
CS313K: Logic, Sets, and
Functions

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

Lecture 9 – Chap 3 (3.4 – 3.8)

1



Homework Clarification

On Question 130 you’re asked to “list the

addresses,” where the addresses are things like π1,

π2, π3, etc. Just list the indices of the addresses,

e.g., 1, 2, 3, etc.

2



On Implication

(defun implies (p q)

(if p

(if q t nil)

t))

versus

(defun implies (p q)

(if p

(if q t nil)

nil))

3



Let’s prove “x = 3 implies that x + 2 = 5.”

First, is it even true? What if x is 7? What if x is

-23?

4



We’ll formalize it as:

(implies (equal x 3)

(equal (+ x 2) 5))

Is it true for all x? Is it true when x is 7? -23?

5



(implies (equal x 3) (equal (+ x 2) 5))

(defun implies (p q)

(if p

(if q t nil)

t))

versus

(defun implies (p q)

(if p

(if q t nil)

nil))

6



Proof

(implies (equal x 3)

(equal (+ x 2) 5))

{hyp}

(implies (equal x 3)

(equal (+ 3 2) 5))

{computation}

(implies (equal x 3)

t)

Why can we “prove” an implication by assuming

the hypothesis is true?

7



Proof

(implies (equal x 3)

(equal (+ x 2) 5))

{hyp}

(implies (equal x 3)

(equal (+ 3 2) 5))

{computation}

(implies (equal x 3)

t)

Why can we “prove” an implication by assuming

the hypothesis is true? Because the implication is T

if the hypothesis is false!

8



About “Addresses”

In the book I talk about the address of an

occurrence of one term in another. For example, I

might talk about π being the address of the 3rd A in

(if (zp a) 1 (* a (fact (- a 1))))

Some of you want me to tell you what an address is.

I don’t want to, because we don’t really care. We

just need to have a way to talk about occurrences.

9



(if (zp a) 1 (* a (fact (- a 1))))

0123456789012345678901234567890123456789

10 20 30

But I could say “an address is the string index of

the first character of the occurrence” If I said that,

the 3rd a above would have address 27.

But I could, instead, say “an address is (α n),

where α is a term and n is a number” meaning the

nth occurrence of the term α.

10



There are many other ways I could define address.

But how I define address doesn’t matter, as long we

all understand that they identify an particular

occurrence of a term.

11



About Propositional Occurrences

(IF x y z) – x is used propositionally but whether

y and z are being used propositionally depends on

the context.

In (IF (IF x y z) 1 2), y and z are being used

propositionally.

In (+ (IF x y z) 0), y and z they are not.

12



The Propositional Functions

The arguments to AND, OR, NOT, IMPLIES, and IFF

are all used propositionally if the term itself is used

propositionally.

So all the variables in

(IMPLIES (AND p q) (OR s (NOT r)))

are being used propositionally.

I will never use these functions in non-propositional

13



ways. I.e., I won’t write (+ (AND p q) 3) even

though it is legal.

14



About Maintaining Equivalence

IFF

(implies (and (natp e)

(mem e x))

(natp (if (and (f e) (g x))

(h (f x))

x)))

15



About Maintaining Equivalence

IFF IFF

(implies (and (natp e)

(mem e x))

IFF

(natp (if (and (f e) (g x))

(h (f x))

x)))

16



About Maintaining Equivalence

IFF IFF IFF

(implies (and (natp e)

IFF

(mem e x))

IFF

(natp (if (and (f e) (g x))

(h (f x))

x)))

17



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF

(mem e x))

IFF

(natp (if (and (f e) (g x))

(h (f x))

x)))

18



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF

(natp (if (and (f e) (g x))

(h (f x))

x)))

19



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF EQ

(natp (if (and (f e) (g x))

(h (f x))

x)))

20



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF EQ IFF

(natp (if (and (f e) (g x))

EQ

(h (f x))

EQ

x)))

21



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF EQ IFF IFF IFF

(natp (if (and (f e) (g x))

EQ

(h (f x))

EQ

x)))

22



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF EQ IFF IFFEQ IFFEQ

(natp (if (and (f e) (g x))

EQ EQ EQ

(h (f x))

EQ

x)))

23



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF

(and (if (and (f e) (g x))

(h (f x))

x)

. . .))

24



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF IFF

(and (if (and (f e) (g x))

(h (f x))

x)

. . .))

25



About Maintaining Equivalence

IFF IFF IFF EQ

(implies (and (natp e)

IFF EQ EQ

(mem e x))

IFF IFF IFF

(and (if (and (f e) (g x))

IFF

(h (f x))

IFF

x)

. . .))

26


