CS313K: Logic, Sets, and
Functions

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Lecture 19 — Chaps 6, 7 (7.1, 7.2, 7.3)

Announcement

The course speeds up.

Elementary Arithmetic Waiver: We'll assume
without proof any truth of ACL2 arithmetic. E.g.,

(natp(i) A natp(j) A natp(k)) — #F = @ x g

Today we will move on quantifiers (V and 3) and
then Set Theory.

But before we start on Chapter 7, | want to give an
Important mini-lecture on the more general

treatment of induction.

Induction may be the most important proof
technique you ever learn.

The treatment we've see so far is a Very Special
Case.

Quiz 19.0 (30 seconds) Press A.

Induction on x to Prove (¢ x y)

Base:
(endp x) — (@ x y).

Induction Step:

((—(endp x))

A

(¢ (rest x) aq)
A

(¢ (rest x) ao)
L)

—

(¢ x v)

Why is (¢ '(a b c) 43) true?

B: (endp x) — (¢ x y)
I: ((=(endp x)) A (¢ (rest x) (a xy))) — (¢ xy)

(¢ 0O (a ’(c) (a (b c) (o ’(a b c) 43)))){by B}

— {by I}
(¢ ’(c) (aa’(M c) (o ’(abc) 43)))

— {by I}
(¢ (b c) (a ’(abc) 43))

— {by I}
(¢ ’(a b c) 43)
O

Key ldea: A finite chain of |I's down to B.

Why is (¢ '(a b c) 43) true?

B: (endp x) — (¢ x y)
I: ((=(endp x)) A (¢ (rest x) (a xy))) — (¢ x V)

(¢ >0 (a ’(c) (@’ c) (a ’(a b c) 43)))){by B}

— {by I}
(¢ ’(c) (a’(M c) (o ’(abc) 43)))

— {by I}
(¢ (b c) (a ’(a b c) 43))

— {by I}
(¢p "(a b c) 43)
[]

Key ldea: A finite chain of |I's down to B.

Why is (¢ '(a b c) 43) true?

B: (endp x) — (¢ x y)
I: ((=(endp x)) A (¢ (rest x) (a xy))) — (¢ x V)

(¢ >0 (a ’(c) (@’ c) (a ’(a b c) 43)))){by B}

— {by I}
(¢ "(c) (a ’(c) (a ’(a b c) 43)))

— {by I}
(¢ (b c) (a ’(a b c) 43))

— {by I}
(¢ ’(a b c) 43)
O

Key ldea: A finite chain of |I's down to B.

Why is (¢ '(a b c) 43) true?

B: (endp x) — (¢ x y)
I: ((=(endp x)) A (¢ (rest x) (a xy))) — (¢ x V)

(¢ O (a ’(c) (a (b c) (o ’(a b c) 43)))){by B}

— {by I}
(¢ "(c) (a’(M c) (o ’(abc) 43)))

— {by I}
(¢ (b c) (a ’(abc) 43))

— {by I}
(¢ ’(a b c) 43)
O

Key ldea: A finite chain of |I's down to B.

Why is (¢ '(a b c) 43) true?

B: (endp x) — (¢ x vy)
I: ((—=(endp x)) A (¢ (rest x) (. xy))) — (¢ x V)

(¢ 0O (a ’(c) (@ (b c) (o ’(a b c) 43)))){by B}
— {by I}
(¢ (c) (a’(Mc) (o ’(abc) 43)))

— {by I}
(¢ (b c) (a ’(a b c) 43))

— {by I}
(¢ ’(a b c) 43)
O

Key ldea: A finite chain of |I's down to B.

10

Well-Foundedness

A relation, <, is well-founded (on some domain) if
there are no infinitely descending chains of objects
(in that domain).

That is, this can't go on forever:
. =T33 < Ty < T1 <X

This is equivalent to: every non-empty subset of the
domain has a minimal element.

11

Example: Less Than “<”

This can't go on forever if all the x; are natural
numbers:

LT3 < T <1 < X
So < is well-founded on the naturals.

(There are many interesting well-founded relations
on things besides natural numbers, but we won't
discuss them. We'll always use < on the naturals
for <.)

12

Measures

We say m is a measure if it is a function that
returns an element of a well-founded domain.

Example: len is a measure. It returns a natural
number.

Example: cons—-count is a measure. It returns a
natural number.

13

Well-Foundedness and Recursion

Suppose < is well-founded and you have a measure
m for its domain. Suppose you have a recursive
definition:

(defun f (vi vy ... v,)
(if 6
Cooo (f v1v2 o0 0y) gy

(f V1 Uy ... U’n)/ak)
...no recursive calls...))

14

For Example

(defun revl (x a)
(if (endp x)
a
(revl (rest x) (cons (first x) a))))

15

For Example

(defun revl (x a)
(if 6
(revl x a) 4,

a))

where

0 = (— (endp x))

o1 = {x < (rest x),a « (cons (first x) a)}

16

Well-Foundedness and Recursion

(defun f (vy vy ... v,)
(if 6
((f V1 Uy ... Un)/gl

(f vive ... V) p,)
...no recursive calls...))
Suppose it is a theorem that:
00— (m v1ve ...)), < (M VIV ... V),

then f always terminates.

17

(defun revl (x a)
(if (endp x)

y
(revl (rest x) (cons (first x) a))))

Llet (m x a) = (cons-count x).
o1 = { x«< (rest x), a <« (cons (first x) a)}.
Theorem?
(- (endp x))
R

(m x a) /4,
<
(m x a)

18

(defun revl (x a)
(if (endp x)

y
(revl (rest x) (cons (first x) a))))

Let (m x a) = (cons-count x).
o1 = { x« (rest x), a «— (cons (first x) a)}.
Theorem?
(= (endp x))
.
(m (rest x) (cons (first x) a))
<

(m x a)

19

(defun revl (x a)
(if (endp x)

y
(revl (rest x) (cons (first x) a))))

Let (m x a) = (cons-count x).
o1 = { x+ (rest x), a « (cons (first x) a)}.
Theorem:
(= (endp x))
N

(cons-count (rest x))

<
(cons-count x)

So rev1 terminates.

20

(defun treecopy (x)
(if (consp x)
(cons (treecopy (first x))
(treecopy (rest x)))

X))

Llet (m x) = (cons-count x)

Theorems:
(consp x) — (m (first x)) < (m x)

(consp x) — (m (rest x)) < (m x)

So treecopy terminates.

21

(defun up (x a)
(if (and (natp x) (natp a) (K x a))
(up (+ 1 x) a)
a))

Llet (m x a) = |]a — x|

Theorem:
((natp a) A (natp x) A (K x a))

—

(m (+ 1 x) a)
<
(m x a)

So up terminates.

22

(defun gsort (x) ; Quick Sort
(if (endp x)
nil
(if (endp (rest x))
X

(app
(gsort (all-smaller (first x) (rest x)))

(cons (first x)
(gsort (all-others (first x) (rest x))).

where (all-smaller e z) is the list of all
elements of z that are smaller than e and
(all-others e z) is the list of all the other
elements.

23

(defun gsort (x) ; Quick Sort
(if (endp x)
nil
(if (endp (rest x))
X
(app
(gsort (all-smaller (first x) (rest x)))
(cons (first x)
(gsort (all-others (first x) (rest x))).

Let (m x) = (len x)

Theorems:
((—(endp x)) A (—(endp (rest x))))

—

(m (all-smaller (first x) (rest x))) < (m x)

24

(defun gsort (x) ; Quick Sort
(if (endp x)
nil
(if (endp (rest x))
X
(app
(gsort (all-smaller (first x) (rest x)))
(cons (first x)
(gsort (all-others (first x) (rest x))).

Let (m x) = (len x)

Theorems:
((—(endp x)) A (—(endp (rest x))))

—

(m (all-smaller (first x) (rest x))) < (m x)

25

(defun gsort (x) ; Quick Sort
(if (endp x)
nil
(if (endp (rest x))
X
(app
(gsort (all-smaller (first x) (rest x)))
(cons (first x)
(gsort

Let (m x) = (len x)

Theorems:
((—(endp x)) A (—(endp (rest x))))

—

(m) < (m x)

26

(defun gsort (x) ; Quick Sort
(if (endp x)
nil
(if (endp (rest x))
X

(app
(gsort (all-smaller (first x) (rest x)))

(cons (first x)
(gsort (all-others (first x) (rest x))).

Let (m x) = (len x)

Theorems:

So gsort terminates.

27

Well-Foundedness and Recursion

(defun f (v vy ... v,)
(if 6
((f V1 Uy ... Un)/gl

(f viva ...) g,)
...no recursive calls...))
Suppose it is a theorem that:
00— (m vivy ... vy, < (M V3V ... V),

then f always terminates.

28

Well-Foundedness and Induction
Suppose we have a set of substitutions o; such that

00— (m vive ... Vp)sp, < (m vy v ... V)

29

Well-Foundedness and Induction
Suppose we have a set of substitutions o; such that
00— (m vyve ... Vs, < (m vy v ... V)

then to prove ¢ prove:

Base:

Induction Step:
ONP)g Ao i Ny,) — @

30

(defun gsort (x) ; Quick Sort
(if (endp x)
nil
(if (endp (rest x))
X
(app
(gsort (all-smaller (first x) (rest x)))
(cons (first x)
(gsort (all-others (first x) (rest x)).

31

Note that

(a) Given (m x) = (len x)

(b) 8 = ((—(endp x)) A (—(endp (rest x))))
(c) 01 = {x « (all-smaller e (rest x))}
(d) 09 = {x «+ (all-others e (rest x))}

(e) Theorems: 0 — (m x),,, < (m x),i=1,2

32

Then a legal induction to prove (ordp (gsort x))
IS:

Base Case:
(—0) — (ordp (gsort x)).

Induction Step:

(0

A (ordp (gsort (all-smaller (first x) (rest x))))
A (ordp (gsort (all-others (first x) (rest x))))

)

—

(ordp (gsort x)).

33

Theorem: (ordp (gsort x))
If x has fewer than 2 things in it, it's obvious.

Otherwise, let e be the first element of x and let
(a1 as...) and (by; by...) be the values of the two
recursive calls of gsort.

By induction, (a; as...) and (b; by...) are
ordered. But a; < e and e < b;.

Obviously, (a; ay... e by by...) is ordered. O

34

Key Lemmas

(gsort x) returns a list with the same elements in
It as x.

all elements of (all-smaller e x) are smaller
than e.

all elements of (all-others e x) are not smaller
than e.

if A and B are ordered and everything in A is less
than everything in B, then (app A B) Is ordered.

35

Summary

When proving ¢ by induction you may assume ¢ for
arbitrary smaller objects. You get to make up what
“smaller” means, but it must be well-founded.

You will see many informal inductive proofs in CS.

36

