
Mechanized Operational

Semantics

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 2: An Operational Semantics)

1



M1

An M1 state consists of:

• program counter (pc)

• local variables (locals)

• push down stack (stack)

• program to run (program)

2



PUSH 23 ⇐ pc

LOAD 1

ADD

STORE 1

...

0 [17 12]

pc locals stack program

3



PUSH 23

LOAD 1 ⇐ pc

ADD

STORE 1

...

1 [17 12] 23

pc locals stack program

4



PUSH 23

LOAD 1

ADD ⇐ pc

STORE 1

12 ...

2 [17 12] 23

pc locals stack program

5



PUSH 23

LOAD 1

ADD

STORE 1 ⇐ pc

...

3 [17 12] 35

pc locals stack program

6



PUSH 23

LOAD 1

ADD

STORE 1

... ⇐ pc

4 [17 35]

pc locals stack program

7



PUSH 23

LOAD 1

ADD

STORE 1

...

4 [17 35]

pc locals stack program

If locals[1] is the variable a, then this is the

compiled code for “a = 23+a;”

8



Consider g

(defun g (n a)

(if (zp n)

a

(g (- n 1) (* n a))))

9



The M1 Program

We use locals[0] to hold n and locals[1] to

hold a.

(defconst *g*

’((PUSH 1)

(STORE 1) ; a := 1

...))

10



; loop

(LOAD 0)

(IFLE 10) ; if n<=0 go end

(LOAD 0)

(LOAD 1)

(MUL)

(STORE 1) ; a := n*a

...

11



(LOAD 0)

(PUSH 1)

(SUB)

(STORE 0) ; n := n-1

(GOTO -10) ; go loop

; end

(LOAD 1)

(RETURN)))

12



The Plan

Formalize M1 states and other basic

utilities

Formalize the semantics of each instruction

Formalize the “fetch-execute” cycle

13



Formalizing M1

(defun make-state (pc locals stack program)

(cons pc

(cons locals

(cons stack

(cons program

nil)))))

14



Formalizing M1

(defun make-state (pc locals stack program)

(list pc locals stack program))

15



Formalizing M1

(defun make-state (pc locals stack program)

(list pc locals stack program))

(defun pc (s) (nth 0 s))

(defun locals (s) (nth 1 s))

(defun stack (s) (nth 2 s))

(defun program (s) (nth 3 s))

16



(defun opcode (inst) (car inst))

(defun arg1 (inst) (nth 1 inst))

(defun arg2 (inst) (nth 2 inst))

(opcode ’(PUSH 23)) ⇒ PUSH

(arg1 ’(PUSH 23)) ⇒ 23

17



(defun push (x stk) (cons x stk))

(defun top (stk) (car stk))

(defun pop (stk) (cdr stk))

(push 3 ’(2 1)) ⇒ (3 2 1)

(top ’(3 2 1)) ⇒ 3

(pop ’(3 2 1)) ⇒ (2 1)

18



Aside We might:

(defthm top-push

(equal (top (push e stk)) e))

(defthm pop-push

(equal (pop (push e stk)) stk))

(in-theory (disable top pop push))

to hide the representation of stacks.

19



(defun do-inst (inst s)

(if (equal (opcode inst) ’PUSH)

(execute-PUSH inst s)

(if (equal (opcode inst) ’LOAD)

(execute-LOAD inst s)

(if (equal (opcode inst) ’STORE)

(execute-STORE inst s)

(if (equal (opcode inst) ’ADD)

(execute-ADD inst s)

...

20



(defun execute-PUSH (inst s)

(make-state (+ 1 (pc s))

(locals s)

(push (arg1 inst) (stack s))

(program s)))

21



(defun execute-LOAD (inst s)

(make-state (+ 1 (pc s))

(locals s)

(push (nth (arg1 inst)

(locals s))

(stack s))

(program s)))

22



(defun execute-STORE (inst s)

(make-state (+ 1 (pc s))

(update-nth (arg1 inst)

(top (stack s))

(locals s))

(pop (stack s))

(program s)))

23



(defun update-nth (n v x)

(if (zp n)

(cons v (cdr x))

(cons (car x)

(update-nth (- n 1) v (cdr x)))))

(update-nth 1 35 ’(17 12)) ⇒ (17 35)

24



(defun execute-MUL (inst s)

(make-state (+ 1 (pc s))

(locals s)

(push (* (top (pop (stack s)))

(top (stack s)))

(pop (pop (stack s))))

(program s)))

25



(defun execute-GOTO (inst s)

(make-state (+ (arg1 inst) (pc s))

(locals s)

(stack s)

(program s)))

26



(defun execute-IFLE (inst s)

(make-state (if (<= (top (stack s)) 0)

(+ (arg1 inst) (pc s))

(+ 1 (pc s)))

(locals s)

(pop (stack s))

(program s)))

27



(defun do-inst (inst s)

(if (equal (opcode inst) ’PUSH)

(execute-PUSH inst s)

(if (equal (opcode inst) ’LOAD)

(execute-LOAD inst s)

(if (equal (opcode inst) ’STORE)

(execute-STORE inst s)

(if (equal (opcode inst) ’ADD)

(execute-ADD inst s)

...

28



Aside: HOL

If we had a higher order logic:

• instruction: state → state

• do-inst: apply

29



(defun do-inst (inst s)

(if (equal (opcode inst) ’PUSH)

(execute-PUSH inst s)

(if (equal (opcode inst) ’LOAD)

(execute-LOAD inst s)

(if (equal (opcode inst) ’STORE)

(execute-STORE inst s)

(if (equal (opcode inst) ’ADD)

(execute-ADD inst s)

...

30



(defun next-inst (s)

(nth (pc s) (program s)))

(defun step (s)

(do-inst (next-inst s) s))

31



(defun run (sched s)

(if (endp sched)

s

(run (cdr sched) (step s))))

Sched is a “schedule” telling us how many

steps to take.

Only its length matters.

32



Aside

In more sophisticated models, sched is a

list of “thread identifiers” and tells us

which thread to step next.

33



(defun run (sched s)

(if (endp sched)

s

(run (cdr sched)

(step s))))

34



(defun run (sched s)

(if (endp sched)

s

(run (cdr sched)

(step (car sched) s))))

35



Terminating Computations

When is a state halted?

36



(defun haltedp (s)

(equal s (step s)))

37



Recall Program g

(defconst *g*

’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

...))

38



How long does it take to run g?

Let’s construct a schedule for g.

More precisely, let’s write a function that

takes g’s input n and returns a schedule to

run g on n.

39



’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

(PUSH 1) ; 9

(SUB) ; 10

(STORE 0) ; 11 n := n-1

(GOTO -10) ; 12 go loop

(LOAD 1) ; 13 end

(RETURN))) ; 14 return a

40



’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

(PUSH 1) ; 9

(SUB) ; 10

(STORE 0) ; 11 n := n-1

(GOTO -10) ; 12 go loop

(LOAD 1) ; 13 end

(RETURN))) ; 14 return a

41



’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

(PUSH 1) ; 9

(SUB) ; 10

(STORE 0) ; 11 n := n-1

(GOTO -10) ; 12 go loop

(LOAD 1) ; 13 end

(RETURN))) ; 14 return a

42



’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

(PUSH 1) ; 9

(SUB) ; 10

(STORE 0) ; 11 n := n-1

(GOTO -10) ; 12 go loop

(LOAD 1) ; 13 end

(RETURN))) ; 14 return a

43



A Schedule for g

(defun g-sched (n)

(append (repeat 0 2)

(g-sched-loop n)))

(defun g-sched-loop (n)

(if (zp n)

(repeat 0 4)

(append (repeat 0 11)

(g-sched-loop (- n 1)))))

44



Running g

(defun run-g (n)

(top

(stack

(run (g-sched n)

(make-state 0 (list n 0) nil *g*)))))

(run-g 5) ⇒ 120

45



Demo 1

46



M1 inherits a lot of power from ACL2.

We’re executing about 360,000

instructions/sec on this laptop.

But how does M1 compare to the JVM?

47



ILOAD

Operation

Load int from local variable

Format (2 bytes)

ILOAD index

Form

21 (0x15)

Operand Stack

... ⇒ ..., value

48



Description

The index is an unsigned byte that

must be an index into the local variable

array of the current frame. The local

variable at index must contain an int.

The value of the local variable at index

is pushed onto the operand stack.

49



ILOAD

Operation

Load int from local variable

Format (2 bytes)

ILOAD index

Form

21 (0x15)

Operand Stack

... ⇒ ..., value
50



ILOAD typed!

Operation

Load int from local variable

Format (2 bytes)

ILOAD index

Form

21 (0x15)

Operand Stack

... ⇒ ..., value
51



ILOAD

Operation 32-bit arithmetic!

Load int from local variable

Format (2 bytes)

ILOAD index

Form

21 (0x15)

Operand Stack

... ⇒ ..., value
52



ILOAD

Operation

Load int from local variable

Format (2 bytes) instruction stream

ILOAD index is unparsed bytes

Form

21 (0x15)

Operand Stack

... ⇒ ..., value
53



Description threads and method calls!

The index is an unsigned byte that

must be an index into the local variable

array of the current frame. The local

variable at index must contain an int.

The value of the local variable at index

is pushed onto the operand stack.

54



Comparison with the JVM

• specification style is very similar

• functionality is similar

• M1 is missing procedure call (activation

stack), objects (heap), and threads

(thread table)

It is possible to “grow” M1 into a complete

55



JVM. But we don’t have time to deal with

them here!

56



A High Level Language

It is easy to write a compiler from a simple

language of while and assignments to M1

code.

57



Demo 2

58



To see the implementation of the compiler,

read the preliminary material prepared for

this Summer School.

59



Conclusion

Two advantages of operational semantics:

• easy to relate to implementation or an

informal specification

• executable

ACL2 “customers” really like the ability to

run their models.
60



Next Time

But can we prove anything about a model

like this?

61


