
Mechanized Operational

Semantics

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 3: Direct Proofs)

1



Fact 1

Given an operational semantics, symbolic

execution of code is just

substitution-of-equals-for-equals, i.e.,

rewriting.

2



’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

(PUSH 1) ; 9

(SUB) ; 10

(STORE 0) ; 11 n := n-1

(GOTO -10) ; 12 go loop

(LOAD 1) ; 13 end

(RETURN))) ; 14 return a

3



’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

(PUSH 1) ; 9

(SUB) ; 10

(STORE 0) ; 11 n := n-1

(GOTO -10) ; 12 go loop

(LOAD 1) ; 13 end

(RETURN))) ; 14 return a

4



(run (repeat 0 9)

(make-state 4

(list n a)

stk

*g*))

5



(run ’(0 0 0 0 0 0 0 0 0)

(make-state 4

(list n a)

stk

*g*))

6



(run ’(0 0 0 0 0 0 0 0)

(step

(make-state 4

(list n a)

stk

*g*)))

7



(run ’(0 0 0 0 0 0 0)

(step

(step

(make-state 4

(list n a)

stk

*g*))))

8



(run ’(0 0 0 0 0 0)

(step

(step

(step

(make-state 4

(list n a)

stk

*g*)))))

9



(run ’(0 0 0 0 0)

(step

(step

(step

(step

(make-state 4

(list n a)

stk

*g*))))))

10



(run ’(0 0 0 0)

(step

(step

(step

(step

(step

(make-state 4

(list n a)

stk

*g*)))))))

11



(run ’(0 0 0)

(step

(step

(step

(step

(step

(step

(make-state 4

(list n a)

stk

12



(run ’(0 0)

(step

(step

(step

(step

(step

(step

(step

(make-state 4

(list n a)

13



(run ’(0)

(step

(step

(step

(step

(step

(step

(step

(step

(make-state 4

14



(run ’()

(step

(step

(step

(step

(step

(step

(step

(step

(step

15



(step

(step

(step

(step

(step

(step

(step

(step

(step

(make-state 4 ...

16



Consider

(step (make-state 4 (list n a) stk *g*))

17



(defun step (s) (do-inst (next-inst s) s))

(defun next-inst (s) (nth (pc s) (program s)))

(defconst *g*

’((PUSH 1) ; 0

(STORE 1) ; 1

(LOAD 0) ; 2

(IFLE 10) ; 3

(LOAD 0) ; 4

18



Consider

(step (make-state 4 (list n a) stk *g*))

=

(execute-LOAD ’(LOAD 0)

(make-state 4 (list n a) stk *g*))

19



(defun execute-LOAD (inst s)

(make-state (+ 1 (pc s))

(locals s)

(push (nth (arg1 inst)

(locals s))

(stack s))

(program s)))

20



Consider

(step (make-state 4 (list n a) stk *g*))

=

(execute-LOAD ’(LOAD 0)

(make-state 4 (list n a) stk *g*))

21



Consider

(step (make-state 4 (list n a) stk *g*))

=

(execute-LOAD ’(LOAD 0)

(make-state 4 (list n a) stk *g*))

=

(make-state 5

(list n a)

(push n stk)

*g*)

22



(step

(step

(step

(step

(step

(step

(step

(step

(step

(make-state 4 ;(LOAD 0)

23



(step

(step

(step

(step

(step

(step

(step

(step

(make-state 5 ;(LOAD 1)

(list n a)

24



(step

(step

(step

(step

(step

(step

(step

(make-state 6 ;(MUL)

(list n a)

(push a (push n stk))

25



(step

(step

(step

(step

(step

(step

(make-state 7 ;(STORE 1)

(list n a)

(push (* a n) stk)

*g*)))))))

26



(step

(step

(step

(step

(step

(make-state 8 ;(LOAD 0)

(list n (* a n))

stk

*g*))))))

27



(step

(step

(step

(step

(make-state 9 ;(PUSH 1)

(list n (* a n))

(push n stk)

*g*)))))

28



(step

(step

(step

(make-state 10 ;(SUB)

(list n (* a n))

(push 1 (push n stk))

*g*))))

29



(step

(step

(make-state 11 ;(STORE 0)

(list n (* a n))

(push (- n 1) stk)

*g*)))

30



(step

(make-state 12 ;(GOTO -10)

(list (- n 1) (* a n))

stk

*g*))

31



(make-state 2

(list (- n 1) (* a n))

stk

*g*)

32



Fact 1

Given an operational semantics, symbolic

execution of code is just

substitution-of-equals-for-equals, i.e.,

rewriting.

33



Demo 1

Theorem?

(equal (run (repeat 0 9)

(make-state 4

(list n a)

stk

*g*))

???)

34



Fact 2

Append (of schedules) is just sequential

composition.

Theorem. run-append

(equal (run (append a b) s)

(run b (run a s)))

35



Demo 2

36



Aside

Note that a virtue of having an operational

semanics expressed in a formal logic is that

we can prove theorems about the

semantics, independent of any particular

program.

37



Having proved run-append, whenever the

system encounters:

(run (append α β) σ)

it will replace it by

(run β (run α σ))

38



(defun g-sched-loop (n)

(if (zp n)

(repeat 0 4)

(append (repeat 0 11)

(g-sched-loop (- n 1)))))

39



Suppose (zp n) is known to be false.

(run (g-sched-loop n) σ)

40



Suppose (zp n) is known to be false.

(run (g-sched-loop n) σ)

=

(run (append (repeat 0 11)

(g-sched-loop (- n 1)))

σ)

41



Suppose (zp n) is known to be false.

(run (g-sched-loop n) σ)

=

(run (append (repeat 0 11)

(g-sched-loop (- n 1)))

σ)

=

(run (g-sched-loop (- n 1))

(run (repeat 0 11) σ))

42



To Prove Code Correct

Proceed in two steps:

• prove code implements algorithm –

attack innermost loop first

• prove algorithm implements specification

– straight mathematical proof, no code or

operational semantics involved

43



Example

Let us prove that *g* computes factorial.

(defun ! (n)

(if (zp n)

1

(* n (! (- n 1)))))

44



Example

(equal (top

(stack

(run (g-sched n)

(make-state 0

(list n a)

stk

*g*))))

(! n))

45



Better Example!

(equal (run (g-sched n)

(make-state 0

(list n a)

stk

*g*))

(make-state 14

(list 0 (! n))

(push (! n) stk)

*g*))

46



Aside

Proving stronger theorems is often easier

when induction is used.

The complete characterization of the

effects of *g* are essential for security

proofs.

47



Step 1: Code Implements Algorithm

(defun g (n a)

(if (zp n)

a

(g (- n 1) (* n a))))

In the following, we will assume n and a

are natural numbers.

48



Step 1: The Loop Lemma

Suppose the locals are n and a.

Suppose you start at the top of the loop

(pc = 2) and run the schedule for the loop

(g-sched-loop n).

What is the final state?

49



Step 1: The Loop Lemma

(equal (run (g-sched-loop n)

(make-state 2

(list n a)

stk

*g*))

???)

50



Step 1: The Loop Lemma

(equal (run (g-sched-loop n)

(make-state 2

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

*g*))

51



Proof

Induct on n (as suggested by (g n a))

Base Case:

(implies (zp n) ψ(n,a))

Induction Step:

(implies (and (not (zp n))

ψ((- n 1), (* a n)))

ψ(n,a))

52



Base Case: (zp n)

(equal (run (g-sched-loop n)

(make-state 2

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

*g*))

53



Base Case: (zp n)

(equal (run (repeat 0 4)

(make-state 2

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

*g*))

54



Base Case: (zp n)

(equal (run (repeat 0 4)

(make-state 2

(list 0 a)

stk

*g*))

(make-state 14

(list 0 (g 0 a))

(push (g 0 a) stk)

*g*))

55



Base Case: (zp n)

(equal (run (repeat 0 4)

(make-state 2

(list 0 a)

stk

*g*))

(make-state 14

(list 0 a)

(push a stk)

*g*))

56



’((PUSH 1) ; 0

(STORE 1) ; 1 a := 1

(LOAD 0) ; 2 loop

(IFLE 10) ; 3 if n<=0 go end

(LOAD 0) ; 4

(LOAD 1) ; 5

(MUL) ; 6

(STORE 1) ; 7 a := n*a

(LOAD 0) ; 8

(PUSH 1) ; 9

(SUB) ; 10

(STORE 0) ; 11 n := n-1

(GOTO -10) ; 12 go loop

(LOAD 1) ; 13 end

(RETURN))) ; 14 return a

57



Base Case: (zp n)

(equal (run (repeat 0 4)

(make-state 2

(list 0 a)

stk

*g*))

(make-state 14

(list 0 a)

(push a stk)

*g*))

58



Base Case: (zp n)

(equal (make-state 14

(list 0 a)

(push a stk)

*g*)

(make-state 14

(list 0 a)

(push a stk)

*g*))

59



Base Case: (zp n)

T

60



Induction Conclusion [(not (zp n))]

(equal

(run (g-sched-loop n)

(make-state 2

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

*g*))

61



Induction Hypothesis:

(equal

(run (g-sched-loop (- n 1))

(make-state 2

(list (- n 1) (* a n))

stk

*g*))

(make-state 14

(list 0 (g (- n 1) (* a n)))

(push (g (- n 1) (* a n)) stk)

*g*))

62



Induction Conclusion [(not (zp n))]

(equal

(run (g-sched-loop n)

(make-state 2

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

*g*))

63



Induction Conclusion [(not (zp n))]

(equal

(run (append (repeat 0 11)

(g-sched-loop (- n 1)))

(make-state 2

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

64



Induction Conclusion [(not (zp n))]

(equal

(run (g-sched-loop (- n 1))

(run (repeat 0 11)

(make-state 2

(list n a)

stk

*g*)))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

65



Induction Conclusion [(not (zp n))]

(equal

(run (g-sched-loop (- n 1))

(run (repeat 0 11)

(make-state 2

(list n a)

stk

*g*)))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

66



Induction Conclusion [(not (zp n))]

(equal

(run (g-sched-loop (- n 1))

(make-state 2

(list (- n 1) (* a n))

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

*g*))

67



Induction Conclusion [(not (zp n))]

(equal

(run (g-sched-loop (- n 1))

(make-state 2

(list (- n 1) (* a n))

stk

*g*))

(make-state 14

(list 0 (g (- n 1) (* a n)))

(push (g (- n 1) (* a n)) stk)

*g*))

68



Induction Hypothesis:

(equal

(run (g-sched-loop (- n 1))

(make-state 2

(list (- n 1) (* a n))

stk

*g*))

(make-state 14

(list 0 (g (- n 1) (* a n)))

(push (g (- n 1) (* a n)) stk)

*g*))

69



Induction Conclusion [(not (zp n))]

(equal

(run (g-sched-loop (- n 1))

(make-state 2

(list (- n 1) (* a n))

stk

*g*))

(make-state 14

(list 0 (g (- n 1) (* a n)))

(push (g (- n 1) (* a n)) stk)

*g*))

70



Induction Conclusion [(not (zp n))]

T

Q.E.D.

71



Demo 3

72



Step 1: The Main Code Theorem

If you run the full schedule, (g-sched n),

starting at the main entry (pc = 2), the

code computes (g n 1).

73



Step 1: The Main Code Theorem

(equal (run (g-sched n)

(make-state 0

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

*g*))

74



Step 1: The Main Code Theorem

(equal (run (g-sched n)

(make-state 0

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

*g*))

75



Step 1: The Main Code Theorem

(equal (run (append (repeat 0 2)

(g-sched-loop n))

(make-state 0

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

76



Step 1: The Main Code Theorem

(equal (run (g-sched-loop n)

(run (repeat 0 2)

(make-state 0

(list n a)

stk

*g*)))

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

77



Step 1: The Main Code Theorem

(equal (run (g-sched-loop n)

(run (repeat 0 2)

(make-state 0

(list n a)

stk

*g*)))

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

78



Step 1: The Main Code Theorem

(equal (run (g-sched-loop n)

(make-state 2

(list n 1)

stk

*g*))

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

*g*))

79



Step 1: The Loop Lemma

(equal (run (g-sched-loop n)

(make-state 2

(list n a)

stk

*g*))

(make-state 14

(list 0 (g n a))

(push (g n a) stk)

*g*))

80



Step 1: The Main Code Theorem

(equal (run (g-sched-loop n)

(make-state 2

(list n 1)

stk

*g*))

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

*g*))

81



Step 1: The Main Code Theorem

(equal (make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

*g*)

(make-state 14

(list 0 (g n 1))

(push (g n 1) stk)

*g*))

82



Step 1: The Main Code Theorem

T

Q.E.D.

83



Demo 4

84



Step 2

So we have proved that the code

implements the algorithm. It remains to

show that the algorithm implements the

specification.

That is, we have to prove that g “is” f.

85



Step 2: Prove Algorithm Implements

Spec

(defthm step-2

(implies (natp a)

(equal (g n a)

(* a (! n)))))

86



Main Theorem

(equal (run (g-sched n)

(make-state 0

(list n a)

stk

*g*))

(make-state 14

(list 0 (! n))

(push (! n) stk)

*g*))

87



Corollary

(let ((s fin (run (g-sched n)

(make-state 0

(list n a)

stk

*g*))))

(implies (natp n)

(and (equal (top (stack s fin))

(! n))

(haltedp s fin))))

88



Demo 5

89



For many high-level languages, the

semantics is given only by the compiler!

Verifying the output of the compiler means

you do not have to trust the compiler.

You are verifying what actually executes.

Consider Berkeley C String Library and

gcc.

90



Next Time

Conventional inductive invariant proofs

91


