contains all the natural numbers. There is no such list! There is
another set object that contains all the conses, and we can get still another set by unioning
those two sets together to get a set that contains all the natural numbers and all the conses.

Thus, while this little introduction to set theory via lists may give you an intuitive, compu-
tational idea of where we’re headed, it is best to present set theory from scratch, without
considering the list representation of (finite) sets.

In the rest of this chapter I’m going to mix traditional mathematical notation and ACL2.
In particular, I’m going to use ACL2 notation to talk about lists because you have developed
good pattern recognition for such things as (first (cons x y)) instead of first(cons(x, y)).
But for a function f that operates on sets I may write, f(x, y) instead of (f x y), so you
can develop pattern recognition habits for traditional notation too. I’m going to use tra-
ditional notation to talk about arithmetic, but as always it is to be understood as ACL2
arithmetic. For example, I’ll write “x+3 < y and mean it as “(< (+ x 3) y)”. This mixed
notation won’t be as confusing as it may seem because I’ll not mix the domains as much as
I could.

In the following imagine that ACL2’s universe (ACL2’s D) includes all the usual things –
numbers, conses, etc., – plus all the sets you can build from things in the universe.1 So I
will speak, for example, of the set containing 23 and the list (Mon Wed Fri), and will write
that set as {23, (Mon Wed Fri)}. But understand that you cannot enter this notation into
the ACL2 system. This set is different from the list (23 (Mon Wed Fri)).

Occasionally below I will talk about “pure ACL2 objects” and by that I mean ones com-
posed only of the familiar ACL2 things – no sets. Suppose we define pure-acl2-objp so
that (pure-acl2-objp x) is the recognizer for this condition. We actually can define this
function because we have ways of recognizing every acceptable number, character, string,
symbol, and cons composed of such things.2

Furthermore, let’s give ourselves predicate setp and imagine that it recognizes the set objects
among all the mathematical objects in ACL2’s D. Thus, setp(s) is t if s is a set and nil

otherwise.

Finally, let’s extend the disjointness axioms of ACL2 so we know that sets are not numbers,
not characters, not strings, not symbols, and not conses.

1A careful review of the ACL2 axioms will reveal that nothing in the axioms prohibits the inclusion of
objects of different types than we’ve had so far.

2There is no axiom that says that every object is pure, even though those are the only ones you can type
or construct in ACL2.

215

8.1 Basic Set Notation (Apr 22)

8.1.1 Set Builder Notation

Let v be a variable symbol and let ψ be some formula (typically involving v). Then {v : ψ}
is the set of all v satisfying ψ. It is typically read “the set of all v such that ψ.” This is
called set builder notation or sometimes set comprehension.

For example, {x : (natp x) ∧ x < 5} is the set that contains all the natural numbers less
than 5. Thus, that set contains 0, 1, 2, 3, and 4 and no other elements.

So here is an infinite set: {x : (natp x)}. Considering that this set contains an infinity of
elements, this is pretty succinct notation.

Note: For your homework I want you to use a slightly unconventional set notation compa-
rable to the ASCII quantifier notation we’ve adopted. In particular, the set written in these
notes as “{ x : (natp x) ∧ (x > 7)}” should be typed in ASCII as “(setof x (natp

x) && (x > 7))”. Note that you are allowed to drop the outermost parentheses around the
formula inside a setof-expression. Thus, you could have also written “(setof x ((natp

x) && (x > 7)))”. As usual, be extremely careful to write well-formed expressions in your
homework.

The set of natural numbers is often denoted by N or N or NN.

? ? ? (due Tue, Apr 27) • Question 318: Write the set of all even natural numbers in set

builder notation. You may assume we have the function evenp that recognizes even natural
numbers. •
• Question 319: Write the set of all true lists of symbols. For example (A B C) is in it
but (A B 3) and (A B . C) (the list constructed by (cons ’A (cons ’B ’C))) are not. •
? ? ? (due Tue, Apr 27) • Question 320: Let f be a function symbol of arity 2. Let’s say

f has a “pivot” at y if there’s an x such that (f x y) = x. Write down the set all pivots of
f . •
Warning: This notational device can get us into trouble! It is based on the assumption,
called the Axiom of Comprehension in set theory, that to every formula of predicate calcu-
lus (containing one free variable v) there exists a set consisting of exactly the elements v
satisfying that formula. This innocuous looking assumption can lead to contradictions! For
example, let S be the set of all sets that don’t contain themselves as an element. Is S an
element of S? If it is, then according to the definition of S, S isn’t an element of S. On
the other hand, if S is not an element of S, then it is an element of S. So if we can talk
about such “sets” as S then we have a contradiction. This is called Russell’s Paradox after
Bertrand Russell who realized that “naive set theory” was inconsistent at the opening of
the 20th century – and who helped put it on a firm foundation.

We can avoid the contradictions by settling on some fixed universe D and thinking of
“{v : ψ}” as really meaning “the set of all v such that v is in D and φ holds for v.”
But we will largely ignore D here, as will most of your CS professors who use set builder
notation.

It should be clear that {v : ψ} is a kind of “quantifier” in the sense that it introduces a bound
variable, v. The variable symbol after the open set brace (“{”) is a binding occurrence. Any
occurrences of v in ψ is a bound occurrence. The ψ in the set builder notation above is the
body.

216 A Little Logic

We extend our rules of inference so that we can do alpha-conversion on set builder notation
in exactly the analogous way we do alpha-conversion on other quantified formulas.

We also extend our rules of inference so that we can rewrite and use hypotheses inside the
body of a set builder expression, under the same rules regarding variables and capture.
Thus, if ψ ↔ ψ′ then {x : ψ} = {x : ψ′}.
The rules for instantiating free variables in {v : ψ} are analogous to instantiating free
variables in (∀v : ψ). One should rename v to avoid capture.

8.1.2 Roster Notation

There is a special case of this notation used to write down explicit finite set constants. In it,
you just write down the elements of the set, separated by commas and enclosed in set braces.
Thus, the notation {0, 1, 2, 3, 4} is the set containing just the five elements exhibited. This
is called roster notation because you are simply giving the roster of the elements in the set.

The order in which you list them is unimportant. We could have written this same set as
{0, 2, 4, 1, 3}, just like we could write 123 as +00123.

The notation {0, 1, 2, 3, 4} is shorthand for {x : (x = 0)∨(x = 1)∨(x = 2)∨(x = 3)∨(x = 4)}.
The set {0, 1, 2, 3, 4} is equal to the set {x : (natp x) ∧ x < 5}; both contain just the five
natural numbers below 5. We’ll be able to prove that.

Note: When typing roster notation for your homework, use the syntax “(set e1 e2 . . .)”
for “{e1, e2, . . .}”.

Sometimes people duplicate an element when using roster notation. Imagine you saw
{0, 0, 0, 0}. Despite appearances, that set has only one element, 0! Sets do not have dupli-
cations.

You might wonder why somebody would write a set in roster notation and duplicate ele-
ments. The reason is that they often use expressions to denote the values of the various
elements and some of those expressions may have the same value as others!

? ? ? (due Tue, Apr 27) • Question 321: Suppose j is understood to be a natural number

but that you don’t know which natural number it is. Is there a way that {j, j+j, j ∗j, j−j}
might contain only one element? If so, explain how. •
? ? ? (due Tue, Apr 27) • Question 322: Consider the set in roster notation shown in the

Question 321, page 216. Can it contain two elements? If so, explain how. •
? ? ? (due Tue, Apr 27) • Question 323: Consider the set in roster notation shown in the

Question 321, page 216. Can it contain three elements? If so, explain how. •
? ? ? (due Tue, Apr 27) • Question 324: Consider the set in roster notation shown in the

Question 321, page 216. Can it contain four elements? If so, explain how. •
• Question 325: Consider the set in roster notation shown in the Question 321, page 216.
Can it contain five elements? If so, explain how. •
Don’t be fooled! The number of expressions used in roster notation is not necessarily the
number of elements of the set!

217

8.1.3 The Empty Set

The empty set is the set containing no elements. In roster notation, we can write the empty
set as “{}”. The empty set is typically denoted by the symbol “∅” (“phi” pronounced “fi”
and rhymes with “hi”). It is sometimes written “φ”, “ϕ”, or “Φ”. We use “∅”. Thus,
∅ = {}.
Note: These five symbols are all different: ∅, φ, ϕ, Φ, 0. The first is the symbol for the
empty set, the second, third, and fourth are the Greek letter “phi” in both lower- and
uppercase, and the last is the digit zero (which is sometimes written with a slash through
it). To avoid confusion, I will not use the Greek letter “phi” and my zeros won’t be slashed.

• Question 326: Write the empty set in set builder notation. •
Students often confuse the empty set with the set containing the empty set. They are
different! That is, ∅ 6= {∅}.
The empty set contains 0 elements. The set containing the empty set contains 1 element.
So they’re different!

As a computer scientist you should have little trouble remembering that the empty set is
different from the set containing it. In ACL2, you know nil is different from (nil). In
Java you might have an empty Object of some Class and you know that an Object which
contains that empty Object is different from the empty Object. The empty set is an object,
a real thing. It can be in other sets. It is different from any set that contains something.

• Question 327: Which of these sets are the same:

1. ∅

2. {∅}

3. {x : (natp x) ∧ (x < 0)}

4. {∅, {∅}}

5. {∅, ∅}

6. {}

7. {∅, {}}

•

8.2 Set Operations (Apr 22)

The basic set operations are given informally below.

218 A Little Logic

name trad. notation ASCII infix description
member (e ∈ S) (e in S) e is an element of set S

not member (e /∈ S) (e !in S) e is not an element of set S

subset (R ⊆ S) (R subeq S) R is a subset of set S, i.e., every
element of R is in S too

equality (R = S) (R = S) R is the same set as S, i.e., they
have the same elements

union (R ∪ S) (R un S) the set containing all the ele-
ments of R together with all the
elements of S

intersection (R ∩ S) (R int S) the set containing just the ele-
ments that R and S have in com-
mon

difference (R \ S) (R minus S) the set obtained by removing
from R the elements of S

power set (℘ S) (pwr S) the set containing all the subsets
of S

Because union and intersection are associative (as we shall see), you may drop the paren-
theses around nests of unions or nests of interesection. For example, A ∪B ∪C is regarded
as an abbreviation for (A ∪ (B ∪ C)).

As usual, in your homeworks take great care to type properly parenthesized well-formed
formulas.

The following formal definitions of these concepts allow us to reduce most set theory con-
jectures to ordinary predicate calculus, which you already understand.

member (e ∈ {v : ψ})↔ (ψ/{v ← e})

not member (e /∈ S)↔ (¬(e ∈ S))

subset (R ⊆ S)↔ (∀v : (v ∈ R)→ (v ∈ S))

equality (R = S)↔ (∀v : (v ∈ R)↔ (v ∈ S))

union (R ∪ S) = {v : (v ∈ R) ∨ (v ∈ S)}

intersection (R ∩ S) = {v : (v ∈ R) ∧ (v ∈ S)}

difference (R \ S) = {v : (v ∈ R) ∧ (v /∈ S)}

power set (℘ S) = {v : v ⊆ S}
The first definition above is perhaps the most interesting. First, let’s just make sure you
understand the notation. The “ψ/{v ← e}” is the formula you get by replacing all the
free occurrences of v in ψ by e. So if ψ were “(natp x) ∧ (x < 5)” and e were j, then
“ψ/{v ← e}” would be “(natp j) ∧ (j < 5).” Thus, if you see

219

(j ∈ {x : (natp x) ∧ (x < 5)})

you could use the definition of member above to convert it to

(natp j) ∧ (j < 5).

Note that this eliminates all set theory notation.

The second definition, of “not member,” is just a simple abbreviation that trades “/∈” for a
negated “∈”. So if your goal is to get rid of set theory notation, this introduces a “¬” and
reduces your problem to getting rid of “∈”.

The definition of subset eliminates “⊆” and introduces a “∀”, an “→”, and two “∈” expres-
sions. So if you know how to get rid of “∈” you can get rid of “⊆”.

You should inspect the rest of the definitions and confirm the emerging pattern: if you can
get rid of “∈” you can get rid of all the set notation.

Also, you’ll note a close correspondence between the set notation and logic: In some sense,
“⊆” is just “→”, set equality is just “↔”, “∪” is “∨” and “∩” is “∧”.

To practice using the above definitions, answer these simple questions.

• Question 328: Fill in the blank to make this a theorem:

(e ∈ (A ∪ B))↔ ((e ∈ A) (e ∈ B)) •

• Question 329: Fill in the blank to make this a theorem:

(e ∈ (A ∩ B))↔ ((e ∈ A) (e ∈ B)) •

• Question 330: Fill in the blank to make this a theorem:

(e ∈ (A \B))↔ ((e ∈ A) (e ∈ B)) •

? ? ? (due Tue, Apr 27) • Question 331: Fill in the blank to make this a theorem:

(e ∈ (℘ A))↔ (e A) •

But the best way to get a feel for the duality here is just to prove some theorems! In the
questions below, let P and Q be Boolean functions of one argument. If an alleged “theorem”
is not a theorem, show a counterexample. I urge you to read all of these problems, even
those not assigned as homework, because they give you identities you will use frequently in
other proofs.

• Question 332: 5 ∈ {x : (natp x)} •
• Question 333: (A ∪ B) = (B ∪A) •
My Answer: I’ll prove this to illustrate the rules in action.

Proof:

(A ∪ B) = (B ∪ A)
↔ {def equality (above)}
(∀x : (x ∈ (A ∪B))↔ (x ∈ (B ∪ A)))
a {∀-Concl}
(x ∈ (A ∪ B))↔ (x ∈ (B ∪ A))

220 A Little Logic

↔ {union (above), twice}
x ∈ {v : (v ∈ A) ∨ (v ∈ B)} ↔ x ∈ {v : (v ∈ B) ∨ (v ∈ A)}
↔ {member (above), twice}
((x ∈ A) ∨ (x ∈ B))↔ ((x ∈ B) ∨ (x ∈ A))
↔ {Taut (Commutativity of Or)}
True
2

The combination of expanding an operation like union followed by the definition of member,
as when we used two steps above to go from (x ∈ (A ∪ B)) to ((x ∈ A) ∨ (x ∈ B)) is so
common we generally combine them. Also, it is frequently the case that after eliminating
the quantifiers it is easier to just manipulate one side until it is identical to the other. So I
might write the proof above as follows.

Proof:

(A ∪ B) = (B ∪ A)
↔ {def equality}
(∀x : (x ∈ (A ∪B))↔ (x ∈ (B ∪ A)))
a {∀-Concl}
(x ∈ (A ∪ B))↔ (x ∈ (B ∪ A))
{I will transform the left-hand side to the right-hand side.}
lhs
↔
(x ∈ (A ∪ B))
↔ {def union and member}
((x ∈ A) ∨ (x ∈ B))
↔ {Commutativity}
((x ∈ B) ∨ (x ∈ A))
↔ {def union and member}
(x ∈ (B ∪ A))
↔
rhs
2

• Question 334: (A ∩ B) = (B ∩A) •
• Question 335: (A ∪ (B ∪ C)) = ((A ∪ B) ∪ C) •
• Question 336: (A ∩ (B ∩ C)) = ((A ∩ B) ∩ C) •
? ? ? (due Tue, Apr 27) • Question 337: Provide a counterexample to this “identity.”

(A ∪ (B ∩ C)) = ((A ∩ B) ∪ (A ∩ C)) •
??? (due Tue, Apr 27) • Question 338: Fill in the five blanks below to make this a proof.

Just list the numbers 1–5 and write the contents of the corresponding blanks. Make sure
your syntax is correct!

Theorem:

(A ∪ (B ∩ C)) = ((A ∪ B) ∩ (A ∪ C))

Proof:
(A ∪ (B ∩ C)) = ((A ∪ B) ∩ (A ∪ C))

↔ { 1 }

221

(∀ e : (e ∈ (A ∪ (B ∩ C))) ↔ (e ∈ ((A ∪ B) ∩ (A ∪ C))))

a {∀-Concl}
(e ∈ (A ∪ (B ∩ C))) ↔ (e ∈ ((A ∪ B) ∩ (A ∪ C)))

{To prove this I will reduce the left-hand side to the right-hand side.}
lhs

↔
(e ∈ (A ∪ (B ∩ C)))

↔ {def union and member}
2

↔ {def intersection and member}
3

↔ {Distributivity}
((e ∈ A)∨(e ∈ B)) ∧ ((e ∈ A) ∨ (e ∈ C))

↔ { 4 (twice)}
(e ∈ (A ∪ B)) ∧ (e ∈ (A ∪ C))

↔ { 5 }
e ∈ ((A ∪ B) ∩ (A ∪ C))

↔
rhs

2 •

Note: The last two questions illustrate an easy mistake you can make when distributing
“∪” over “∩”.

• Question 339: Which one of the following is a theorem?

1. (A ∩ (B ∪ C)) = ((A ∪ B) ∩ (A ∪ C))
2. (A ∩ (B ∪ C)) = ((A ∩ B) ∪ (A ∩ C)) •

222 A Little Logic

• Question 340: ({x : (natp x) ∧ (x < 10)} ∩ {x : (natp x) ∧ (x > 10)}) = ∅ •
• Question 341: ((A \B) ∪ B) = A •
• Question 342: {x : x ∈ A} = A •
• Question 343: ({x : (P x)} ∪ {y : (Q y)}) = {z : (P z) ∨ (Q z)} •
• Question 344: ({x : (P x)} ∩ {y : (Q y)}) = {z : (P z) ∧ (Q z)} •
• Question 345: A ⊆ A •
• Question 346: ((A ⊆ B) ∧ (e ∈ A))→ (e ∈ B) •
• Question 347: (e ∈ (A ∪ B))↔ ((e ∈ A) ∨ (e ∈ B)) •
• Question 348: (e ∈ (A ∩ B))↔ ((e ∈ A) ∧ (e ∈ B)) •
• Question 349: (e ∈ (A \B))↔ ((e ∈ A) ∧ (e /∈ B)) •
• Question 350: ((A ⊆ B) ∧ (B ⊆ C))→ (A ⊆ C) •
• Question 351: (A = B)↔ ((A ⊆ B) ∧ (B ⊆ A)) •
• Question 352: (A ⊆ (℘ A)) •
• Question 353: (A ∈ (℘ A)) •
• Question 354: (A ∈ (℘ (A ∪ B))) •
? ? ? (due Tue, Apr 27) • Question 355: (℘ A) ⊆ (℘ (A ∪B)) •

• Question 356: (A ⊆ B)↔ ((℘ A) ⊆ (℘ B)). •

8.3 Extensions to Quantifier and Set Builder Notation (Apr 27)

There are several commonly used extensions of the notation we’ve introduced so far and
you will see them in many of your classes.

new notation ASCII translation
1. (∀x, y : ψ) (all (x y) ψ) (∀x : (∀y : ψ))

2. (∃x, y : ψ) (exists (x y) ψ) (∃x : (∃y : ψ))

3. (∀x ∈ S : ψ) (all x in S ψ) (∀x : (x ∈ S)→ ψ)

4. (∃x ∈ S : ψ) (exists x in S ψ) (∃x : (x ∈ S) ∧ ψ)

5. (∀x, y ∈ S : ψ) (all (x y) in S ψ) (∀x ∈ S : (∀y ∈ S : ψ))

6. (∃x, y ∈ S : ψ) (exists (x y) in S ψ) (∃x ∈ S : (∃y ∈ S : ψ))

7. {(f u) : ψ} (setof (f u) ψ) {x : (∃u : (ψ ∧ (x = (f u))))}

8. {(f u v) : ψ} (setof (f u v) ψ) {x : (∃u, v : (ψ ∧ (x = (f u v))))}

223

Forms 1 and 2 are meant to suggest the general schema: if you see a quantifier followed by
a list of variables, write the quantifier repeatedly in front of each variable.

• Question 357: Write the translation of (∃a, b, c : (a2 + b2) = c2). •
Forms 3 and 4 are probably the most confusing for new students. The two new notations
are very similar and one might expect that their translations would be the same except for
the quantifier. But their translations are different! Form 3 is read, “for all x in S, ψ holds”
and is translated as “for all x, if x is in S then ψ holds.” But form 4 is read, “there exists
an x in S such that ψ holds” and is translated “there exists an x such that x is in S and
ψ holds.” One might have thought the symmetry with 3 would make 4 translate as “there
exists an x such that if x is in S then ψ.” But if you think about it, that doesn’t mean
what is clearly meant by “there exists an x in S such that ψ holds.”

• Question 358: Let S be {1, 2, 3}. If it is possible, define psi so that (∃x ∈ S : (psi x))
is true but so that its “mis-translation” (∃x : (x ∈ S) → (psi x)) is false. If that is
impossible, prove that when the former is true, so is the latter. •
• Question 359: Let S be {1, 2, 3}. If it is possible, define psi so that (∃x ∈ S : (psi x))
is false but so that its “mis-translation” (∃x : (x ∈ S) → (psi x)) is true. If that is
impossible, prove that when the former is false, so is the latter. •
• Question 360: Given the familiar fact that (¬(∃x : (¬ψ))) is equivalent to (∀x : ψ),
you might expect that (¬(∃x ∈ S : (¬ψ))) is equivalent to (∀x ∈ S : ψ). Either exhibit a
counterexample by showing an S and ψ or a proof of their equivalence. •
Returning to our discussion of the various forms in the table above, consider forms 5 and 6.
They are meant to suggest the general schema that if you see a quantifier followed by a list
of variables “in S”, then write the quantifer in front of each variable and require that it be
“in S.”

• Question 361: Write the translation of (∀a, b, c ∈ N : (a2 + b2) = c2). •
Forms 7 and 8 are meant to suggest a general schema but before I explain it, let’s deal with
the simpler form 7 because many students have trouble with this one.

Let sq be the function that squares its input and let (evenp x) test whether its argument
is an even natural number. Then the set denoted by {(sq x) : (evenp x) ∧ (x < 10)} is
{4, 16, 36, 64}, since the even naturals below 10 are 2, 4, 6 and 8.

The translation of {(sq x) : (evenp x)∧ (x < 10)} is {z : ∃x : (evenp x)∧ (x < 10)∧ (z =
(sq x))}. That is, we construct the set of all z with the property that we can find (there
exists) an even x below 10 and z is (sq x).

Form 8 suggests that more than one variable can be involved in the expression producing
the elements of the set. The translation existentially quantifies over each of the variables
involved in the expression.

Most generally, {α : ψ}, where α is a non-variable term with free variables x1, x2, . . . , xn, is
translated to {z : ∃x1, x2, . . . , xn : (ψ ∧ (z = α))}, where z is a variable different from any
of the xi.

• Question 362: Let S be {1, 2, 3}. Write down in roster notation the set {(list x y) :
(x ∈ S) ∧ ((y = t) ∨ (y = nil))}, which we will also write as {〈x, y〉 : (x ∈ S) ∧ ((y =
t) ∨ (y = nil))}. See the next section for a discussion of pairs. •
• Question 363: Let S be {(A), (B C), (D E)} and R be the set {(1 2 3), (4 5 6)}.

224 A Little Logic

Write down in roster notation the set {(app (rev x) y) : (x ∈ S) ∧ (y ∈ R)}. •
• Question 364: Fill in the blank to make this a theorem:

(e ∈ {(f x) : ψ})↔ .

Hint: I want you to translate the new notation {(f x) : ψ} to the “old” set builder notation
and then apply the definition of member. •

8.4 Pair Notation (Apr 27)

Your CS professors will often write “〈x, y〉,” or (x, y) to denote the ordered pair whose left
component is x and whose right component is y. I will use (1 2) to denote the constant
ordered pair containing 1 and 2 as its two components. To build a pair I will use3

(defun pair (x y) (list x y)).

(defun pairp (x)

(and (true-listp x)

(equal (len x) 2)))

You may access the two components of one of these ordered pairs with the built-in functions
first and second. Thus,

(first (pair x y)) = x

(second (pair x y)) = y.

I will often use the bracket notation here so you get used to it. But you should understand it
as the object constructed by pair. This is another example of abstract syntax (e.g., “(pair
x y)”) versus concrete syntax (e.g., “〈x, y〉”).

You should understand that a key skill in mathematics and computer science is pattern
matching. If nothing else, this course is training you in pattern matching! Just as you
should automatically think “A ∨ B” when you see “(¬A) → B”, you should recognize the
basic truths of set theory no matter what notation you see them in.

One final note about ordered pairs in set theory. . . Amazingly, the ordered pair 〈x, y〉, where
x and y are sets, can itself be represented as a set, say c, such that you can define functions
like first and second that when applied to c produce x and y respectively. But we won’t
do that.

Fundamentally, sets are a much more powerful “data structure” than lists. Sets can represent
lists (via nested pairs) but lists cannot represent infinite sets. Most mathematics books start
with set theory because all of mathematics can be formalized in it.

I rejected using set theory as the foundation of this course because I wanted to introduce
logic in a computational setting.

3It is standard in Lisp to construct the ordered pair 〈x, y〉 with (cons x y), but because (cons 1 2)

constructs an object that prints with a dot, namely (1 . 2), I have avoided representing ordered pairs as
single conses.

225

8.5 Generalized Union and Intersection (Apr 27)

Suppose that S is a set of sets. Then
⋃
S is the union of all the sets in S. For example,

if S is {{1, 2, 3}, {A, B}, {"Hi", "there"}} then
⋃
S is {1, 2, 3, A, B, "Hi", "there"}. More

generally, if S is {S1, S2, . . . , Sn}, then
⋃
S is S1 ∪ S2 ∪ . . . ∪ Sn.

We define
⋂
S analogously, using intersection instead of union. Thus if S is {S1, S2, . . . , Sn},

then
⋂
S is S1 ∩ S2 ∩ . . . ∩ Sn.

Here is how we define these new operators on sets of sets:

(
⋃
S) = {x : (∃y ∈ S : x ∈ y)}

(
⋂
S) = {x : (∀y ∈ S : x ∈ y)}

However,
⋂ ∅ is undefined, much like division by 0 is undefined.

Note: When writing “
⋃

” and “
⋂

” in your ASCII homework, please use the names “big-un”
and “big-int” respectively.

• Question 365: Why is
⋂ ∅ undefined? What would it be if it were defined?

? ? ? (due Tue, Apr 27) • Question 366: Let S be

{{1, 2, 3, 4},
{1, 3, 4, 5},
{3, 4, 5, 7},
{3, 6, 9}}

Write down
⋃
S in roster notation. •

• Question 367: Let S be the set of sets shown in the last question. Write down
⋂
S in

roster notation. •
• Question 368: Suppose A is {A1, A2, A3}, where the Ai are sets. Fill in the blank so
that this is a theorem.

(e ∈ (
⋃
A))↔ ((e ∈ A1) (e ∈ A2) (e ∈ A3)) •

• Question 369: Suppose A is {A1, A2, A3}, where the Ai are sets. Fill in the blank so
that this is a theorem:

(e ∈ (
⋂
A))↔ ((e ∈ A1) (e ∈ A2) (e ∈ A3)) •

Here is an example proof about generalized union and the power set.

Theorem. P ⊆ (℘ (
⋃
P))

Proof. I will transform the formula to true.

P ⊆ (℘ (
⋃
P))

↔ {def ⊆}

(∀x : (x ∈ P)→ (x ∈ (℘ (
⋃
P))))

226 A Little Logic

a {∀-Concl}

(x ∈ P)→ (x ∈ (℘ (
⋃
P)))

↔ {def ℘ and ∈}

(x ∈ P)→ (x ⊆ (
⋃
P))

↔ {def ⊆}

(x ∈ P)→ (∀y : (y ∈ x)→ (y ∈ (
⋃
P)))

a {∀-Concl}

(x ∈ P)→ ((y ∈ x)→ (y ∈ (
⋃
P)))

↔ {promotion}

((x ∈ P) ∧ (y ∈ x))→ (y ∈ (
⋃
P))

↔ {def
⋃}

((x ∈ P) ∧ (y ∈ x))→ (y ∈ {e : (∃d : (d ∈ P) ∧ (e ∈ d))})

↔ {def ∈}

((x ∈ P) ∧ (y ∈ x))→ (∃d : (d ∈ P) ∧ (y ∈ d))

↔ {∃-Concl}

((x ∈ P) ∧ (y ∈ x))→ (((x ∈ P) ∧ (y ∈ x)) ∨ (∃d : (d ∈ P) ∧ (y ∈ d)))

↔ {Taut}

True
2

8.6 Cross Product (Apr 27)

The cross product of two sets A and B, written A×B, is the set of all ordered pairs 〈x, y〉
such that x is an element of A and y is an element of B.

We define:

(S ×R) = {(pair x y) : (x ∈ S) ∧ (y ∈ R)}.

Remember, you will most often see this written:

(S ×R) = {〈x, y〉 : (x ∈ S) ∧ (y ∈ R)}.

227

For example, let A be {Mon, Wed, Fri} and let B be {1, 2, 3, 4}. Then A×B is

{ ’(Mon 1), ’(Mon 2), ’(Mon 3), ’(Mon 4),
’(Wed 1), ’(Wed 2), ’(Wed 3), ’(Wed 4),
’(Fri 1), ’(Fri 2), ’(Fri 3), ’(Fri 4) }

Note: When writing “×” for cross-product in your ASCII homework, please use the symbol
cross either as an infix or prefix operator, e.g., “(A × B)” should be written either “(A
cross B)” or “(cross A B)”.

• Question 370: Write down (in elaborated set builder notation) the expression describing
the set of all pairs consisting of a natural number and its negation. Write down the same
set in standard builder notation.

• Question 371: Prove ((A×B)× C) = (A× (B × C)) or exhibit a counterexample. •
? ? ? (due Tue, Apr 27) • Question 372: Prove (A×B) = (B×A) or exhibit a counterex-

ample. •

8.7 Relations (Apr 29, May 4)

Informally, a “relation” is an association between objects. You are familiar with many
relations, e.g., “<”, “≤, and, of course, “=”. But until now you have probably thought of
a relation as some kind of symbol you wrote between two arithmetic quantities. But have
you ever thought of a relation as an object? By “object” here I mean as a mathematical
entity you could pass around, inspect, and manipulate.

Imagine the idea. Let R< be the object that is the less than relation on the natural numbers.
What could you do with it? The obvious thing would be to ask whether two items, x and
y are related by R<. This is called “applying” R< to x and y. The result is a truth value:
True if x is related to y by R< and False if they are not. For example, if we applied R< to
1 and 3, we would get True. If we applied R< to 3 and 1 we would get False. But if R<

is an object we could do other things with it. We could pass it around to functions. For
example, we could write a general-purpose sorting algorithm that takes two arguments, a
list of naturals and a relation, and sorts the list into the order specified by the relation. If
relations were objects we could write functions that manipulated them, for example that
combined two relations to get a new relation, etc.

There are many examples of relations besides the familiar arithmetical ones. For example,
a graph is a relation.

In the finite directed graph of Figure 8.1, the arrows from A to B, C, and D, indicate that
A is related to each of those nodes. Graphs are just examples of relations. Examples of
graphs abound in computer science. The most well known graph is the Internet, where each
host is connected by edges to neighboring hosts and messages are transferred from sender to
receiver by routing protocols that cause each message to hop from host to host. Of course,
the Internet is a graph or relation between millions of items (hosts).

We have shown how such graphs or relations can be represented formally as lists of pairs
(see page 208). Because lists have to be finite, such a representation of graphs would force
our graphs to have a finite number of nodes. Even the Internet has a finite number of hosts,
so mathematically lists would suffice to represent it.

But if we wanted to represent a relation on an infinite number of objects, we could not do it

228 A Little Logic

G

A B

C

D

E

F

Figure 8.1: A Finite Directed Graph

with lists. Sets do not have to be finite. Therefore, computer scientists and mathematicians
use sets rather than lists to formalize relations. The graph of Figure 8.1 could be formalized
as the set

{’(A B), ’(A C), ’(A D), ’(B A), ’(B G),

’(C D), ’(D A), ’(D E), ’(E D), ’(E G), ’(E F), ’(G F)}.

Each pair, (x y), in the relation indicates that its first, x, is related to its second, y.

An example of an infinite relation is, of course, “<”. Here are some of the pairs in the “<”
relation R<.

R< = {’(0 1), ’(0 2), ’(0 3), ’(0 4), . . .
’(1 2), ’(1 3), ’(1 4), . . .

’(2 3), ’(2 4), . . .
. . .
}

Of course, we don’t write infinite sets in roster notation! Instead, we use set builder notation:

R< = {〈x, y〉 : (natp x) ∧ (natp y) ∧ (x < y)}

You should recognize that the set builder notation above describes the infinite set alluded
to in the incomplete attempt to write R< in roster notation.

Of course, we can have infinite relations over things other than numbers. Here is the “same
len” relation over pure ACL2 objects, where P = {x : (pure-acl2-objectp x)}.

Rsamelen = {〈x, y〉 ∈ (P × P) : (len x) = (len y)}

In this relation, (A B C) is related to ((1) Monday 7) and also to (1 2 3 . 45) because
they all have the same len.

A relation is just a set of ordered pairs.

Relation(R)↔ (∀x ∈ R : (pairp x))

•Question 373: Let us say two things “overlap” if and only if they are sets with an element

229

in common. Define the overlap relation. •
R is a binary relation on set A iff R is a relation and a subset of the cross-product of A with
itself.

There are many notations to express the idea that x and y are in relation R. Among them
are

� (pair x y) ∈ R
� 〈x, y〉 ∈ R,

� (R x y),

� R(x, y),

� Rxy, and

� xRy.

The domain of a relation R, written dom(R), is the set of all the first components of the
pairs in R and the range, written ran(R), is the set of all the second components. For
example, for the relation

{’(0 ZERO), ’(1 POS), ’(2 POS), ’(-1 NEG), ’(-2 NEG)}

the domain is {-1, -2, 0, 1, 2} and the range is {NEG, ZERO, POS}. That is, x is in the domain
of relation R iff there is some y such that (pair x y) is in R. Symmetrically, y is in the
range of R iff there’s some x such that (pair x y) is in R. Put still another way, x is in
the domain of R if you can find a y such that xRy, and symmetrically for the range.

• Question 374: Define formally the concepts of dom and ran. You may assume R is a
relation. •
• Question 375: The converse of relation R is the relation you get by swapping each pair
in R. The converse of R is often written R−1. If R is the relation

{’(0 ZERO), ’(1 POS). ’(2 POS), ’(-1 NEG), ’(-2 NEG)}

then R−1 is

{’(ZERO 0), ’(POS 1). ’(POS 2), ’(NEG -1), ’(NEG -2)}

Define the converse formally. •
• Question 376: Let R be a relation with domain A and range B. Is R equal to A × B?
If not, show an R, A, and B, that are a counterexample. •
• Question 377: Let R be a relation with domain A and range B. What is the domain of
R−1? What is the range of R−1? •
• Question 378: Let R be a relation on A. Is the domain of R equal to A? If not, show
an R and A that are a counterexample. •
? ? ? (due Tue, May 4) • Question 379: Let R be a relation on A. Is the range of R equal

to A? If not, show an R and A that are a counterexample. •
Relations have many important properties. You should learn all of these! In the following,
we assume R is a relation on A.

230 A Little Logic

� R is reflexive (on A): (∀x ∈ A : (R x x))

� R irreflexive (on A) : (∀x ∈ A : (¬(R x x)))

� R is symmetric (on A): (∀x, y ∈ A : (R x y)→ (R y x))

� R is asymmetric (on A): (∀x, y ∈ A : (R x y)→ (¬(R y x)))

� R is antisymmetric (on A): (∀x, y ∈ A : ((R x y) ∧ (R y x))→ x = y)

� R is transitive (on A): (∀x, y, z ∈ A : ((R x y) ∧ (R y z))→ (R x z))

� R is total (or strongly connected) (on A): (∀x, y ∈ A : (R x y) ∨ (R y x))

� R is connected (on A): (∀x, y ∈ A : (R x y) ∨ (R y x) ∨ (x = y))

• Question 380: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
reflexive on A. •
• Question 381: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
irreflexive on A. •
• Question 382: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
symmetric on A. •
• Question 383: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
asymmetric on A. •
• Question 384: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
antisymmetric on A. •
• Question 385: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
transitive on A. •
• Question 386: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
strongly connected on A. •
• Question 387: Let A be {0, 1, 2}. Write down in roster notation a relation R that is
connected on A. •
? ? ? (due Tue, May 4) • Question 388: Let

R= = {〈x, y〉 : (x ∈ N) ∧ (y ∈ N) ∧ (x = y)}.
R 6= = {〈x, y〉 : (x ∈ N) ∧ (y ∈ N) ∧ (x 6= y)}.
R< = {〈x, y〉 : (x ∈ N) ∧ (y ∈ N) ∧ (x < y)}.
R≤ = {〈x, y〉 : (x ∈ N) ∧ (y ∈ N) ∧ (x ≤ y)}.

For each cell in the table below, either indicate that the given relation has the given property
on N, or provide a counterexample.

property R= R 6= R< R≤

reflexive
irreflexive
symmetric
asymmetric
antisymmetric
transitive
strongly conn.
connected

231

•
• Question 389: Prove that if a relation R on A is reflexive and connected then it is
strongly connected. •

8.8 Orders (Apr 29, May 4)

Suppose R is a relation on A.

Then R is a partial order on A iff R is reflexive on A, antisymmetric on A, and transitive
on A.

In the next few questions, we let C be the set {RED, BLUE, GREEN, GOLD}.
• Question 390: Write in roster notation a partial order on set C above. •
R is a total order (sometimes called a weak (or non-strict) simple order or linear order) on
A iff R is strongly connected on A, antisymmetric on A, and transitive on A.

Lexorder, i.e., the set { (pair x y) : (lexorder x y)}, is an example of a total order on
the set P of pure ACL2 objects. This follows from the following theorems about lexorder,
where P = {x : (pure-acl2-objectp x)}.

strongly connected:
(∀ x,y ∈ P : (lexorder x y) ∨ (lexorder y x))

antisymmetric:
(∀ x,y∈ P : ((lexorder x y) ∧ (lexorder y x)) → x=y)

transitive:
(∀ x,y,z∈ P : ((lexorder x y) ∧ (lexorder y z)) → (lexorder x z))

• Question 391: Write in roster notation a weak simple order on C above. •
• Question 392: Write in roster notation a partial order that is not a total order on C
above. •
? ? ? (due Tue, May 4) • Question 393: Prove that every total order is a partial order. •
R is a strong simple order on A iff R is connected on A, asymmetric on A, and transitive
on A.

• Question 394: Is a strong simple order a weak simple order? If so, prove it. If not, show
an example of a strong simple order that is not a weak simple order. •
? ? ? (due Tue, May 4) • Question 395: Let A be a set of sets. Is “⊆” a partial order on

A? If so, prove it. If not, show a counterexample. •
• Question 396: Name a weak simple order on the naturals. •
• Question 397: Name a strong simple order on the naturals. •

232 A Little Logic

8.9 Equivalence Relations (Apr 29, May 4)

R is an equivalence relation on A iff R is reflexive on A, symmetric on A, and transitive on
A.

Let P be the pure objects in the ACL2 universe, {x : (pure-acl2-objectp x)}.
• Question 398: Let Rsamelen be

Rsamelen = {〈x, y〉 ∈ (P × P) : (len x) = (len y)}.

Thus, for example, Rsamelen holds on ABC and nil (because they both have len 0) and on
(A B C) and (1 2 3) (because they both have len 3). Is Rsamelen an equivalence relation
on P? If so, prove it; if not, show a counterexample. •
• Question 399: Prove that {〈x, y〉 ∈ (P ×P) : (perm x y)} is an equivalence relation on
P . (You may assume the theorems of Section 5.3 have been proved over P .) •
If R is an equivalence relation on a set A and u ∈ A, then we define the equivalence class of
u under R to be [u]R, where:

[u]R = {x ∈ A : (Rxu)}.

Note: When typing this notation in your homeowrk, write “(eqclass u R)” for “[u]R”.

Often, when only one equivalence relation is being discussed, we drop the subscript R
specifying the equivalence relation.

• Question 400: Recall perm from Question 109, page 70. Perm is an equivalence relation
on P . What is [(1 2 3)]perm? •
By definition, every element of [u]R is equivalent (in the R sense) to u.

• Question 401: A “score sheet” is a relation between a finite set of names and natural
numbers from 0 to 100. If we represent a score sheet as a list, an example might be:

((Abigail 75)

(Anthony 72)

(Ava 98)

(Daniel 95)

(Emily 81)

(Emma 75)

(Ethan 89)

(Hannah 91)

(Jacob 99)

(Joshua 82)

(Madison 85)

(Matthew 70)

(Olivia 93)

(William 77)).

Let x be some student named in the score sheet and let n be the natural number related to
x. Letter grades are assigned according to scores as follows

233

90 ≤ n ≤ 100 A

80 ≤ n < 90 B

70 ≤ n < 80 C

60 ≤ n < 70 D

0 ≤ n < 60 F

Two students are considered “grade equivalent” if they have the same letter grade. What
grade does Olivia have? Define grade-eqv so that it takes two student names and a score
sheet and returns t or nil to indicate whether the two students are grade equivalent under
the score sheet. •
• Question 402: Following up on Question 401, page 232, prove that grade-eqv is an
equivalence relation on the set of students named in the grade sheet. (Formally, equivalence
relations take only two arguments but it is not unusual in practice to see extra arguments
as here. Figure out what it means for this function to be an “equivalence relation.”) Hint:
Prove that it is an equivalence relation on the set of all pure ACL2 objects. •
??? (due Tue, May 4) • Question 403: With respect to the grade sheet shown in Question

401, page 232 and the equivalence relation grade-eqv, what what is [Olivia]grade-eqv?

As you can see, we deal with equivalence classes all the time. As individuals, Emily and
Madison may be quite different, but there is a familiar sense in which they’re “the same”
and that is “they each have a B on the score sheet.” When employers look at transcripts
they effectively only see equivalence classes of students, i.e., all the students who made the
same grade a treated equivalently. (That is why employers often want letters of reference,
to distinguish otherwise indistiguishable individuals.)

8.10 Uniqueness Notation (May 6)

How do you write a set theory formula that formalizes the idea “there is exactly one x such
that (p x)”?

This is such a common utterance that there is a special notation for it: (∃!x : (p x)).

The formal version of this utterance is:

(∃! x :(p x)) ↔ ((∃ x : (p x)) ∧ (∀ x,y : ((p x) ∧ (p y)) → x = y)).

That is, (∃!x : (p x)) means there is an x with property p and if both x and y have property
p, then they’re the same.

8.11 Partitions (May 6)

Two sets are disjoint if their intersection is empty. Thus, {1, 2, 3} is disjoint from {4, 5} but
not from {2, 4, 6}.
Note: Many people characterize disjointness informally by saying “the two sets have no
intersection.” This is sloppy. Any two sets have an intersection! Sets are disjoint when
their intersection is empty. This is like saying of a baseball game “There’s no score yet.”
That’s wrong. Of course there’s a score! They just mean “the score is 0 to 0.”

A “partition” of a set A is a set that shows how to divide the elements of A into dis-

234 A Little Logic

joint subsets. For example, one partition of the set {0, 1, 2, 3, 4, 5, 6} is the set P =
{{0, 2, 5}, {1, 4, 6}, {3}}. No cell in the partition P is empty, the union of all the cells is
A, and no element of A is in two cells.

P is a partition of A, denoted (Partition P A) iff

(∅ /∈ P)
∧
((

⋃
P) = A)

∧
(∀a, b ∈ P : ((a ∩ b) 6= ∅)→ (a = b)).

This is an incredibly succinct definition – and is typical of the use of set theory in computer
science.

• Question 404: Write one or more English sentences explaining how each conjunct in the
formal definition of “partition” formalizes part of the informal definition given above. That
is, explain how the mathematical notation captures the informal ideas. •
• Question 405: Formalize and prove: if P is a partition of A and a ∈ P then a ⊆ A •
• Question 406: Is {{1, 2, 3}} a partition of {1, 2, 3}? •
• Question 407: Write down three different partitions of the set {1, 2, 3}.
•Question 408: Define the ACL2 function all-partitions so that if given a duplication-
free list representing a finite set x it returns a list representing the set of all partitions of x.
For example, (all-partitions ’(1 2 3)) should return something like:

(((3 2 1))

((3 2) (1))

((3) (2 1))

((3 1) (2))

((3) (2) (1))).

I say “something like” because I want you to treat the elements like sets. For example, this
is an equally valid answer:

(((1 2 3))

((1) (2 3))

((1 2) (3))

((1 3) (2))

((1) (2) (3))).

If we had true sets in ACL2, we’d say

(all-partitions ’{1,2,3}) =⇒
{{{3, 2, 1}}
{{3, 2} {1}}
{{3} {2, 1}}
{{3, 1} {2}}
{{3} {2} {1}}}

and there would only be one correct answer. This is a good exercise in list programming. •

235

8.12 The Characterization Theorem for Equivalence Relations (May
6)

An equivalence relation R on a set A generates (or induces) a partition of A: just clump
together all the elements that are equivalent under R.

• Question 409: Recall the equivalence relation perm from Question 109, page 70. Let A
be the set

{’(a b),

’(a b c),

’(a b d),

’(b a),

’(b c a),

’(b d a),

’(b a c),

’(d a b),

’(b a d)}.

Since perm is an equivalence relation on all ACL2 objects, it is an equivalence relation on
A. Write down a partition A induced by perm. •
If R is an equivalence relation on A, then (EC R A), the equivalence classes induced by R
on A, is defined as (EC R A) = {[c]R : c ∈ A}.
In this section, we assume R is an equivalence relation on A.

We make several observations about the equivalence classes induced by R on A. First, note
that if A is non-empty, then (EC R A) is non-empty because there is at least one element,
c ∈ A, and thus [c]R ∈ (EC R A). Now let a ∈ (EC R A). Our second observation is that
a is non-empty, because a = [c]R, for some c and [c]R is non-empty because R is reflexive.
Third, a ⊆ A, because every element of [c]R is an element of A. Fourth, (∃x ∈ A : a = [x]R).

Theorem: The (EC R A) is a partition of A (provided R is an equivalence relation on A).

Proof: We must establish three things.

(1) ∅ /∈ (EC R A). This follows from our second observation.

(2) (
⋃

(EC R A)) = A. We prove this by proving that each side is a subset of the other.

(2.1) (
⋃

(EC R A)) ⊆ A is easy since each element of (EC R A) is a subset of A by our third
observation.

(2.2) A ⊆ (
⋃

(EC R A)) is proved by showing that if (e ∈ A) then (e ∈ (
⋃

(EC R A))). The
latter is equivalent to (∃c : (c ∈ (EC R A))∧(e ∈ c)). To prove that such a c exists, consider
[e]R.

(3) (∀a, b ∈ (EC R A) : ((a ∩ b) 6= ∅) → (a = b)). So let a ∈ (EC R A) and b ∈ (EC R A)
and, since (a ∩ b) 6= ∅, suppose e is an element in both a and b. We must show a = b. We
do it by showing that if d ∈ a then d ∈ b; the symmetric case is analogous.

By our fourth observation, a = [u]R and b = [v]R, where u, v ∈ A. Since d ∈ a, (R u d).
Since e ∈ a and e ∈ b, (R u e) and (R v e). Thus, (R v d) by the symmetry and transitivity
of R. But (R v d) implies d ∈ b.

2

Thus, we see that the equivalence classes induced by R on A is a partition of A. Every

236 A Little Logic

equivalence relation induces a partition.

• Question 410: Formally state and prove our first observation about (EC R A).

• Question 411: Formally state and prove our second observation about (EC R A).

• Question 412: Formally state and prove our third observation about (EC R A).

• Question 413: Formally state and prove our fourth observation about (EC R A).

• Question 414: Give a more careful symbolic proof of step (1) of the Theorem above.
You may use the formal statements derived in Questions 410–413 as lemmas.

• Question 415: Give a more careful symbolic proof of step (2) of the Theorem above.
You may use the formal statements derived in Questions 410–413 as lemmas.

• Question 416: Give a more careful symbolic proof of step (3) of the Theorem above.
You may use the formal statements derived in Questions 410–413 as lemmas.

It turns out that every partition generates an equivalence relation, but we do not prove that
here.

8.13 Functions (May 6)

We have been dealing with functions since the beginning of the semester. We speak of

(defun len (x)

(if (endp x)

0

(+ 1 (len (rest x)))))

as defining a function, which we call len. But what is len? What sort of mathematical
object is len?

A similar question was answered implicitly when we spoke of < being a relation. In set
theory, the “less than” relation on the naturals is the set of ordered pairs {〈x, y〉 : (x ∈
N) ∧ (y ∈ N) ∧ (< x y)}.
In the same sense, the function len on the pure ACL2 objects P is {〈x, y〉 : (x ∈ P) ∧ (y =
(len x))}.
That is, a function is a set of ordered pairs and in each pair the second component is the
value of the function on the first component.4

• Question 417: The set f = {〈1, 2〉, 〈2, 3〉, 〈3, 0〉} is a function. What is f(1)? What is
f(3)? •
In the question above, the function f is not defined on 4. That is, 4 is not in the “domain” of
the function. ACL2 functions are interesting because they are defined on all ACL2 objects.
For example, you can’t introduce an ACL2 function that is not defined on 4.

But not all sets are functions. Not even all sets of ordered pairs are functions. Could

4To permit the representation of functions of more than one argument a more general scheme must be
adopted in which the first component of each pair in a function is actually a list of all the arguments. Thus,
for example, a typical pair in the set representation of the function + is 〈(3 5), 8〉. But we are going to
keep things simple by working only with functions of one argument represented as sets

237

f = {〈1, 2〉, 〈1, 3〉, 〈3, 0〉} be a function? No! The reason is that f is not uniquely defined on
1. Functions are “deterministic” in the sense that their output is dependent only on their
input and they return exactly the same thing every time they’re called on a given input.

A set f is a function, written Function(f), is defined to mean:

(Functionf)↔ (Relationf) ∧ (∀x, u, w : ((〈x, u〉 ∈ f) ∧ (〈x, w〉 ∈ f))→ (u = w)).

• Question 418: Is f = {〈t, nil〉, 〈nil, t〉} a function? If not, explain why. •
• Question 419: Is f = ∅ a function? If not, explain why. •
• Question 420: Is f = {〈1, t〉, 〈1, nil〉} a function? If not, explain why. •
A function f on A is the identity function (on A) if (∀x ∈ A : f(x) = x).

• Question 421: Write in set notation the identity function on N. •
Recall that we defined domain and range, dom and ran, for relations. Since functions are
relations, the concepts of domain and range apply to functions as well.

• Question 422: What is (dom f) where f is the function

{〈x, y〉 : (x ∈ N) ∧ (y = (* 2 x))}?

•
• Question 423: What is (f 123) where f is the function above? •
• Question 424: What is (ran f) where f is the function above? •
It is convenient to introduce the following notation.

(f : A→ B)↔ ((Function f) ∧ ((dom f) = A) ∧ ((ran f) ⊆ B)).

We read “(f : A→ B)” as “f maps A to B.”

• Question 425: Suppose (f : N→ N). Is (ran f) = N? •
The “→” symbol is thus used with two different meanings. We use it for logical implication
and we use it to denote maps. Sometimes “(f : A→ B)” is called a signature for f because
it tells us what f “expects” as input and what it delivers as output.

If f is a function, then (f x) is the y such that 〈x, y〉 ∈ f . If x is not in the domain of f
then (f x) is not defined.

If f is a function and B ⊆ (dom f) then we define the image of f on B,

(Img f B) = {y : (∃x ∈ B : (y = f(x)))}.

We define f is onto B to mean

(onto f B)↔ ((Function f) ∧ ((ran f) = B)).

We define f to be 1:1 (pronounced “one-to-one” or sometimes just “one one”) as

(1 : 1 f)↔ ((Function f) ∧ (∀x, y, z : (((〈x, y〉 ∈ f) ∧ (〈z, y〉 ∈ f))→ (x = z)))).

238 A Little Logic

Recall the definition of the converse, R−1 of a relation R, obtained by swapping the first
and second components of the pairs in the relation.

Theorem If f is a function, then f−1 is a function iff f is 1:1.

Proof: Assume f is a function.

(1 : 1 f)
↔ { by definition of 1:1}
(∀x, y, z : (((〈y, x〉 ∈ f) ∧ (〈z, x〉 ∈ f))→ (y = z)))
↔ { by definition of f−1}
(∀x, y, z : (((〈x, y〉 ∈ f−1) ∧ (〈x, z〉 ∈ f−1))→ (y = z)))
↔ { by definition of Function}
(Function f−1)
2

If f and g are functions and (ran g) ⊆ (dom f), then the composition of f and g is defined:

f ◦ g = {〈x, y〉 : (x ∈ dom(g)) ∧ (y = (f (g x)))}.

Note: There is some confusion about how “f ◦ g” is read. Some people say “f composed
with g” while others say “g composed with f .” I won’t use either of those readings; I’ll just
say “f circle g.” Just remember how f ◦ g is defined and when other people use the word
“compose” make sure you know which way they mean it.

If f and g are functions and (ran g) ⊆ (dom f), then

1. (Function (f ◦ g)), i.e., (f ◦ g) is a function

2. (dom (f ◦ g)) = (dom g)

3. (x ∈ (dom g))→ ((f ◦ g) x) = (f (g x))

4. (ran (f ◦ g)) ⊆ (ran f).

Note that function composition is not usually commutative.

• Question 426: Define functions f and g such that (f ◦ g) 6= (g ◦ f). •
However, under certain circumstances, composition is associative.

Theorem If f , g, and h are functions and (ran g) ⊆ (dom f) and (ran h) ⊆ (dom g), then
(f ◦ (g ◦ h)) = ((f ◦ g) ◦ h).
Proof:

Both sides are functions with the same domain as f . We simply show that for all x in
(dom f), applying the two functions yield the same thing:

((f ◦ (g ◦ h)) x)
=
(f ((g ◦ h) x))
=
(f (g (h x)))
=
((f ◦ g) (h x))
=

239

(((f ◦ g) ◦ h) x).
2

The “proof” above is really just a sketch. To complete it we have to make sure that
(ran (g ◦ h)) ⊆ (dom f) and (ran h) ⊆ (dom (f ◦ g)). But both follow immediately from
our hypotheses and obvious facts about composition.

2

• Question 427: Give proofs of the two facts mentioned at the end of the proof above. •
Theorem. If f is a function and 1:1, then (f−1 ◦ f) is the identity function on (dom f).

Proof:

Assume f is a 1:1 function. Thus, f−1 is a function.

Then (f−1 ◦ f) is, by the definition of composition,

{〈x, y〉 : (x ∈ (dom f)) ∧ (y = (f−1 (f x)))}

which is a function whose domain is (dom f). Suppose x ∈ (dom f). Then 〈x, f(x)〉 ∈ f .
Hence, by definition of converse, 〈(f x), x〉 ∈ f−1. Thus, (f−1 (f x)) = x. Thus, (f−1 ◦f) =
{〈x, y〉 : (x ∈ (dom f)) ∧ (y = x)}, which is the identity function on (dom f).

2

Suppose that f : A→ B. Then h is an inverse of f iff

(h : (Img f A)→ A) ∧ (∀x ∈ A : ((h ◦ f) x) = x).

Theorem. If the function f is not 1:1, it has no inverse.

Proof:

Suppose that f is a function that is not 1:1. Thus, there exists x and y, both in (dom f)
such that x 6= y and (f x) = (f y). Suppose there is a function g that is the inverse of f .
Then (g (f x)) = (g (f y)). But then x = y. Contradiction.

2

Theorem. If g is an inverse of f , then g is f−1.

Proof: By definition, both f−1 and g are functions with domain equal to the range of f .
Suppose that x ∈ (dom f). To show that f−1 = g it is sufficient to prove that the functions
f−1 and g agree on (f x). We know that 〈(f x), x〉 ∈ f−1, since 〈x, (f x)〉 ∈ f . Suppose
that 〈(f x), y〉 ∈ g and x 6= y. But then (g (f x)) = y 6= x, which contradicts the hypothesis
that g is an inverse of f . Hence, g and f−1 are everywhere equal, and hence are identical.

2

8.14 Cardinality (May 6)

The cardinality |A| of a finite set, A, is the number of elements in it.

Thus, |{2, 4, 6}| = 3.

• Question 428: What is |{x ∈ N : (evenp x) ∧ x < 17}|? •

240 A Little Logic

Infinite sets have cardinalities too, but those cardinalities are not natural numbers and we
do not discuss them here.

A

A Potted History of Logic in CS

In other sciences and engineering, the predominant mathematical systems are either statis-
tics or differential equations. Statistics is most often used to describe systems whose behavior
are subject to a lot of randomness or are so complex that we cannot describe them determin-
istically, e.g., voter behavior, the treatment outcomes for experimental cancer drugs, and
quantum events. Differential equations are most often used with systems whose behavior is
mechanical and continuous, e.g., physical motion, forces, wave behavior, etc.

But those mathematical systems are often unsuitable for computer science. The artifacts
we study are digital. They behave exactly as we have programmed them to behave –
following utterly precise mechanical rules. But they are discrete, not continuous. In one
state a variable is 23 and in the next it is 17 with no intermediate state where it is 19.5.
Symbolic logic is perfect for reasoning about discrete systems that transition from state to
state following fixed rules.

But there is another reason symbolic logic is so critical to computing. Computing finds
applications everywhere, from games to new business paradigms, from medical diagnosis
and rural health care delivery to nuclear weapons, from personal music players to climate
modeling. How can one mathematical system be “predominant” across such a wide range
of applications?

The answer is because symbolic logic is mankind’s attempt to explain mathematically how
we think. If some precisely defined concept has some property and you can rationally explain
why it has that property, then you can use symbolic logic to prove it.

But if you can explain why the property holds, why use mathematical logic? It turns out
that very often our “rational explanations” are only partly accurate! Often we forget about
special cases or just slip up. Those kinds of bugs in our thinking very often turn into bugs
in our programs or our designs. Symbolic logic lets us write things down with formulas and
manipulate the formulas – it let’s us put our thoughts in writing and gives us rules for going
from one conclusion to the next.

In some deep sense, anything that is really precise can be said in logic. So the language is
much richer than anything you’ve seen in algebra, trig, or calculus. Logic also gives you a
fixed set of rules you can use to transform one formula into another – and these rules come
with an amazing warranty: if you reduce one formula to another with these rules and only
use valid axioms, then every deduction you make will be valid.

The origins of logic go back thousands of years to the ancient Greeks. Socrates, Euclid.
and Aristotle all played important roles in codifying how we think. Almost 2000 years after
them, Leibnitz (17th century) tried to reduce all of human thought to a kind of calculus
with which he hoped to be able to derive fundamental logical and even ethical truths. He
even imagined a computing machine that would implement his logic. In the 19th century
Boole, Frege, Peano, and Russell began to lay the foundations of modern logic, formalizing
in a nearly algebraic way the logic of propositions (“if p and q, then r”), quantifiers (“for all

242 A Little Logic

x, there is a y such that . . .”), integers and induction (how to prove something is true for
all the integers), and the explorations of the power of the formalisms. Finally, in the 20th
century, Hilbert, Herbrand, Godel, Church, Turing, and von Neumann developed logic into
its modern form as the theoretical foundation of all mathematical thinking.

In the course of these many centuries of development, the goals of research into mathematical
logic changed. One reason for the change was that the calculus of Newton and Leibnitz
gave physical scientists a powerful mathematical tool to explain the natural world. This
decreased the need for a logical calculus. Another reason was that in the 19th and 20th

centuries, logicians began to accept that trying to discover ethical or emotional “truths” by
mathematical reasoning was farfetched – at best a radical simplification of how the human
mind works. People are not rational.

But by then they had also realized that the very questions “what is truth?” and “how can
we know something is true?” were very deep and could be explored with mathematical
reasoning by studying formal logical systems. Thus, the goals morphed from providing a
systematic way to discover truth into models of how truth is established. Logicians tailored
logic so that logic is “easy” to study and powerful enough (theoretically) to prove anything
that can be proved. Logicians then investigated the expressive limits of such logical systems.
This led to some of the most profound discoveries in our history, the most famous being that
of Gödel who showed there are mathematical truths that cannot be proved and Turing who
showed there are computational questions that cannot be answered by computer programs.

A side-effect of this transformation of the goals of logic was that logic – as studied by
logicians – is practically impossible to actually use to establish truth! This affected how
logic was taught and how textbooks about it were often written.

The history of science is full of seemingly amazing coincidences and one of them is the
connection between logic and computation. The goals of logic shifted in part because the
natural world didn’t need it – calculus was the mathematics to explain falling objects,
flying objects, steam engines, space travel, and virtually every machine men and women
could build. But the very people who explored the limitations of logic as a means of finding
truth, including Turing and von Neumann, were simultaneously creating a new kind of
machine – a machine whose operation could could only be described and understood by
using mathematical logic.

Computer hardware and software operate according to fixed rules. The very aspects of logic
that made it unsuitable for modeling ethical truths and falling objects – its insistence that
something is either black or white, true or false, with no imprecision or vague half-truths –
make it perfect for modeling computation. And as our machines and software increased in
complexity, logic became virtually the only tool available to analyze how they behave.

These observations make mathematical logic the mathematics for computer science. If you
want to understand computer science, you have to understand logic in the same way that if
you want to understand physics you must understand calculus.

B

On Congruences

An equivalence relation (see page 232) is any relation that is reflexive, symmetric, and
transitive. The most basic equivalence relation is equality, formalized by equal or “=”.
But there are many others.

Iff is an equivalence relation. It is reflexive, symmetric, and transitive. To use an equiv-
alence other than equality to replace “equivalents by equivalents” one needs “congruence
lemmas”. To illustrate them, consider iff.

If the term α at address π admits propositional replacement in γ as defined on page 87,
and γ′ is the result of replacing that occurrence of α in γ by a propositional equivalent β,
then it is possible to derive the propositional equivalence or sometimes even the equality of
γ and γ′ by chaining together the following congruence lemmas.

1. (implies (iff a b) (equal (if a x y) (if b x y)))

2. (implies (iff a b) (iff (if x a y) (if x b y)))

3. (implies (iff a b) (iff (if x y a) (if x y b)))

4. (implies (iff a b) (equal (not a) (not b)))

5. (implies (iff a b) (equal (and a p) (and b p)))

6. (implies (iff a b) (iff (and p a) (and p b)))

7. (implies (iff a b) (iff (or a p) (or b p)))

8. (implies (iff a b) (iff (or p a) (or p b)))

9. (implies (iff a b) (equal (implies a p) (implies b p)))

10. (implies (iff a b) (equal (implies p a) (implies p b)))

11. (implies (iff a b) (equal (iff a p) (iff b p)))

12. (implies (iff a b) (equal (iff p a) (iff p b)))

All these congruences have the hypothesis (iff a b) and all then tell us that we can replace
a by b in certain positions of certain functions and preserve either equality (congruences 1,
4, 5, and 9–12) or just propositional equivalence (congruences 2, 3, and 6–8). By chaining
these rules together and using the reflexivity, symmetry, and transitivity of iff you can
justify replacement of propositional equivalents by propositional equivalents at any address
admitting propositional replacement, no matter how deeply it occurs in the larger term.

In general, a congruence lemma is of the form:

(eqv1 a b) → (eqv2 (f . . . a . . .) (f . . . b . . .)),

where eqv1 and eqv2 are equivalence relations. It tells us that two calls of f return “equiv-
alent” results (in the eqv2 sense of “equivalence”) if one replaces a given argument, a, by

244 A Little Logic

any “equivalent” value b (in the eqv1 sense of “equivalence”).

Often, eqv1 and eqv2 are the same, as they are in congruence 2 above. But sometimes they
are different, as in congruence 1.

Once you have proved that a relation is an equivalence relation and you have proved the
congruence theorems stating that that sense of equivalence holds between two terms, you can
use the relation just like you would an equality – provided you confine yourself to addresses
that “admit” that equivalence. The congruence lemmas tell you where those addresses are.

Another oft-used equivalence relation is the notion of one list being a permutation of another,
formalized by our perm (page 70). But let’s write “(perm x y)” in a way that suggests it
is a kind of “equivalence,” say “x ' y”. First, “'” is an equivalence relation: it is reflexive,
symmetric, and transitive.

Now suppose we’re trying to simplify a term like:

(mem e (rev (isort d)))

to something that is propositionally equivalent. Suppose we’ve proved these facts about
perm (aka “'”)

perm-mem-congruence:

(a ' b) → ((mem e a) ↔ (mem e b))

perm-rev-congruence:

(a'b) → ((rev a)'(rev b))

perm-isort:

(isort x) ' x

perm-rev:

(rev x) ' x

The first congruence lemma, perm-mem-congruence, tells us that while simplifying (mem e

(rev (isort d))) to maintain propositional equivalence we can rewrite its second argu-
ment maintaining '. So when we rewrite the interior (rev (isort d)) we will maintain '.
But the second congruence lemma tells us that if we rewrite a (rev (isort d)) maintain-
ing ', we can replace its argument by something that is '. So when we rewrite the interior
(isort d) maintaining ', we can use the third lemma, perm-isort, as a replacement rule:
(isort d) ' d. So we rewrite (rev (isort d)) to (rev d), knowing they are '. But
the fourth lemma, perm-rev, says we can rewrite that (maintaining ') to d. In summary,
exploiting the transitivity of ' and the four rules above, we can simplify

(mem e (rev (isort d)))

to (mem e d) while maintaining propositional equivalence.

C

On Entailment

You will sometimes see people write logical formulas connected by the signs “`” or “|=”.
We briefly discuss this notation.

The notation

` β

means that β can be proved in whatever logical system or theory the author is talking about.
We have been writing this

Theorem: β.

More generally,

(α1, . . . , αk) ` β (C.1)

means that β can be proved from the axioms αi.

Sometimes it is more convenient to write it “backwards” as in

β a (α1, . . . , αk) (C.2)

as when we “reduce” the proof of β to a proof of α and write “β a α”.

Sometimes the author is dealing with some particular logical theory containing some previ-
ously given axioms A and in such a setting (C.1) really means

(A, α1, . . . , αk) ` β

That is, β can be proved from the “usual axioms” A plus the αi. Some authors will write
this as

(α1, . . . , αk) `A β

Most of the time, authors are only dealing with one theory which is understood and the A
is just omitted entirely. That is what we’ll do henceforth.

If the αi are closed formulas then (C.1) is equivalent to

` (α1 ∧ . . . ∧ αk)→ β. (C.3)

246 A Little Logic

The equivalence of (C.1) and (C.3) for closed αi means that if you want to prove (α1 ∧
. . . ∧ αk) → β you can assume the αi as though they were axioms and then derive β. You
can move closed αi back and forth across the “`” sign, making them axioms on the left or
hypotheses on the right. But this is so only if the αi in your goal theorem are closed.

Because ACL2 lacks explicit quantifiers, the αi in our conjectures are never closed (unless
they have no variables at all). But you might someday find yourself trying to prove a formula
like

((∀x, y, z : α1) ∧ α2)→ β

where the free variables of α1 are x, y, and z. In this case, you can just assume (∀x, y, z : α1)
as an axiom and try to prove

α2 → β

If α1 is an ACL2 formula, then

(defaxiom name α1)

has the same effect as assuming the axiom (∀x, y, z : α1). That is, while proving α2 → β
you are free to use arbitrary instances of α1.

You will also sometimes see people write:

(α1, . . . , αk) |= β (C.4)

This is different. It means that any model that makes all of the αi true makes β true. Again,
you can move closed αi back and forth across the “|=” sign, making them hypotheses on the
right.

In a complete logical theory, everything that is valid can be proved, so “|=” and “`” are
equivalent.

But Gödel showed that sufficiently rich theories are necessarily incomplete: not every truth
can be proved. ACL2 is such a theory. Indeed, any first-order theory of the natural numbers
(including induction) with addition and multiplication is incomplete!

So there are valid formulas that cannot be proved. So knowing that β is true in all the
models satisfying the αi (as (C.4) says) does not necessarily mean that you can prove β
from the αi (as (C.1) says).

D

ASCII Substitutes

Type your homework in plain ASCII.

Follow the guidelines for pretty printing on page 27.

Spell out Greek letters. Do not use any of the names of Greek letters or the special infix
symbols below as variable symbols. For example, do not use “alpha”, “in”, or “cross” as
variable symbols.

Below are all the ASCII substitutions mentioned in the text.

x =⇒ c x ==> c evaluates to

x = y x = y

x 6= y x != y

(p ∧ q) (p && q)

(p ∨ q) (p || q)

(¬p) (∼ p)

(p→ q) (p --> q)

(p↔ q) (p <--> q)

(x× y) (x * y) arithmetic multiplication

(x× y) (x cross y) cross-product

(x ≤ y) (x <= y)

(x ≥ y) (x >= y)

v ← y v <-- y substitution binding

248 A Little Logic

(∀v : ψ) (all v ψ)

(∀v1, v2 . . . : ψ) (all (v1 v2 . . .) ψ)

(∀v1, v2 . . . ∈ S : ψ) (all (v1 v2 . . .) in S ψ)

(∃v : ψ) (exists v ψ)

(∃v1, v2 . . . : ψ) (exists (v1 v2 . . .) ψ)

(∃v1, v2 . . . ∈ S : ψ) (exists (v1 v2 . . .) in S ψ)

ψ a φ ψ --! φ

(p← q) (p <-- q) reverse implication

{x : ψ} (setof x ψ)

{(f v1 v2 . . .) : ψ} (setof (f v1 v2 . . .) ψ)

{e1, e2, . . .} (set e1 e2 . . .)

(e ∈ S) (e in S)

(e /∈ S) (e !in S)

(R ⊆ S) (R subeq S)

(R ∪ S) (R un S)

(R ∩ S) (R int S)

(R \ S) (R minus S)

(℘ S) (pwr S) power set

(
⋃
S) (big-un S)

(
⋂
S) (big-int S)

Bibliography

1. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An Approach. Kluwer
Academic Press, Boston, MA., 2000.

2. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Ma., 1967.

3. R. R. Stoll. Set Theory and Logic. Dover Publications, New York, 1963.

4. A. N. Whitehead and B. Russell. Principia Mathematica (Vol 1–3). Cambridge University Press,
1910. (See also http://name.umdl.umich.edu/AAT3201.0001.001).

Index

Underlined words are the names of links in the online documentation. From the ACL2 home page,
http://www.cs.utexas.edu/users/moore/acl2, select the link to the User’s Manual and then the
link to the Index of all documented topics.

⇒ (logical implication), 107
≡ (logical equivalence), 107
∃, 174
∀, 169
∧, 107
↔, 107
→, 107
¬, 107
∨, 107
∼ (logical negation), 107
⊃ (logical implication), 107
*, 43
+, 43
-, 43
/, 43
<, 43
¡=, 50
= (equality), 107
¿, 50
¿=, 50
! (logical negation), 107
* (logical and), 107
--> (logical implication), 107
- (logical negation), 107
<--> (logical equivalence), 107
==> (logical implication), 107
&& (logical and), 107
& (logical and), 107
|| (logical or), 107
| (logical or), 107
1:1, 237

ABORTING from raw Lisp, 29, 176
abstract syntax, 106
accumulator, 56
actual expressions, 8
actual values, 8
actuals, 8
add-to-each, 70
addition, 43
address (of an occurrence), 88
admits propositional replacement, 89

all-all, 206
all-and, 203
all-and-1, 203
all-and-2, 203
all-not, 205
all-or-2, 205
all-partitions, 234
alternative-true-listp, 157
and, 44
antecedent, 45
antisymmetric, 230
app, 65
app-rev-nil, 162
app-right-id, 159
application, 4
apply, a substutition, 99
arity, 5
ASCII substitutes, 247
assoc-of-app, 158
asymmetric, 230
atom, 30

base case, 152
binary relation on set, 229
binding occurrence, 176, 215
binding, in a substitution, 99
body (of defined function), 8
body (of quantified expression), 170
body (of set builder expression), 215
boolean-ids, 96
booleanp, 44
bound occurrence, 176, 215
bound variable, 176
bound variable list, 176
bound variable of quantifier, 170

call, 4
capture, 178
case sensitive, 12
Cases Rule, 117
casting, 51
cell, of partition, 234

251

252 A Little Logic

closed formula, 176
closure, universal, 176
complete logical system, 246
composition, 238
Computation (Comp) Rule, 118
conclusion, 45
concrete syntax, 106
conditional rewrite, 116
congruence, 243
conjoining (a list of terms), 101
conjunct, 44
conjunction, 44
conjunction (of a list of terms), 101
conjuncts list, 100
connected, 230
connectors, propositional, 44
cons, 43
consequent, 45
consp, 43
Constant (Const) Rule, 117
constant function, 52
contrapositive (of an implication), 46
converse (of an implication), 46
converse of relation, 229
copying the hypothesis, 181
corollary, 115
counterexample, 141
countermodel, 141
cross product, 226

del*, 65
del1, 64
destination of edge, 208
diff, 67
difference, of lists, 67
disjoint sets, 233
disjunct, 45
disjunction, 45
disjuncts list, 101
division, 43
domain, 69
domain of relation, 229
domain, of a substitution, 99
domain, of table, 68
doubletp, 47

edge of graph, 208
entailment, 245
environment, 6
equal, 43
equivalence class, 232
equivalence classes induced, 235
equivalence of factored formula, 104
equivalence relation, 232
equivalence, propositional, 46
equivalent, propositionally, 87

exclusive or, 46
exist-and-1, 204
existential quantifier, 174
exists-all-1, 207
exists-exists, 206
exists-not, 205
exists-or, 205
exists-or-1, 205
exists-or-2, 205
expression, 11

factor, 102
false branch, 9
findpos, 69
finite directed graph, 208
finite path, 208
first, 43
fn-q31, 22
fn-q33, 22
fn-q35, 22
fn-q36, 23
fn-q37, 23
formals, 8
formula, 11
formula, propositional, 44
free occurrence, 176
free variable, 176
function, 3, 4, 237
function symbol, 4
functional programming, 4
functions, propositional, 44

hit, by substitution, 99
homework, due Tue 01-26, 4, 18, 19, 21, 22
homework, due Tue 02-02, 33, 41, 46–48
homework, due Tue 02-09, 65, 66, 70, 71
homework, due Tue 02-23, 80, 89, 94, 96
homework, due Tue 03-02, 100, 104, 106, 112
homework, due Tue 03-09, 120, 123, 124,

135, 139
homework, due Tue 03-16, 143, 145, 146, 148
homework, due Tue 03-30, 158–161
homework, due Tue 04-13, 176, 177, 180,

182, 184
homework, due Tue 04-20, 203, 205, 208
homework, due Tue 04-27, 215, 216, 219,

220, 222, 225, 227
homework, due Tue 05-04, 229–231, 233
how-many, 66
hypothesis, 45
Hypothesis (for Quantified Formulas)

(qHyp) Rule, 186
Hypothesis (Hyp) Rule, 116

identical, 87
identity, 84, 237

Index 253

if, 43
if-distrib, 142
if-if, 142
if-split, 142
iff, 44
image, 69
image of function on set, 237
image, via table, 68
implication, 45
implies, 44
implies-all, 206
in the scope of a quantifier, 177
in-tablep, 68
indistinguishable, propositionally, 46
inducing a partition, 235
induction step, 152
insert, 71
instantiate, 99
instantiating, 13
instantiating qwff, 186
int, 67
integerp, 43
intersection, of lists, 67
invalid, 141
inverse, 239
invocation, 4
irreflexive, 230
isort, 71
isort-id, 162
isort-isort, 162

justification, 7

lemma, 115
len, 53
less than relation, 43
linear order, 231
Lisp, 3
listcopy-id, 157
logical negation, 45
lookup, 68

make-table, 69
map, 68
mapnil-app, 159
mapnil-rev, 159
matrix, of quantified expression, 170
meaning, 170
mem, 58
mem-app, 160
mini-steps of rewrite, 77, 92
model, 141
multiplication, 43
mutual-recursion, 52

natp, 43

natural number, 8
negation, 45, 101
negation, pointwise, 101
nfix, 51
no-dups, 65
node of graph, 208
non-strict simple order, 231
not, 44
not-all, 205
not-exists, 205
nth, 62

one-to-one, 237
onto, 237
operators, logical, 44
or, 44
ordp, 71
ordp-insert, 162
ordp-isort, 162

pair, 224
pairp, 224
parameters, formal, 8
partial order on, 231
partition, 234
pattern of factored formula, 104
perm, 70
perm-app1, 164
perm-app2, 164
perm-cons, 164
perm-isort, 164
perm-reflexive, 162
perm-rev, 164
perm-rev-id, 164
perm-symmetric, 162
perm-transitive, 163
pointwise negation, 101
predicate, 11
prefix syntax, 4
pretty printing, 27, 108
proof, 115
propositional equivalence, 44, 46, 87
propositional formula, 44
propositional functions, 44
propositional simplification, 138
pure ACL2 objects, 214

quantifiers, 169
quod erat demonstrandum, 129

range, 69
range of relation, 229
range, of a substitution, 99
recognizer, 10
recursive, 14
refactoring, 104

254 A Little Logic

reflexive, 230
relation, 228
relieving hypotheses, 116
relieving the hypotheses, 116
rem-dups, 66
replacement of factored formula, 104
replacing (an occurrence), 89
rest, 43
rest-nest around, 151
rest-nest substitution, 152
rev, 66
rev-app, 160
rev-rev, 160
rev1-rev, 161
rev1-rev-general, 161
reversed turnstyle, 175
Rewrite (for Quantified Formulas) (qRe)

Rule, 186
Rewrite (Re) Rule, 116
right-associate, 71
roster notation for set, 216
rule of inference, 115

same-elements, 67
sentence, 176
set builder notation, 215
set comprehension, 215
set theory, 213
signature, 237
simple path, 209
singleton list, 46
source of edge, 208
spine, 32, 33
stringp, 43
strong simple order, 231
strongly connected, 230
structural induction, 151
subeq, 66
subset relation on lists, 66
substitution, 99
subtraction, 43
symbolp, 43
symmetric, 230

table, n-column, 68
tablep, 68
tail-recursive, 160
Taut Rule, 115
tautologies, 118
tautology, 96, 97
tautp, 97
term, 5
test, of if, 9
textlikep, 47
theorem, 115
Thm Rule, 115
total, 230
total order, 231
transitive, 230
true branch, 9
true list, 34, 57
true-listp, 34, 57
true-listp-rev, 161
truth table, 119
truth values, 111
Turing complete, 26
turnstyle, 185
typed language, 43

uaf, 23
union, of lists, 67
universal closure, 176
universal quantifier, 169
universe, 170
unn, 67
untyped language, 43
used propositionally, 87

valid, 75
vertex of graph, 208

weak simple order, 231

xor, 46

zp, 50

