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ABSTRACT 

This thesis describes the results of two studies in computational 

logic. The first concerns a very efficient method of implementing 

resolution theorem provers. The second concerns a non-resolution program 

which automatically proves many theorems about LISP functions, using 

structural induction. 

In Part I, a method of representing clauses, called 'structure 

sharing', is presented. In this representation, terms are instantiated 

by binding their variables on a stack, or in a dictionary, and derived 

clauses are represented in terms of their parents. This allows the 

structure representing a clause to be used in different contexts without 

renaming its variables or copying it in any way. The amount of space 

required for a clause is (2 + n) 36-bit words, where n is the number 

of components in the unifying substitution made for the resolution or 

factor. This is independent of the number of literals in the clause 

and the depth of function nesting. 

Several ways of making the unification algorithm more efficient 

are presented. These include a method of preprocessing the input terms 

so that the unifying substitution for derived terms can be discovered 

by a recursive look-up procedure. Techniques for naturally mixing 

computation and deduction are presented. The structure sharing imple

mentation of SL-resolution is described in detail. The relationship 

between structure sharing and programming language implementations is 

discussed. Part I concludes with the presentation of a programming 

language, based on predicate calculus, with structure sharing as the 

natural implementation. 
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Part II of this thesis describes a program which automatically 

proves a wide variety of theorems about functions written in a subset 

of pure LISP. Features of this program include: The program is fully 

automatic, requiring no information from the user except the LISP defi

nitions of the functions involved and the statement of the theorem to 

be proved. No inductive assertions are required from the user. The 

program uses structural induction when required, automatically gener

ating its own induction formulas. All relationships in the theorem are 

expressed in terms of user defined LISP functions, rather than a second 

logical language. The system employs no built-in information about 

any non-primitive function. All properties required of any function 

involved in a proof are derived and established automatically. The 

program is capable of generalizing some theorems in order to prove them; 

in doing so, it often generates interesting lemmas. The program can 

write new, recursive LISP functions automatically in attempting to 

generalize a theorem. Finally, the program is very fast by theorem 

proving standards, requiring around 10 seconds per proof. 
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PREFACE AND ACKNOWLEDGEMENTS 

This thesis is composed of two independent parts. The first 

deals with an extremely efficient way to represent clauses in 

resolution theorem proving programs. The second deals with proving 

properties of LISP programs automatically, using structural induction. 

The link between these two topics is historical: The first study 

led to a representation of clauses that shares many features with 

techniques used in implementing programming languages. This allowed 

a resolution theorem prover to be written which efficiently interpreted 

a set of axioms which defined a programming language based on LISP. 

Since this program was a theorem prover (as well as an interpreter) 

it could be used to prove general theorems about some of the LISP 

functions defined. However, most interesting theorems required 

induction, and induction was not part of this theorem prover. This 

led to the second study, in which a completely new theorem prover was 

written. This system was not based on resolution, and incorporated 

induction as an automatic rule of inference. The only thing that 

survived the change was the LISP subset about which theorems were 

proved. 

The two parts of this thesis are completely independent. Although 

the organization of both parts is the same, all chapter and section 

references are relative to the part containing the reference. Similarly, 

any reference to a formula with a certain name or number, refers to the 

so named formula of the section containing the reference. 
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only encouraged me constantly with his interest in the work being 

carried out, but he tolerated my unusual working habits and office 

hours. His leadership of the Department of Computational Logic has 
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It was his conviction that an SL-resolution chain could be efficiently 

represented in terms of its parents and the unifying substitution. This 

led to the introduction of indices, and eventually, to general structure 

sharing. He originated the effort to automate induction by observing 

that it should be possible to discover what to induct upon by inspecting 

the definitions of the functions involved. He was also instrumental 



in the development of cross-fertilization and throwing the induction 

hypothesis away when it had been "used". 
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is inexpressible. His experience with other formal systems and theorem 

provers was responsible for keeping the induction theorem prover 

firmly (and soundly) grounded in logic. This experience also led 
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research was conducted: No change in the program, no matter how 

trivial, was finalized until every theorem proved by the previous 

version was proved by the new version. 

Finally, I wish to thank Bob Boyer, his wife, Anne, and my wife,Liz, 

for exceptional cooperation and understanding. They have all sacrificed 

much to a project which was of no benefit to any of them. Without these 

three people, this thesis would never have been written. 



4 

INTRODUCTION TO PART I 

In implementing resolution theorem provers, one is immediately 

faced with the problem of how to represent clauses in the machine. 

The traditional approach is to use list structures. This auffers 

from the disadvantage of often requiring clauses to be copied before 

they can be used, and requiring the application of substitutions. 

This paper presents an alternative method, called structure sharing, 

which represents a derived clause by pointing to the parents and noting 

how the variables in them have been instantiated. 

This method is very akin to the way programming languages are 

implemented. In particular, when a subroutine is called, the values of 

the formal arguments of the subroutine must be substituted into the 

body. In addition, care must be taken to prevent the confusion of 

variables in the calling program with those in the subroutine. The 

traditional theorem proving approach would be to copy the subroutine 

body and change the names of all of its variables. Then, copy it 

again, substituting the values for the variables. What is actually 

done is that the variables are kept straight by keeping track of how 

the recursion or function calling has been done, and they are "substi

tuted for" by binding them in a stack or dictionary. The overhead 

involved is having to look up the values of variables whenever they 

are encountered, but there are ways that this can be done efficiently. 

The situation in theorem proving is somewhat more complex than it is 

in most programming languages, but an extension of the above methods 

actually works well. 
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Chapter 1 describes the basic ideas of structure sharing.. Much of 

thi$'chapter has been previously published (sse Boyer and 'Moore, '1972). 

Chapter 1 alone is sufficient to obtain a complete understanding of 

structure sharing. The remaining chapters discuss modifications for 

efficiency and capabilities that structure sharing possesses which are 

not intuitively obvious. 

Chapters 2 and 3 explain how the basic representation described . 

in Chapter 1 can be reformulated for efficiency. These modifications 

can increase the speed of unification by an order of magnitude. These 

chapters are especially important to readers interested-in implementing 

structure sharing. 

Chapter 4 describes how structure sharing allows computation to be 

mixed arbitrarily with deduction. For example, it is both easy and 

efficient to introduce procedures in the implementation language 

which are automatically invoked when a term of a certain form is instan

tiated. Such a procedure might compute the value of the term. 

Chapter 5 describes the implementation of 51-resolution. This is 

a particularly attractive linear resolution system. The implementation 

of it is very efficient and demonstrates how the basic ideas of structure 

sharing can be modified to deal efficiently with a restricted domain. 

Finally, Chapter 6 presents a programming language based on predi

cate calculus, of which structure sharing is the natural implementation. 

Throughout this paper, the programming language POP-2 is used to 

present algorithms. POP-2 has an ALGOL-like syntax and a LISP-like 

power. It was designed by R. Burstall and R. Popplestone of the 
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Department of Machine Intelligence, School of Artificial Intelligence, 
• 

University of Edinburgh. A brief description of it is given below 

for readers unfamiliar with it. 

All assignment, argument passing, and result returning is accomplished 

with a pushdown stack which is freely available to the user. To assign 

5 to the identifier X, the syntax used is: 

5 -> X; (SETQ X 5) 

(Equivalent LISP code will be exhibited in this introduction, where 

possible.) 

Actually, the 5 in this context means "push 5 on the stack" 

and "-> X;" means "pop the (top of the) stack into the value cell 

for X". To push 5 on the stack and leave it there, one writes: 

5; 

If there is something on the stack, it can be popped and assigned to X 

with: 

-> X; 

Thus, to assign 5 to X and 4 to Y, either of the following may be used: 

or: 

5 -> X; 
4 -> Y; 

4; 5; -> X -> Y; 

(SETQ X 5) 
(SETQ Y 4) 

To assign 5 to the HD (CAR) of a list, X, one writes: 

5 -> HD(X); (RPLACA X 5) 

To assign to the TL (CDR), an analogous statement is used: 

NIL -> TL(X); (RPLACD X NIL) 
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In fact, all assignment takes this form. The expression on the right 

of the "_>" must just be an IIupdater" function, which takes as many things 

off the stack as it requires. If A is an array, it is accessed, and up

dated in the expected way: 

A(I) + 3 -> A(J+2); 

The stack is not protected against function entry and exit. In 

fact, arguments are passed via the stack, and results are returned 

on the stack. In the example above, the array A is actually a function 

which takes one argument off the stack, and leaves one result on the 

stack (when on the left-hand side of "->"). Thus, an equivalent way 

to get the Ith element of A onto the stack is: 

I; A(); 

That is, put I (the argument) on the stack, and then call A. This 

takes one thing off the stack, retrievES the relevant element, and 

puts it on the stack. 

To form a list cell with 5 in the HD and NIL in the TL, and then 

assign it to X, the syntax is: 

CONS(5,NIL) ~ X; (SETQ X (CONS 5 NIL» 

What actually happens is that 5 and NIL are pushed, CONS is called 

and takes two things off the stack. CONS pushes a new list cellon 

the stack and exits, and the: cell i8 popped into X. An equivalent 

piece of code is: 

5; NIL; CONS() -> X; 

The syntax used in this paper is consistently that of the first 

CONS example above. This discussion has been to acquaint the reader with 

the stack. 
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To define a function in POP-2 with nameFOO, formal arguments X and 

Y, and the locals Z and W, one writes: 

FUNCTION FOO X Y; 
VARS Z W; 

body 
END; 

(DEFPROP FOO 
(LAMBDA (X Y) 
(<FROG (Z VI) 

body» 
EXPR) 

An example of a function which returns the sum and the product of its 

two arguments is: 

FUNCTION SUMPROD X Y; 
X + Y; 
X * Y; 
END; 

The statement: 

SUMPROD(4,5) -> PROD -> SUM; 

assigns 20 to PROD and 9 to SUM. 

The conditional statement in POP-2 has the form: 

IF foo (COND (foo bar) (T mumble» 
THEN bar 
ELSE mumble CLOSE; 

where foo, bar, and mumble are arbitrary POP-2 statements. The value 

of foo is tested against 0 rather than NIL. FALSE in POP-2 is 0; 

lrRUE is 1. 

The statement 

IF foo THEN bar CLOSE; (COND (foo bar» 

allows ELSE clauses to be dropped if not needed. 

IF foo 
THEN bar 
ELSE IF mumble 

THEN p 
ELSE q CLOSE; 

CLOSE; 

(COND (foo bar) 
(mumble p) 
(T q» 



can be abbreviated to: 

IF foo 
THEN bar 
ELSEIF mumble 

THEN p 
ELSE q CLOSE; 

to save the extra "CLOSE". 
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One very common feature in POP-2 programming is the use of the stack 

to return a truthvalue and one or more results. Throughout this paper 

the function ISBOUND is used. It takes two arguments and returns 

either TRUE and two additional results, or it returns FALSE. The 

common use of such a function is as follows: 

IF ISBOUND (V, I ) THEN -> T -> J; CLOSE; 

If ISBOUND(V,I) returns TRUE, two things are taken off the stack and 

assigned to T and J; otherwise, nothing is done. In either case, 

there~is: no net bhan,ge with respect to the stack configuration after 

the above statement. 

A function for testing whether X is in the list Lis: 

FUNCTION MEMBER X L; 
IF L = NIL 

THEN FALSE; 
ELSEIF IID(L) = X 

THEN TRUE; 

END; 

ELSE MEMBER(X,TL(L»; 
CLOSE; 

(DEFPROP 
MEMBER 
(LAMBDA (X L) 

(COND , 
«EQ L NIL) N1L) 
«EQ (CAR L) X) T) 
(T (MEMBER X (CDR X»») 

-. EXPa) 

Iteration is available, but is used in only two forms in the programs 

exhibited here. One is the "LOOPIF" statement, which has the syntax 

of an IF without an ELSE: 

LOOPIF P THEN q CLOSE; 

The meaning of the statement is that as long as p evaluates to non-FALSE, 

evaluate q and loop (back to the p test). 



This is equivalent to: 

LOOP: 
IF P 

THEN 
q; 
GOTO LOOP; 
CLOSE; 

(PROG ( ••• ) 
• 
• 
LOOP 
(COND 
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(pq (GO LOOP») 

· · ) 

Because statements of the following form are used frequently: 

VARS L X; 
• 

P -> L; 
LOOPIF L /= NIL 

THEN 
IID(L) -> X; 
TL(L) -> L; 
q; 
CLOSE; 

the following abbreviation will be used: 

FOREACH X IN p; 
q; 
CLOSE; 

(PROG (L X ••• ) 
• 
• 
(SETQ L p) 
LOOP 
(COND 

«NOT (EQ L NIL» 
{SETQ X (CAR L» 
(SETQ L (CDR L» 
q 
(GO LOOP») 

· ) 

POP-2 data structures include lists, arrays, and records. Pairs 

are an example of records. These are records with two components, FRONT 

and BACK. A pair is formed with the function CONSPAIR, which takes two 

arguments and constructs a record with two components. List cells are 

pairs, except that the TL of a list in POP-2 must be another pair, or NIL, 

while the BACK of a pair can be anything. If FOO is a function which 

accesses a component of a record, R, then accessing and assigning to 

that component is done with FOO as might be expected: 

FOO(R) + 5 -> FOO(R); 
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Only a very small subset of POP-2 is used in the programs exhibited. 

The syntax and language features provided are far richer than this 

introduction suggests. The POP-2 reference manual contains a complete 

description of the language. 
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CHAPTER 1 GENERAL STRUCTURE SHARING 

1.1 Introduction 

This paper is concerned with representing literals and clauses in 

computers. Lists provide the most obvious and natural representation of 

literals because function nesting imposes a tree-structure on literals. 

A list is also a reasonable representation of a set, in particular, of a 

clause. Lists however can consume large amounts of space and cause fre

quent garbage collections. This Ohapter presents a representation of clauses 

and literals which is as natural as lists but far more compact. This 

economy is achieved by sharing the structure of the parents of a resolvent 

in the representation of the resolvent. 

A clause is a set of literals; but throughout this paper the literals 

of a clause will be considered to be ordered. 

Suppose C and D are clauses; and K is the ith literal of C, and L is 

the jth literal of D. Suppose further that the signs of K and L are oppo

site and that the substitution cI most generally unifies the atoms of K and 

L. 

Under these hypotheses, C and D may be resolved on K and L to obtain 

the resolvent R = «C - {K}) l) (D - {L] ))cI. The literals of R that 

come from C are considered to be "bE;fore" the literals that come from D. 

(Merging and factoring are ignored until Section 1.8.) 

The tuple < C,i,D,j,cJ> contains sufficient information to enable the 

reconstruction of R. Therefore, in some sense, it represents R. At first 

sight it may not appear to be a very good representation of R, since it 

appears that the only way to use it would be to construct the list of literals 

and then apply d to it. 
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However, a tuple like this is in fact very easy to use without 

constructing any lists or applying any sUbstitutions. 

1.2 Terms and Substitutions 

To understand how to avoid applying substitutions, it is first 

necessary to understand the concept of the value of a term in the 

context of a substitution. First, an example: 

(p X (F Y (G Z X))) 

in the context of the substitution: 

«Y.(F V W)) (Z.(G XU)) (U.(H X))), 

is the term: 

(p X (F (F V W) (G (G X (H X)) X))). 

By a term is meant either a variable (e.g., X, Y, Z) or a list 

whose first member is a symbol (e.g., F, G, P, Q) and whose other 

members are terms. 

By a substitution is me rut a collection of pairs; the first member 

of each pair is a variable, and the second is a term. If (V.T) is a 

member of a substitution S, then V is said to be bound to T in S. 

By the value of a term, TERM, in the context of a substitution,S, 

is meant the result of replacing each variable in TERM that is bound in 

S to a term, T, by the value of T in S. 

These definitions are not those standard to the theorem proving 

literature. For example, there is no need to distinquish between predi

cate and function symbols (until one talks about what clauses represent). 

Also, there exists substitutions S such that some terms have no well

defined value in S. Precautions are taken never to generate such substi

tutions. Roughly speaking, a variable should not be bound twice or bound 

to a term whose value contains the variable. 
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It is possible to determine anything about the value of a term 

in the context of a substitution S without physically creating the 

value. The only thing one must do is: Whenever a variable, V, 

is encountered, S should be inspected to determine if V is bound in 

S to some term, TERM. If so, proceed as if TERM had been encountered 

instead of V. 

Suppose that a substitution is represented by a list of pairs. 

Then the function ISBOUND, below, determines if its argument is bound 

in the global substitution S. If so, it leaves the term to which it is 

bound on the stack, along with TRUE, otherwise it returns FALSE: 

FUNCTION ISBOUND V; 
FOREACH PAIR IN S; 
IF VAR = FRONT(PAIR) THEN BACK(PAIR); TRUE; EXIT; 
CLOSE; 
FALSE; 
END; 

If the function ISVAR returns TRUE if and only if its argument is 

a variable, then the following function determines whether some variable, 

V, occurs in the value of the term TERM, in the context of the global 

substitution S. Note that S is not applied to TERM. 

FUNCTION OCCUR V TERM; 
IF ISVAR(TERM) 

THEN 
IF ISBOUND(TERM) 

THEN -> TERM; OCCUR ( V, TERM) ; 
ELSEIF V = TERM 

THEN TRUE; 
ELSE FALSE; CLOSE; 

ELSE 
FOREACH ARG IN TL(TERM); 
IF OCCUR (V, ARG) THEN TRUE; EXIT; 
CLOSE; 
FALSE; 
CLOSE; 

END; 



15 

Notice that OCCUR checks to see if it has encountered a variable V' as 

TERM. If so, it checks to see if V'is bound. If V'is bound, it proceeds 

as if it had encountered the term to which V'is bound, by calling i,self 

recursively on that term. If V'is not bound, it checks to see if V'is 

the variable V. 

each argument. 

If TERM is not a variable at all, it recursively checks 

By avoiding the application of substitutions to terms it is possible 

to acheive a dramatic savings in space, which, of course, is paid for by 

looking up the bindings of variables. That this is worthwhile is demonstrated 

by the successful use of similar methods to "substitute" the values of formal 

parameters in programming languages, such as LISP and ALGOL. 

1.3 Expressions and BindiLgs 

The key to the representation of clauses presented here is the avoidance 

of physically creating the value of a term in the context of a SUbstitution. 

This idea is at least as old as the first LISP. Terms and substitutions are 

not quite sufficient for the purpose, however, because it is often necessary 

to refer to different versions of a term. The concepts of an expression, 

a binding environment, and the value of an expression in a binding environment 

are introduced. First, some examples: 

The value of the expression: 

(p X (F Y (G Z X))),10 

in the empty binding environment is the term: 

(p X10 (F Y10 (G Z10 X10))). 

The value of the expression: 

(p X (F Y (G Z X))),5 

in the empty binding environment is the term: 
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(p X5 (F Y5 (G Z5 X5)))· 

Notice that the two values have no variable in common, despite the 

similarity of the two expressions. 

The value of the expression: 

(p X (F Y (G Z X))),5 

in the binding environment: 

« Y, 5, (F X y), 4 > 

< Z,5, (G X U),5 > 

< U,5,(H X),5 », 

is the term: 

(p X5 (F (F X4 Y4) (G (G X5 (H X5)) X5))). 

By an index is meant a positive integer. By an expression is meant 

a term together with an index. If an expression is denoted by T,I, 

then T is a term~ and I is an index. 

By a binding is meant a four-tuple of the form < V,I,T,J >, where 

V is a variable, T is a term, and I and J are indices. 

By a binding environment is meant a collection of bindings. If 

< V,I,T,J > is a member of the binding environment BNDEV, then V,I is 

said to be bound to T,J in BNDEV. 

The value of an expression TERM,I in a binding environment, BNDEV, 

is the result of replacing each variable V in TERM by the value of V,I 

in BNDEV. If V,I is not bound in BNDEV, its value is the variable VI 

(1. e., V subscript I). If V, I is bound in BNDEV to T ,J, then its value 

is the value of T,J in BNDEV. 

It is possible to determine anything about the value of an expression 

in a binding environment without physically creating the value. 
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Throughout this paper two routines will be used to facilitate the 

handling of binding environments. ISBOUND takes two arguments, V and I, 

and returns TRUE if V,I is bound in the global binding environment BNDEV. 

If it returns TRUE, the term and index to which V,I is bound are also put 

on the stack. If V,I is not bound, ISBOUND returns FALSE. Thus, if 

ISBOUND(V,I) returns TRUE, the statements: 

-> TERM -> INDEX; 

will assign the components of the expression to which V,I is bound to 

TERM and INDEX. The second routine is BIND. BIND(V,I,T,J).modifies· 

the global binding environment, BNDEV, so that thereafter V,I is bound 

to T,J :j.n BNDEV. 

In the next three sections binding environments will be displayed as 

lists of bindings. This is done to help introduce the representation of 

clauses. The actual structure of a binding environment is made precise 

in Section 1.7. The only essential feature of a binding environment is that 

bindings can be discovered with ISBOUND and added with BIND. 

Suppose it is necessary to determine whether some variable VI occurs 

in the value of the expression TERM,J, in the binding environment BNDEV. 

The following recursive routine, OCCUR, does this: 

FUNCTION OCCUR V I TERM J; 
IF ISVAR(TERM) 

THEN 
IF ISBOUND(TERM,J) 

THEN -> TERM -> J; OCCUR(V,I,TERM,J); 
ELSEIF V = TERM AND I = J 

THEN TRUE; 
ELSE FALSE; CLOSE; 

ELSE 
FOREACH ARG IN TL(TERM); 
IF OCCUR(V,I,ARG,J) THEN TRUE; EXIT; 
CLOSE; 
FALSE; 
CLOSE; 

END; 
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1.4 The Unification Algorithm 

Suppose that VAL1 is the value of the expression TERM1,INDEX1 in the 

binding environment BNDEV. Suppose further that VAL2 is the value of the 

expression TERM2,INDEX2 in BNDEV. Finally, suppose that VAL is the most 

general common instance of VAL1 and VAL2 (if one exists). Then 

UNIFY(TERM1 , INDEX 1 ,TERM2,INDEX2) alters BNDEV so that the value of 

TERM1,IhDEX1 in BNDEV and the value of TERM2,INDEX2 in BNDEV are both 

equal to VAL. If VAL1 and VAL2 have no common instance, the call to UNIFY 

returns FALSE. Otherwise, it returns TRUE. Like the definition of OCCUR 

in the previous Section, the routine below applies no substitutions. 

FUNCTION UNIFY TERM1 INDEX1 TERM2 INDEX2; 
LOOPIF ISVAR('tERM1) AND ISBOUND(TERM1, INDEX1) 

THEN -> TERM1 -> INDEX1; CLOSE; 
LOOPIF ISVAR(TERM2) AND ISBOUND(TERM2,INDEX2) 

THEN -> TERM2 -> INDEX2; CLOSE; 
IF TERM1 = TERM2 AND INDEX1 = INDEX2 THEN TRUE; EXIT; 
IF ISV AR(TERM1 ) 

THEN 
IF OCCUR(TERM1, INDEX1, TERM2, INDEX2) 

THEN FALSE; 
ELSE BIND(TERM1, INDEX1, TERM2, INDEX2); TRUE; CLOSE; 

ELSEIF ISVAR(TERM2) 
THEN 
IF OCCUR(TERM2, INDEX2, TERM1, INDEX1) 

THEN FALSE; 
ELSE BIND(TERM2,I~DEX2,TERM1,INDEX1); TRUE; CLOSE; 

ELSEIF HD(TERM1) = HD(TERM2) 
THEN 
FOREACH ARG1 ARG2 IN TL(TERM1) TL(TERM2); 
IF NOT(UNIFY(ARG1,INDEX1,ARG2,INDEX2)) THEN FALSE; EXIT; 
CLOSE; 
TRUE; 
ELSE FALSE; CLOSE; 

ENP; 

Here is an example of unification. Let TERM1 be (p X y). Let 

TERM2 be (p (G X) Z). Let BNDEV be: 



« X,2,X,3 > 

< Y,2,(F X y),4 > 

< Y,4,X,3 > 

< Z,7,(F X y),8 > 

< x,8,X,7 > 

< Y, 8, (G y), 5 ». 

The value of TERM1, 2 in BNDEV is: 

(p X3 (F X4 X3 ))· 

The value of TERM2,7 in BNDEV is: 

(p (G X7) (F X7 (G Y5))). 

After a call of UNIFY(TERM1, 2,TERM2, 7),· :aNDEV is; 

« .X,?, Y , 5 > 

< x,4,X,7 > added by UNIFY 

< X,3, (G X), 7- > 

< X,2,X,3 > 

< Y,2,(F X Y),4 > 
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< Y,4,X,3 > old bindings in BNDEV 

< Z,7,(F X Y),8 > 

< x,8,X,7 > 

< y,8,(G Y),5 ». 

The value of TERM1,2 in the new BNDEV is: 

(p (G Y5) (F Y5 (G Y5))). 

The value of TERM2,7 in the new BNDEV is: 



1.5 Incrementing Indices and Standardizing Expressions Apart 

Let T be the term: 

(Q (F X (A)) (G Y Z)). 
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The value of the expression T,5 in the binding environment BNDEV1: 

« X,5,(G Y Z),5 > 

< Z,5,(F (A) u),6 > 

< u,6,x,3 », 

is the term: 

(Q (F (G Y5 (F (A) X3)) (A)) (G Y5 (F (A) X3))). 

The value of the expression T,11 in the binding environment BNDEV2: 

is: 

« X,11,(G Y Z),11 > 

< Z,11,(F (A) U),12 > 

< U,12,X,9 », 

(Q (F (G YJ1 (F (A) X9)) (A)) (G Y~1(F (A) X9))). 

Notice that the value of T,5 in BNDEV1 is a variant of the value of 

T,11 in BNDEV2j furthermore, the values have no common variables. The 

values are 'standardized apart.' Notice also that BNDEV2 is just the 

result of incrementing every index in BNDEV1 by 6. 

Suppose that T is a term, BNDEV1 is a binding environment, and BNDEV2 

is obtained by adding increment INC to every index in BNDEV1. Then the value 

of T,J in BNDEV1 is a variant of the value of T,J+INC in BNDEV2. If INC 

is greater than or equal to the largest index in BNDEV1,thenthe two 

values have no variables in common. 

1.6 Resolving Clauses Using Expressions and Bindings 

This Section describes by example how expressions, incrementing indices, 

and the unification procedure work together in resolution. In this Section 
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a simple representation of clauses is used, namely, a list of expressions 

in a binding environment. After one resolution has been performed using 

this representation the main point of this chapter is presented. 

The list C1: 

«+ (Q Y Y)),2 (+ (p X Y)),2 (- (p X (F Y z))),4) 

in the binding environment BNDEV1: 

« X,2,X,3 > 

<Y,2,(FXY),4> 

< Y,4,X,3 > 

< Z,4,(F X Y),2 », 

represents the clause CLAUSE1: 

«+ (Q (F X4 X3) (F X4 X3))) 

(+ (p X3 (F X4 X3))) 

(- (p X4 (F X3 (F X3 (F X4 X3)))))) 

in an obvious way. 

Similarly, the list C2: 

«- (Q X Y)),1 (- (p (G X) Z)),3 (+ (R X (F X y))),4), 

in the binding environment BNDEV2: 

« Z,3,(F X y),4 > 

< x,4,X,3 > 

< Y,4,(G Y),1 > 

< Y,2,(G Z),3 », 

represents the clause CLAUSE2: 

«-'(Q X1 Y1)) 

(- (p (G X3) (F X3 (G Y1)))) 

(+ (R X3 (F X3 (G Y1))))). 
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To resolve CLAUSE1 and CLAUSE2 on their second literals, they must 

be standardized apart. This is done by incrementing all of the indices 

in C2 and BNDEV2 by 4 (the maximum index in C1 or BNDEV1). Call the 

results C2' and BNDEV2', respectively. C2' in the binding environment 

BNDEV2' represents the clause, CLAUSE2': 

«- (Q X5 Y5)) 

(- (p (G X7) (F X7 (G Y5»») 

(+ (R X7 (F X7 (G Y5))). 

The expression representing the second literal of CLAUSE1 is: 

(+ (p X Y»,2. 

The expression representing the second literal of CLAUSE2' is: 

(- (p (G X) Z»,7. 

Since their signs are opposite, UNIFY is called as follows: 

UNIFY«P X Y),2,(P (G X) Z),7). 

Of course, UNIFY requires the global binding environment BNDEV to be set. 

In this case, it is initialized to BNDEV1 l)BNDEV2'. The call to UNIFY 

returns TRUE and side effects BNDEV so that it is: 

« X,?,Y,5 > 

< X, 4,x, 7 > 

< X,3, (G X), 7 > 

< X,2,X,3 > 

< Y,2,(F X Y),4 > 

< Y,4,X,3 > 

< Z,4,(F X Y),2 > 

< Z,7,(F X Y),8 > 

< x,8,X,7 > 

< y,8,(G Y),5 > 

< y,6,(G Z),7 ». 

added by UNIFY 

BNDEV1 

BNDEV2' 
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The resolvent, RESOLVENT, could be represented by a list of expressions, 

R, in the binding environment BNDEV, above. R is obtained by appending 

C1 and C2' after deleting their second literals: 

«+ (Q Y Y»,2 

(- (p X (F Y Z»),4 

(- (Q X Y»,5 

(+ (R X (F X Y»),8). 

In the binding environment BNDEV, R represents: 

«+ (Q (F Y5 (G Y5» (F Y5 (G Y5»» 

(- (p Y5 (F (G Y5) (F (G Y5) (F Y5 (G Y5»»» 

(- (Q X5 Y5» 

(+ (R Y5 (F Y5 (G Y5»») 

It should be obvious that it is exceedingly wasteful to physically 

create the lists C2' and R, and the binding environments BNDEV2' and 

BNDEV, given their definitions in terms of C1, BNDEV1, C2, and BNDEV2. 

The representation does not actually create any of C2', R, BNDEV2', or 

BNDEV. A clause is represented so that the following may be ea~ily 

retrieved: (1) the expression for the nth literal, and (2) the binding 

of V,I (if it is bound). Under the hypothesis that (1) and (2) can be 

retrieved for CLAUSE1 and CLAUSE2, the tuple used to represent RESOLVENT 

contains precisely enough information to allow the retrieval of (1) and 

(2) for RESOLVENT. 

Assume inductively that it is possible to retrieve the expression 

for the nth literal of either parent, CLAUSE1 or CLAUSE2, of a resolvent 

RESOLVENT. The expression for the nth literal of RESOLVENT is either 

the expression for some literal of CLAUSE1 or the expression for some 

literal of CLAUSE2 with the index incremented by MI, the maximum index of 

CLAUSE1. Exactly which literal of the parent is a function of n, the 
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number of literals in CLAUSE1, and the numbers of the literals resolved 

upon in CLAUSE1 and CLAUSE2. The following diagram should make it clear 

how to compute the position of the expression in the parent. The 

algorithm is given in the next Section. In the example below, L3 

and K2 are resolved upon. 

CLAUSE1 CLAUSE2 
,~ ______ JA~ _______ , ,r ________ JA , 

L1 L2 L3 L4 L5 K1 K2 K3 K4 K5 K6 

R1 R2 R3 R4 R5 R6 R7 R8 R9 
~~------------------~v~-----------------J' 

RESOLVENT 

Assume, again inductively, that it is possible to determine 

whether V,I is bound to T,J in the binding environment of either 

parent. If the representation of a resolvent includes the bindings 

made by the unification for the resolution, it is possible to determine 

if V,I is bound in the binding environment of the resolvent. In 

particular, V,I is bound to T,J if and only if: 

V,I is bound to T,J in the bindings added by the 
unification for RESOLVENT, or 

I < MI and V,I is bound to T,J in the binding 
- environment of the left-hand parent, 

CLAUSE1, or 

I > MI and V,I-MI is bound to T,J-MI in the 
binding environment of the right-hand 
parent, CLAUSE2. 

If the expressions and binding environments for input clauses can 

be computed, then they can be computed for a derived clause if the 

following information is included in the record of such a clause: 
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(1 ) the record representing the left parent, 

(2) the number of the literal resolved upon in the left parent, 

(3) the record representing the right parent, 

(4) the number of the literal resolved upon in the right parent, 

(5) the number of literals in the resolvent, 

(6) the maximum index in the resolvent, 

(7) the bindings added during the unification for 
the resolvent. 

This is precisely the information in the clause representation described 

in detail in the next Section. 

1.7 The Details of the Representation 

By a clause record is meant either an input record or a resolvent record. 

An input record is a list of literals. A literal has a sign, which may be 

+ or -, and an atomic formula, which is a term in the sense of Section 1.2. 

Here are two input records: 

«+ (p X (F y»» 

«- (Q X X» (+ (p (F X) y» (+ (R (A) Z»). 

If IP is an input record, then LITCNT(IP) is the length of IP, and 

MAXINDEX(IP) is 1. 

By a resolvent record, R, is meant a structure with seven components. 

The components are described below and the name of the function which 

accesses each component is given in parentheses: 

(1) a clause record (LEFTPAR), 

(2) an integer (LEFTLIT), 

(3) a clause record (RIGHTPAR), 

(4) an integer (RIGHTLIT), 

(5) an integer (LITCNT) , 

(6) an integer (MAXINDEX), 

(7) a list of bindings (BINDINGS). 
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The function CONSCLAUSE takes seven arguments and constructs a clause 

record. 

By a binding is meant a record with four components. The components 

are as described below. 

(1) a variable (VCOMP), 

(2) an integer (VICOMP), 

(3) a term (TCOMP), 

(4) an integer (TICOMP). 

The function CONSBIND takes four arguments and constructs a binding record. 

The components of the resolvent record represent those objects listed 

at the end of Section 1.6. The components of a binding record represent 

those listed in Section 1.3. 

To obtain the expression for the Kth literal of a clause record, CL, 

GETLIT is used. GETLIT returns the term and index for the appropriate 

expression. NTHMEMB returns the nth member of a list. 

FUNCTION GETLIT K CL; 
V ARB TERM INDEX; 
IF ISINPUT(CL) 

THEN 1; NTHMEMB(K,CL); 
ELSEIF K < LEFl'LIT(CL) 

THEN GETLIT(K,LEFTPAR(CL»; 
ELSEIF K < LITCNT(LEFTPAR(CL» 

THEN GETLIT(K+1,LEFTPAR(CL»; 
ELSEIF K < LITCNT(LEFTPAR(CL» - 1 + RIGHTLIT(CL) 

THEN 
GETLIT(K-LITCNT(LEFTPAR(CL»+1,RIGHTPAR(CL» 

-> TERM -> INDEX; 
INDEX + MAXINDEX(LEFTPAR(CL»; 
TERM; 
ELSE 
GETLIT(K-LITCNT(LEFTPAR(CL»+2,RIGHTPAR(CL» 

-> TERM -> INDEX; 
INDEX + MAXINDEX(LEFrPAR(CL»; 
TERM; 
CLOSE; 

END; 
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To determine if V,I is bound in the global binding environment of 

the clause record BNDEV, ISBOUND is used. As defined below, ISBOUND has 

the same calling structure and results as previously defined. However, 

the definition below is in terms of the actual representation of binding 

environments. 

FUNCTION ISBOUND VAR INDEX; 
ISBOUND1(VAR,INDEX,O,BNDEV); 
END-, 

ISBOUND1 is a recursive function which inspects the bindings in BNDEV 

and then branches to the left or right parent if a binding is not found: 

FUNCTION ISBOUND1 VAR INDEX INCRMT BNDEV; 
IF ISINPUT(BNDEV) THEN FALSE; EXIT; 
FOREACH B IN BINDINGS(BNDEV); 
IF VAR = VCOMP(B) AND INDEX = VICOMP(B) 

THEN 
TICOMP(B) + INCRMT; 
TCOMP(B) ; 
TRUE; 
EXIT; 

CLOSE; 
IF INDEX =< MAXINDEX(LEFTPAR(BNDEV)) 

THEN 
ISBOUND1(VAR,INDEX,INCRMT,LEFTPAR(BNDEV)); 
ELSE 
ISBOUND1(VAR, 

CLOSE; 
END-, 

INDEX - MAXINDEX( LEFTPAR(BNDEV) ) , 
INCRMT + MAXINDEX( LEFTPAR(BNDEV) ) , 
RIGHTPAR(BNDEV)); 

To add a binding of V,I to T,J to BNDEV, BIND is used: 

FUNCTION BIND V I T J; 
CONS(CONSBIND(V,I,T,J),BINDINGS(BNDEV)) -> BINDINGS(BNDEV); 
END; 

To resolve two clause records, CL1 and CL2 on their Ith and Jth 

literals respectively, RESOLVE is used: 



FUNCTION RESOLVE CL1 I CL2 J; 
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI; 
GETLIT(I,CL1) -> LEFTTERM -> LEFTI; 
GETLIT(J,CL2) -> RIGHTTERM -> RIGHTI; 
CONSCLAUSE(CL1,I, 

CL2~J, 
LITCNT(CL1) + LITCNT(CL2) - 2, 
MAXINDEX( CL1) + MAXINDEX( CL2) , 
NIL) -> BNDEV; 

IF HD(LEFTTERM) /= HD(RIGHTTERM) AND 
UNIFY (HL (TL(LEFTTERM) ) , LEFT I , 

HD(TL(RIGHTTERM»,RIGHTI + MAXINDEX(CL1» 
THEN BNDEV; TRUE; 
ELSE FALSE; CLOSE; 

END' , 
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If the unification is successful, BNDEV is the clause record of the 

resolvent (UNIFY modifies its BINDINGS component with the function BIND). 

In this case, it is left on the stack along with TRUE. If the unification 

fails, FALSE is returned. The functions UNIFY and OCCUR are exactly as 

in Sections 1.4 and 1.3, except that they use the definitions of BIND 

and ISBOUND given in this Section. 

The most time consuming function in RESOLVE is the unification step. 

In particular, it should be noted that the clauses are standardized apart 

entirely by incrementing indices. Except for the exploration on the two 

literals by UNIFY, the work involved in creating the resolvent is indepen-

dent of the complexity of the two parents. No copying is done, and no 

substitutions are applied. 

Figure 1 exhibits a derivation involving three input clauses an~ 

four resolvents. The clause records, delimited by '<i and '>', are 

presentedtalong;with the clauses they represent. 

" The clauses labelled C1, C2, and C3 are input clauses. The four 

remaining clauses are generated by RESOLVE as follows: 

C4 = RESOLVE(C1,1,C2,2); 

C5 = RESOLVE(C1,1,c4,2); 



C1: «- (p x (F Y») (- (Q (F X) (F y»» 

C2: «+ (p X y» (+ (p Y X» (+ (Q X Y») 

C3: «+ (Q X (F X») (+ (Q X y») 

c4: < C1,1,C2,2,3,2,« X,2,(F Y),1 > < X,1,Y,2 » > 

C5: < C1,1,C4,~,3,3,« Y,3,(F Y),1 > < X,1,(F Y)~2» > 

c6: < C4,1,C3,1,3,3,« Y,1,(FX),1 >< X,3,(F'X),1,» > 

C7: < C5,1,c6,3,4,6,« Y,6,(F Y),1 > < Y,5,(F,Y:)~2 » > 

The records c4 through C7 represent the clauses: 
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c4: «- (Q (F Y2) (F Y1») (+ (p (F Y1 ) Y2» (+ (Q (F Y1) Y2») 

C5: «- (Q (F (F Y2» (F Y1») (- (Q (F (F Y1» (F Y2») 
(+ (Q (F Y2) (F Y1»» 

c6: «+ (p (F (F Y2» Y2» (+ (Q (F (F Y2» Y2» (+ (Q (F Y2) Y3») 

C7: (~- (Q (F (F Y1» (F Y2») (+ (Q (F Y2) (F Y1») 
(+ (p (F (F (F Y2») (F Y2») (+ (Q (F (F (F Y2») (F Y2»» 

The tree representing the derivation of C7 is: 

Figure 1. At the top are three input clauses and four clause records. 
The order of the components in the records is the same as that given 
in this Section. 



c6 = RESOLVE(c4,1,C3,1); 

C7 = RESOLVE(C5,1,C6,3); 
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It is useful to trace the descent of the third literal of C2 through 

the tree. In C2 it is represented by the expression T,1, where Tis: 

(+(QXY». 

In the binding environment of C2, this expression has the value: 

(+ (Q X1 Y1»· 
The descendant of this literal in clause c4 is the third literal of 

that clause. There the expression is T,2, and has the value: 

(+ (Q (F Y1) Y2». 
In C5 the term has index 3 and represents the third literal: 

(+ (Q (F Y2) (F Y1»). 
Meanwhile, back at c4, the expression T,2 descends along a different 

branch to become the second literal of C6, as the expression T,2: 

(+ (Q (F (F Y2» Y2». 
When C5 and c6 are resolved to form C7, the term T descends from 

both parents. With ;index 3 it represents the.second literal, and with 

index 5 it represents the fourth literal. In C7, T,3 has value: 

(+ (Q (F Y2 ) (F Y1»), 

and T,5 has value: 

In obtaining the value of T,3, bindings in C5 are used, while for T,5, 

bindings in c6 are used. In both cases, bindings in c4 are used. 

1.8 Notes on the General Representation 

Merging and factoring have been ignored up to this point. They 

present no difficulty however. In order to represent a merge, 
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or factor, some literal has to be deleted and some substitution applied. 

This can be done in structure sharing by providing a dummy input clause 

with one literal. In order to merge two literals in a clause, C, the 

unifying bindings are produced and a resolvent record is built which uses 

the dummy input clause as one of the parents, and C as the other. The 

BINDINGS are those produced by UNIFY. The literal in C resolved upon, 

LEFTLIT, is the one to be deleted. 

Since many components of resolvent records are small integers, it 

is possible to pack these so that the record requires very few machine 

words. An efficient POP-2 implementation of the representation described 

above requires 7+2n 24-bit words per clause, where n is the number of 

bindings produced by UNIFY. A machine code implementation of the general 

representation on a 36-bit word machine would require 2+n words per clause. 

Statistics have been obtained comparing this representation to two 

others, namely the most obvious list representation, and the most compact 

character array imaginable. The latter is extremely slow to use since most 

of one's time is spent parsing. Assuming a 36-bit word machine is used, 

structure sharing is 10 times more compact that character arrays (at 5 char

acters per word) and 50 to 100 times more compact than lists (at 1 cons per 

word). This is based on 3000 randomly generated clauses. 

Using the simple implementation described in this chapter, the program 

requires 160 milliseconds per unification (on the average). The average 

longest branch searched by ISBOUND was 8.3. The average function nesting 

depth was 5. For comparison purposes with other machines, it should be 

pointed out that these timings were done in POP-2 on an ICL 4130, where the 

time required to execute the POP-2 expression '1 + 2' in a compiled function 

body is 160 microseconds. 
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CHAPTER 2 MODIFICATIONS OF UNIFY AND OCCUR FOR EFFICIENCY 

2.1 UNIFY and its Variants 

There are four very similar procedures commonly found in resolution 

theorem provers. These are used for deciding whether some term, TERM1, 

unifies with a term TERM2, is identical to TERM2, is a variant of TERM2, 

or subsumes TERM2. 

It is obvious that two terms are identical if and only if they 

are unified by the empty substitution. Therefore, if binding is pro

hibited, the code for UNIFY can be made to perform the task of IDENT. 

However, binding can be prevented by simply redefining the function 

OCCUR so that it always returns TRUE. Since OCCUR must return FALSE 

if a binding is to be made, no binding will occur. If UNIFY must make 

a binding to succeed, it will call OCCUR, which will return TRUE, causing 

UNIFY to fail. 

In structure sharing it is possible to redefine OCCUR in two other 

ways to cause UNIFY to perform the tasks of VARIANT and TERMSUBSUME, 

provided TERM1 and TERM2 are standardized apart. 

Let TERM1 be the value of T1,I1 (in some binding environment), and 

let TERM2 be the value of T2,I2 (in the same binding environment). Assume 

that all the indices of T1,I1 are less than those of T2,I2. This can be 

arranged by incrementing indices provided the two terms ~e to be standardized 

apart. 

TERM1 is a variant of TERM2 if they are identical up to a one-to-one 

renaming of the variables of TERM1 onto those of TERM2. This means they 

are variants if and only if they are unified by a substitution which only 

binds variables from T1,I1 to variables from T2,I2, such that no variable 
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from T2,I2 appears as the term components of more than one binding in 

the SUbstitution. Since a redefinition of OCCUR can use the index 

of a variable or term to determine whether the variable or term has 

come from T1,I1 or T2,I2, such a function can be used to guarantee that if 

UNIFY succeeds, the substitution produced has the above form. 

Assume that BNDEV has been set as if the clauses from which T1,I1 

and T2,I2 come were to be resolved. Then OCCUR can allow a binding 

(that is, it can return FALSE) if and only if the index of the variable 

is less than or equal to MAXINDEX(LEFrPAR(BNDEV», the term is a 

variable, and the term is not already the term component of any 

binding in BINDINGS(BNDEV). A suitable definition of OCCUR for 

VARIANT testing is: 

FUNCTION VAROCCUR V I TERM J; 
IF ISVAR(TERM) AND I =< MAXINDEX(LEFrPAR(BNDEV» 

THEN 
FOREACH B IN BINDINGS (BNDEV) ; 
IF TERM = TCOMP(B) AND J = TICOMP(B) 

THEN TRUE; EXIT; 
CLOSE; 
FALSE; 
ELSE TRUE; CLOSE; 

END; 

Thus, T1,I1 from clause C1 is a variant of T2,I2 from clause C2 

if when BNDEV is set as it would be to resolve C1 and C2 and OCCUR is 

redefined as VAROCCUR above, UNIFY(T1,I1,T2,I2) returns TRUE. 

If TERM1 and TERM2 are standardized apart, TERM1 subsumes TERM2 if and 

only if they can be unified by a substitution that binds only variables 

from TERM1. Provided the indices of TERM1 are less than those of TERM2, 

a suitable definition of OCCUR for TERMSUBSUME is: 



FUNCTION SUBOCCUR V I TERM J; 
IF I ::< MAXINDEX(LE?rPAR(BNDEV)) 

THEN FALSE; 
ELSE TRUE; CLOSE; 

END' , 
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Thus, the procedure for determining whether one term subsumes another 

is exactly like the above description for VARIANT, except that the 

definition of SUBOCCUR is used as OCCUR in UNIFY. 

Being able to use the code for UNIFY in four distinct ways to 

provide four very basic resolution functions is a significant economy 

of space. It is possible because the index of an expression indicates 

the origin of the term in the derivation of the clause represented by 

BNDEV. 

2.2 Preprocessing Input Terms 

One of the most remarkable facts about structure sharing is that 

it is possible to preprocess the input terms in such a way that they 

can be thrown away before the search begins. The only information 

needed about any two terms in a pure resolution theorem prover is 

that needed to compute their most general unifier and to determine 

whether a given variable occurs in them. If one determines these 

things for the input terms, then one can do it for derived terms. 

Suppose that T1,1 and T2,2 in the empty binding environment 

are unified by the bindings in the list BINDLIST. FUrther, suppose 

that T1,I1 and T2,I2 in the binding environment BNDEV are to be unified. 

Let BINDLIST' be the result of replacing every occurrence of 1 as an 

index in BINDLIST by I1, and every such occurrence of 2 by I2. Then 

T1,I1 and T2,I2 are identical in any binding environment if and only 

if V,I and TERM,J are identical in that environment, for every binding 
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< V,I,TERM,J > in BINDLIST'. Thus, to unify T1,I1 and T2,I2 in BNDEV 

it is sufficient to treat BINDLIST' as a list of pairs of expressions 

which must be unified. 

An example should make this clear. Let T1,I1 be: 

(p (F (G X)) (G Y)),7 

and let T2,I2 be: 

(p (F y) Y),8. 

The list of bindings that unify T1,1 and T2,2 in the empty binding 

environment is BINDLIST: 

« Y,1,X,1 > < Y,2,(G X),1 ». 
Thus, BINDLIST' is: 

« Y,7,X,7 > < y,8,(G X),7 ». 

Then T1,I1 and T2,I2 in BNDEV may be unified by unifying Y,7 and X,7 

and Y,8 and (G X),7 in BNDEV. The point is that T1 and T2 do not have 

to be reexplored to determine how to unify them: a table-lookup of 

the original unifying substitution may be used. 

In the example above, Y,8 may be bound in BNDEV to, say, (G (G z)),6. 

Then when UNIFY(Y,8,(G X),7) is called, it will discover the binding and 

recursively try to unify (G (G z)),6 and (G X),7. It is clear that if 

the initial unifying substitution for (G (G Z)),1 and (G X),2 were available 

in a table, the procedure could be applied again. 

Except for OCCUR checking, the only thing needed to unify any two 

T1,I1 and T2,I2 is the initial unifier. 

If all the input terms are replaced by integers that denote their 

positions in a table of unifications, and if the bindings in the table 

are expressed in terms of these integers, then the terms themselves may 

be thrown away as far as unification is concerned. 
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The details are as follows. Associate with each of the N distinct 

terms in the input set an integer, called the position of the term. 

Let UNITABLE be an N x N array. UNITABLE(P1,P2) contains either the 

message that the term with position P1, index 1 does not unify with the 

term with position P2, index 2 in the empty binding environment, or a 

list of bindings unifying those two expressions. The bindings are of 

the form < V,I,P,J >, where V is a variable, P is a position (the 

position of the term to which V,I is bound), and I and J are each 1 or 2. 

Once UNITABLE is produced, the clauses can be replaced by lists of 

positive and negative integers. The absolute value of such an integer 

gives the position of the appropriate atom in the table, and the arithmetic 

sign gives the logical sign of the literal. The literal access function, 

GETLIT, is unchanged by this radical modification of input clauses. The 

function RESOLVE must check that the arithmetic signs of the two "literals" 

are opposite, and then call UNIFY on their absolute values and the normal 

indices. 

UNIFY is just as it was before, except that if neither term is a vari-

able, it retrieves the contents of UNITABLE(T~1,TERM2). If this is' 

a list, UNIFY recurses on each pair of expressions in the list, replacing 

the dummy indices 1 and 2 by the values of INDEX1 and INDEX2. The code 

is given belo~. RDUMMYIND is a function which replaces a dummy index by 

the proper one: 

FUNCTION RDUMMYIND DUMMY; 
IF DUMMY = 1 

THEN INDEX1; 
ELSE INDEX2; CLOSE; 

END; 



FUNCTION TABUNIFY TERM1 INDEX1 TERM2 INDEX2j 
LOOPIF ISVAR(TERM1) AND ISBOUND(TERM1,INDEX1) 

THEN -> TERM1 -> INDEX1; CLOSE; 
LOOPIF ISVAR(TERM2) AND ISBOUND(TERM2,INDEX2) 

THEN -> TERM2 -> INDEX2; CLOSE; 
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IF TERM1 = TERM2 AND INDEX1 = INDEX2 THEN TRUE; CLOSEj 
IF ISVAR(TERM1) 

THEN 
IF TABOCCUR (TERM 1 , INDEX 1 , TERM2, INDEX2) 

THEN FALSE; 
ELSE BIND(TERM1,INDEX1,TERM2,INDEX2); TRUE; CLOSE; 

ELSEIF ISVAR(TERM2) 
THEN 
IF TABOCCUR(TERM2,INDEX2,TERM1,INDEX1) 

THEN FALSE; 
ELSE BIND ( TERM2 , INDEX2 , TERM 1 , INDEX 1 ); TRUE; CLOSE; 

ELSEIF UNITABLE( TERM 1 , TERM2) = rttAIL" 
THEN FALSEj 
ELSE 
FOREACH B IN UNITABLE(TERM1, TERM2); 
IF NOT(TABUNIFY(VCOMP(B),RDUMMYIND(VICOMP(B)), 

TCOMP(B),RDUMMYIND(TICOMP(B)))) 
THEN FALSE; EXIT; 

CLOSE; 
TRUE; 
CLOSE; 

END; 

The preprocessing thus frees the unification algorithm from exploring 

the terms. Instead it jumps immediately to the position where they 

may not match and attempts to unify the critical terms. Furthermore, 

if two nested terms fail to unify initially, UNIFY does not recurse 

to discover it. Each term is initially explored and thereafter only 

the information gained by that exploration is needed. 

However, it is still necessary to be able to determine whether a 

variable occurs in the term with position P. This has a solution 

precisely parallel to the table driven unification. Each term is pre-

processed, and a list is formed containing the variables that occur 

in it. This list is stored at position P of the linear array of length 

N, OCCTABLE. 
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OCCUR then becomes a function with four arguments as before, V,I 

and P,J. However, now P can either be a variable or a positicn. If it 

is a variable, OCCUR is just as it was before. If it is a position, 

the contents of OCCTABLE(P) are retrieved and OCCUR recurses on each 

variable in that list. Once again, the preprocessing has prevented 

the exploration of the terms. 

The input terms can be completely discarded given the existence 

of UNITABLE and OCCTABLE. The only difficulty is that it is then 

impossible to print anything meaningful. However, UNIFY and OCCUR are 

several times faster, depending upon the function nesting in the input 

set and the degree of instantiation of the "typical" derived terms being 

unified. 

Below is an example of a set of input clauses preprocessed in the 

manner described. 

Let three of the clauses be: 

C1: «- (p (F X) X)) (+ (Q (G Y X)))), 

C2: «+ (p (A) (F X))) (+ (p (F (A))Y)) (- (Q (G (F X) (A))))), 

C3: «- (p (A) X)) (+ (Q (G X X)))). 

The association of terms to numbers (as assigned by the most obvious 

recursive function) is: 

.1 (p (F X) X) 

2 (F X) 

3 (Q (G Y X)) 

4 (G Y X) 

5 (p (A) (F X)) 

6 (A) 

7 (p (F (A)) y) 
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8 (F (A» 

9 (Q (G (F x) (A») 

10 (G (F X) (A» 

11 (p (A) X) 

12 (Q (G x X» 

13 (G X X) 

This association is used to print terms. 

The OCCTABLE has the following entries: 

I OCCTABLE(I) 

1 (X) 

2 (X) 

3 (X y) 

4 (X y) 

5 (X) 

6 NIL 

7 (y) 

8 (X) 

9 (X) 

10 (X) 

11 (X) 

12 (X) 

13 (X) 

Finally, the non-trivial elements of UNITABLE are as below. All other 

elements are the failure message. 
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I J UNITABLE(I,J) 

1 1 « X,1,X,2 » 

1 7 « Y,2,6,2 > < X,1,6,2 » 

2 2 « X,1,X,2 » 

2 8 « x,1,6,2 » 

3 3 « X,1,X,2 > < Y,1,Y,2» 

3 9 « x,1,6,2 > < Y,1,2,2 » 

3 12 « X,1,X~2> < Y,1,X,2 » 

4 4 « X,1,X,2 > < Y,1,Y,2 » 

4 10 « x,1,6,2 > < Y,1,2,2 » 

4 13 « X,1,X,2 > < Y,1,X,2 » 

5 5 « X,1,X,2 » 

5 11 « X,2,2,1 » 

6 6 NIL 

7 1 « Y,1,6,1 > < X,2,6,1 » 

7 7 « Y,1,Y,2 » 

8 2 «x,2,6,1 » 

8 8 NIL 

9 3 « x,2,6,1 > < Y,2,2,1 » 

9 9 « X,1,X,2 » 

10 4 « x,2,6,1 > < Y,2,2,1 » 

10 10 « X,1,X,2 » 

11 5 « X,1,2,2 » 

11 11 « X,1,X,2 » 

12 3 « Y,2,X,2 > < X,1,Y,2 » 

12 12 « X,1,X,2 » 

13 4 « Y,2,X,2 > < X,1,Y,2 » 
13 13 « X,1,X,2 » 
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The three input clauses become: 

C1: (-1 3), 

C2: (57-9), 

C3: (-11 12). 

To unify the first literal of C1 and the second literal of C2, with 

indices 5 and 8 respectively, TABUNIFY(1,5,7,8) is called. This retrieves 

UNITABLE(1,7): 

« Y,2,6,2 > < x,1,6,2 », 

and produces two recursive calls: 

TABUNIFY(y,8,6,8), and (if that succeeds) 

TABUNIFY(X,5,6,8). 

These two recursive calls use the same procedure. 

Note that TABUNIFY does not need to know that term 1 is: 

(p (F X) X), 

and term 7 is: 

(p (F (A» y). 

It only needs to know that to unify 1 and 7, the X must be unified 

with (A) and Y with (A). The original inspection of 1 and 7 detected 

that the pIS and F's were matched. 

The idea of preprocessing the input terms in this way was developed 

jointly by several members of the Department of Computational Logic, 

including Bob Kowalski, Bob Boyer, and Ed Wilson. In addition, 

J. van Vaalen, of Mathematisch Centrum, Amsterdam, contributed to this 

work during her visit to the Department of Machine Intelligence. 

2.3 Avoiding Unnecessary OCCUR Checks 

It is possible to significantly reduce the number of calls to OCCUR 

during a resolution unification by the following observation. If two 



42 

clauses are being resolved, they are standardized apart. Thus, a variable 

from the left-hand parent will not occur in a term from the right-hand 

parent unless during this unification, there has been a binding of a 

variable from the right to a term from the left. A similar statement 

holds for 1eft-to-right bindings. Once again, in structure sharing, 

this condition is easy to check. 

All bindings are made by the function BIND, which can use the 

indices to determine the origins of the variable and term. Let BIND be 

modified so that when the variable's index is greater than 

MAXINDEX(LEFTPAR(BNDEV)) and the term's index is less than or equal to 

MAXINDEX(LEFTPAR(BNDEV)), a right-to-1eft flag is set. This signifies 

that there has been a binding of a variable from the right to a term 

from the left. 

When OCCUR is called it can return FALSE if the variable's index 

is less than or equal to MAXINDEX(LEFTPAR(BNDEV)), the term's index is 

greater than MAXINDEX(LEFTPAR(BNDEV)), and the right-to-1eft flag is not 

set. Under these conditions, the variable (which is from the left) 

cannot possibly occur in the term (from the right). If the indices are 

not in the proper relationship, or the flag is set, the traditional 

(table-driven) OCCUR is called. 

Similar modifications are made for the symmetric, 1eft-to-right, case. 

The result is that the first OCCUR check in a resolution is always avoided, 

and the second is avoided 25 percent of the time. 

P. Roussel, of the Groupe d'Inte11igence Artificie11e, Universite 

d'Aix-Marsei11e, Marseille, has also made these observations, about OCCUR. 
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CHAPTER 3 MODIFICATIONS OF ISBOUND AND BIND FOR EFFICIENCY 

3.1 The VALUE Array 

A significant amount of time is spent in ISBOUND. However, if a 

clause is going to be used extensively, for example, involved in several 

resolutions, it can be processed so as to mak~ the time spent in ISBOUND 

insignificant. This is achieved by collecting all of the bindings made in 

the derivation,of the clause, and storing them (temporarily) in an array 

that allows direct access to them. This two dimensional array is called 

the VALUE array. Its columns are labelled by variables and its rows by 

indices. Conceptually, VALUE(V,I) contains either the atom UNBOUND, meaning 

V,I is not bound in the binding environment,BNDEV, of the clause, or it 

contains an expression, T,J, to which V,I is bound in BNDEV. Actually, 

it will contain the conventional four-tuple binding record. VCOMP and 

VICOMP of this record will always be V and I. The TCOMP component will 

contain either the message UNBOUND, or a term, and TICOMP will contain the 

index of the term. 

The following is the VALUE array as it would conceptually look if it 

were loaded with the bindings in the binding environment of C7 in Figure 1. 

x Y Z 

1 (FY) ,2 UNBOUND UNBOUND 

2 Y,3 UNBOUND UNBOUND 

3 (F Y),2 (F Y),1 UNBOUND 

4 Y,5 (F,X),4 UNBOUND 

5 (F Y),4 (FY) ,2 UNBOUND 

6 (F x),4 (F Y),1 UNBOUND 

7 UNBOUND UNBOUND UNBOUND 
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Note that when the bindings of RIGHTPAR of C7 are loaded, the indices 

are uniformly incremented by MAXINDEX of LEFTPAR, since this is how ISBOUND 

would interpret them from C7. 

The recursive function for loading the VALUE array, given a clause CL 

and an increment INC is just: 

FUNCTION LOAD CL INC; 
IF ISINPUT(CL) THEN EXIT; 
FOREACH B IN BINDINGS(CL); 
TCOMP(B) -> TCOMP(VALUE(VCOMP(B),VICOMP(B)+INC»; 
TICOMP(B) + INC -> TICOMP(VALUE(VCOMP(B),VICOMP(B)+INC»; 
CLOSE; 
LOAD(LEFTPAR(CL), INC); 
LOAD(RIGHTPAR(CL),INC+MAXINDEX(LEFTPAR(CL»)j 
END; 

To LOAD a clause into VALUE is considerably faster than checking ISBOUND 

just once for each variable in its representation, since each node in the 

tree is inspected exactly once. However, after the binding environment has 

been loade~, ISBOUND is an insignificant array access: 

FUNCTION VALISBOUND V Ij 
IF TCOMP(VALUE(V,I» = UNBOUND 

THEN FALSE; 
ELSE TICOMP(VALUE(V,I»j TCOMP(VALUE(V,I»j TRUEj CLOSEj 

ENDj 

If VALIS BOUND is used in place of ISBOUND in UNIFY, then BIND must be 

altered to modify the VALUE array rather than the BINDINGS list of BNDEV. 

Of course, the only thing that VALBIND (the VALUE array version of BIND) 

does is assign the term and index to the appropriate components of the 

VALUE cell determined by the variable and its index. The previous 

definitions of UNIFY and OCCUR will work as usual, but considerably 

faster. 

When the binding environment currently in the VALUE array is of no 

more interest (a search strategic decision) VALUE must be unloaded in 
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preparation for loading a new clause. The function UNLOAD does this; this 

function has the same structure as LOAD, except that it assigns UNBOUND to 

TCOMP of the appropriate VALUE cells. 

The VALUE array is particularly suited to depth first search. Assume 

that the resolvent, C3, of C1 and C2 is to be the left parent of the next 

resolvent, and assume that C1 is already loaded in preparation for resolu-

tion with C2. If C2 is loaded into the VALUE array with its index incre-

mented by MAXINDEX(C1), then the array will contain the proper environment 

for the unification step for forming C3. If VALISBOUND and VALBIND are 

used, then when the unification is completed, VALUE contains the binding 

environment for C3. Thus, C3 is now properly loaded as the left parent of 

the next resolvent. 

As outlined above, it is impossible to recover the list of bindings 

produced by unification. To do this, VALBIND must also keep a record of 

the VALUE cells it modifies. The most natural way to do this is to keep 

pointers to the cells on a pushdown stack. Let BINDSTACK be a pushdown 

stack with stack pointer BINDPTR. Let PUSH be a function which pushes 

its first argument on the stack pointed to by its second argument. Then 

VALBIND may be defined as: 

FUNCTION VALBIND V I TERM J; 
TERM -> TCOMP(VALUE(V,I)); 
J -> TICOMP(VALUE(V,I))j 
PUSH(VALUE(V,I),BINDSTACK)j 
END· , 

To recover the substitution produced by UNIFY and written into the 

VALUE array by VALBIND, the value of BINDPTR should be saved before the 

unification is initiated. After the unification is completed, the bindings 

on BINDSTACK between the top of the stack (BINDPTR) and the old value of 
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BINDPTR are the appropriate bindings. Note that if the bindings are collected 

to store in the BINDINGS component of a clause record, the bind records 

must be copied (since to share the bind records with the VALUE array would 

be disastrous). The function GETBINDS collects the bindings and returns 

them in a list. 

FUNCTION GETBINDS OLDPTR; 
VARS SAVEPTR BINDLIST; 
BINDPTR -> SAVEPTR; 
NIL -> BINDLIST; 
LOOPIF BINDPTR / = OLDPTR 

THEN 
CONS(COPYBINDS(POP(BINDSTACK)),BINDLIST) -> BINDLIST; 
CLOSE; 

SAVEPTR -> BINDPTRj 
BINDLIST; 
ENDj 

An additional complication of using the VALUE array is that if E, 

unification fails, the BINDSTACK must be used to reset the VALUE cells 

modified before the failure occurred. The function UNBIND does thisj 

it merely writes UNBOUND into the TCOMP component of each cellon 

BINDS TACK between the current pointer and the saved one. The stack 

pointer is restored to its previous configuration. 

FUNCTION UNBIND OLDPTRj 
LOOPIF BINDPTR /= OLDPTR 

THEN 
UNBOUND -> TCOMP(POP(BINDSTACK))j 
CLOSEj 

END; 

BINDSTACK and UNBIND can be used to write very efficient and elegant 

recursive programs for depth-first search. Below is a description of a 

recursive factoring routine, which factors the factors as they are produced. 

Suppose that the clause being factored is initially loaded into the VALUE 

array. 
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Upon entry to FACTOR, the current value of BINDPTR is saved in 

OLDBINDPTR.· Then a two pointer search through the pairs of literals in 

the clause is started. Unification is attempted on those literals \<l:i.th 

with the same sign. If a unification succeeds, the VALUE array will have 

been modified by the UNIFY so that it is properly loaded for the factor. 

The program then forms the record for the factor, deleting the appropriate 

literal, stores the clause produced on an answer list, and then calls 

itself recursively on the factor. When the recursive call returns, 

the routine uses UNBIND between BINDPTR and OLDBINDPTR to restore VALUE 

to its configuration before the unification. The two pointer search is 

then continued. When finished, the routine exits with VALUE in precisely 

the configuration it was in upon entry. 

A very similar recursive routine for subsumption checking can be 

written using TERMSUBSUME, defined in Chapter 2. 

The VALUE array can be created once and for all at the beginning of 

a theorem proving session, and can be used to make the processing of any 

clause (or set of clauses) very efficient. It also prevents the allocation 

of space during unifications which fail. A theorem proving program running 

with structure sharing and a VALUE array requires additional space only 

when the decision to keep a clause has been made. No space is required 

during the unification process itself. This makes the garbage collection 

behaviour of the program very efficient. Finally, the VALUE array means 

that the binding information in a clause record can be efficiently packed 

without sacrificing processing time in using the clause. 
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CHAPTER 4 COMBINING COMPUTATION AND DEDUCTION 

4.1 Restrictor Functions 

It is sometimes useful to attach recommendations to a clause as to 

how it should be used. A good example of this occurs in the Blind Hand 

Problem by Robin Popplestone (Michie et al., 1972). One of the axioms 

in this problem is: 

«- (AT X Y Z» (+ (AT X Y (DO (LETGO) Z»», 

which means that if X is at place Y in situation Z, then it is still at 

Y in the situation that results if a LETGO action is performed in situa

tion Z. This is a "frame axiom" used to ensure that a LETGO does not 

change the positions of objects. However, it has the property that it 

can be resolved with itself, or several similar axioms, to produce 

literals of the form: 

(+ (AT X Y (DO (LETGO) (DO (LETGO) (DO ••• »») 

involving a situation term of little or no use. 

While this problem can be solved by reformulating the axioms, it 

is very natural to simply attach some restrictions on the use of the 

axioms. A particularly simple approach is to require that Z above never 

be bound to a term of the form (DO (LETGO) ••• ). 

Of course, this restriction cannot be checked merely when the axiom 

is used. For instance, when the axiom is resolved with, Z may get bound 

to some free variable, Z', and later, Z' may be bound to (DO (LETGO) ••• ). 

Another possibility is for Z to be bound to (DO Z' ••• ) when the axiom is 

used, and for Z' to be bound to (LETGO) later. The point is that these 

restrictions must be checked throughout the derivation. 
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Thus, if Z is bound to any term, T, with free variables, Z., then 
J. 

the relationship between Z and the Z. must be known to the routine that 
J. 

enfor"ces restrictions, since binding the Z. affects the value of Z. 
J. 

Furthermore, to detect whether some variable, Z, has a restriction on it, 

the input clause from which Z descended must be known, since presumably 

the restriction will be found there. Clearly, structure sharing is 

called for. 

Assume throughout the following that the VALUE array is being used. 

Let a restriction be expressed in terms of a function which is called on 

two arguments, a term and an index, and returns TRUE or FALSE. Assume 

that it is possible to optionally associate with any variable in an input 

clause a restrictor function which returns TRUE if and only if the current 

value of the expression represented by the arguments is a permitted binding 

of the variable concerned. (Restrictor functions usually inspect the VALUE 

array and are associated with variables via an association list stored with 

the input clause.) 

Let LINKARRAY be an array of the dimensions of VALUE. It will be used 

to hold a possibly empty list of variables whose values are affected by 

the value of each V,I in the array. 

Let RESTARRAY be an array of the dimensions of VALUE. It will be used 

to hold a possibly empty l~ of restrictions on V,I. 

The function LOAD must be modified so that when it loads an expression 

T,J with variables Z1' ... , Z n in T, into VALUE(V,I), it adds V,I to the 

lists in LINKARRAY(Z. ,J) for i = 1 to n. When LOAD encounters an input 
J. 

clause it retrieves the association list of restrictor functions for 

variables in that clause and for each pair (V.f) on the list, it adds f 
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to RESTARRAY(V,INC+1), where INC is the increment at which the clause is 

being LOADed. f is supposed to be a function of two arguments, which 

returns TRUE if and only if its arguments represent an expression whose 

value is a permitted instantiation of the variable V. 

The definition of LOAD is: 

FUNCTION LOAD CL INCj 
IF ISINPUT(CL) 

THEN 
FOREACH PAIR IN RESTFNS(CL) j 
CONS(BACK(PAIR),RESTARRAY(FRONT(PAIR),INC+1)) 

-> RESTARRAY(FRONT(PAIR),INC+1)j 
CLOS~j 
EXITj 

FOREACH B IN BINDINGS(CL)j 
TCOMP(B) -> TCOMP(VALUE(VCOMP(B),VICOMP(B)+INC))j 
TICOMP(B)+INC -> TICOMP(VALUE(VCOMP(B),VICOMP(B)+INC))j 
ADDLINKS(VCOMP(B),VICOMP(B)+INC,TCOMP(B),TICOMP(B)+INC)j 
CLOSEj 
LOAD(LEFTPAR(CL),INC)j 
LOAD(RIGHTPAR(CL),INC+MAXINDEX(LEFTPAR(CL)))j 
END-, 

where the function ADDLINKS adds a new set of links to LINKARRAY: 

FUNCTION ADDLINKS V I T Jj 
IS ISVAR(T) 

THEN 
CONS(CONSPAIR(V,I),LINKARRAY(T,J)) -> LINKARRAY(T,J)j 
ELSE 
FOREACH ARG IN TL (T) j 
ADDLINKS(V,I,ARG,J)j 
CLOSEj 
CLOSEj 

ENDj 

Thus, if V,I is on the list in LINKARRAY(Z,J), then the value of V,I 

is affected by that of Z,J. That is, when the value of Z,J is instantiated, 

then so is that of V,I. If FOO is a function on the list in RESTARRAY(V, I) , 

then FOO is a restrictor function which must "approve" of the value of V,I. 

In particular, FOO must approve of any changes in the value of V,I pro-

duced by instantiation. 
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For example, assume that Y,8 is bound to (DO Y (NOW)),7, with 

Y,7 free, and assume that FOO is a restrictor function on Y,8 that 

prohibits it from being bound to a term with value of the form 

(DO (LETGO) ••• ). LINKARRAY(Y,7) will contain y,8 (and perhaps 

other variable expressions), and RESTARRAy(y,8) will contain ]UO 

(and perhaps other restrictor functions). 

If Y,7 is to be bound to (LETGO), it must be "satisfied" with 

that value. That is, all of the restrictions in RESTARRAY(Y,7) must 

be met when that binding is in force. Furthermore, all of the variables 

in LINKARRAY(Y,7) must also be satisfied with their new values. In 

particular, even if the restrictions on Y,7 permit it to be bound to 

(LETGO), Y,8 must be satisfied with that binding in force. So the 

restrictions in RESTARRAY(Y,8) must be checked and FOO will be found. 

FOO will discover that the new value of Y,8 is (DO (LETGO) (NOW)), 

and will return FALSE. Thus, Y,8 is not satisfied with its value, 

so neither is Y,7. The result is that Y,7 cannot be bound to (LETGO). 

The above sketch should suggest the necessary modifications to 

BIND and UNIFY. When BIND is called on V,I and T,J, it should temporarily 

insert T,J into VALUE(V,I) and then call the new function ISSATISFIED 

on V,I to see if V,I is satisfied with its value. 

The function ISSATISFIED takes a variable and index as arguments 

and retrieves the list of restrictions on the variable expression. If 

all of the restrictions are met, it retrieves the list of linked variables 

and recursively determines whether each of them is satisfied. If so, 

it returns TRUE. Otherwise, it returns FALSE. 



FUNCTION ISSATISFIED V I; 
FOREACH RESTFN IN RESTARRAY(V,I); 
IF RESTFN(V,I) = FALSE 

THEN FALSE; EXIT; 
CLOSEj 
FOREACH PAIR IN LINKARRAY(V,I)j 
IF ISSATISFIED(FRONT(PAIR),BACK(PAIR)) = FALSE 

THEN FALSE; EXIT; 
CLOSE; 
TRUE; 
END; 
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If BIND finds that ISSATISFIED returns FALSE, it must remove T,J 

from VALUE(V,I) and return FALSE to UNIFY. Otherwise, BIND must update 

LINKARRAY for the new binding (adding V,I to the lists associated with 

the variables in T), and return TRUE to UNIFY. 

Thus, the definition of BIND is now: 

FUNCTION BIND V I T J; 
V ARS OLDPTR; 
BINDPTR -> OLDPTR; 
T -> TCOMP(VALUE(V,I)); 
J -> TICOMP(VALUE(V,I)); 
PUSH(VALUE(V,I),BINDSTACK); 
IF ISSATISFIED(V,I) 

THEN ADDLINKS(V ,I ,T ,J); TRUE; 
ELSE UNBIND(OLDPTR); FALSE; CLOSE; 

END; 

UNIFY must treat BIND as a predicate with side-effects. If BIND returns 

TRUE, then the VALUE array has been updated to cause the binding, and all 

restrictions have been met, so UNIFY can return TRUE. If BIND returns 

FALSE, the VALUE array is unchanged because some restriction was violated 

by the desired binding, and UNIFY must return FALSE, just as if V,I had 

occurred in T,J. 

While involving substantial modifications of several routines, the 

inclusion of restrictor functions is extremely natural to structure sharing. 

In addition, the axiom writer is given great flexibility. In particular, 

he is able to impose restrictions on the use of the axioms in a way that 
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is powerful and intuitive. Furthermore, the restrictions are implemented 

as computational steps rather than derivational ones. 

The Blind Hand Problem, referred to earlier, provides a good example 

of the use of restrictor functions. The refutation of this set of axioms 

is known for its difficulty. An SL-resolution theorem prover, using a 

depth-first search with depth limit 17 (the depth of the refutation) generated 

30000 clauses without finding a proof. However, very intuitive restrictor 

functions permitted the same program to find a proof after about 30 clauses. 

This is the only known, fully automatic, first order proof of this theorem. 

The restrictor functions used were as follows. If Z occurred in an 

input term of the form (DO (LETGO) Z), the restriction on Z was that it 

could not be bound to a term which had a (LETGO) action in it unless that 

(LETGO) was succeeded by a (PICKUP) in the term. Thus, the action (LETGO) 

was not allowed unless a (PICKUP) had occurred after the last (LETGO) in 

the situation. A similar restriction on (PICKUP) was imposed, and (GO ••• ) 

was allowed only if some other action had occurred after the last (GO ••• ). 

These functions are trivial list processing (shared structure processing) 

functions which inspect expressions. Their effects were dramatic. 

The mechanisms set up to handle restrictor functions have a more 

general application, described in the next Section. 

4.2 Automatic Evaluation 

In many kinds of problems axiomatized for automatic theorem provers, 

it is necessary to include axioms for arithmetic, even though they are 

only to be used to compute trivial arithmetic facts, such as: 

(GT (ADD 3 4) 5). 

Arithmetic is one of many domains where it is easier to compute the 

valuesof certain expressions than it is to derive them. It turns out that 
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it is trivial to use the mechanisms described above to allow the automatic 

evaluation of terms upon instantiation of their arguments. 

Assume that x,8 is bound to (ADD Y 4),7, and that Y,7 is to be bound 

to the constant 3. Then x,8 is on the list in LINKARRAY(Y,7). When 

ISSATISFIED inspects that list, after BIND binds Y,7 to 3, it can discover 

that the value of x,8 is (ADD 3 4). If a procedure for evaluating a 

ground term with function symbol ADD is available to ISSATISFIED, 

it could be activated, with arguments 3 and 4, and cause x,8 to be rebound 

to 7. 

Now if x,8 occurred in another term, for example, (GT X 5),8, then 

the recursive call of BIND used to rebind x,8 to 7, would cause the GT 

evaluation function to be applied just as the ADD evaluation function was. 

Thus, (GT X 5),8 would be changed from (GT (ADD Y7 4) 5) to (GT 7 5) to TRUE, 

simply by the binding of Y,7 to 3 and evaluation. 

It is therefore quite easy to add automatic evaluation of terms when-

ever they become instantiated in such a way as to allow evaluation to take 

place. The RESTARRAY and LINKARRAY mechanisms, together with ISSATISFIED 

in BIND, provide the necessary mechanisms. The only new idea is the re-

binding of a variable. 

In order to replace (ADD 3 4) by its value, it was essential that it 

be bound to some variable. This means that input clauses have to be re

structured to be lists of literal'~emplate~ with binding environments to 

properly instantiate them. If evaluation is to proceed all the way to 

the literals, then even the literals must be variable expressions bound 

to the desired expressions. 

That is, if (+ (GT (ADD X y) Z)) is an input literal, it would have 

been previously represented by the list (+ (GT (ADD X y) Z)). To allow 
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it to be partially evaluated as X, Y, and Z are instantiated, it must 

be represented by some variable expression, X,n, where X,n is bound to 

(+ X),m, X,m is bound to (GT X Y),k, and X,k is bound to (ADD X Y),l. 

Thus, the value of X,n is (+ (GT (ADD Xl Yl ) Yk», and any subterm 

can be evaluated and replaced by binding. An input clause become~ 

a list of variable expressions and a list of bindings as in the general 

resolvent. The maximum index of an input clause is, of course, no 

longer 1. The function that decomposes a list expression into this 

form is straightforward. 

This modification allows paramodulation to be implemented using 

structure sharing. 

One ramification of this representation is that there now need be 

only one term for each function symbol, that is, only one (GT X y) 

template \ and only one (ADD X y) template. The input atoms: 

(GT (ADD X 0) Z) 

and 

(GT X (ADD Y y» 
are actually composed of identical terms with different instantiations. 

Integers become very natural representations for these unique templates. 

Evaluation procedures must be associated with function symbols so 

that ISSATISFIED can detect that a term has an evaluation procedure. In 

current implementations, the procedure is given the same name as the 

function symbol, and ISSATISFIED merely checks to see if there is a functiol~ 

in the system with the appropriate name. 

The definition of ISSATISFIED is given'below~ The first half of 

the funotion is:as in the'original definition.' The la.st half is concerned 
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with evaluating terms. The function EVALUATE is used to clarify the 

code. What this function does is take a variable and index as arguments 

and attempt to evaluate it. The term to which the variable expression 

is bound is retrieved and if an evaluation function is associated with 

its function symbol, this function is called on the expressions repre-

senting the arguments. This evaluation function must retrieve the bindings 

of any variables in these expressions. If the function returns the special 

atom UNDEF, it means the arguments were not such that the function was 

applicable (for example, the evaluation function for ADD returns UNDEF 

if one of the argument expressions is an unbound variable). The 

special atom FAIL is returned if one of the arguments is "illegal". 

The evaluation function for DIVIDES returns FAIL if its second argument 

has the value O. Otherwise, the evaluation function is assumed to 

return a new term and index, representing the new value the evaluated 

expression is to be replaced by. 

FUNCTION ISSATISFIED V I; 
V ARB NEWTERM NEWINDEX; 
FOREACH RESTFN IN RESTARRY(V,I); 
IF RESTFN(V,I) = FALSE 

THEN FALSE; EXIT; 
FOREACH PAIR IN LINKARRAY(V,I); 
IF ISSATISFIED(FRONT(PAIR),BACK(PAIR» = FALSE 

THEN FALSE; CLOSE; 
CLOSE; 
EVALUATF.(V,I) -> NEWTERM -> NEWINDEX; 
IF NEWTERM = FAIL 

THEN FALSE; EXIT; 
IF NEWTERM / = UNDEF 

THEN 
IF BIND(V ,I ,NEWTERM,NEWINDEX) = FALSE 

THEN FALSE; EXIT; 
CLOSE; 

TRUE; 
END; 



An example of an evaluation function for ADD is: 

FUNCTION ADD ARG1 INDEX1 ARG2 INDEX2; 
LOOPIF ISVAR(ARG1) AND ISBOUND(ARG1, INDEX1) 

THEN -> ARG1 -> INDEX1; CLOSE; 
LOOPIF ISVAR(ARG2) AND ISBOUND(ARG2,INDEX2) 

THEN -> ARG2 -> INDEX2; CLOSE; 
IF ISNUMBER(ARG1) AND ISNUMBER(ARG2) 

THEN 
DUMMYINDEX; 
ARG1 + ARG2; 
ELSE 
DUMMYINDEX ; 
UNDEF; 
CLOSE; 

END; 
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DUMMYINDEX is just any index whatsoever. An evaluation function must 

return two arguments (according to the conventions used in ISSATISFIED) 

arid in either case above, the value of the index does not matter. 

Note that in the definition of ISSATISFIED, BIND is called to 

rebind V,I to its new value. This recursive call of BIND may well 

set off further evaluations (since BIND calls ISSATISFIED to check the 

repercussions of a binding). It is in this way that the evaluation 

of a term propagates through all of the terms involving that term. 

Rebinding is somewhat complicated because now UNBIND must not 

merely reset a modified VALUE cell to UNBOUND, but must restore the 

previous binding. If V,I is bound to T,J and is to be rebound to 

T',J', then T',J' should be assigned to the TCOMP and TICOMP compo-

nents of VALUE(V,I). However, an UNBIND must restore T,J. The most 

natural way to do this is to push T,J onto the BINDSTACK stack, along 

with the cell modified. UNBIND then simply pops three things off the 

stack and assigns the last two (T and J) to the appropriate components 

of the first (the VALUE cell modified). Adding the rebindings to the 



BINDINGS component of the new clause record in the normal way allows 

ISBOUND to correctly fetch the latest binding (as LISP's ASSOC does). 

However, LOAD must be modified so as to not overwrite a new binding 

with an older one encountered later in its recursion. 

Automatic evaluation can be made to subsume certain restriction 

functions since ISSATISFIED recognizes the FAIL result of evaluation. 

Thus, in order to enforce a certain restriction on the syntax of 

all terms starting with some function symbol, regardless of what 

clauses are involved in the derivation of the terms, an; evaluation 

function for the function symbol will do the job. For example, 

in the Blind Hand Problem discussed in the last Section, an-evaluation 

function on DO which returns FAIL whenever the nested situations 

contain illegal action sequences will cause the same behaviour as 

the restrictor functions described. 

The main point of this Chapter has been to illustrate that 

structure sharing allows computationally defined symbols to be 

mixed arbitrarily with logically defined ones. This mixing of compu

tation and deduction allows the axiom writer greater flexibility in 

controlling the use of his axioms and greater power in specifying the 

desired behaviour of certain terms. Furthermore, this mix can be 

efficiently implemented with structure sharing. 
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CHAPTER 5 THE SL-RESOLUTION IMPLEMENTATION 

5.1 Introduction to SL-resolution 

Readers familiar with SL-resolution will find the notation in the 

following description somewhat different from that used by Kowalski 

and Kuehner (1971). However, it is felt that this notation helps 

clarify the representation of clauses. 

SL-resolution operates on chains. A chain is composed of cells, 

which contain literals. Cells will be separated by a slash ('I'). 

The left-most cell in a chain is called the most recent cell. A chain 

is thus of the form: 

ABC IDE I, 

where A, B, C, D, and E are literals. 

Before a chain may be resolved with an input clause, a literal 

from the most recent cell must be selected. This selected literal 

must be the literal resolved upon in all resolutions of the chain. 

The selected literal of a cell is denoted by underlining it: 

A]!C/DE/. 

SL has three operations on chains. Extension corresponds to 

resolution with an input clause. Reduction is similar to factoring 

but also replaces ancestor resolution. Truncation is a bookkeeping 

device for chains. 

To extend upon a chain, C, with selected literal L, an input 

clause B is used. B must contain some literal K of sign opposite 

that of L, such that the atoms of K and L unify via most general 

unifier if. The result of extending C (the nearparent) by B (the 
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input, or farParent) is the chain 0' cr , where 0' is the chain whose 

most recent cell is composed of all of the literals in B except K, and 

the remainder of 0' is just O. For example, extending A B 0 / D E / 

with the input clause -B G H, yields: 

G H / A B 0 / D E /. 

The selected literal, L, in 0 is called an A-literal (A for 

ancestor) in chain 0'. Note that in the above example, either G 

or H must be chosen as the selected literal before the chain can be 

used in extension. 

A chain is admissible if and only if no two literals in any 

cells of the chain have identical atoms. A chain may be extended 

upon only if it is admissible and the most recent cell is non-empty. 

A chain 0 may be reduced if the atom of some literal L in the 

most recent cell unifies with the atom of an A-literal (other than 

the most recent) of opposite sign, or a non-A-literal (other than 

another most recent one) of the same sign. The result of such a 

reduction is the chain obtained by deleting L from 0 and applying the 

unifying substitution. 

The first case defined above is called ancestor reduction and 

performs the function of ancestor resolution in other linear systems. 

The other case is the usual factoring. Two examples of reduction are: 

ABO / £ B / reduces to A 0 / £ B / ( factoring) 

ABO / DE/ F -B / reduces to A C / D E / F -B / 
(ancestor redu.ction) --

The final operation in SL is truncation. A chain must be truncated 

when the most recent cell is empty. This condition can be caused by 
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extension with a unit clause, reduction of all the most recent literals, 

or truncation. The result is simply the chain obtained by deleting the 

(empty) first cell and deleting the A-literal from the exposed cell 

(which is now the most recent). Thus, 

I ABO IDE I truncates to A 0 IDE I, - - -
and 

I ~I D!I truncates to D I. 
An example of an SL derivation follows. Let (1) through (6) 

be ground input clauses: 

(1) -A B 

(2) -B 0 

(3) -0 D 

(4) -D A 

(5) A 0 

(6) -B -D 

Below is a refutation of this set of clauses in SL format: 

-~ -D I top chain (6) 

-! I -~ -D I extension with (1) 

-D I -! I -B -D I extension with (4) 

I -! I -B -D I reduction 

-Q, I truncation 

-0 I -Q, I extension with (3) 

-~ I -£ I -Q, I extension with (2) 

-A I -~ I -£ I -Q, I extension with (1) 

01 -!I -~I -£1 -Q, I extension with (5) 

I -! I -~ I -£ I -Q, I reduction 

D truncation 
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Of course, in general, the unifying substitution must be applied to 

chains produced by extension and reduction. Readers interested in a 

formal account of SL-resolution should consult Kowalski and Kuehner 1971 • 

5.2 The Implementation 

Before discussing the details of the structure sharing implementa

tion of SL-resolution, several points should be brought out. 

(1) Since SL derivations are truly linear, the right parent is 

always an input clause. Therefore, its maximum index will be 1. When 

a clause is extended, all of the variables in the right parent will have 

index MAXINDEX(LEFTPAR(CL)) + 1, where CL is the nearparent. 

(2) Since some literal in the most recent cell in any derived 

clause must be marked as the selected literal, some component of the 

clause record must be reserved for this. However, no information must 

be stored in a resolvent's representation describing which literal from 

the left parent was resolved upon, since it will always be the selected 

literal of that parent. 

(3) Both reduction and truncation remove only literals from the 

most recent cell. Thus, every cell in an SL chain is just a subset of 

the literals in the input clause that gave rise to that cell by extension. 

To specify the literals in a cell a bit string or logical word can be 

used to "mask" the original input list of literals. Removing a literal 

will then be simply turning off the appropriate bit in the mask. 

Another mask can be used to specify the selected literal. 

The representation of an input clause is just as it was in the 

general case. The representation of an SL derived chain is a record with 

the following components. 



(1) the left parent (a clause record) (LEFTPAR) 

(2) the input clause supplying the literals in the current 
cell (RIGHTPAR) 

(3) a logical word with bit n on if and only if the nth 
literal in the list specified by RIGHTPAR is in the 
current cell (CELLMASK) 

(4) a logical word with bit n on if and only if the nth 
literal in RIGHTPAR is the selected literal for the 
current cell (SELMASK) 

(5) the index for the literals in the current cell 
(CELLINDEX) , 

(6) a list of bindings as in the general case (BINDINGS) 

If CL is an SL derived clause record, then the components of it 

describe the leading cell in the bhain represented by CL. In particular, 

each literal in the the cell is represented by an expression of the 

form T ,CELLINDEX(CL), where T is the nth literal of RIGHTPAR(CL) and 
n n 

the nth bit of CELLMASK(CL) is on. The literal is the selected 

literal of the cell if the nth bit of SELMASK(CL) is on. The binding 

environment is, as expected, the BINDINGS of CL along with the binding 

environment of LEFTPAR(CL). 

The basic idea is that a record, CL, should represent a cell and 

then point, via LEFTPAR, to the chain from which CL was derived. That 

chain will contain the additional cells in the chain represented by CL. 

If a cell is to be changed, for example, a literal deleted by reduction, 

a new record is built to specify the new cell. The old record cannot 

be modified since it might be used differently in another derivation. 

But the new record must point back to the old one, to ensure that the 

bindings there are available. Thus, the cell specified by the old record 

should not always be included in the chain represented by the new one. 
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As in the general case, an SL record simultaneously represents an SL 

chain and the derivation of that chain. The derivation will contain cell 

descriptions of cells no longer in the chain. Such cells are implicitly 

marked by their indices, as will become clear in the description of the 

SL operations, below. 

To represent the extension, CL', of some chain, CL, a record is built 

which refers to the appropriate input par-ent with RIGHTPAR, and masks off 

the appropriate literals in it with CELLMASK. CELLINDEX is set to one 

plus the maximum index found in the records in the structure CL, and 

BINDINGS are those produced by unification. The LEFTPAR of CL' is CL, 

indicating that the rest of the cells in CL' are those of CL, and that 

the rest of the bindings come from CL. SELMASK is set according to 

whatever literal is to be selected. 

To represent a reduction of CL, a new record, CL', is built which 

has the same RIGHTPAR and CELLINDEX as CL (to specify the same literals 

as composing the new version of the most recent cell), and CELLMASK is 

the same except that the single bit corresponding to the reduced literal 

is turned off. The BINDINGS are produced by unification, and LEFTPAR 

points to CL to indicate that the rest of the cells in the chain repre

sented by CL' are found in CL (as well as the bindings). However, now 

CL'specifies the form of the leading cell, and the fact that the indices 

of CL and CL' are the same indicates that they are different versions of 

the "same" cell. The cell specification in the record CL will be ignored 

when exploring for cells in CL'o 

To represent a truncation of CL, a new record, CL', is built which 

has as RIGHTPAR and CELLINDEX the same components of the first record 
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OL", in the chain of OL which has a literal in it other than the one 

marked by SELMASK. The CELLMASK of CL'is the same as for CL", except 

that the selected literal bit in it is turned off. BINDINGS is always 

NIL in a truncation. LEFTPAR points to CL (rather than LEFTPAR(CL")) 

since the bindings in the derivation of CL are still relevant. However 

any cell in the chain of CL with index higher than that of CL" is ignored 

since it has been truncated. 

Thus, the cells in the chain represented by any CL' are: the cell 

specified by CL' and the cells in the chain represented by the first 

record with CELLINDEX strictly less than that of CL' in the list of 

records linked via LEFTPAR from CL'. 

If the CELLINDEX of CL' is strictly greater than that of LEFTPAR(CL') 

OL' is an extension of LEFTPAR(CL'). If equal, CL' is a reduction of 

LEFTPAR(CL'). If less than, CL' is a truncation of LEFTPAR(CL'). 

While the functions BIND, OCCUR, and UNIFY are exactly the same 

as in the general case, the functions ISBOUND and GETLIT are slightly 

different (and more efficient). 

ISBOUND no longer has to decrement the index of the variable, since 

it must always loop down the left branch. It never has to be prepared to 

jump down the right branch, since that is always an input clause. 

GETLIT merely runs down the cells in the chain represented by 

the record specified, counting the number of bits on in the CELLMASKs 

until it finds the appropriate cell. The literal is then masked out of 

the parent and the index is just the CELLINDEX of the record involved. 

Below is an example of an SL derivation including extension, 

reduction, and truncation. 



01: «+ (Q (A) X» (+ (p y») 

02: «- (p (F X») (+ (R X X») 

03: «+ (Q X (F (B»» (- (R (A) y») 

04: < NIL,C1,110,010,1,NIL > 

05: < C4,C2,010,010,2,« Y,1,(F X),2 » > 

06: < C5,03,100,000,3,« Y,3,(A),3 > < X,2,(A),3 » > 

07: < c6,c3,000,000,3,« X,1,(F (B»,3 > < X,3,(A),1 » > 

08: < C7,C1,100,100,1,NIL > 

c4: (+ (Q (A) X1» (+ (p Y1» / 

«- (p (F X2») (+ (R X2 X2») 

extension 

C5: (+ (R X2 X2» / (+ (Q (A) X1» (+ (p (F X2») / 

«+ (Q X3 (F (B»» (- (R (A) Y3») 

extension 
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(+ (Q X3 (F (B»» / (+ (R (A) (A») / (+ (Q (A) X~» 

\ 
(+ (p (F (A»» / 

reduction 

C\: / (+ (R (A) (A») / (+ (Q (A) (F (B»» (+ (p (F (A»» / 

\ truncation 

c8: (+ (Q (A) (F (B»» / 

Figure 2. (a) At the top are three input clauses and five SL clause 
records representing the derivation of chain 08. The order of the 
components in the records is that given at the beginning of this 
Section. The bit masks have been shortened to only three bits for 
simplicity in this example. (b) The tree exhibits the SL derivation 
represented by the records in (a). 
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The VALUE array is very natural with SL-resolution, since no bindings 

from the RIGHTPAR are ever loaded. Thus, in a depth-first search, the only 

way that VALUE is written into is the BIND calls in UNIFY. 

The structure sharing implementation of SL is extremely efficient 

in use of space (in actual implementations, the bit masks are packed into 

a single word, the CELLINDEX and the specification of the RIGHTPAR 

are packed into a single word, and the BINDINGS are stored in an array). 

The program is three times faster than the general structure sharing 

program, and causes no garbage collections. 

Constructing an extension record is as simple as a unification and 

a few logical operations to construct two masks. Reduction is a unifi

cation and turning off one bit in a mask. Truncation is necessary when 

the CELLMASK is zero and it continues as long as the CELLMASK and the 

SELMASK of records in the chain are equal. Constructing a truncation 

record is essentially ANDing the NOT of the SELMASK and the CELLMASK. 

Sweeping through the literals for reductions or admissibility is the 

usual TL operation, except that a bit mask is leftshifted each time and 

the literal is inspected only if the high order bit is on. Thus, the 

implementation preserves the fast and natural recursive unification 

algorithm, but allows clauses to be constructed with logical AND, OR, 

NOT, and SHIFT. 

As demonstrated in this chapter, it is often possible to modify 

general structure sharing to implement specific systems very economically. 
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CHAPTER 6 A PROGRAMMING LANGUAGE FOR STRUCTURE SHARING 

6.1 Introduction 

There are several similarities between structure sharing imple

mentations of predicate calculus theorem provers and traditional 

implementations of programming languages. 

Recursion in languages such as LISP and ALGOL uses pushdown stack

like structures to bind variables to different values at different levels 

in the recursion. When the recursive definition of, say, factorial, is 

evaluated, the same function body is used for each recursive step. However 

the argument is bound to a different integer each time, and the binding 

is looked up in a list, or stack, or dictionary, which has been modified 

for each recursive call. The alternative is to copy the definition 

over again each time with the new integer textually substituted, and 

then use the copy. This is clearly absurd for a programming language, 

but ~t is precisely what is done in traditional theorem provers when an 

axiom is to be applied. Structure sharing takes a programming language 

approach and merely refers to the appropriate axiom after modifying an 

association list (the binding environment represented by the tree of 

BINDINGS) or a dictionary (the VALUE array) to effect variable binding. 

In SL-resolution implementations, the clause records resemble acti

vation records, and can be described in such terms: The selected literal 

mask is the current instruction pointer, relative to the procedure 

specified by RIGHTPAR. The LEFTPAR component points to the previous 

level of recursion (in fact, in a depth-first search, the next cell 

in the chain is the record that should be reactivated if the current 
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computation succeeds, and the record pointed to immediately by LEFTPAR is 

the record that should be reactivated if the computation fails). BINDINGS 

specify the bindings of the "local" variables in this procedure call. 

However, unlike most programming languages, predicate calculus 

allows a "function" to be called with free variables in the argument 

positions, and allows results to contain free "locals" of the function. 

Thus, space allocated at run-time to hold bindings cannot be g~rbage 

oollected after a function has been exited, since the results of that 

function may still contain references to the allocated space. Further

more, when the interpreter encounters a variable, X, it must know whether 

it is the X from the current level of recursion or an X from an earlier 

level. In either case, the X may be free or bound, and if free, it could 

beoome bound at the current level. 

Thus, a simple pushdown stack allocation scheme is not sufficient. 

Instead, a system which reflects not just the current "trace" of the 

computation, but the entire history of it is needed. This is why structure 

sharing must allocate space for bindings in a tree structure, and keep 

track of variables by indices rather than simply depth of recursion. 

These similarities suggest that there is a programming language 

natural to structure sharing. The language must allow free variables 

to occur in arguments and results, and the system must be automatically 

responsible for looking up the bindings of variables, and keeping track 

of indices. Access to variables of other levels must be allowed, including 

levels which have been exited. 

The language is, in fact, a simple extension of predicate calculus. 

A natural interpreter for the language is an SL-resolution theorem prover. 
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6.2 BAROQUE 

An SL theorem prover for interpreting predicate calculus as a 

programming language has been implemented using structure sharing. 

Input clauses can only be resolved on their first literal. The 

literals in a cell are worked on from left to right, and a depth

first search is employed. Evaluation is used to provide basic arith

metic functions, as well as term identity testing with the (predicate 

calculus function symbol) IDENT. Lists in the language are repre

sented by terms. The list (A B) is the term: 

(CONS (A) (CONS (B) (NIL))). 

Programs are Horn clauses. 

The axioms to define LENGTH (which calculates the length of a 

list in the above representation) are: 

LEN1: «+ (V (LENGTH (NIL)) 0))) 

LEN2: «+ (V (LENGTH (CONS X y)) z)) 

(- (V (LENGTH Y) U)) 

(- (V (ADD U 1 ) Z))). 

The predicate symbol V is the only predicate used. (V x y) means 

"the result of evaluating x is y." The positive (first) literal of 

a clause specifies the "calling pattern" required to use the procedure. 

The negative literals represent the sequence of statements to be 

evaluated as the body of the function. Thus, LEN1 means that the value 

of (LENGTH (NIL)) is the constant O. LEN2 means that the value of 

a term of the form (LENGTH (CONS X y)) is Z, where Z is computed by 

computing the LENGTH of Y (which is U) and then adding 1 to it. 
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If the SL theorem prover is given the two axioms above and the top 

clause: 

«- (V (LENGTH (CONS (A) (CONS (B) (NIL»» X»), 

then it will use the axioms LEN1 and LEN2 exactly as a recursive defi-

nition of LENGTH to decompcse the list into successive components and 

calculate that X is 2 (in the process, it will bind X,1 to 2). 

Since the axioms used to define programs are Horn clauses and 

there is only one predicate symbol, a more convenient notation can be 

adopted. The numbers and the atoms NIL and T can be recognized as 

constants, and the axioms: 

and 

«+ (V NIL NIL») 

«+ (V T T») 

«+ (V n n»), where n is a number, 

are automatically included. The notation used to define LEN1 and LEN2 

above becomes: 

LEN1: (LENGTH NIL) -> 0; 

LEN2: (LENGTH (CONS X Y» -> Z 
WHERE 
(LENGTH y) -> U; 
(ADD U 1) -> Z; 
END; 

This language is called BAROQUE. It has several properties not found in 

traditional programming languages. Among these are: pattern directed 

invocation and return, backtracking, and the ability to run functions 

"backwards" (from results to arguments). 

If the" theorem prover (interpreter) is given as top clause: 

WHERE (LENGTH (CONS (A) NIL» -> X; END ; 
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the following sequence of operations occurs. LEN2 is used to extend 

with the top clause (LEN1 is tried but does not unify because NIL will 

not unify with (CONS X y». This produces a chain in which the leading 

cell contains two literals. The first is a recursive call of LENGTH on 

NIL, giving the value U,2, and the second is (ADD U,2 1) yielding the 

value X,1. The first literal is extended upon with LEN 1 , binding U,2 to 

0. After a truncation (because LEN1 is a unit clause) the second literal 

is extended upon (with the ADD eValuation function). Since U,2 is now 

0, this binds X,1 to 1. Now both literals of this cell have been 

deleted, so truncation yields the empty clause and the computation 

is done. The answer, X,1, is 1. No search is performed. 

Since unification is the only thing really happening, pattern directed 

invocation and returning is clearly present. Regardless of how many defi-

nitions of LENGTH there may be, only those which unify with the calling 

pattern are ever used. Thus, if LEN3 is added: 

LEN3: (LENGTH (TRIP X Y Z» -> U 
WHERE 
(LENGTH y) -> Y1; 
(LENGTH Z) -> Z1; 
(ADD Y1 Z1) -> U; 
END; 

then a call of the form: 

(LENGTH (TRIP ••• » -> X; 

will only be handled by LEN3, since LEN1 and LEN2 do not unify. 

As for the ability to run functions backwards, consider a call of 

the form: 

(LENGTH X) -> 2; 

(and assume LEN3 has not been added, just for simplicity). 
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On the first extension with LEN2, the value of X,1 will be: 

(CONS X,2 Y,2). 

A second extension with LEN2 causes X,1 to become: 

(CONS X,2 (CONS X,3 Y,3». 

Finally, LEN1 can be used to produce: 

(CONS X,2 (CONS X,3 NIL». 

LEN1 could not be used earlier because (on the first extension) 

it would attempt to unify 0 and 2, or (on the second extension) it 

would attempt to unify 1 and 2. That is, the expected result must 

unify with the result provided by any function. If it does not, the 

extension fails and another is tried. Note that what the above 

process has done is to generate the general list of LENGTH 2. 

In general, BAROQUE will explore all possiblities in trying 

to find a successful path through the search space (to the empty clause). 

Since a depth-first search is used, infinite branches are easy to get 

lost on. However, since BAROQUE is actually just an SL-resolution theorem 

prover, there is a clear distiction between the logical features of the 

language and the search strategic ones. 

6.3 A LISP Subset in BAROQUE 

BAROQUE is very much like assempler-code. Consider the BAROQUE 

·2 
function for calculating (X + 1)/2: 

POLY: (POLY X) -> U 
WHERE 
(MULT X X) -> V; 
(ADD V 1) -> W; 
(DIV W 2) -> U; 
END; 

A call of the form: 
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(POLY 4) -> Xj 

binds X (at the current level) to 8.5. 

However, a call of the form: 

(POLY (POLY 4» -> Xj 

fails, because the inner (POLY 4) is not evaluated. To get the desired 

effect in BAROQUE, one must write: 

(POLY 4) -> X1; 
(POLY X1) -> Xj 

However, it is possible to write an interpreter for another language 

~n BAROQUE, and in this language use nested expressions. As an example, 

a list processing language based on pure LISP was written. The BAROQUE 

functions are listed below: 

CONS: (CONS X y) -> (CONS U V) 
WHERE 
X -> Uj 
Y -> Vj 
END; 

CAR: (CAR X) -> U 
WHERE 
X -> (CONS U V); 
END; 

CDR: (CDR X) -> V 
WHERE 
X -> (CONS U V); 
END; 

COND1: (COND X Y Z) -> U 
WHERE 
X -> NIL; 
Z -> U; 
END; 

COND2: (COND X Y Z) -> U 
WHERE 
X -> V; 
(IDENT V NIL) -> NIL; 
Y -> U; 
END; 



EQUAL: (EQUAL X Y) -> U 
WHERE 

ADD1: 

X -> Vj 
Y -> Wj 
(IDENT V W) -> Uj 
ENDj 

(ADD1 X) -> U 
WHERE 
X -> Vj 
(ADD V 1) -> Uj 
END· , 

One can then define LENGTH and MEMBER as follows: 

LENGTH: (LENGTH X) -> U 
WHERE 
(COND X 

ENDj 

(ADD1 (LENGTH (CDR X))) 
0) -> Uj 

MEMBER: (MEMBER X y) -> U 
WHERE 
(COND Y 

END; 

(COND (EQUAL X (CAR y)) 
T 
(MEMBER X (CDR y))) 

NIL) -> Uj 
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Arguments are evaluated as required and functions can be nested to 

any depth. It should be Loted that the unusual features of BAROQUE 

are inherited by this language. For example, 

(LENGTH X) -> 2; 

will still generate the general list of LENGTH 2, even with the 

above definition of LENGTH. 

The use of BAROQUE as a programming language, interpreted by an 

5L-resolution theorem prover and running under a structure sharing 

implementation which closely models conventional programming language 

implementations, demonstrates the essential equivalence of computation 

and deduction in practical terms. 
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END OF PART I 



77 

INTRODUCTION TO PART II 

This paper describes an automatic theorem prover which is capable 

of producing inductive proofs of a large number of interesting theorems 

about functions written in a subset of pure LISP. The program was 

designed to prove theorems in the way a good programmer might intuit 

them. It has several features which make it distinct from other systems 

ooncerned with proof of program properties: It is fully automatic, 

requiring no information from the user except the LISP definitions of 

the functions involved and the theorem to be proved. It automatically 

uses structural induction when necessary, and automatically generates 

its own induction formulas. It will occasionally generalize the theorem 

to be proved, and in so doing, often "discovers" interesting lemmas. 

Finally, it is capable of writing new, recursive LISP functions to help 

properly generalize a theorem. 

The primitives in the LISP subset are: NIL, CAR, CDR, CONS, EQUAL, 

and COND. The user can define and use any number of recursive functions. 

Theorems take the form of universally quantified boolean valued LISP 

expressions, and the theorem prover tries to establish that the expression 

will evaluate to T whenever the quantified variables are replaced by 

arbitrary lists. 

Not only may defined functions call other defined functions, but the 

statement of the theorem to be proved may contain as many new functions 

as necessary to capture the concepts needed. The system has no built-in 

information about non-primitive functions except their definitions. It 

relies entirely upon these definitions to discover and prove properties 

needed. No lemmas are used. 
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The functions AND, OR, NOT, and IMPLIES may be defined in terms 

of COND, and provide the necessary logical facilities. The system 

only knows the definitions of these functions; its logical behaviour 

1_ based on its knowledge of COND. The fact that no predicates or 

relations (other than EQUAL) are built-in has two impiications: 

The system must be (and is) powerful enough to derive and prove facts 

about many non-primitives in the course of proving a single theorem, 

since it must derive the necessary properties of the predicates and 

auxil~ functions involved. Secondly, the system is very extendable. 

In particular, the language in which theorems are stated can be expanded 

at will by the user (with recursive functions), rather than being 

limited to a collection of built-in predicates and relations. 

Functions about which theorems have been automatically proved 

include most of the elementary LISP functions: APPEND, ASSOC, FLATTEN, 

LENGTH, MEMBER, NUMBERP, OCCUR, PAIRLIST, PLUS, REVERSE, SUBST, TIMES, 

UNION, and many others. The functions and their definitions are listed 

in Appendix A. Theorems automatically proved are listed in Appendix B. 

Except for the definitions in Appendix A, no other information about 

the functions involved is known to the system. 

As an example of the complexity of some of the theorems, consider 

the program's proof that a list sorting function is correct. There 

are two theorems involved, one which states that the output of the sorting 

function is ordered, and another which states that the sorted list has 

exactly the same elements in it as the unsorted one. There are five 

function definitions involved: a function which determines if one list 

is less than or equal to another (in length), LTE; a function which 



returns T if and only if its argument is an ordered list, ORDERED; 

• function which adds a new element to an ordered list, so that the 

result is ordered, ADDTOLIST; a function which uses ADDTOLIST to 

.ort a list, SORT; and a function which counts the number of occur

rences of an element in a list, COUNT. 

The two theorems which establish the correctness of the SORT 

function are: 

(ORDERED (SORT A)), 

and 

(EQUAL (COUNT A B) (COUNT A (SORT B))), 

where A and B represent universally quantified variables (skolem 

constants). The theorem prover uses induction to prove that both 

of these expressions evaluate to T, regardless of the values of A 

and B. 
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The proofs are very intuitive. For example, in the first theorem 

above, the program does an induction on A and after some rewriting and 

generalization, reduces the theorem to: 

(IMPLIES (ORDERED C) (ORDERED (ADDTOLIST DC))), 

which is one of the basic properties of ADDTOLIST (although that fact 

is certainly not known to the system). It then proves this by induction 

on C, using a very interesting induction formula. Again, after much 

simplification, it produces the following theorem which must be proved: 

(OR (LTE D E) (LTE ED)). 

This of course is an elementary fact about LTE, but it must be proved 

since LTE is a user-defined function. To prove this, the program 

inducts simultaneously on D and E. As an indication of the performance 
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level of the program, the entire process of showing that the output of 

SORT is ORDERED requires 41 seconds. 

The basic idea behind the automatic generation of the induction 

formula is that there is a duality between recursion and induction. 

When the program must resort to induction, it passes the theorem to 

be proved to a modified LISP interpreter which attempts to evaluate 

the expression. The evaluation halts when a function tries to recurse 

into the structure of an argument whose structure is not well enough 

defined to allow the computation of the requisite substructure. For 

example, the evaluation of (APPEND A B) halts because APPEND attempts to 

CDR into A in the recursive call, and the structure of A is such that 

the CDR of A is not available explicitly. The interpreter communicates 

this information to the induction routine, which attempts to generate 

an induction formula which will have as its hypothesis the statement 

that the theorem holds for the requisite substructures, and as its 

conclusion, that it holds for the structure being decomposed in the 

recursion. Care is taken that the necessary bases are included so that 

this is indeed a valid induction formula. 

Thus, the induction formula generated depends upon the type of 

recursion used by the functions concerned. The ~heorem prover is therefore 

very flexible in its selection of the induction argument to use. For 

example, it will induct upon n variables'simultaneously, or upon tree

structures, as the occasion demands. 

Since the program was designed to be able to prove simple theorems 

in the same way a good progr~er might, its methods are easily under

stood by readers not familiar with other work in the theory of computation~ 
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Largely because of its straightforward methods, the program is surprisingly 

rut by theorem proving standards. The "typical" theorem requires about 

10 seconds to prove. Harder ones, such as the COUNT theorem mentioned 

above, require more time (150 seconds for the COUNT theorem). 

The organization of this presentation is as follows: Chapter 1 lays 

the formal foundations. Here we present a set of axioms defining a first 

order theory with a syntax modeled on LISP. The primary difference 

between the language used here. and the LISP subset with the same set of 

primitives is the conditional statement. The COND used in this paper 

has three arguments; the first is the condition tested, and the other 

two are the "branches" of the tree. Thus, the statement: 

(COND p q (COND r s u», 

in the language used here, represents the LISP statement: 

(COND (p q) (r s) (T u». 

Section 1.1 may be skipped by those with a knowledge of LISP who are 

not interested in the formal details. 

Chapter 2 discusses the relation between evaluation and induction 

which is used to produce induction formulas. This chapter contains two 

examples, in English, of proofs produced by the program. 

Chapter 3 is a detailed description of the program. It is broken 

into sections according to subroutines in the system. Section 3.1 

presents a good overview of the system. Section 3.2 describes the 

evaluation machinery. Section 3.7 discusses the generalization heuristic 

and the automatic programming feature. Section 3.8 presents the induction 

mechanism. 
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Chapter 4 exhibits four proofs produced by the program. Among the 

,roofs shown is that of the theorem: 

(ORDERED (SORT A)), 

••• cribed earlier. 

Chapter 5 discusses two desirable extensions of the current program. 

One of these is the automation of termination proofs, and the other is 

.xtending the LISP subset to include PROG, SETQ, GO, and RETURN. 

Chapter 6 concludes the presentation with a discussion of the 

kinds of information built into the program, the program's ability to 

generate natural lemmas, and the design philosophy of the system. 

Appendices A and B contain the definitions of the LISP functions 

about which theorems have been proved, and some of the theorems proved 

by the program. Appendix C presents the theory of lists (in which the 

~eorems are proved) as an extension of number theory (to establish 

its con~istency). Appendix D is a survey of other work in the field. 

Readers interested in obtaining a quick overview of the system 

are advised to read Chapters 2 and 6, Section 3.1, and Appendix B. 

The notational conventions used in this document should be 

explained before proceeding. 

When presenting terms in theorems or formulas~ both formally 

and informally, the upper case letters X, Y, Z, U, and V will be used 

to denote variables. Occasionally integers will be concatenated with 

these letters to expand the class of variables. Thus, X and Y2 are 

variables which range over the set of individuals. 
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Function names will always be words in upper case. The letters 

A, B, C, D, and E will denote universally quantified variables in the 

theorem to be proved (skolem constants). Traditional LISP notation 

will be used to represent function application. Thus, 

(Faa NIL (BAR A» 

represents the application of the function Faa to two arguments: NIL 

and BAR applied to A. 

The infix equality predicate, =, will be used. The infix symbols 

&, v, ~, ->, and <->, will denote the usual logical connectives. A 

negative equality will be abbreviated to~. An example formula is: 

~ (MEMBERP A B) -> (B = NIL v A ~ (CAR B», 

provided MEMBERP is a defined predicate symbol. 

In order for us to talk about terms and formulas we will need 

'syntactic variables'. These are not part of the theory but are addi

tions to English, and take as values expressions in the theory. Lower 

case letters (possibly subscripted) will be used as such variables. 

Syntactic variables will generally be used to describe classes of 

expressions. Thus, we will say that 

(CONS (CAR A) NIL), 

and 

(CONS (CONS A B) NIL), 

are both of the form (CONS x NIL). 

The syntactic variables f, g, and h (possibly subscripted) will 

range only over function names. 

If we say that p(x,y) is some expression q in which x and y appear 

(possibly no times), then p(A,B) is q with all occurrences of x replaced 
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by A, and all occurrences of y replaced by B. Thus, if p(x) is 

(CONS x NIL), then 

(CONS peA) p(B» 

is 

(CONS (CONS A NIL) (CONS B NIL». 

Finally, the procedures which make up the theorem prover will be 

called routines. Whenever the name of a routine or of an identifier in 

a routine is used, it will be in lower case and underlined. As part of 

a theorem prover, these routines often take expressions in the theory 

as arguments, and return new expressions as results. The notation 

eval(x) will be used to denote the result of applying the routine ~ 

to the expression represented by x. 

If eval is some routine with input (f x1 ••• x ), the phrase 
- n 

"the input expression with its arguments ~'ed" refers to the new 

expre ssion: 

(f eval(x1) ••• ~(xn». 

In particular, it does not refer to the actual list structure representing 

the input expression after its argument positions have been destructively 

altered. 



CHAPTER 1 FOUNDATIONS 

1.1 The Theory of Lists 

If we wish to formally prove theorems, we must define the theory 

in which our "theorems" are theorems. The theory with which we are 

dealing is the first order theory of lists. This theory is very 

similar to LISP. Readers familiar with LISP and uninterested in formal 

details may skip this section. 

The non-logical symbols of our theory are the constant NIL, the 

unary function symbols CAR and CDR, the binary function symbols CONS 

and EQUAL, and the ternary function symbol COND. We will call these 

symbols the 'primitives'. Except for the fact that COND has three 

arguments here, these functions behave in the same spirit as do their 

counterparts in LISP. 

The non-logical axioms of the theory are given below. All variables 

are universally quantified. 

NIL # (CONS X y). 

(CONS X y) = (CONS U V) <-> X = U & Y = V. 

(CAR NIL) = NIL. 

(CDR NIL) = NIL. 

(CAR (CONS X y)) = X. 

(CDR (CONS X y)) = y. 

(EQUAL X Y) = (CONS NIL NIL) v (EQUAL X y) = NIL. 

(EQUAL X y) = (CONS NIL NIL) <-> X = Y. 

(COND (CONS X y) U V) = U. 

(COND NIL U V) = V. 
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In addition, we include the induction axiom for each formula p(x): 

p(NIL) & VX,Y(p(X) & p(Y) -> p«CONS X y))) -> VX(p(X). 

For notational simplicity we will use the symbol T as an abbre

viation for the term (CONS NIL NIL). Thus, the axioms for EQUAL can 

be abbreviated to: 

(EQUAL X y) = T v (EQUAL X y) = NIL. 

(EQUAL X y) = T <-> X = Y. 

We will refer to T and NIL as 'truthvalues', not to be confused with 

logical truth and falsity. An expression will be said to be 'boolean' 

if it is always equal to a truthvalue. For example, any expression 

with function symbol EQUAL is boolean, by the first equality axiom 

above. 

We will say that a term 'is a CONS' if it is of the form (CONS x y). 

Analogous phrases will be used for the other primitive function 

symbols. A term of the form (COND x u v) will be called a 'conditional 

expression'. The first argument, x, is called the 'test'. The second, 

u, is called the 'true-branch', and the third, v, is called the 'false

branch'. By the two COND axioms, (COND x u v) is always equal to u or v, 

depending upon x. The name 'true-branch' is perhaps a misnomer, since 

(COND x u v) is equal to u if x is any CONS whatsoever, not just T. 

We say that an expression is an 'explicit list' if it is NIL or 

a CONS. One immediate consequence of the induction axiom is the 

theorem: 

X = NIL v X = (CONS (CAR X) (CDR X». 

That is, in this theory, everything is equal to some explicit list. 
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We will say that a term is a 'specific list' if it is an explicit 

list and every subterm of it is an explicit list. Thus, a term is a 

specific list if it is composed only of NIL and CONS expressions. 

It is desirable to have a representation of the natural numbers 

among our terms. We will therefore agree that 0 shall be represented 

by NIL, and that if some natural number, n, is represented by x, then 

the successor of n is represented by (CONS NIL x). Furthermore, we 

will agree to abbreviate the terms representing the natural numbers 

by the numbers they represent. Thus, 3 is our abbreviation for the 

(specific) list: 

(CONS NIL (CONS NIL (CONS NIL NIL))). 

We will call such terms 'numbers'. 

List theory can easily be seen to be consistent. (Its consistency 

iB'd~monstrated' in AppendixC, where it is exhibited as an extension 

of number theory.) 

We now wish to extend the theory with the addition of defined 

functions. Such functions will be called 'non-primitives'. Consider 

the defining axiom for the function AND: 

(AND X Y) = (COND X (COND Y T NIL) NIL). 

Since the existence and uniqueness conditions for AND are met, namely: 

~Z(COND X (COND Y T NIL) NIL) = Z, 

and 

(COND X (COND Y T NIL) NIL) = Z1 & 
(COND X (COND Y T NIL) NIL) = Z2 -> Z1 = Z2, 

we can add the defining axiom to the theory and preserve consistency. 

In fact, the resulting extension of the theory is conservative. (An 

extension is conservative if no new theorem is provable in the extension 



except ones involving the new function symbol.) 

It is possible to prove in the extended theory the theorems: 

(AND X Y) = T <-> (X -# NIL & Y -# NIL), 

and 

(AND X y) = NIL <-> (X = NIL v Y = NIl). 

Thus, if we have a formula of the form: 

p = T & q = T, 

where p and q are boolean, it can be replaced by: 

(AND P q) = T, 

justifying the choice of the name "AND". The definition of AND is 

such that any term with function symbol AND is boolean, regardless 

of the values of the arguments. 

We can introduce the definitions of OR, NOT, and IMPLIES in a 

similar fashion, and prove the theorems justifying their names. 

The reader is referred to Appendix A for their definitions. 

However, we also want to add such definitions as: 

(APPEND X y) = (COND X 
(CONS (CAR X) (APPEND (CDR X) y)) 
y) • 
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That is, we wish to be able to extend the theory with the introduction 

of recursive functions. The problem, of course, is preserving consist-

ency. If we allow the addition of arbitrary axioms purporting to 

define "functions", we immediately open the door to inconsistency. 

Consider the "function" defined by: 

(RUSSELL X) = (COND (RUSSELL X) NIL T). 

If we add this, we can prove: 

(RUSSELL X) = NIL <-> (RUSSELL X) = T, 



which implies NIL = T. Since our stated aim was to prove valid theorems, 

and to do so meaningfully one must have a consistent theory, such defi-

nitions cannot be allowed. 

However, as demonstrated in Appendix C, we can be sure that the 

resulting extension is consistent (in fact, conservative) if the 

defining axiom for the new function symbol is one of several forms. 

One such form, describing many common function definitions, is: 

(f X Y) = (COND X 
(h (f (CAR X) y) (f (CDR X) Y) X y) 
(g y», 

where h and g are either primitive functions, or have already been 

introduced in this way. This is just one version of the primitive 

recursive schema for list theory. 

We are not limited to primitive recursive functions however. 

As made clear in Appendix C, we can add any total recursive function 

and be guaranteed that the resulting extension is conservative. In 

general, we merely want to keep the extension consistent. Totality 

guarantees it. This is discussed further in Section 5.1. 

Most of the functions in this paper are in fact primitive recur-

sive. For example, the definition of APPEND, exhibited above, is in 

this schema. 

Intuitively it is clear that functions in the schema above are 

total functions, provided h and g are total functions. Assume that 

whenever their arguments are well-defined, h and g are well-defined. 

Then f is well-defined by the following inductive argument: (f NIL y) 

is well-defined, for any such Y, since it is equal to (g Y). Inductively 

assuming that (f A y) and (f B y) are well-defined, we must show that 



(f (CONS A B) Y) is well-defined. But this is just: 

(h (f A y) (f B Y) (CONS A B) Y), 

by the axioms of the theory. Since our induction hypothesis tells 

us the arguments to h, above, are well-defined, and we know that h 

is well-defined when its arguments are, we conclude that 

(f (CONS A B) y) is well defined. Thus, f is well-defined. 

We allow a new predicate, p, to be introduced only by an axiom 

of the form: 

(p X1 ••• Xn) <-> (f X1 ••• Xn) = T, 
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where f is a previously introduced, boolean valued, total function. 

This allows the introduction of a great many predicates, namely, any 

predicate whose characteristic function is a total, recursive function. 

It should be noted that EQUAL can be recursively defined in terms 

of the other primitives and recursion (see the definition of EQUALP 

in Appendix A). Hence, EQUAL is primitive only in the sense that it is 

built into the definition of the basic theory, and into the theorem 

prover. This is reasonable since it is the characteristic function of 

the only predicate in the theory, equality. The senses in which EQUAL 

is built-in are discussed in Section 6.1. 

Henceforth we will consider the theory being discussed to be that 

of lists, extended by the forty or so function definitions listed in 

Appendix A. These functions include the standard arithmetic and list 

processing functions. 

There are a large number of interesting theorems in this theory. 

For example: 



(APPEND X (APPEND Y Z» = (APPEND (APPEND X Y) Z). 

(REVERSE (REVERSE X» = X. 
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«MEMBERP X Y) v (MEMBERP X Z» -> (MEMBERP X (UNION Y Z». 

(ORDERED (SORT X» = T. 

Except for the fact that the functions introduced are very common, 

there is nothing special about the extension of list theory with which 

we are dealing. The theorem prover embodies the non-logical axioms 

of the theory and several theorems derivable from these axioms. However, 

no information about non-primitive functions is available except the 

defining axioms. 

To exhibit the definition of a new function, f, we will write: 

where the x. represent variables. This will be equivalent to adding 
l. 

the defining axiom: 

(f x1 ••• xn ) = defn. 

It is assumed that no other axiom defining f has been introduced. 

The notation above was adopted because it is consistent with LISP. 

(The routine define takes as its argument a list expression in the 

form above, and stores the definition of f on the property list of 

the word f. This effectively extends the theory with which the theorem 

prover is dealing.) 

The definition of APPEND is thus: 

(APPEND (LAMBDA (X y) 
(COND X 

(CONS (CAR X) (APPEND (CDR X) y» 
Y»). 



The theorem prover is capable of inspecting and applying these 

axioms when necessary. The particular extension of the theory in 
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which the theorem prover operates is determined by the user of the 

program, who supplies the defining axioms for the non-primitive functions. 

The only theorems we will prove with the program are those of 

the form: 

'lfX1, ••• Xn(p) , 

where p has no quantifiers and contains only the variables X1, ••• Xn. 

That is, we will not automatically prove theorems which cannot be expressed 

as universally quantified statements. This excludes a large number of 

interesting theorems. 

If the theorem to be proved is of the form given above, we can 

rewrite it as: 

q = T, 

where q is obtained from p by replacing the variables X1, ••• Xn by skolem 

constants, = by EQUAL, the predicates by their characteristic functions, 

and any logical connectives by the defined functions AND, OR, NOT, and 

IMPLIES. This is always possible since the characteristic functions have 

always been introduced, and the functions replacing the connectives 

have the desired properties. 

The input to the theorem prover is then simply q. The program 

tries to establish that the expression is equivalent to T, and if it 

does so, the theorem is proved. 

For example, to prove the theorem: 

((MEMBERP X y) v (MEMBERP X Z» -> (MEMBERP X (UNION Y Z», 



we present the program with: 

(IMPLIES (OR (MEMBER A B) (MEMBER A C)) 
(MEMBER A (UNION B C))), 
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where MEMBER is the characteristic function for the predicate MEMBERP. 

This approach to formalizing a theory is the traditional 

first order predicate calculus one. It is clearly explained by 

Shoenfield (1967). There are many alternative approaches. Goodstein 

(1957) describes a very elegant technique based upon recursive functions. 

The approach taken here was chosen because it was consistent with the 

developmental history of the project, and because it is the most widely 

known. A theory is necessary at all for the following three reasons: 

It allows the methods used by the program to be explained, justified, 

and understood. It makes it clear that the techniques used by the 

program, especially the induction mechanism, are just as applicable to 

many other theories (in particular, number theory). Finally, it 

convinces the reader that the program is indeed a theorem prover for 

a first order mathematical theory, rather than simply a program which 

manipulates expressions without regard for logical validity. 

1.2 LISP an~ the Theory of Lists 

In Appendix C a number theoretic version of list theory is exhibited. 

This is done to establish the consistency of the theory and extensions 

of it by total, recursive functions. 

However, from the non-logical axioms it is obvious that the primi-

tives in the theory are a first order formalization of a subset of pure 

LISP. In particular, the theory models the subset composed of the single 

atom NIL, the functions CAR, CDR, CONS, and EQUAL, and the conditional 

statement COND. 



The fact that only one atom is available does not weaken the 

language. We still have a countably infinite number of distict 
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objects. As we have seen, the natural numbers are available. Suitable 

conventions can make other "atoms" available. Other programming languages 

are quite convincing in their illusion that structures other than 

binary digits are available. 

Terms in the theory represent well-formed LISP S-expressions on the 

above alphabet in the obvious way. For simplicity, the COND function 

has a fixed number of arguments. Thus, the LISP statement: 

(COND (p q) (r s) (T u)) 

is represented by: 

(COND p q (COND r s u)), 

in the theory. 

The user is allowed to define new functions. As in many languages, 

the mechanisms for defining a new function are not provided in the 

language itself (unlike real LISP). When we say that total functions 

may be introduced consistently, we are saying that the theory consistentl~ 

models those LISP functions which always terrranate without error when 

evaluated on arbitrary arguments. The user must satisfy himself as to 

the consistency of any extension produced by adding a partial function. 

If two S-expressions evaluate to identicalS-expressions under the 

LISP interpreter for this subset, then the terms representing those two 

expressions in the theory are equal. For example, 

(APPEND (CONS (CONS NIL NIL) NIL) (CONS NIL NIL)) 

and 

(CONS (CONS NIL NIL) (CONS NIL NIL)) 



both evaluate to the S-expression: 

«NIL. NIL) • (NIL. NIL)). 

We therefore expect that 

(APPEND (CONS (CONS NIL NIL) NIL) (CONS NIL NIL)) = 
(CONS (CONS NIL NIL) (CONS NIL NIL)) 

is a theorem. This is indeed the case. 
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Furthermore, if two terms in a consistent extension of the theory 

are equivalent, then uniformly replacing the universally quantified 

variables by specific lists and evaluating the corresponding S-

expressions gives identical results whenever both evaluations terminate. 

The only exception to this rule is that, in the theory, CAR and CDR are 

defined at NIL, while in LISP they are not. This addition to the theory 

is made to guarantee that the primitives are total functions. 

Since we can prove the associativity of APPEND in the theory: 

(APPEND X (APPEND Y Z)) = (APPEND (APPEND X y) Z), 

we expect that 

(APPEND X (APPEND Y Z)) 

and 

(APPEND (APPEND X Y) Z) 

always evaluate to identical S~expressions under a LISP interpreter, 

regardless of the values of X, Y, and Z. This of course is also the 

case. 

The observations of this section are far from profound. The point 

is merely that in addition to proving theorems in a first order theory, 

we are proving theorems about a non-trivial collection of LISP programs. 
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CHAPTER 2 PROVING THEOREMS IN THE THEORY 

2.1 Evaluation, Recursion, and Induction 

Central to this thesis is the concept of evaluation. This concept 

usually resides in the semantics of.a theory. One can talk about 

computing the value of a_function applied to some arguments by using 

the recursive definition of the function. There is, of course, a 

perfectly parallel version of evaluation in the syntax. There, one 

talks about deriving the expression representing the value of an 

expression representing a function applied to its arguments. 

Not surprisingly, the process by which this is done is exactly 

the same: Use the non-logical axioms to derive the values of primitive 

expressions, and evaluate a non-primitive function application by 

replacing the variables in the definition of the function by the 

values of the corresponding arguments, and then evaluating the result. 

Evaluation will be discussed at length later, but here it is 

important to get an intuitive grasp of what is meant by it. As indi

cated above, the best model for it is simply an interpreter for terms 

in the theory. We thus evaluate (CAR (CONS A B)) to get A. Evaluating 

the expression: 

(APPEND (CONS A NIL) (CDR (GONS B C))) 

yields (CONS A C). We obtain this result as follows. 

We first evaluate the two arguments to the APPEND. We consider the 

value of the first to be (CONS A NIL), but the second argument evaluates 

to simply C. We then substitute these two values for the variables in 

the definition of APPEND and obtain: 
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(COND (CONS A NIL) 
(CONS (CAR (CONS A NIL» (APPEND (CDR (CONS A NIL» C» 
C) • 

Evaluating this, we use the first COND axiom to observe that it is 

equivalent to the value of its second argument: 

(CONS (CAR (CONS A NIL» (APPEND (CDR tCONS A NIL» C». 

We therefore evaluate both arguments to this CONS. The first is simply 

A. The second is another non-primitive expression, so its arguments 

are evaluated, and then substituted into the definition of APPEND. 

This gives us: 

(COND NIL 
(CONS (CAR NIL) (APPEND (CDR NIL) C» 
C) • 

This time the second COND axiom is used to reduce this to C. Thus, 

the value of the second argument to the CONS above is simply C. 

At this point we stop (rather than construct a list cell with A 

in the first half and C in the second) since we are staying in the 

syntax of the theory. Therefore, the result of evaluating the original 

APPEND term is (CONS A C). 

It should be clear that we are simply interpreting terms in the 

theory exactly as we would the LISP expressions they represent. Since 

we are always replacing terms by equivalent ones, we observe that since 

(APPEND (CONS A NIL) (CDR (CONS B C») 

evaluates to (CONS A C), the two expressions are equal in the theory. 

Thus, if some expression, p, evaluates to T, then p = T is a theorem. 

Evaluation is sufficient to prove. some trivial theorems. For 

example: 

(EQUAL (APPEND NIL A) A) 



evaluates to T, so we have proved: 

(APPEND NIL X) = X. 

However, induction is necessary for most interesting theorems. 
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It is intuitively clear that eValuation and induction are 

complementary. The paradigm for evaluating a simple recursive function, 

f, is: evaluate (f (CONS x y» in terms of (f x) and (f y), and handle 

the 'NIL-case', (f NIL), separately. But the paradigm for a simple 

inductive proof that (f X) is T for all X is: show that (f NIL) is T, 

and then assuming that (f A) and (f B) are T, show that (f (CONS A B» 

is T. 

In particular, evaluation of a recursive function starts with some 

structure and decomposes it, while induction starts with NIL and builds 

up. This duality can be used to great advantage: evaluation can be used 

to reduce the induction conclusion, (f (CONS A B» = T, to a statement 

involying the induction hypotheses, (f A) = T and (f B) = T, provided 

the (CONS A B) is one of the structures that f decomposes in its 

recursion. 

Suppose that we wish to prove by induction that (f X) is T for all 

X. To show that (f NIL) is T,the obvious thing to do is to evaluate. it 

and see. Provided we establish the NIL-case, we then assume (f A) and 

(f B) are T, and try to show that (f (CONS A B» is T. Evaluating 

the conclusion should give us some expression, q«f A),(f B». But the 

inductive hypotheses tell us that (f A) and (f B) are T, so we must 

then just show that q(T,T) is T. This process is illustrated by the 

examples in the next two sections. 

Of course, if f has more than one argument one must choose which 

one(s) to induct upon. But the link between evaluation and induction 
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makes the choice obvious: induct upon the structures on which f recurses, 

that is, upon the structures that are being recursively decomposed in 

the evaluation of f. This ensures that when the induction conclusion, 

(f (CONS A B», is evaluated, f will be able to recurse at least one 

step, and the problem will be transformed to one involving the induction 

hypotheses. 

2.2 An Example of Evaluation and Induction 

To illustrate how evaluation and induction can be used together to 

produce a proof, we will work through the program's proof that APPEND 

is associative. 

The statement of the theorem is: 

(1) (EQUAL (APPEND A (APPEND B C» (APPEND (APPEND A B) C», 

where the definition of APPEND is: 

(APPEND (LAMBDA (X y) 
(COND X 

(CONS (CAR X) (APPEND (CDR X) y» 
y»). 

Evaluating (1) leads nowhere, however, from trying to evaluate it 

we learn which terms are being recursively decomposed: A is being 

decomposed in the calls (APPEND A (APPEND B C» and (APPEND A B); B is 

being decomposed in the call (APPEND B C); (APPEND A B) is being de-

composed in the call (APPEND (APPEND A B) C). Since we cannot induct 

upon (APPEND A B), we do not consider it as a possible induction candi-

date. This leaves induction on either A or B. We choose A because it 

is recursed upon the most often. 

First, we must prove the NIL-case, which is just (1) with A replaced 

by NIL: 

(EXtUAL (APPEND NIL (APPEND B C» (APPEND (APPEND NIL B) C». 
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But this just evaluates to T, because both arguments to the EQUAL 

evaluate to (APPEND B C), and EQUAL evaluates to T if its arguments 

have identical values. 

So we must now prove the induction step. We will assume: 

(2) (EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C)), 

as our hypothesis, and try to prove: 

(3) (EQUAL (APPEND (CONS A1 A) (APPEND Be)) 
(APPEND (APPEND (CONS A1 A) B) C)). 

Logically, we could assume the induction hypothesis for A1 as well as 

A. But since the recursion in APPEND is on the CDR of its first 

argument, we can predict that such a hypothesis will not be needed. 

The evaluated conclusion should involve APPEND applied only to the 

CDR of (CONS A1 A), not to the CAR as well. Thus, we use the simple 

hypothesis, (2). 

If we evaluate the arguments to the EQUAL in the conclusion, (3), 

they become: 

(CONS A1 (APPEND A (APPEND Be))) 

and 

(CONS A1 (APPEND (APPEND A B) C)). 

(For the first argument, this evaluation should be obvious. For the 

second, note that the inner APPEND decomposes the (CONS A1 A) in its 

first argument and produces, as its result, the value: 

(CONS A1 (APPEND A B)), 

which is the first argument to the outer APPEND. Since it is evaluated 

after its arguments have been, it now decomposes the CONS supplied in 

its first argument and produces the result above.) 



101 

Once the two arguments to the EQUAL are evaluated, the (built-in) 

definition of EQUAL is applied. Since two CONSes are EQUAL if and only 

if their CARs and CDRs are EQUAL, according to the non-logical axioms, 

the system compares the corresponding components. The CARs are identical 

(both are A1), but the CDRs are not. Thus, the equality of the two 

rests on the truth of the statement that their CDRs are equal: 

(4) (EQUAL (APPEND A (APPEND B C» (APPEND (APPEND A B) C». 

But (4) is just the induction hypothesis, (2), which we are 

inductively assuming to be T. So we have proved that (3), the induction 

conclusion, is T, using the induction hypothesis and evaluation. Hence, 

the associativity of APPEND has been established. 

By inducting upon the structure that was being recursed upon we 

ensured that the induction conclusion could be evaluated at least one step. 

This was supposed to yield a simple expression involving the induction 

hypothesis. In this particular theorem, it yielded the induction hypothesis 

itself. 

2.3 An Example of Additional TeChniques 

The previous example was very simple for two reasons: The NIL-case 

was trivial (it evaluated to T), and the induction hypothesis was easy 

to use (it was identical to the evaluated conclusion). The next example 

illustrates several techniques that are useful in more complicated 

situations. Once these techniques have been illustrated, the theorem 

prover can be described. 

The theorem to be proved is the following interesting relationship 

between APPEND and REVERSE: 



(1) (EQUAL (APPEND (REVERSE A) (REVERSE B)) 
(REVERSE (APPEND B A))), 

where the definition of REVERSE is: 

(REVERSE (LAMBDA (X) 
(COND X 
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(APPEND (REVERSE (CDR X)) (CONS _(CAR X) NIL)) 
NIL))). 

Again, evaluation of (1) leads nowhere, but it indicates that B is 

being recursed upon (twice). We therefore induct on B. 

The NIL-case evaluates to: 

(2) (EQUAL (APPEND (REVERSE A) NIL) (REVERSE A)). 

We must now prove this before proceeding to the inductive step. 

However, the term (REVERSE A) occurs on both sides of the EQUAL. 

This suggests that we might try generalizing the theorem and proving: 

(3) (EQUAL (APPEND C NIL) C). 

Formally, this corresponds to proving: 

YX(APPEND (REVERSE X) NIL) = (REVERSE X), 

by proving the more general theorem: 

YY(APPEND Y NIL) = Y. 

This generalization is particularly promising because (REVERSE A) can 

be any list at all, given that A can be any list. 

In fact, (3) is easy to prove by induction. Evaluation tells us 

to induct upon C. The NIL-case evaluates to T, and the inductive step 

\ 

goes through just as in the previous example. So, after a generalization 

and a second induction, we have proved the NIL-case for (1). 

We now proceed to the inductive step. We will assume (1) as our 

induction hypothesis, and try to prove: 

(4) (EQUAL (APPEND (REVERSE A) (REVERSE (CONS B1 B))) 
(REVERSE (APPEND (CONS B1 B) A))). 
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Evaluation of (4) yields: 

(5) (EQUAL (APPEND (REVERSE A) (APPEND (REVERSE B) (CONS B1 NIL») 
(APPEND (REVERSE (APPEND B A» (CONS B1 NIL»). 

We must now use our induction hypothesis, (1). 

The hypothesis tells us that 

(APPEND (REVERSE A) (REVERSE B» 

is equal to: 

(REVERSE (APPEND B A». 

Although that equality does not occur in the evaluated conclusion, 

the second of the two terms equated does occur. This is because the 

term to which it gave rise in the conclusion managed to recurse back to 

an expression involving the hypothesis term. We can thus "use" the 

hypothesis by substituting the left-hand side of it for the right-hand 

side of it in the conclusion. This is called 'cross-fertilization' and 

produces: 

(6) (EQUAL (APPEND (REVERSE A) (APPEND (REVERSE B) (CONS B1 NIL») 
(APPEND (APPEND (REVERSE A) (REVERSE B) (CONS B1 NIL»). 

As we did with the NIL-case, we now notice that (6) has (three) 

common subterms "across" the EQUAL. These are the terms (REVERSE A), 

(REVERSE B), and (CONS B1 NIL). If we generalize as before, replacing 

these three terms by new skolem constants, C, D, and E, we get: 

(7) (EQUAL (APPEND C (APPEND D E» (APPEND (APPEND C D) E». 

But this is just the associativity of APPEND, which was our first 

example. Thus, we know that a final induction, this time on C, 

completes the proof. 
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CHAPTER 3 DESCRIPTION OF THE THEOREM PROVER 

3.1 Overview and Control Structure 

Several facts are clear from the preceding examples. Evaluation 

should be tried on the theorem first, since some theorems -- especially 

the NIL-cases of induction arguments -- will yield to evaluation. As it 

turns out, it is often helpful to apply normalization and simplification 

rules to the theorem as well. If these routines do not prove the theorem, 

cross-fertilization and generalization should be tried. Finally, 

induction should be resorted to. 

In the course of proving a theorem, it may be necessary to use 

induction several times to establish lemmas (as in the example in 

Section 2.3). In addition, quite complicated conjunctions and implica

tions often arise (as a result of induction) and must be established. 

While these requirements could be met by a hierarchical control structure 

and a data base of the relevant hypotheses, a much more elegant solution 

is availab1ehere. This is explained below. 

There are several major routines in the theorem prover, including 

the evaluation routine, ~, which has already been informally discussed. 

The other routines will be described briefly below. The control structure 

is then presented, and then each of the major routines is described 

in detail in the succeeding sections. 

normalize is a theorem prover which applies about a dozen rewrite 

rules to put LISP expressions in a normal form. For example, 

(COND (COND A B C) D E) 

becomes 

(COND A (COND B D E) (COND C DE», 
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and (COND A A NIL) becomes simply A, as a result of normalization. 

reduce is a theorem prover which attempts to propagate the results 

of the tests in conditional statements down the branches of the COND 

"tree". Thus, if some expression occurs as the first argument to a 

COND, it is assumed to be non-NIL on the true-branch and NIL on the 

false-branch. For example, 

(COND A (COND A B C) (FOO A» 

reduces to: 

(COND A B (FOO NIL». 

The three routines !!!h, normalize, and reduce are often used 

in sequence until the theorem oan no longer be rewritten by any of 

them. This process is called 'normalation'. 

fertilize is responsible for cross-fertilization and using the 

induction hypothesis when it is an equality. 

generalize is responsible for generalizing the theorem to be 

proved by replacing some common subexpressions by new skolem constants. 

However, generalization is dangerous (because the generalized version 

may not be a theorem) and generalize attempts to discover whether the 

value of the expression being replaced is of a highly constrained type. 

It does this by automatically writing a new recursive LISP function 

which is designed to recognize lists in the range of the replaced term. 

This is done bya routine called typeexpr. This is a good example of 

using automatic programming to help construct a proof. 

Finally, induct is responsible for generating induction formulas. 

This is done by using !!!h to determine likely candidates to induct 

upon, and to determine the precise form of the induction formula. 
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The control structure of the program is embedded in the syntax of 

the theorem being proved, and in the routines eval, normalize, and reduce. 

For example, if p and q are both boolean expressions and both must 

be proved, then the theorem becomes (COND p q NIL). This represents 

the conjunction of p and q in LISP. The two conjuncts are worked on 

simultaneously by the various rewrite rules. 

If p is eventually rewritten to T, the theorem is (COND T q NIL), 

which ~ transforms to q. If q is shown to be T first, the theorem 

is (COND p T NIL), which normalize rewrites to p. If q is shown to be 

the same as p, the theorem is (COND p p NIL), which normalize rewrites 

to simply p. 

If it must be shown that p implies q, where p and q are again 

boolean, the theorem becomes (COND p q T). Again various rewrite 

rules apply. 

All of the logical connectives have COND representations (see the 

definitions of AND, OR, NOT, and IMPLIES in Appendix A). The theorem 

prover's logical behaviour is entirely determined by the form of the 

theorem, and in particular, the kinds of conditional statements present. 

There is no special logical language. The routines that manipulate 

LISP expressions serve the double role of manipulating logical ones as 

well. 

As an example, suppose the theorem to be proved is p(A,B), and it 

is necessary to try induction on A, with induction hypotheses about 

the CAR and CDR of the term inducted upon. Then induct constructs the 

expression: 

(AND p(NIL,B) (IMPLIES (AND p(A1,B) p(A,B» p«CONS A1 A),B»), 



which becomes the theorem to be proved. This just normalates to: 

(COND p(NIL,B) 
(COND p(A1,B) 

NIL). 

(COND p(A,B) p«CONS A1 A),B) T) 
T) 

(In fact, induct uses the non-primitives AND and IMPLIES only to 

make its output more readable for the user. ~ immediately 

replaces the non-recursive AND and IMPLIES function calls by their 
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definitions, and normalize cleans the result up, so that the theorem 

is put into the form above.) 

Should p(NIL,B) become T, then the next time the expression 

is evaluated, it is rewritten to: 

(COND p(A1,B) 
(COND p(A,B) p«CONS A1 A),B) T) 
T). 

~ has effectively shifted the attention of the entire system to the 

induction step. 

An outline of the program is given below. The identifier ~ is 

the expression representing the theorem and must be shown to be T. 

loop: set oldthm to thm. 

set thm to reduce(normalize(~(~))). 

if thm is T, exit. 

if thm is not identical to oldthm, go to loop. 

if fertilization is possible, 
set ~ to fertilize(thm) 

otherwise, if thm is of the form (COND p q NIL), 
set!h! ~(COND induct(generalize(p)) q NIL) 

otherwise, set ~ to induct(generalize(!h!)). 

go to loop. 
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The check for theorems of the form (COND p q NIL) (and also of the 

form (COND p NIL q» is so that if a conjunction must be proved by 

induction, the first conjunct, p, is worked on first. Should that 

succeed, the theorem will be rewritten by the COND eValuation rules 

and become just the second conjunct. 

Thus, the system contains no special logical language or control 

structure exclusively for implementing the logical connectives. These 

connectives are all simulated by COND (and the user can use the 

non-primitives AND, OR, NOT, and IMPLIES which expand into the 

the proper conditionals). The system has a lot of built-in information 

about CONDo 'Logical operations' are performed by the same routines 

that simplify LISP expressions. LISP is thus the only knowledge domain 

involved. The result is that the program is concise, simple, and 

powerful. 

Routines designed for one purpose, say evaluating expressions, can 

apply their knowledge to other purposes, such as recognizing solved sub

goals and shifting the attention of the system. There are no communications 

or interface problems preventing unforseen applications of knowledge or 

serendipity. Finally, such a control structure means that any program-

ming effort devoted to expanding the program's knowledge of the LISP 

primitives equally benefits the program's logical behaviour and vice 

versa. 

The major routines in the above scheme and the normalation process 

will now be described in detail. 
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3.2 Evaluation 

There are two useful ways to look at the eval routine. One is as 

a theorem prover which applies logically sound rewrite rules to its 

input to produce its output. The other is as a symbolic interpreter 

for this LISP subset. 

We will discuss the theorem prover view first, and for simplicity 

we will initially ignore non-primitive functions. The view of eval 

as an interpreter will emerge from this discussion. 

eval accepts as input a term in the theory and yields as output an 

equivalent term. The output is obtained from the input by exhaustively 

applying the rewrite rules suggested by the following theorems: 

(CAR NIL) = NIL. 

(CDR NIL) = NIL. 

(CAR (CONS X Y)) = X. 

(CDR (CONS X y)) = Y. 

X = Y -> (EQUAL X y) = T. 

X I Y -> (EQUAL X y) = NIL. 

(EQUAL (CONS X y) (CONS U V)) = (COND (EQUAL X U) 
(EQUAL Y V) 
NIL). 

(COND (CONS X Y) U V) = U. 

(COND NIL U V) = V. 

That the above formulas are theorems is clear from the non-logical 

axioms. 

For those theorems above which are simple equalities, the corre-

sponding rewrite rule simply replaces any instance of the left-hand term 

occurring in the input by the appropriate instance of the right-hand term. 



In the case of the two theorems: 

X = Y -> (EQUAL X y) = T. 

X ~ Y -> (EQUAL X y) = NIL. 

any instance, (EQUAL x y), of (EQUAL X y) is replaced by T if x is 

known to be equal to y, and is replaced by NIL if x is known to be 

not equal to y. 
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The routine used to detect whether x and y are equal or not is 

called ident. This routine returns one of three results: "equal", 

"unequal", or "unknown", based only on the syntax of x and y. It 

can be viewed as a (very incomplete) theorem prover for theorems of 

the form x = y. It returns "equal" if it proves the theorem, "unequal" 

if it proves the negation of the theorem, and "unknown" if it fails to 

do either. The routine knows the abbreviation conventions used, and 

returns "equal" only when x and y are syntactically identical (modulo 

the abbreviations). The theorem it uses to determine that x and yare 

unequal is: no explicit list is equal to any of its sublists. This 

theorem has a trivial inductive proof. The most obvious instance of 

the theorem is that NIL is never equal to any CONS. Below are some 

examples of ident's behaviour. 

x y ident(x,y) 

(CONS A B) (CONS A B) equal 

(CONS 0 NIL) T equal 

(CONS A B) NIL unequal 

(CONS A B) A unequal 

(CONS A B) C unknown 

(CONS A B) (CONS A C) unknown 
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The rewrite rules applied by eval are given below. Any term of the 

form of one of those on the left-hand side of an arrow is replaced by 

the corresponding term on the right-hand side. Any condition on the 

use of a rule is stated. The rules are applied to all subexpressions 

until no further rules apply. The rules are justified by the theorems 

listed above. 

(CAR NIL) ~ NIL. 

(CDR NIL) ~ NIL. 

(CAR (CONS x y» ~ x. 

(CDR (CONS x y» ~ y. 

(EQUAL x y) ~ T, if ident(x,y) = "equal". 

(EQUAL x y) ~ NIL, if ident(x,y) = "unequal". 

(EQUAL (CONS x y) (CONS u v» ~ (COND (EQUAL x u) 
(EQUAL Y v) 
NIL). 

(COND (CONS x y) u v) ~ u. 

(COND NIL u v) ~ v. 

A few examples of evaluation may clarify the definition. 

x 

(CONS A B) 

(CAR (CONS A B» 

(CONS (CAR (COOS A B» NIL) 

(EQUAL 3 (CONS NIL 2» 

(COND (EQUAL (CDR (CONS A B» B) 
(CAR (CONS A B» 
NIL) 

(EQUAL (CONS A B) (CONS C B» 

(COND A (CDR (CONS A B» C) 

~(x) 

(CONS A B) 

A 

(CONS A NIL) 

T 

A 

(COND (EQUAL A C) 
T 
NIL) 

(COND A B C) 



If evaluation yields x as the output for the input term y, we Cit 1.1 

x the 'value' of y, or say that y 'evaluates to' x. We say that a term 

is 'unchanged by evaluation' if none of the rules apply. 

We are assured that a term and its value are always equal, since 

the rules applied always replace terms by equal terms. We are also 

assured that if x is the value of y, then x itself is unchanged by 

evaluation. This is because to be the output of ~, no further rewrite 

rules are applicable to x. 

We should observe an important feature of evaluation. If the 

expression evaluated contains no skolem constants, its value will be 

a specific list, that is, a term composed only of CONS and NIL expressions. 

The inductive proof of this is straightforward: 
• 

If the term has no arguments it is NIL and its value is NIL. If 

the term has arguments, assume they have been completely evaluated and 

that they are specific lists. Then the statement holds if the function 

symbol of the term is CAR or CDR since the output is just a sUbexpression 

of the argument. It holds if the function symbol is CONS since no rules 

apply and the output will be just CONS applied to the two arguments. 

However, CONS applied to two specific lists is a specific list. The 

statement holds if the function symbol is EQUAL because we can easily 

decide if two specific lists are identical, so the output is T or NIL. 

Finally, it holds if the function symbol is COND because the first 

argument is either NIL or an explicit CONS, so the value is one of the 

other arguments (and both are specific lists). 

In all of these cases no further evaluation is possible since the 

output has either been previously evaluated, or is T or NIL. We thus 
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see that this procedure will transform any totally primitive expression 

(containing no skolem constants) into a specific list. In particular, 

eval will decide the truth or falsity of any boolean statement involving 

no skolem constants. 

From the form of this inductive argument we derive the basic form 

of the recursive implementation of~: eValuate the arguments of any 

expression and then apply one of the rewrite rules to the top-level 

expression. The theorem just proved and this implementation suggest 

the other view of eval, that is, that it is an interpreter for this 

LISP subset. 

The examples exhibited above show that if skolem constants are 

involved it is possible for the output of eval to be other than a 

specific list. In fact, it need not even be an explicit list. 

We will now consider non-primitive functions and the way eValuation 

treats them. The obvious rewrite rule is: 

(f x1 ••• x ) ~ defn(x1 , ••• , x ), where the 
n defining axiom iBr f is: 

(f X1 ••• Xn) = defn(X1, ••• , Xn). 

This rule is adequate as long as the x. are specific lists. 
~ 

However, consider what such a rule would allow us to do with (APPEND A B). 

Applying the rule the first time gives: 

(COND A 
(CONS (CAR A) (APPEND (CDR A) B» 
B). 

We can now apply the rule again (to the APPEND inside) and get: 

(COND A 
(CONS (CAR A) 

B). 

(COND (CDR A) 
(CONS (CAR (CDR A» (APPEND (CDR (CDR A» B» 
B» 



114 

We could expand it again, but clearly we are losing. 

We want to halt such an expansion when it is pointless to continue. 

(In the above example, it was pointless to even start.) This is impos-

sible for arbitrary recursive functions. However, for a large class of 

functions, including most of those in elementary list processing, a 

relatively simple restatement of the rule suffices: 

defn(x1 , ••• , x ) where the 
defining axiom r&r f is: 
(f X1 ••• Xn) = defn(X1, , Xn), 
and no new explicit CAR or CDR terms 
appear in the value of any argument 
to any recursive call of f in 
defn(x1 , ••• , xn )· 

Inspecting the first expansion of (APPEND A B) above we see that 

(CDR A) appears as the value of an argument to a recursive call of 

APPEND, and hence, the expansion is not allowed. 

Intuitively, this restriction is reasonable. If we are recursing 

on an argument we usually obtain the value of the argument for the 

next recursive call by applying some combination of CARs and CDRs to 

the current value. If we cannot fully evaluate the new arguments, 

the recursive calls within the definition are, in some sense, more 

complicated than the original expression. 

Formally, the restriction does not affect the validity of the rule. 

The expanded definition is always equivalent to (f x1 ••• xn ), so it 

is certainly sound to apply the rule. The restriction merely prevents 

some applications. 

It is easy to see that the following evaluations are permitted 

under the restriction: 



x 

(APPEND (CONS A1 A) B) 

(REVERSE (CONS A1 A)) 

(MEMBER A (CONS B1 B)) 

(COpy (CONS A1 A)) 

(ORDERED (CONS A1 A)) 
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(CONS A1 (APPEND A B)) 

(APPEND (REVERSE A) 
(CONS A1 NIL)) 

(COND (EQUAL A B1) 
T 
(MEMBER A B)) 

(CONS (COPY A1) 
(COpy A)) 

(COND (LTE A1 (CAR A)) 
(ORDERED A) 
NIL) 

It should be noted that this rewrite rule, even with its restriction, 

allows evaluation to transform any expression, (f x1 ••• xn ), where f is 

any total, recursive function, into a specific list, provided the x. are 
J. 

specific lists. The proof of this, for say, primitive recursive f, is 

an inductive proof similar to the one that f will always terminate. 

The proof relies on the fact that once the non-primitive function calls 

in the definition have been evaluated to specific lists (by the induction 

hypothesis) the previous theorem applies. The rule may always be applied 

in these cases (that is, the restriction does not prevent its use) 

since CAR and CDR of specific lists always evaluate to specific lists 

(rather than terms with explicit CAR or CDR terms in them). 

We thus observe that ~ is a symbolic interpreter for this LISP 

subset in the following sense. Let x be an expression in the theory 

such that a traditional LISP interpreter (respecting the conventions 

of this subset) yields some S-expression, s, given x. Then eval(x) 

is a specific list, 1, with the same structure as s. By "the same 

structure" is meant: 1 is NIL if and only s is NIL, and 1 is 

(CONS Y z) if and only if s is (u • v), where y has the same structure 

as u, and z has the same structure as v. 
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However, this interpreter is somewhat more flexible than traditional 

ones in being able to handle skolem constants and expressions containing 

them. 

Evaluation can be used to generate a case analysis for the theorem 

being proved. For example, consider the expression: 

(MEMBER A (CONS B1 B)). 

Evaluation of this expression yields: 

(COND (EQUAL A B1) T (MEMBER A B)). 

This just says that the input expression is T if A is equal to B1, or 

if A is a MEMBER of B. Thus, evaluation has broken up the original 

expression into two cases. 

Notice also that we can discover the kinds of structures a recursive 

function needs in its recursive arguments, by analyzing the way evaluation 

halts the expansion of the expression. This provides us with the 

information necessary to generate induction formulas. 

For example, in evaluating (APPEND A B) we noticed that the only 

"culprit" preventing application of the recursive function rewrite rule 

was (CDR A). Hence, if the first argument had been a single CONS, 

evaluation would have proceeded one full step (one application of 

the recursive function rule). Furthermore, the resulting value would 

involve APPEND applied only to the CDR of the supplied CONS, so that 

an induction hypothesis about the CAR would not be used. 

In evaluating (COPY A), we find (CAR A) and (CDR A) as culprits. 

Thus, a single CONS is again sufficient, but one full recursive step 

leaves an expression containing COPY applied to both the CAR and the 

CDR. Thus, induction hypotheses about both may be necessary. 



117 

We will discuss the details later. Here it is sufficient merely to 

point out that in order to set up the induction formula it is essential 

to know why evaluation was halted. In the implementation of ~ we 

will provide mechanisms for communicating this information. 

By now the implementation of ~ should be obvious. The routine 

uses an association list to bind the variables in function definitions 

to their values. 

The atoms NIL, skolem constants, T, and the integers evaluate to 

themselves. All other atoms are evaluated by looking up their values 

on the association list. 

CAR and CDR expressions are handled by evaluating the argument and 

returning the appropriate component (or NIL) if it is an explicit list. 

However, if it is not, the input expression with the argument evaluated 

is returned. In this case there is the possibility that the CAR or CDR 

expression occurred as an argument to a non-primitive function currently 

being expanded by the function application mechanism. If this is so, 

the "failure" of the CAR or CDR indicates that the expansion cannot 

be allowed. To communicate this information the term is added to a 

list which is used by the function application mechanism to construct a 

description of why the function failed to properly expand. This will 

be explained shortly. 

CONS expressions are handled by simply returning the input expres

sion with the two arguments evaluated. 

EQUAL expressions cause their two arguments to be recursively 

evaluated and then compared using ident. If they are identical, eval 

returns T, if they are definitely unequal, ~ returns NIL. If they 
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are both explicit CONS expressions (and neither of the above conditions 

hold), ~ constructs the COND expression indicated by the third EQUAL 

evaluation rule, and passes that expression to the COND section of eval. 

If none of the conditions hold, the expression with its arguments 

evaluated is returned. 

COND statements are evaluated by initially evaluating only the first 

argument. If its value is identical to NIL, the third argument is 

evaluated and returned. If the value of the first argument is an ex

plicit CONS, the second argument (of the input COND expression) is 

evaluated and returned. Otherwise, the input expression with all of its 

arguments evaluated is returned. 

Finally, if the function symbol is a non-primitive, the expression 

is (very carefully) evaluated as follows: The arguments are evaluated 

recursively. Should any of them have CAR or CDR failures as described 

above, and should the input expression represent a recursive call of a 

function whose definition is being evaluated, then the evaluation halts. 

~ returns the input expression with its arguments evaluated, rather 

than applying the definition again. If the arguments evaluate without 

such failures, the definition is retrieved (from the property list 

of the function symbol) and the variables in it are bound on the associa

tion list to the evaluated arguments. Then the definition is evaluated. 

When completed, the routine determines whether any recursive calls were 

halted as above. If so, the application of the definition cannot be 

permitted, and the input expression with its arguments evaluated is 

returned. In this case, eval constructs and stores a 'fault description' 

from information collected during the evaluation of the definition. 
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This is described below. Lastly, if the definition was evaluated without 

any recursive calls being halted by failed CAR or CDR terms, the evaluated 

definition is returned. 

Except for the allowance for skolem constants, which make certain 

expressions "unevaluatable", it should be clear that this routine is 

just a LISP interpreter for this subset. 

The fault descriptions constructed and stored by the function 

entry mechanism are collected at each level in such a way that when 

the process is completed, the variable analysis contains a list of the 

fault descriptions constructed for the expressions appearing in the 

input. There is thus a description for each non-primitive expression 

which failed to take at least one recursive step. 

Each fault description explains why a particular expression (now 

unknown) failed to recurse. These descriptions are composed of two 

lists: a bomb list, and a failures list. 

A bomb list is a list of pockets, which are lists of failed CAR 

and CDR terms associated with some recursive call of the function 

concerned. All of the terms in a pocket were simultaneously recursed 

upon by the function in that call. There is a pocket on the bomb list 

for each halted recursive call of the function. To ensure that the 

function properly recurses one step, the arguments must allow each 

CAR and CDR in each pocket to evaluate without failure. 

A failures list is a list of failed CAR and CDR terms which occurred 

in the definition evaluated, but not in argument positions of recursive 

calls of the function concerned. These failures would have appeared 

in the evaluated definition had recursion been permitted. An examination 
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of the function ORDERED, for example, illustrates that it is poenihln 

for a function to have sufficient information to recurse once, without 

having sufficient information to properly CAR and CDR its arguments in 

the non-recursive positions of the definition. Although these failures 

will not prevent recursion, they are used by the induction machinery 

to provide as much structure as necessary in the induction conclusion. 

Several examples of evaluation and the resulting analysis should 

help the reader to decode (or code)' this description. 

The input term (APPEND A B) evaluates to (APPEND A B). The 

analysis list has only one fault description on it. This description 

contains a bomb list containing only one pocket. The pocket contains 

(CDR A). The failures list has the term (CAR A) on it. The configu

ration of analysis is: 

««(CDR A») «CAR A»». 

The input term (EQUAL (COPY A) A) is unchanged by evaluation. 

Again, analysis contains only one fault description. The bomb list 

has two pockets in it (one for each recursive call of COPY in the defi

nition). The pockets contain (CDR A) and (CAR A) respectively. No 

non-recursive failures occurred, so the failures list is empty. 

analysis is: 

««(CDR A»«CAR A») NIL». 

The input term (OR (LTE A B) (LTE B A» evaluates to: 

(COND (LTE A B) T (COND (LTE B A) T NIL». 

There are two fault descriptions on analysis, one for each LTE call. 

The bomb list of each description contains only one pocket, but there 

are two terms in it, since LTE recurses simultaneously on its two 
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arguments. No non-recursive failures occurred. analysis is: 

««(CDR A) (CDR B») NIL) ««CDR B)(CDR A») NIL). 

Finally, (ORDERED (SORT A» is unchanged by evaluation. The 

analysis list contains two descriptions on it, one for ORDERED and 

one for SORT. The ORDERED description describes attempted recursion 

on (CDR (SORT A», and numerous non-recursive failures (because 

ORDERED compares the CAR of its argument to the CAR of the CDR, using 

LTE). The SORT term attempted recursion on A and non-recursively 

accessed the CAR of A. Note that the second level recursive calls 

of LTE by ORDERED and ADDTOLIST by SORT are not reported in analysis 

since they do not even enter the picture unless the top-level functions 

properly recurse. The fault description corresponding to the ORDERED 

term is: 

««CDR (SORT A»» 
«CAR (CDR (SORT A»)(CDR (SORT A»(CAR (SORT A»(CDR (SORT A»», 

and the description for the SORT term is: 

««CDR A») «CAR A»). 

It should be clear from these examples that the information in 

analysis is a collection of straightforward descriptions of "what went 

wrong" in the evaluation of the expression. The information arises 

naturally in the course of evaluation of an expression with CAR and CDR 

failures. eval differs from other interpreters in that it collects this 

information as it arises and then carries on with its symbolic evaluation. 

The importance of ~ cannot be overstated. It is an efficient 

and very natural algorithm that always simplifies its input. (As observed, 

if no skolem constants are involved, it will decide the truth or falsity 

of a statement.) It can be used to generate a case analysis for the 



122 

problem at hand, its descriptions of why it failed provide essential 

information to the routine which generates induction formulas, and 

it is primarily responsible for converting the induction conclusion 

into a statement involving the induction hypothesis. 

3.3 Normalization 

The normalize routine puts its argument expression into a normal 

form by applying about a dozen rewrite rules. Before the rules are 

presented, it is convenient to discuss the notion of a boolean expression. 

As introduced in Section 1.1, this is an expression whose value 

is always either NIL or T. Examples of boolean expressions include 

(EQUAL A B) and (COND A NIL T). Ifx is a skolemized expression, then 

x is boolean if and only if (BOOLEAN x) = T is a theorem, where the 

definition of BOOLEAN is: 

(BOOLEAN (LAMBDA (X) (COND X (EQUAL X T) T))). 

The reason this concept is important is that some of the rewrite 

rules used by normalize come from theorems such as: 

(BOOLEAN X) = T -> (COND X T NIL) = X. 

Thus, if some expression, x, is known to be boolean, then (COND x T NIL) 

can be rewritten to simply x. 

To effectively implement such rules it is necessary to know when 

an arbitrary expression is boolean. Ideally, we need a routine which 

is total and which returns true for input x if and only if (BOOLEAN x) = T 

is a theorem. But any theorem can be put into this form, because q is a 

theorem if and only if (COND q T 2) is boolean. Thus, we cannot expect 

to find the ideal routine above, since it would be a decision procedure 

for the theory. Instead, we will settle for a routine, called boolean, 
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which is total and which returns true only if its input is boolean. 

boolean is a theorem prover in its own right, and in order to handle 

recursive functions, must be capable of inductive arguments. 

We say an expression 'is boolean' if boolean returns true for that 

expression. To determine whether x is boolean, the following procedure 

is used. If x is an atom, then it is boolean if and only if it is 

identical to NIL or T. If x is not an atom, consider the possibilities. 

If the function symbol is CAR or CDR, x is not boolean (since, in 

general, these are not boolean valued functions). If the function 

symbol is CONS, x is boolean if and only if it is identical to 

(CONS NIL NIL). If the function symbol is EQUAL, it is boolean. 

If the function symbol is COND, x is boolean if and only if both the 

second and third arguments of the conditional are boolean. Finally, 

if the function symbol is a non-primitive, x is boolean if and only 

if the definition of the function is boolean, provided any recursive 

calls of the function within the definition are (inductively) assumed 

to be boolean. 

Once a non-primitive function has been discovered to be boolean 

or non-boolean, its property list is so marked. The inductive argument 

for recursive functions is handled by checking the property list of the 

function symbol. If known (either way) whether it is boolean, the 

stored answer is returned. If not known, it is assumed to be boolean 

by marking the property_ list. Then the definition of the function 

is fetched and explored. Any recursive calls are thus automatically 

assumed to be boolean when the property list is checked. Should the 

exploration of the definition discover a non-boolean output, the property 

list entry is reset to non-boolean. 
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As an example, consider the expression (MEMBER A B). To determine 

if it is boolean the definition is inspected (since MEMBER is non-

primitive). Before doing so however, the boolean property of MEMBER 

is set to true. 

The definition of MEMBER is: 

(MEMBER (LAMBDA (X y) 
(COND Y 

(COND (EQUAL X (CAR y)) 
T 
(MEMBER X (CDR Y))) 

NIL))). 

Since the top-level function symbol is COND, the second and third 

arguments are checked. The third is certainly boolean. The second 

is a COND, so its second and third arguments are checked. Its second 

argument is T, and thus boolean. The boolean property is set for the 

function symbol of its third argument, so it is (inductively) boolean. 

Hence, (MEMBER A B) is boolean. 

The procedure also successfully determines that NUMBERP, and 

ORDERED (for example) are boolean, and that UNION, LENGTH, and SORT 

are not. 

The procedure will never classify (or 'type') something as boolean 

when it is not boolean. However, as pointed out earlier, it is possible 

to contrive examples which are boolean but not boolean. 

One such example is of the sort previously mentioned: 

(COND (EQUAL (TIMES A B) (TIMES B A)) T 2). 

This is boolean (in fact, it is T), but is typed as non-boolean because 

2 is not boolean. The routine makes the assumption that either branch 

of a COND can be the value of the expression. This is equivalent to 
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assuming (reasonably) that the test is not a theorem. Another sort of 

example is: 

(CAR (LENGTH A», 

which is always NIL, and hence, boolean. It is typed as non-boolean 

because CAR is not, in general, a boolean valued function. Since the 

routine ignores the values of the arguments to functions other than 

COND, such subtleties are lost. 

These shortcomings are not really serious. In the context in 

which boolean is used, they can never introduce unsoundness, and 

experience has shown that such counterexamples seldom arise in 

real theorems. 

Actually, boolean is a specialization of a much more general 

routine, called typeexpr. This routine writes a LISP function which 

attempts to recognize the range of the input expression to typeexpr. 

Given (MEMBER A B) typeexpr could generate the function MEMBTYPE: 

(MEMBTYPE (LAMBDA (X) (COND X (EQUAL X T) T»), 

which is just BOOLEAN. More generally, typeexpr can generate recursive 

'type functions'. The routine is explained in Section 3.7. 

We now return to the normalization routine itself. The rewrite 

rules it applies are justified by the following theorems. 

(BOOLEAN X) = T -> (EQUAL X T) = X. 

(EQUAL (EQUAL X Y) Z) -> (COND (EQUAL X y) 
(EQUAL Z T) 
(cOND Z NIL T». 

(BOOLEAN X) = T -> (COND X T NIL) = X. 

(COND X Y y) = y. 



(COND X x NIL) = X. 

(COND (COND X Y Z) U V) = (COND X 
(COND Y U V) 
(COND Z U V)). 

The last theorem is':just an instance of the schema: 

(f X1 ••• (COND Y U V) ••• Xn) = (COND Y 
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(f X1 ••• U 
(f X1 V 

Xn) 
Xn) ). 

As usual, the proofs of these theorems are completely trivial. 

For example, in the first theorem, X is boolean if it is T or NIL. 

Assuming that it is T, we must show that (EQUAL T T) = T, which is 

true. Assuming it is NIL, we must show that (EQUAL NIL T) = NIL, 

which is true. 

The fourth theorem, 

(COND X Y y) = Y, 

is interesting. In the theory, X must be NIL or some CONS. In 

both cases, the COND expression is equivalent to Y. In real LISP, 

X may fail to terminate, so that the left-hand side never terminates 

when evaluated, while the right-hand side might. Of course, if the 

left-hand side does terminate, it is equal to Y. 

The general distribution schema is also interesting. Its proof 

is not, since it is a straightforward case analysis: Y = NIL, or 

Y = (CONS (CAR y) (CDR Y)). 

In addition, normalization relies on four theorems used by !!!h. 

These are the theorems that evaluate EQUAL if the two arguments are of 

known relationship, and the theorems that evaluate COND when the first 

argument is an explicit list. This redundancy is commented on in 

Section 6.3, 
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The rewrite rules themselves are given below. Their correspondence 

with the theorems above should be obvious. Any rule involving EQUAL 

has a symmetric version not presented -- that is, the order of the 

arguments in an EQUAL is not critical. Since some expressions may be 

rewritten by two or more rules, the order in which they are listed is 

the order in which they are preferred. Finally, normalize recursively 

normalizes the argument expressions to any input expression before· 

any of these rules are applied to the top-level expression. 

(EQUAL x y) => T, if ident(x,y) = "equal". 

(EQUAL x y) => NIL, if ident(x,y) = "unequal". 

(EQUAL x T) => x, if x is boolean. 

(EQUAL (EQUAL x y) z) => (COND (EQUAL x y) 
(EQUAL z T) 
(COND z NIL T». 

(COND (CONS x y) u v) => u. 

(COND NIL u v) => v. 

(COND x T NIL) => x, if x is boolean. 

(COND x y y) => y. 

(COND x x NIL) => x. 

(COND (COND x y z) u v) => (COND x 

(f x1 ••• (COND Y u v) ••• 

(COND y u v) 
(COND z u v», where either 

y or z is NIL, or u and v are 
not NIL. 

x ) => (COND y 
n (f x1 ••• u ••• 

(f x 1 ••• v ••• 
where f is not CONDo 

The rather complicated restriction on rewriting 

(COND (COND x y z) u v) 



causes conjunctions to be treated delicately. For example, I r v In 

NIL, then the expression represents the conjunction of (COND x y z) 

and u. In this case, the first conjunct is not to be distributed over 

the second (since it is preferable to work on conjuncts separately). 

However, if z is NIL, then the first conjunct is itself a conjunction. 

The rule is then allowed to rewrite the expression; thus 

(x & y) & u 

is rewritten to: 

x & (y & u). 

The basic philosophy of normalize is to eliminate EQUAL and COND 

when possible. Compound EQUAL statements are broken into conditionals 

so that the cases can be handled separately. COND statements are 

distributed over each other and other function symbols, provided 

conjunctions are left intact. 

Note that the fact that some boolean expressions are not boolean 

does not introduce unsoundness. It merely means that two rules cannot 

be applied. 

Since the rules always replace terms by equivalent ones, the 

output of normalize is equivalent to its input. 

Below is an example of normalization. The function GT is boolean 

(as can be confirmed by inspecting its definition in Appendix A). 

The expression: 

(COND (COND (COND A B A) (COND B T NIL) T) 

normalizes to: 

(COND (EQUAL A (COND (GT B B) A (CONS A1 A») NIL T) 
(COND A1 NIL NIL» 



(COND (COND A 

3.4 Reduction 

(COND B (COND B T NIL) T) 
(COND A (COND B T NIL) T» 

(COND (GT B B) NIL T) 
NIL). 
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The reduce routine is responsible for propagating the results of 

the tests in conditional statements down the branches of the conditional 

tree. For example, in an expression of the form: 

(COND x p(x) q(x», 

we can assume that any x occurring in p(x) is non-NIL, and any x in 

q(x) is NIL. 

This is important because normalization often produces expressions 

in which p(x) and q(x) involve further conditional statements with x as 

the test. These redundant conditionals can be pared away, and this is 

what reduce does. 

The preceding example of normalization illustrates this. The 

output of normalize is at the top of the page. Note that both A and 

B occur as tests in conditionals in the branches of conditionals with 

A and B as tests. Using reduce ,the normalized expression from the 

last section can be transformed to: 

(COND (COND A (COND B T T) T) 
(COND (GT B B) NIL T) 
NIL). 

(This expression can be normalized again now, yielding: 

(COND (GT B B) NIL T).) 

Now that the need for reduction is clear, the details will be 

presented. 



1'0 

reduce relies on three equality schemas. The first is: 

(COND X p(X) q(X» = (COND X p( (CONS (CAR X) (CDR X») q(NIL». 

This is seen to be an equality by considering the cases: X = NIL, or 

X = (CONS (CAR X) (CDR X». 

The second equality is derived from the first, with the additional 

hypothesis that X is boolean. In this case, when X = (CONS (CAR X) (CDR X» 

then X = T. Thus: 

(BOOLEAN X) = T -> (COND X p(X) q(X» = (COND X peT) q(NIL». 

Finally, the third equality is based on the fact that if X is 

an equality statement, then when it is non-NIL the two terms equated 

can be assumed to be equal, and one can be substituted for the other: 

(COND (EQUAL X y) p(X)q«EQUAL X y») = 
(COND (EQUAL X y) p(y) q(NIL». 

In essence, reduce selectively applies these three equality schemas 

to all subexpressions of its input and then uses the COND evaluation 

rules to eliminate any redundant tests. That is, if x is tested in 

p(x) as above, then when p(x) is replaced by p«CONS (CAR x) (CDR x») 

or peT), then the COND eValuation rules remove all tests on x, since it 

is now an explicit list. The reason the adverb "selectively" is used 

above is that reduce chooses to replace by (CONS (CAR x) (CDR x» only 

those x which occur as the first argument of conditionals in p(x), rather 

than all occurrences of x in p(x). In addition, the third equality 

can be used indefinitely, since the right-hand side is still of the 

form of the left-hand side. Thus, this rule is used carefully. 

It is probably best to describe the algorithm for reducing an 

expression. The routine uses substitution to replace x by T or NIL 
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when possible. When x is not boolean, it uses an "assumption list" to 

remember that x is being assumed non-NIL on the true-branch (rather 

than actually r~placing x by (CONS (CAR x) (CDR x))). 

To reduce an expression, z, with assumption list, ~, the following 

procedure is used: 

If z is an atom, return z. If z is of the form (f z1 ••• zn)' 

where f is not COND, reduce each of the arguments independently. 

That is, return: 

(f reduce(z1'~) ••• reduce(zn,a)). 

Otherwise, z is of the form (COND x p(x) q(x)). Consider the possible 

forms of x. 

If x is a conditional statement, first reduce each of the arguments 

independently, then rematch the COND pattern shown above and continue 

as below. 

If x is an explicit CONS or is a member of the assumption list, ~, 

return: 

reduce(p(x) ,~). 

If X is NIL, return: 

reduce(q(x) ,~). 

If x is non-boolean, reduce the true-branch after assuming x is 

non-NIL by adding it to ~, and reduce the false-branch after replacing 

x by NIL. That is, return: 

(COND x reduce(p(x),~(x,~)) reduce(q(NIL),~)). 

If x is an equality of the form (EQUAL u v), where v is a specific 

list, let r be p(x) with all occurrences of u replaced by v, and return: 

(COND (EQUAL u v) reduce(r,a) reduce(q(NIL),~)). 
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Finally, if x is a boolean expression other than an equality as 

above, return: 

(COND x reduce(p(T) ,a) reduce(q(NIL),a». - -
Henceforth, the abbreviation 'reduce(x), will mean reduce(x,NIL). 

The 'reduction' of x is the output of reduce(x). 

This algorithm conservatively applies the three reduction 

equalities noted earlier and evaluates any COND statement with an 

explicit list as its first argument. Thus, the reduction of x 

is equivalent to x. 

In applying the third reduction equality, the algorithm requires 

that the v in (EQUAL u v) be a specific list. Of course, the symmetric 

rule is included as well. At most one of the two terms, u or v, will 

be a specific list, since if both were specific, the EQUAL expression 

could have been evaluated or normalized to T or NIL. The requirement 

that one be specific is to prevent the indefinite application of the 

rule to its own output. Substituting v for u in p(x) completely 

eliminates u from the true-branch without losing any information 

about it. The fertilization routine is responsible for more sophisticated 

equality substitutions. 

As an example of reduction, the expression: 

(COND A 
(COND (MEMBER A B) 

(COND (MEMBER A C) (MEMBER A B) (COND A T NIL» 
(COND A T (MEMBER A C») 

(COND (EQUAL B1 A) 
(COND B1 

(COND A T NIL) 
(COND (EQUAL B1 A) T (EQUAL B1 C») 

(COND (EQUAL A C) 
(COND A NIL T) 
(COND (EQUAL B1 A) NIL T»», 



reduces to: 

(COND A 
(COND (MEMBER A B) 

(COND (MEMBER A C) T T) 
T) 

(COND (EQUAL B1 NIL) 
(COND (EQUAL NIL NIL) T (EQUAL NIL C)) 
(COND (EQUAL NIL C) T T))). 

(The expression above normalizes to T.) 

3.5 Normalation 
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The process of applying ~, normalize, and reduce to an expression 

until it can no longer be rewritten by these routines is called 

'normalation'. Normalation preserves equality, since each of the 

basic routines yields output equivalent to the input. Experience 

shows that normalation is an efficient and fairly complete theorem 

prover for list theory without induction. If a skolemized expression 

normalates to T then the formula represented by the expression is a 

theorem. 

In order for the theorem prover to prove a theorem, the theorem 

must normalate to T, or else fertilization, generalization, or induction 

must produce a new expression which implies the original one and which 

normalates to T. This process is thus the "central processor" of the 

theorem prover. 

An example of normalation is given below. Consider the expression: 

(AND (EQUAL (APPEND NIL (APPEND B C)) (APPEND (APPEND NIL B) C)) 
(IMPLIES (EQUAL (APPEND A (APPEND B C)) 

(APPEND (APPEND A B) C)) 
(EQUAL (APPEND (CONS A1 A) (APPEND B C)) 

(APPEND (APPEND (CONS A1 A) B) C)))). 

This is just the induction formula produced for the theorem: 

(EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C)). 



Evaluation of this formula yields: 

(COND (COND (EQUAL (APPEND A (APPEND B C)) 
(APPEND (APPEND A B) C)) 

T 
NIL) , 

which normalizes to: 

(COND (EQUAL (APPEND A (APPEND B C)) 
(APPEND (APPEND A B) C)) 

T) 

T 
NIL) 
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(COND (EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C)) 
(EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C)) 
T) , 

and reduces to: 

(COND (EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C)) 
T 
T) • 

This normalizes to T, proving the associativity of APPEND. 

In addition to ultimately transforming the theorem into T (when 

the program wins), normalation simplifies expressions so that additional 

appeals to induction, or to the routines fertilize and generalize, can 

produce expressions which do normalate to T. 

For example, the theorem: 

(IMPLIES (AND (GT A B) (GT Be)) (GT A C)), 

which expresses the transitivity of the function GT (greater than), 

normalates to: 

(COND (GT A B) (COND (GT B C) (GT A C) T) T). 

The induction formula for this theorem is fairly complicated because 

the program (correctly) inducts upon A, B, and C simultaneously: 
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(AND (AND (COND (GT A NIL) (COND (GT NIL C) (GT A C) T) T) 
(AND (COND (GT NIL B) (COND (GT B C) (GT NIL C) T) T) 

(COND (GT A B) (COND (GT B NIL) (GT A NIL) T) T))) 
(IMPLIES (COND (GT A B) (COND (GT B C) (GT A C) T) T) 

(COND (GT (CONS A1 A) (CONS B1 B)) 
(COND (GT (CONS B1 B) (CONS C1 C)) 

(GT (CONS A1 A) (CONS C1 C)) 
T) 

T))). 

However, this formula normalates to: 

(COND (GT A B) (COND B (COND A T NIL) T) T). 

Normalation transforms the induction formula for the transitivity of 

GT into the simpler expression that if A is greater than B, then if 

B is non-NIL, A is non-NIL. This is then proved by induction --

which is to say, induction generates an equivalent formula which 

normalation can transform into T. 

The ability to transform complex expressions, such as the one above, 

into equivalent ones, makes normalation very useful in the automatic 

programming feature of the theorem prover. After one routine has 

generated a recursive function definition to fit a particular need, 

normalation is used to optimize the function body. Since the output 

is equivalent to the input, the new, more efficient definition has the 

same properties of the less efficient but easier to write definition. 

Section 3.7 discusses this in detail. 

Chapter 4, which contains sample output from the program during 

four proofs, contains many examples of evaluation, normalization, and 

reduction. 

3.6 Fertilization 

As indicated in the example in Section 2.3, fertilization is 

the process of making equality substitutions. 



The basic idea behind fertilization is that if x = y is being 

assumed, then p(y) is equivalent to p(x). If involved in a proof, 

p(x) may be easier to work with than p(y) because of properties of 

x, y, or p. 
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The general theorem schema upon which fertilization relies is: 

«BOOLEAN p(Y)) = T & (BOOLEAN Z) = T) 
-> 

(COND (EQUAL X Y) p(Y) Z) = (COND (COND p(X) 
T 
(COND (EQUAL X Y) NIL T» 

(COND Z T (EQUAL X y») 
NIL). 

This means that if an expression of the form: 

(COND (EQUAL x y) p(y) z), 

where p(y) and z are boolean, occurs in the theorem, it can be replaced 

by the equivalent expression: 

(COND (COND p(x) T (COND (EQUAL x y) NIL T» 
(COND z T (EQUAL x y) 
NIL). 

Notice that x has been substituted for y in p(y). 

In the special case where z is T (that is, the original expression 

is an implication) the schema simplifies considerably. If p(y) is 

boolean, then 

(COND (EQUAL x y) p(y) T) 

can be rewritten to: 

(COND p(x) T (COND (EQUAL x y) NIL T)). 

This is just the tlisjunction of p(x) and the inequality x ~ y. The idea 

is that the statement 'x = y implies p(y)' is equivalent to 'p(x) or 

x ~ y'. The case where z is not T is just a generalization of this. 
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Let us consider an example. In proving that TIMES (multiplication 

defined in terms of addition) is commutative, the induction step is: 

(IMPLIES (EQUAL (TIMES A B) (TIMES B A» 
(EQUAL (TIMES A (CONS B1 B» (TIMES (CONS B1 B) A»). 

This normalates to: 

(COND (EQUAL (TIMES A B) (TIMES B A» 
(EQUAL (TIMES A (CONS B1 B» (PLUS A (TIMES B A») 
T) • 

This is of the form: 

(COND (EQUAL x y) p(y) T), 

so fertilization applies, and substitutes x for y in p(y), producing: 

(COND (EQUAL (TIMES A (CONS B1 B» (PLUS A (TIMES A B») 
T 
(*1», 

where (*1) is a term known to be equal to: 

(COND (EQUAL (TIMES A B) (TIMES B A» NIL T). 

Shifting to algebraic notation, the original theorem was: 

A x B = B x A. 

Induction on B and normalation produced the inductive step: 

A x B = B x A -> A x (1 + B) = A + (B x A). 

This was rewritten by fertilize to: 

A x (1 + B) = A + (A x B) v A x B ~ B x A. 

However, the negative equality is "hidden" in (*1). This is done 

on the grounds that it has been "used". This has a consequence which 

is not immediately obvious. The (*1) term is never expanded into the 

above inequality, but remains simply (*1) throughout the rest of the 

proof. As a result, if a second induction is performed, none of the 

variables appearing in the term to which (*1) is equal are affected. 
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In particular, if 

A x (1 + B) = A + (A x B) v (*1) 

is proved by induction on A, then the term (*1) is not altered by the 

induction since no A (explicitly) occurs in it. It is as if the A in 

the (*1) term were standardized apart (i.e., renamed), and then the more 

general theorem: 

A x (1 + B) = A + (A x B) v AI x B pBx AI, 

proved by induction on A. 

By hiding the inequality it is protected from further inductions 

(thereby protecting further inductions from it). The (*1) expression 

is introduced to keep the rewritten expression formally equivalent to 

th~ original one (until induction is used). This allows fertilization 

to freely replace any such expression in the theorem. 

The program is "betting" that p(x) will be T, and has "thrown away" 

the equality. The heuristic grounds on which this is done is that the 

equality was "used" in rewriting p(y) to p(x), and its contribution to 

the proof is now complete. 

Often, formulas of the form: 

(COND (EQUAL x y) p(y) z) 

arise out of induction, where (EQUAL x y) is from the induction hypothesis, 

and p(y) is the normalated conclusion. Usually z is T, but it can be a 

more complex expression "pushed back" into that position by normalation. 

The reason it is reasonable to "bet" on p(x) rather than p(y) in 

these circumstances is that if indeed p(y) is the normalated conclusion, 

then part of it, namely, y, has been converted into that part of the 

hypothesis from which it came. The rest of it came from x, which failed 

to properly recurse. 
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But if x and y are known to be equal, then by substituting x for 

y in the conclusion we eliminate y from the theorem (provided we also 

throwaway the used equality) and obtain a new theorem which is 

entirely of the "genre" of x. Then perhaps something can be done 

which allows x to properly recurse in induction. 

Intuitively, fertilization works because x and y require different 

inductive approaches in order to properly reappear in the normalated 

conclusion. The most common difference is that they simply require 

induction on different terms. The first induction done, for example, 

on B in the TIMES example above, allows y to recurse. In the example, 

the (TIMES B A) term reappeared in the conclusion because it recursed 

on B. However, the (TIMES A B) term did not. Because y properly 

recursed, it could be eliminated from the theorem. This produced a 

new theorem involving x and its descendant, (TIMES A (CONS B1 B)), 

provided the equality was thrown away. A second induction, this time 

on A, allows the x-like terms to recurse. 

If the used equality were not thrown away, the y term would 

"compete" with the x term in the selection of what to induct upon. 

In this example, even if the x term "won" and A was inducted upon, 

the y term would not properly recurse, even though it does contain A. 

Since it does contain A it would be changed by the induction, and 

it would therefore fail to match in the conclusion. 

The point is that if one is proving a disjunction, peA) v q(A), 

by induction, but there is reason to believe that peA) is a theorem 

(it is just the conclusion of a previous induction argument, after 

the induction hypothesis has been used), then proving peA) might be 



easier. Furthermore, if there is reason to believe that p and q 

recurse on different terms (and p recurses on A), then proving 

the induction step: 

peA) v q(A) -> p«CONS A1 A)) v q«CONS A1 A)), 

may be very difficult. In particular, since peA) recurses upon A, 

the p term in the conclusion should become r(p(A)), while the q 

term does not recurse. Thus, one must show: 

peA) v q(A) -> r(p(A)) v q«CONS A1 A)). 
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In particular, one must deal with the case where the peA) in the 

hypothesis is false, and q(A) is true, and show that the conclusion 

is true. If, on the other hand, we had decided to prove the 

much stronger theorem: 

peA) -> p«CONS A1 A)), 

by ignoring the second disjunct (which is the used equality), the 

situation is much clearer, because this reduces to: 

peA) -> r(p(A)). 

Since there is reason to believe that peA) is a theorem, and 

since there is also reason to believe that it is "incompatible" with 

q(A), it is very useful to ignore q(A) in the induction. This is 

precisely why the used equality, x = y, is hidden in the (*1) term 

and the entire effort of the theorem prover devoted to proving the 

fertilized conclusion. 

In the example above, the incompatibility of x and y was due to 

their recursing on different terms. Another frequent use of fertilization 

is that it allows a theorem to be generalized (by introducing a common 

subterm on both sides of an equality, for instance) which in turn allows 

a second induction to succeed. 
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Let us return to the example in Section 2.3 in which fertilization 

was introduced. The theorem to be proved was: 

(EQUAL (APPEND (REVERSE A) (REVERSE B» 
(REVERSE (APPEND B A»). 

Induction on B was used, and the NIL-case was dismissed after a second 

induction. This left the induction step for the original theorem: 

(COND (EQUAL (APPEND (REVERSE A) (REVERSE B» 
(REVERSE (APPEND B A») 

(EQUAL (APPEND (REVERSE A) 

T) • 

(APPEND (REVERSE B) (CONS B1 NIL») 
(APPEND (REVERSE (APPEND B A» (CONS B1 NIL») 

(The formula above is the induction step after it has been normalated.) 

Note that this formula is of the form: 

(COND (EQUAL x y) p(y) T). 

Thus, fertilization applies, and rewrites it to: 

(COND (EQUAL (APPEND (REVERSE A) 

T 
(*1», 

(APPEND (REVERSE B) (CONS B1 NIL») 
(APPEND (APPEND (REVERSE A) (REVERSE B» 

(CONS B1 NIL») 

where (*1) is known to be equal to: 

(COND (EQUAL (APPEND (REVERSE A) (REVERSE B» 
(REVERSE (APPEND B A») 

NIL 
T) • 

As noted earlier, if the common subterms in the output of fertilization 

are replaced by skolem constants, the result is the statement that 

APPEND is associative (provided the (*1) term is ignored). This 

theorem has a trivial inductive proof, but it was necessary to 

generalize the theorem, and the generalization was not possible until 

the equality hypothesis had been used to introduce the common subterms. 
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Two of the proofs in Chapter 4 illustrate fertilization. The two 

theorems are: 

(EQUAL (REVERSE (REVERSE A)) A). 

(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A))). 

In both of the specific examples given in this section the 

normalated conclusion, p(y), was an equality. This is not always the 

case, but we will consider it to be so for the moment. 

It is possible that y occurs on both sides of the equality 

in the conclusion. The expression to be fertilized is then of the 

form: 

where z is boolean. In this case, x is substituted for y only on the 

right-hand side of (EQUAL P1(Y) P2(y)). The result is thus: 

(COND (COND (EQUAL P1(Y) P2(x)) T (*n)) 
(COND z T (EQUAL x y,) 
NIL). 

The term which properly recursed is replaced. When two equalities are 

involved and the fertilization was right-side into left-side or left-

side into right-side, it is called 'cross-fertilization'. 

Occasionally both x and y occur in the conclusion. Fertilization 

is used to produce a new term of uniform "genre". Cross-fertilization 

is preferred, but if both allow cross-fertilization, the smaller of 

x and y is substituted for the larger. 

Finally, it is possible that the evaluated conclusion, p(y), is 

no longer an equality. If one or both of the two expressions, x, or y, 

occur in it, fertilization replaces all occurrences of one by the other. 

Size is used to decide which is replaced if a choice is possible. 
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It should be obvious that fertilization allows x to be replaced by 

y under conditions exactly symmetric to those described as allowing y 

to be replaced by x. The term p(x) is said to have been 'fertilized 

by (EQUAL x y)'. In all cases, a term such as (*n) is produced and 

the negated equality is stored on the property list of the atom. In 

addition, the term is known to be boolean (so that various rewrite rules 

can still be applied), and it acts like NIL with regard to the COND 

distribution rule in normalize. (That is, a term such as: 

(COND (COND x y z) u (*n)), 

is not rewritten to: 

(COND x (COND Y u (*n)) (COND z u (*n))). 

Instead, it is treated as a conjunct.) 

The details of the fertilize routine can now be filled in. It 

operates on an expression and returns an equivalent one (modulo terms 

such as (*n)). The routine searches the expression (depth-first) for 

the first expression of the form: 

(COND (EQUAL x y) p(y) z), 

where y actually occurs in p(y), and p(y) and z are boolean. If such 

an expression is found, we say 'fertilization applies', and fertilize 

replaces the COND expression (above) by the equivalent one: 

(COND (COND p(x) T (*n)) (COND z T (EQUAL x y)) NIL), 

where p(x) has been fertilized as described above, and (*n) is a new 

term known to be boolean, with (COND (EQUAL x y) NIL T) on its property 

list. 

It should be noted that if z is T, fertilize replaces the original 

COND by the simpler expression: 
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(COND p(x) T (*n)), 

thereby saving normalize a few steps. 

The output of fertilize is a copy of the input expression with 

the COND expression replaced as described. 

Historically, fertilization was performed by the reduction routine. 

A vestige of it still remains, in the rule that allows substitution of 

a specific list for a term. Fertilization was removed from reduce to 

eliminate it from the normalation cycle. Thus, it is performed only 

after all of the more obvious rewrite rules have been applied. 

3.7 Generalization and Type Functions 

Often a theorem must be generalized before it can be proved by 

induction. This is usually expressed by saying that the theorem "is 

not strong enough to carry itself through induction". The routine 

generalize is responsible for generalizing the theorem to be proved. 

An example of a theorem requiring generalization was given in 

Section 2.3, and discussed again above. In proving: 

(EQUAL (APPEND (REVERSE A) (REVERSE B)) 
(REVERSE (APPEND B A))), 

the induction step led to the theorem: 

(COND (EQUAL (APPEND (REVERSE A) 

T 
(*1)). 

(APPEND (REVERSE B) : (CONS B1 NIL))) 
(APPEND (APPEND (REVERSE A) (REVERSE B)) 

(CONS B1 NIL))) 

This must be generalized in order to prove it. If (REVERSE A), 

(REVERSE B), and (CONS B1 NIL) are replaced by the new skolem constants 

C, D, and E, the result is: 
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(COND (EQUAL (APPEND C (APPEND D E» (APPEND (APPEND C D) E» 
T 
(*1», 

which is just the statement that APPEND is associative. 

A theorem is generalized if it has been normalated and fertilized 

until these routines no longer apply. generalize finds all of the 

non-atomic subterms which occur in the theorem on opposite sides of 

., an EQUAL term or in the hypothesis and conclusion of a conditional 

statement representing an implication. Subject to certain constraints 

defined below,it replaces these common subterms by new skolem constants. 

For example, in proving the theorem that the output of SORT is 

ORDERED: 

(ORDERED (SORT A», 

the induction step normalates to: 

(COND (ORDERED (SORT A» (ORDERED (ADDTOLIST A1 (SORT A») T). 

generalize detects that this conditional represents an implication 

and replaces the common subterm, (SORT A), by the new skolem constant 

GENRL1. The result is: 

(COND (ORDERED GENRL1) (ORDERED (ADDTOLIST A1 GENRL1» T), 

which is one of the primary properties of ADDTOLIST. 

This is a generalization because the original theorem is 

equivalent to: 

. " 
" ..... 

y X, Y « ORDERED (SORT X» = T -> 
(ORDERED (ADDTOLIST Y (SORT X») = T) • 

The output of generalize is equivalent to the more general: 

\fZ, Y«ORDERED Z) = T -> (ORDERED (ADDTOLIST Y Z» = T). 
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This kind of generalization is reasonable on the heuristic grounds 

that it simplifies the theorem but retains a large degree of the original 

structure of the theorem. The hope is that the role played by the 

replaced term(s) is not critical in the proof except insofar as the 

term occurs on both sides of the EQUAL or implication. 

Generalization is dangerous however. The role played by the common 

subterms may be important and the generalized formula may not be a 

theorem. 

For example, the function CDRN takes two arguments, X and Y, and 

returns the Xth CDR of Y if Y has X elements, and NIL otherwise. The 

following is a theorem: 

(COND (CDRN A B) (MEMBER (CAR (CDRN A B» B) T). 

This states that if the Ath ~DR of B is non-NIL, then its CAR is an 

element of B. We might be tempted to generalize this to: 

(COND GENRL1 (MEMBER (CAR GENRL1) B) T), 

which states that if GENRL1 is non-NIL, its CAR is an element of 

(the random list) B. This is not a theorem. 

One might imagine that the problem can be avoided if terms which 

share variables with the ungeneralized part of the expression are not 

replaced. This is quite reasonable, but has numerous counter-examples, 

such as: 

(EQUAL (PLUS (TIMES B C) (TIMES (TIMES A B) C» 
(TIMES (PLUS B (TIMES A B» C». 

Before this can be proved by induction, (TIMES A B) must be replaced, 

generalizing the theorem to: 

(EQUAL (PLUS (TIMES B C) (TIMES GENRL1 C» 
(TIMES (PLUS B GENRL1) C» • 

.- .r:.~ 

(This is taken from the program's proof thlti~TIMES is associative. 

The example is discussed further in Section 6.2.) 
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No clear solution has been found for this problem. However, to 

avoid the problem as much as possible, the program refuses to generalize 

an expression if it represents the entire hypothesis of an implication. 

This works well for terms such as the CDRN one, which are tested 

(against NIL) to determine if their values are relevant before using 

them. 

Another example of a false generalization is in the theorem: 

(~UAL (LENGTH (LENGTH A)) (LENGTH A)). 

This is a theorem since the LENGTH of a list is a number -- that is, 

a list of NILs as long as the argument list. The theorem can be very 

neatly generalized to the non-theorem: 

(EQUAL (LENGTH GENRL1) GENRL1). 

An elegant solution to this type of problem has been found. 

The "proper" generalization of the theorem is: 

(IMPLIES (NUMBERP GENRL1) (EQUAL (LENGTH GENRL1) GENRL1)), 

where the definition of NUMBERP is: 

(NUMBERP (LAMBDA (X) 
(COND X 

(COND (CAR X) 
NIL 
(NUMBERP (CDR X))) 

T))) • 

NUMBERP recognizes numbers. The generalized theorem is that the LENGTH 

of any number is itself. 

The general schema being used here is that if per) = T is to be 

proved, it is sufficient to prove: 

rtype(X) = T -> p(X) = T, 

and 

rtype(r) = T. 
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The question then arises: if r is to be generalized, is it possible 

to automatically generate the expression rtype(X)? In the above example, 

is it possible to generate NUMBERP, given (LENGTH A)? In a number of 

cases the program can generate such expressions and functions. 

The routine which generates these 'type expressions', rtype(X), is 

called typeexpr. Given an expression, r, possibly involving recursive 

functions, typeexpr will return a new expression, rtype(X), which is 

supposed to be equivalent to T only for X in the range of r. Usually 

in doing so, typeexpr will write and define new, recursive LISP 

functions. These functions, written by typeexpr to recognize the output 

of other functions, are called 'type functions'. 

The generalize routine may be described as follows. It takes as 

its argument some expression representing a theorem. It finds any 

subterm, r, that is non-atomic and which occurs in both arguments of 

an EQUAL or in the hypothesis and conclusion of an implicational condi

tional statement, but not occurring as the hypothesis of any such 

conditional, and not occurring within any larger such common subterm. 

If no such r is found, generalize returns the original expression. 

If such an r is found, let the input expression be per). The 

routine uses typeexpr to generate the type expression, rtype(X), for 

r. If rtype(X) is just T (that is, the range of r is the entire 

universe), generalize returns the result of generalizing p(x), where 

x is a new skolem constant. That is, generalize replaces r by a new 

skolem constant and then generalizes the remaining r's. 

If rtype(X) is not T, generalize returns: 

(IMPLIES rtype(x) g.eneralize(p(x))), 

where x is a new skolem constant. 
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Thus, generalize replaces every such r by a new constant and uses 

type expressions and type functions to restrict the constants to 

certain ranges. The output of the routine becomes the new theorem to 

be proved. 

The fact that rtype(r) = T, which must be true if the new theorem 

is to imply the old, is true by the method used to construct rtype(X). 

This will now be described. 

Let us return to the particular problem of generating NUMBERP 

given (LENGTH A). The definition of LENGTH is: 

(LENGTH (LAMBDA (X) 
(COND .x 

where ADD1 is just: 

(ADD1 (LENGTH (CDR X))) 
0))), 

(ADD1 (LAMBDA (X) (CONS NIL X))). 

When the definition of LENGTH is introduced into the system (by define) 

it is normalated to simplify it. This expands it to: 

(LENGTH (LAMBDA (X) 
(COND X 

(CONS NIL (LENGTH (CDR X))) 
0))), 

since ADD1 is non-recursive. 

We want to generate a function, LENGTYPE, which takes one argument, 

X, and returns T or NIL according to whether X could be a value of 

LENGTH applied to anything. If X is to satisfy LENGTYPE, it must be 

the value of one of the two branches of the COND expression in the 

(normalated) definition of LENGTH. Thus, X must either be 0, or X 

must be the value of (CONS NIL (LENGTH (CDR A))). But to be the 

value of the CONS term, it must be non-NIL, its CAR must be NIL, 
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and its CDR must be the value of some LENGTH expression. But this 

last condition means (inductively) that (CDR X) must satisfy 

LENGTYFE. 

Thus, we have determined that for X to satisfy LENGTYPE, the 

following must hold: 

X = 0 v (X # NIL & (CAR X) = NIL & (LENGTYPE (CDR X)) = T). 

Expressing this in LISP gives: 

(COND (EQUAL X 0) 
T 
(COND X 

(COND (EQUAL (CAR X) NIL) 
(LENGTYFE (CDR X)) 
NIL) 

NIL)) • 

By construction, this is the definition of LENGTYPE. However, if we 

normalate this expression, we find that it is equivalent to: 

(COND X 
( COND (CAR X) NIL (LENGTYPE (CDR X))) 
T) • 

But this is just the definition of NUMBERP (modulo the name). Thus, 

we have managed to construct,by a completely general procedure, a 

recursive function which returns T if and only if its argument is a 

number. Furthermore, the definition is very efficient within the 

constraints of the language. The procedure just employed is implemented 

in the routine typeexpr. 

This routine recursively explores an expression, r, and possibly 

several function definitions, and generates a new expression, rtype(X), 

and possibly several new LISP functions. This new expression will 

have X free in it. Ideally, when some new term, x, is substituted for 

X in rtype(X), the result will be equivalent to T if and only if x is 
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within the range of r. Since, as we saw in the case of boolean, this is 

in general not possible, certain heuristics will be used which make 

rtype(X) err on the liberal side. For some x, not within the range 

of r, rtype(x) will be T. However, for all x within the range of r, 

rtype(x) will be T. Thus, rtype(r) is T. Since such type expressions 

will be used to restrict generalizations, this error does not intro

duce unsoundness; it may however allow the program to make too 

general a generalization. 

We will now describe the routine. In considering expressions 

with non-primitive top-level function symbols, we will initially 

ignore the arguments and merely type the function as if its arguments 

were unrestricted. Let r be the expression being explored, and X be 

the free variable. 

If r is a skolem constant or a variable in a function definition, 

it can have any value whatsoever, so the output of typeexpr is T. 

If r is a specific list, in particular, NIL, T, or a number, 

return (EQUAL X r). 

If r is any other CONS expression, obtain p(X) by recursively 

finding the type expression for the first argument of the CONS, 

and obtain q(X) by finding the type expression for the second argument 

of the CONS. Return the expression: 

(COND X (COND p«CAR X)) q«CDR X)) NIL) NIL). 

If r is a CAR or CDR expression, assume the output can be anything 

and return T. 

If r is an EQUAL expression, the output is T or NIL, so return: 

(COND X (EQUAL X T) T). 
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If r is a COND expression, assume either branch can be the vuluf) 

of the expression. Ignore the condition tested. Obtain p(X) by 

finding the type expression for the second argument, and q(X) by 

finding the type expression for the third argument, and return: 

(COND q(X) ~ p(X)). 

Otherwise, r is of the form (f x1 ••• xn), where f is a non

primitive. If the type function for f is already known to be ftype, 

return (ftype X). (A function's type function, when known, is stored 

on its property list.) If its type function is not known, generate 

a new function name, ftype, and store it on the property list of f 

as the type function of f. Recursively find the type expression 

of the definition of f, and call this p(X). If (ftype X) occurs in 

p(X), replace it by NIL. Define the new type function by: 

(ftype (LAMBDA (X) normalate(p(X)))), 

and return (ftype X). 

Several points should be made about this definition. If r is 

an application of a non-primitive function, f, then a new recursive 

function, ftype, is written and defined. This is done by creating 

the type expression for the definition of f. Any expression of the 

form (ftype X) in this type expression is replaced by NIL. If this 

were not done, ftype would not be a total function. The reason 

(ftype X) is replaced by NIL {rather than something else) is as 

follows: (ftype X) can only be introduced if a recursive call of f 

appears as one of the branches in a COND statement in the definition 

of f. If X was the output of this recursive call of f, then it was 

also the output of some other exit of f. Hence, it must satisfy 

some other exit of ftype as well. 
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The type funotion generated for any total funotion is total. This,; 

is obvious since every recursive call of ftype in the definition decomposes 

X with at least one CAR or CDR (after checking that X is non-NIL). 

As defined here, the output of typeexpr is not normalated (although 

function bodies created by it are). For efficiency, a top-level version 

of the routine normalates the output of the procedure described here. 

Thus, the type expression of: 

(COND A (CONS B C) NIL) 

is actually T, rather than: 

(COND (EQUAL X NIL) T (COND X (COND T T NIL) NIL)), 

as would be generated by the basic routine. (The reader is invited to 

verify that the conditional above "optimizes" to T by normalation.) 

Because boolean and numerically valued functions are common, 

typeexpr actually checks for these explicitly with boolean and numeric 

(an inductive verifier for numerically valued expressions just like 

boolean). For such expressions, it specifically uses BOOLEAN and 

NUMBERP as the type functions. These two checks could be discarded 

at the expense of generating many different function names with 

definitions equivalent to BOOLEAN and NUMBERP (such as LENGTYPE derived 

earlier). It is important to realize that without these built-in 

checks, typeexpr is still capable of recognizing these two types of 

expressions and generating precisely the right definitions. 

Let us now consider some examples. From the previous discussion, 

it should be clear that typeexpr generates the correct definition of 

LENGTYFE given (LENGTH A) (even if the boolean and numeric checks 

are not present). 
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Given (REVERSE A), typeexpr (correctly) generates the function 

(REVETYPE (LAMBDA (X) T)). 

The function REVERSE ranges over the entire universe of lists. However, 

this is precisely correct only by coincidence. Upon encountering 

the call of APPEND in the definition of REVERSE, typeexpr recursively 

determines that APPEND ranges over the entire universe (if its arguments 

are unrestricted). It then decides that REVERSE must also range over 

the entire universe without ever inspecting the particular restrictions 

upon the arguments in the call to APPEND in REVERSE. Proving that 

REVERSE ranges over the entire universe is a non-trivial theorem. 

The function COUNT counts the number of occurrences of an element 

in a list: 

(COUNT (LAMBDA (X y) 
(COND Y 

(COND (EQUAL X (CAR y)) 

0))). 

(ADD1 (COUNT X (CDR y))) 
(COUNT X (CDR y))) 

(Recall that the ADD1 term is normalated to (CONS NIL (COUNT X (CDR Y))).) 

Given (COUNT A B), typeexpr first finds the type expression 

of the definition above: 

(COND (EQUAL X 0) 
T 
(COND (COUNTYPE X) 

T 
(COND X 

(COND (EQUAL (CAR X) NIL) 
(COUNTYPE (CDR X)) 
NIL) 

NIL))). 

Notice the recursive call of COUNTYPE which does not decompose X. This 

corresponds to the recursive call of COUNT which does not alter the 

output of the call before returning it. This means that the output 



of this recursive call was produced .by some other exi t () r (:()IINT. 

and must therefore satisfy some other exit of COUNTYPE. 'l'hun, 

(COUNTYPE X) is replaced, above, by NIL, and the expression is 

normalated to form the definition of COUNTYPE: 

(COUNTYPE (LAMBDA (X) 
(COND X 

(COND (CAR X) NIL (COUNTYPE (CDR X») 
T») • 

This is just NUMBERP again. As pointed out above, this type would 

be caught by the explicit numeric check in the actual typeexpr 

routine. The above description of its generation makes it clear 

that it is easy enough to write automatically. 

Let PAIRLIST be defined by: 

(PAIRLIST (LAMBDA (X y) 
(COND X 

(COND Y 
(CONS (CONS (CAR X) (CAR y» 

(PAIRLIST (CDR X) (CDR y») 
(CONS (CONS (CAR X) NIL) 

(PAIRLIST (CDR X) NIL») 
NIL»). 

(PAIRLIST A B) generates an (association) list of pairs as long as 

A with the elements of A paired with those of B (or with NIL if 

B is short). 

Given (PAIRLIST A B), typeexpr generates PAIRTYFE: 

(PAIRTYPE (LAMBDA (X) 
(COND X 

(COND (CAR X) (PAIRTYPE (CDR X» NIL) 
T»), 

which correctly recognizes association lists. 

As a final example, let BINTREE be a function which generates 

a full binary tree of NILs with a number representing the depth of the 



subtree at each node: 

(BINTREE (LAMBDA (X) 
(COND X 

(CONS (LENGTH X) 
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(CONS (BINTREE (CDR X» (BINTREE (CDR X»» 
NIL» ). 

Then for (BINTREE A), typeexpr generates BINTTYPE: 

(BINTTYPE (LAMBDA (X) 
(COND X 

(COND (LENGTYPE (CAR X» 
(COND (CDR X) 

NIL) 
T») • 

(COND (BINTTYPE (CAR (CDR X») 
(BINTTYPE (CDR (CDR X») 
NIL) 

NIL) 

This function recognizes only binary trees with a number at each 

node. The information that the tree is balanced, and the relationship 

between the number and the subtree at each node is lost. Note that 

in this example, typeexpr had to recursively write LENGTYPE for 

LENGTH before it could finish writing BINTTYPE. 

We observe that typeexpr can generate reasonably efficient and 

often quite restrictive type functions. From the definition of 

typeexpr it is clear that an expression always satisfies its type 

expression. As in the case of BINTTREE, we see that the type expression 

generated may recognize other structures as well. A good (and 

devastating) example of this is obtained by finding the type expression 

for (SORT A). The result is: 

(SORTTYPE (LAMBDA (X) T». 

But SORT does not range over the entire universe. This is "almost 

true" however. Inspecting the definition, we see that NIL is a possible 
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output, and so is anything output by ADDTOLIST (ignoring the arguments 

to the ADDTOLIST call in SORT). But one of the possible outputs of 

ADDTOLIST is (CONS X Y), where X and Y are the arguments. Thus, at 

first glance, the output of SORT can be anything. 

Of course, the problem is that the call of ADDTOLIST in SORT 

restricts the arguments, so that while X can be anything, Y is a 

sorted list. Furthermore, (CONS X y) is an output of ADDTOLIST only 

when X is LTE (less than or equal to) the CAR of Y. Since typeexpr 

does not consider the arguments to non-primitive functions, and does 

not take advantage of the information available from the conditions 

tested, it misses this information. 

As a result, in trying to prove: 

(EQUAL (SORT (SORT A» (SORT A», 

the program generalizes it to: 

(EQUAL (SORT GENRL1) GENRL1) , 

where GENRL1 is completely unrestricted. While this is very reasonable, 

it is not a theorem. If typeexpr could generate ORDERED as the (proper) 

type function for SORT, the theorem would correctly generalize to: 

(IMPLIES (ORDERED GENRL1) (EQUAL (SORT GENRL1) GENRL1», 

which the theorem prover can prove. 

The problem of generating ORDERED given SORT is still open, but 

appears to yield to a very similar approach, which takes into account 

the two kinds of information discussed above. 

It is quite easy to take into account the types of the arguments 

to non-primitive functions. Before finding the type expression of a 

function application, one recursively finds the type expressions for 
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each of the arguments. An association list is used to bind the variables 

in the function definition to their type expressions, and then the 

type expression for the definition is found. 

Upon encountering a variable, its type expression is looked-up 

on the association list and returned (rather than assuming it could 

be bound to anythingcand returning T). Also, steps have to be taken 

to determine the type of a CAR or CDR expression, given the type of 

the argument. Several obvious heuristics work well. 

Such a function has been implemented, but it is not used in the 

current theorem prover. This is because it produces more complicated 

function definitions and still does not solve the SORT problem mentioned 

above. However, the routine is capable of producing a type functioL 

which recognizes the type of: 

(APPEND (LENGTH A) (LENGTH B)) 

to be a number. 

Besides providing some protection against faulty generalizations, 

typeexpr is interesting for two reasons. First, it very effectively 

uses the ~, normalize, and reduce routines to optimize LISP code. 

This use of normalation was not originally forseen, but corresponds very 

strongly with the traditional way of writing programs: first write an 

inefficient but obvious algorithm and then use knowledge of the program

ming language to make it more efficient. The second reason typeexpr 

is interesting is that it is an effective way to use automatic 

programming to aid the process of proving program correctness. 



3.8 Induction 

The induct routine is concerned with producing an induction 

formula which implies the theorem to be proved. This routine ie 

appealed to only after normalation and fertilization have failed to 

rewrite the theorem and after generalization has replaced any common 

subterms as described. Two basic problems must be solved by induct. 

What term or terms should be inducted upon? What should be the exact 

form of the induction formula? 

Both of these problems are solved by inspecting the fault descrip

tions generated by~. Once the two problems are solved, induct 

creates the new expression which represents the induction formula, 

and this becomes the theorem to be proved. 

The problem of choosing the terms to induct upon is discussed 

first. The routine that does this is a subroutine to induct, called 

pickindvars. The heuristic used, as explained in Chapter 2, is to 

induct upon the terms most likely to let the theorem "recurse back 

down" when those terms are made explicit CONSes. The hope is that 

the link between eValuation and induction will let a properly chosen 

induction conclusion evaluate into a properly chosen induction 

hypothesis. With the evaluation machinery at our disposal, this choice 

is usually easy. 

If the theorem, p, is evaluated, it will not change, since normal

ationhas already exhaustively rewritten the theorem. However, analysis 

will contain a set of fault descriptions, describing why the eValuation 

of the recursive expressions in p halted. The reader should recall the 

structure of analysis as presented in Section 3.2. 



Briefly, each fault description corresponds to some recursive 

function application appearing in p. A description consists of a 

1~ 

pair, composed of a bomb list and a failures list. The bomb list is 

a list of pockets indicating those terms simultaneously decomposed in 

a recursive call of the function. There is a pocket for each recursive 

call (which was halted) in the function's definition. The failures 

list is a list of all of the non-recursive CAR and CDR failures 

occurring in the evaluation of the definition. 

pickindvars is concerned only with the terms in the bomb lists in 

analysis. The terms in the pockets are a series of CARs and CDRs applied 

to some term, which will be called the 'argument' (since it is an 

argument to the non-primitive function expression corresponding to the 

fault description). Call the set of (distinct) arguments occuring in 

the pockets of the bomb list of a fault description, the 'argument list' 

of that description. 

Any argument in any argument list of analysis might be considered 

as a term to induct upon (an 'induction candidate'). To a certain 

extent, if any such argument were replaced by an explicit CONS in the 

conclusion, the resulting expression would have a better chance of 

evaluating than it would have should some term not in an .argument list 

be chosen. However, if an argument is not a skolem constant, it cannot 

be inducted upon without being generalized. Since it was not generalized, 

it cannot be considered as an induction candidate. 

It is advisable to induct simultaneously upon all of the arguments 

associated with some fault description. If only a (proper) subset of 

the arguments were inducted upon, then only those arguments would be 
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explici t CONSes in the conclusion. Since there would nt. i 11. bt, uq.r;ument.B 

in the fault description which were not inducted upon, the expreuuion in 

the conclusion would again fail to recurse, because the remaining argu

ments in the description would again fail in recursion. 

Therefore, any fault description with argument list containing a 

non-skolem constant is eliminated from consideration. 

If any two argument lists share a term, then two recursive expres

sions depend upon that term being an explicit CONS. If the arguments 

in one of the lists are inducted upon (and thus made CONSes in the 

conclusion), then a CONS would be introduced into the expression 

corresponding to the fault description associated with the other argu

ment list. This expression would not evaluate, because the other argu-

ments in the argument list were not explicit CONSes. However, neither 

would it match the expression in the hypothesis from which it came, 

because of the "spurious" CONS introduced. Thus, the induction 

hypothesis would be prevented from matching (parts of) the evaluated 

conclusion. It is therefore a reasonable heuristic to merge any argu

ment lists which share a skolem constant. (The bomb lists and failures 

lists associated with their fault descriptions are also merged. The 

result is still treated as a fault description with associated argument 

list, even though it now describes several faults.) 

Often, after all possible merges, there is only one fault description 

left. If so, its associated argument list is chosen as the set of terms 

to be inducted upon (simultaneously). However, if there are mUltiple 

sets to choose from, the following heuristics are used. 

Each list of arguments is !'rated" by replacing, in p, each of the 

arguments in the list by an explicit CONS and then evaluating the result. 
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The number of rewrite rules successfully applied by ~ is counted. 

This count gives an indication of how far evaluation was able to 

proceed under the particular list of arguments. Since induction on 

multiple terms simultaneously is bound to allow more (CAR and CDR) 

evaluation than induction on a single term, the count is divided by 

the number of arguments in the list. The list with the highest 

such rating is chosen as the set of induction terms. 

For example, the theorem: 

(EQUAL (APPEND A (APPEND B C» (APPEND (APPEND A B) C», 

generates four fault descriptions. One of these is eliminated be

cause it reports recursion on (APPEND A B), which cannot be inducted 

upon. Two of the others, reporting induction on A, are merged. This 

leaves two sets to choose from, one containing only A, the other only 

B. The above heuristic chooses A because it allows more evaluation. 

In particular, A allows the APPEND definition to be applied three 

times, while B allows its application only once. 

Should several lists be tied for the highest rating, the one 

containing the greatest number of terms not previously inducted upon, 

in the current theorem, is chosen. This is merely to enable a new set 

of expressions to recurse. 

Should this produce a tie, a random list is chosen from the 

"winners". 

The terms in the argument list chosen are inducted upon simultaneously. 

The bomb and failures lists associated with this argument list are used 

by induct to set up the induction formula. 



There must clearly be a NIL-case for each term inducted upon. The 

precise form of the induction step -- for example, whether there is a 

hypothesis about the CAR or the CDR or both -- is determined by inspection 

of the bomb and failures lists associated with the argument list of 

induction terms. A few examples of correct induction formulas and 

how they are generated using these lists may be helpful. 

In proving the theorem: 

(EQUAL (COpy A) A), 

induct gets the above expression as its input (since normalation, 

fertilization, and generalization do not rewrite the theorem). 

Evaluation sets analysis to: 

««(CDR A»«CAR A») NIL», 

which contains a single fault description, containing a bomb list 

with two pockets. pickindvars chooses A. Since only one term is 

being inducted upon, there need be only one NIL-case. Since the 

bomb list contains both (CAR A) and (CDR A), induction hypotheses 

about both components of the CONS supplied in the conclusion will 

be needed. Since A is never decomposed with more than one CAR or 

CDR (either recursively or non-recursively), a single explicit 

CONS in the conclusion is sufficient to guarantee that there will 

be no CAR or CDR failures in the evaluated definition. Thus, the 

induction hypothesis generated is: 

(AND (EQUAL (COpy NIL) NIL) 
(IMPLIES (AND (EQUAL (COPY A1) A1) 

(EQUAL (COpy A) A» 
(EQUAL (COpy (CONS A1 A» (CONS A1 A»». 

The reader can verify that this formula normalates to T. 
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The next example is: 

(IMPLIES (ELEMENT A B) (MEMBER (ELEMENT A B) B)), 

where (ELEMENT A B) returns the Ath element of B (or NIL if B does not 

have A elements). This theorem normalates to: 

(COND (ELEMENT A B) (MEMBER (ELEMENT A B) B) T), 

and does not fertilize or generalize (because the hypothesis of an 

implicational conditional is protected). Call this expression p(A,B). 

After evaluation, analysis has three fault descriptions on it. They are: 

««CDR B))) «CAR B))), 

from the MEMBER expression; and two copies of: 

««CDR B) (CDR A))) «CAR B))), 

from the two (identical) ELEMENT expressions. 

Since the three bomb lists are all linked by the common argument B, 

they are merged and pickindvars chooses simultaneous induction on A and 

B. This means that there must be two NIL-cases, one for each term inducted 

upon. The fact that only CDRs of the arguments are recursed upon (i.e., 

appear in the bomb list) implies a single induction hypothesis about them 

is sufficient. Again, no argument is decomposed by more than a single 

CAR or CDR, so a single explicit CONS in the conclusion is sufficient. 

The resulting formula is: 

(AND (AND p(NIL,B) p(A,NIL)) 
(IMPLIES p(A,B) p«CONS A1 A) ,(CONS B1 B)))). 

Again, this formula normalates to T. 

A final example is provided by the program's proof that the output 

of SORT is ORDERED. The original theorem is: 

(ORDERED (SORT A)). 
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An initial induction on A, no rmalat i on , and generalization cOflvor't. thie 

to: 

(COND (ORDERED GENRL1) (ORDERED (ADDTOLIST A 1 GENRL 1 » 'r). 

Call this p(GENRL1,A1). 

Evaluation of this expression sets analysis to a list containing 

three fault descriptions; however, one of them is eliminated because 

it would require induction on (ADDTOLIST A1 GENRL1). The remaining 

two are: 

««CDR GENRL1») «CAR GENRL1)(CAR GENRL1»), 

from the ADDTOLIST term, and: 

««CDR GENRL1») «CAR (CDR GENRL1»(CDR GENRL1) 
(CAR GENRL1 )(CDR GENRL1»), 

from the ORDERED term in the hypothesis of the theorem. 

pickindvars chooses GENRL1, so there is one NIL-case. The fact 

that recursion occurs only on the CDR of GENRL1 indicates that an 

induction hypothesis about only the CDR of the supplied CONS in the 

conclusion will be sufficient. However, the presence of the term 

(CAR (CDR GENRL1» on the failures list indicates that there should be 

two explicit CONSes in the conclusion to allow it to evaluate without 

(non-recursive) failure. This means the hypothesis will be about the 

inner CONS of the conclusion, and that, for soundness, a special case 

(the general list of length 1) must be considered. The output of 

induct is: 

(AND p(NIL,A1) 
(AND p«CONS GENRL11 NIL),A1) 

(IMPLIES p«CONS GENRL12 GENRL1),A1) 
p«CONS GENRL11 (CONS GENRL12 GENRL1»,A1»». 
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This is just the representation for: 

p(NIL,A1) & VX(p«CONS X NIL),A1) & 
VY,Z(p«CONS Y Z),A1) -> p«CONS X (CONS Y Z)),A1)), 

This is called 'special induction' because of the provision of a second 

basis (the case for the list of length 1). 

Although far from obvious, the induction formula above normalates ,to: 

(COND (LTE A1 GENRL11) T (LTEGENRL11 A1)), 

which is the theorem that either A1 is less than or equal to GENRL11 , 

or vice versa. This is proved by simultaneous induction on A1 and 

GENRL11 , which can be very easily verified. The program's output for 

the (ORDERED (SORT A)) theorem is given in Chapter 4. 

This sample of induction formulas illustrates some of the basic 

induction schemes the induct routine can generate. It can mix two 

schemes when necessary. For example, it can do simultdneous induction 

on two variables with induction hypotheses about the CARs and CDRs of 

both. It can also do induction on n variables, or generate required 

but unusual combinations of induction hypotheses. With the exception 

of special induction, the induction formula is generated by a general 

mechanism which maps the structure of the bomb list into the required 

formula. While this mechanism could be generalized for some cases of 

special induction, the occasions requiring it are so rare that it is 

handled separately. induct will now be described. 

Given a theorem, induct first uses pickindvars to select a list of 

skolem constants to be inducted upon simultaneously. For each term in 

that list it generates a NIL-case by replacing the term by NIL in the 

theorem. These NIL-cases are then conjoined with ANDs. 
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If the bomb or failures lists contain a "deep" term, such as: 

(CAR (CDR A)), 

where A is being inducted upon, this indicates that more than one CONS 

is required in the conclusion, and that a second basis is needed. As 

a result, the program enters a special mode, described below. 

If only one CONS per term is sufficient, the program generates the 

skolem constants to be used as the CARs of the CONSes replacing each 

induction term in the conclusion. These are called the 'CAR-constants:' 

of their respective induction terms. (The analogous 'CDR-constants' are 

the induction terms themselves. This merely reduces the number of new 

symbols the user is confronted with.) If arg1 , ••• , argn are the terms 

being inducted upon, let cararg1 , ••• , carargn , be their respective 

CAR-constants. 

In general the induction hypothesis is a conjunction of hypotheses. 

These involve the CARs and CDRs of the CONSes which are introduced into 

the conclusion. The precise combinations of CARs and CDRs used are 

dictated by the pockets on the bomb list. 

If A is being inducted upon, and (CAR A) (or (CDR A)) does not 

occur on the bomb list, then no hypothesis need involve the CAR-constant 

(or, :;the CDR-constant) for A. If both (CAR A) and (CDR A) occur, then 

the hypothesis should be the conjunction of one for the CAR-constant 

and one for the CDR-constant. 

The above guidelines completely specify the hypothesis generated 

for the case of induction on a single term. The hypothesis is either 

p(arg1), or p(cararg1), or (AND p(cararg1) p(arg1)), according to whether 

(CDR arg1),(CAR arg1), or both occur on the bomb {where p(arg1) is the 

original theorem input to induct). 

t I: 



16li 

The case for n term induction is much more compl i ell t."d. laflll I" 

not handled in its full generality by the program. HuWeVtH". \.til' 

behaviour of the program is quite acceptable on theorems about t.tI" 

functions in Appendix A. 

If more than one term is being inducted upon, induct merges all 

those pockets on the bomb list which contain only CDR failures. It 

also merges all those which contain only CAR failures. This produces 

two 'super-pockets'. It is usually the case that no other pockets are 

left. Such pockets would be mixed CARs and CDRs, and very few functions 

recurse on the CAR of one argument, while recursing (in the same call) 

on the CDR of another. Certainly no function in Appendix A, which 

includes many common list processing functions, exhibits this kind of 

recursion. 

For this reason, the program uses these two super-pockets to deter

mine the hypothesis. Two hypotheses will be generated and then conjoined. 

The first is generated from the CAR super-pocket, by replacing every 

argument in that pocket by its CAR-constant, in the theorem, p. Any 

term inducted upon not occurring in the CAR super-pocket is left alone 

in this hypothesis. Such a term must occur in the CDR super-pocket, 

and since the CDR-constant of a term is just itself, the hypothesis 

generated for the CAR super-pocket concerns the CAR-constants of those 

terms in that super-pocket, and the CDR-constants of those terms not 

in that super-pocket. 

An analogous procedure is used to form a hypothesis from the CDR 

super-pocket. Any argument occurring in it is left as it is; any 

induction term not occurring in it (and thus, occurring in the CAR 

super-pocket) is replaced by its CAR-constant. 
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These two hypotheses are conjoined with AND and constitute the 

induction hypothesis generated by induct. 

Finally, the conclusion is formed by substituting (CONS cararg. arg.) 
~ l. 

for argi in p. 

The hypothesis and conclusion are then put into an IMPLIES expression, 

and then this is conjoined with the NIL-case(s) with AND. The resulting 

expression is returned as the new theorem to be proved. 

The need for special induction arises so seldomly that it was not 

felt necessary to write the general routine for generating such induction 

formulas, for say, single term induction. As a result, only two special 

induction forms can be generated. Both of these allow induction on a 

single term only. As usual, the configuration of the bomb list and 

failures list suggests which form to use. 

The form exhibited in the third example above is used for induction 

on a single term, when the bomb list contains only (CDR arg), but 

non-recursive failures of the form (CAR (CDR arg» or (CDR (CDR arg» 

occurred, where arg is the term being inducted upon. The induction 

formula generated is: 

(AND p(NIL) 
(AND p«CONS cararg NIL» 

(IMPLIES p«CONS cararg2 arg» 
p«CONS cararg1 (CONS cararg2 arg»»», 

where cararg1 and cararg2 are new skolem constants, and p(arg) was the 

input to induct. The relationship between such a formula and the fault 

description is clear. 

A second special form is generated for functions which CDR their 

arguments twice in recursion. See the definitions of HALF, EVEN2, or 

SWAPTREE for example. This condition is recognized by the occurrence 
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on the bomb list of terms such as (CAR (CDR arg)) or (CDR (CDR arg)). 

The induction formula generated is: 

(AND p(NIL) 
(AND p«CONS cararg NIL)) 

(IMPLIES hyp pC(CONS cararg1 (CONS cararg2 arg)))))), 

where the hypothesis, hyp, is a conjunction (in general) of at most 

three expressions: 

and 

p(cararg1), if (CAR arg) occurs on the bomb list, 

p(cararg2), if (CAR (CDR arg)) occurs on the bomb list, 

p(arg) , if (CDR (CDR arg)) occurs on the bomb list. 

Again, the relationship between this formula and the structure of the 

bomb list should be clear. For an example of this type of induction, 

see the program's proof of: 

(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A))), 

in Chapter 4. 

It should be emphasized that the program does not recognize theorems 

or function names in order to generate these induction formulas. It 

recognizes configurations of the bomb and failures lists. Furthermore, 

it should be clear that the generation can be generalized for single 

inductions involving deeper nestings of CARs or CDRs. As remarked, 

such a routine is not justified by its usefulness. 

These two special forms handle a wide variety of cases. The first 

is used when functions involved in the theorem recurse "one step" at a 

time, but inspect adjacent elements of their recursive argument. The 

second is used for functions which recurse down their argument "two 

steps" per call. 
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Only 10% of the theorems listed in Appendix B require special induction 

formulas. The remaining 90% use formulas generated by the more general 

t.nduction mechanism. 

3.9 Technical Information 

The program is written in the programming language POP-2, developed 

by Rod Burstall and Robin Popplestone, of the Department of Machine 

Intelligence, cSchool of Artificial Intelligence, University of Edinburgh. 

It runs on the ICL 4130 belonging to the School. 

The compiled code occupies about 15K of 24-bit words. The various 

routines are written in a fairly elegant POP-2 style. Except for assignment 

to property lists, there is no destructive assignment, and side effects 

are avoided (the main exception is analysis). The program has a highly 

modular, structured design, and the more natural quick and dirty tech

niques were consciously avoided to keep the program easily modifiable. 

(See Dahl, Dijkstra, and Hoare 1972, for a discussion of this type of 

programming.) 

The majority of theorem prover's time (well over 75%) is spent in 

normalation. Since these routines are composed entirely of recursive, 

constructive list processing, and apply the rewrite rules in the straight

forward manner described, they effectively copy large formulas many 

times during the course of normalation. Since an expression is completely 

normalized before it is reduced, this process often creates quite large 

intermediate expressions. 

Despite these inefficiencies, the "typical" theorem proved requires 

only 8 to 10 seconds of CPU time. For comparison purposes, it should be 

noted that the time for cons in 4130 POP-2 is 400 microseconds, and 
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.£!£. and cdr are about 50 microseconds each. The "hardest" theorems 

proved, such as those involving SORT, require 40 to 150 seconds each. 

The design of the program, especially the straightforward approach 

of "hitting" the theorem over and over again with rewrite rules until 

it can no longer be changed, is largely due to the influence of 

Woody Bledsoe. 
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CHAPTER 4 DETAILED EXAMPLES OF PROGRAM OUTPU'l' 

4.1 Introduction to the Examples 

The following four Sections present sample output from the theorom 

prover. The theorems proved are: 

and 

(IMPLIES (OR (MEMBER A B) (MEMBER A C» (MEMBER A (APPEND Be») t 

(EQUAL (REVERSE (REVERSE A» A), 

( ORDERED (SORT A», 

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»). 

Complete proofs are given for the first three theorems; the proof of the 

fourth is terminated after a familiar lemma is produced as the theorem to 

be proved. 

The formula representing the theorem is pretty-printed each time it is 

transformed by one of the basic routines. A heading above the formula ex

plains which routine was responsible for the transformation. The pretty

print routine is explained in Boyer 1973. Dots are printed within the 

formulas to help the reader follow the indentations. Printing of formulas 

requiring more than 60 lines has been surpressed in these examples. The 

message (TOO BIG) is printed in the place of such a formula. 

The reader is referred to Appendix A for the definitions of the LISP 

functions involved in these examples. 

Notes have been added to the proof by the author. These are typed in 

lower-case and point out interesting lemmas generated during the proof or 

explain certain steps. Except for these notes, all of the following is 

produced automatically by the theorem prover. 
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4.2 Sample Output 1 

This theorem states an obvious relationship between MEMBER and 

APPEND. The proof illustrates how evaluation eliminates non-recursive 

functions (such as IMPLIES and OR), and how it ieneratea a ca8e-

analysis which normalates to T. 

THEOREM TO BE PROVED: 

(IMPLIES (OR (MEMBER A B) (MEMBER A C» (MEMBER A (APPEND B C») 

EVALUATION YIELDS: 

(CONn (COND (MEMBER A B) T (COND (MEMBER A C) T NIL» 
(CONn (MEMBER A (APPEND B C» T NIL) 
T) 

WHICH NORMALIZES TO: 

(COND (MEMBER A B) 
(MEMBER A (APPEND B C» 
(COND (MEMBER A C) (MEMBER A (APPEND B C» T» 

MUST TRY INDUCTION. 

INDUCT ON B. 

THE THEOREM TO BE PROVED IS NOW: 

(AND 
(COND (MEMBER A NIL) 

(MEMBER A (APPEND NIL C» 
(COND (MEMBER A C) (MEMBER A (APPEND NIL C» T» 

(IMPLIES 
(COND (MEMBER A B) 

(MEMBER A (APPEND B C» 
(CONn (MEMBER A C) (MEMBER A (APPEND B C» T» 

(COND (MEMBER A (CONS B1 B» 
(MEMBER A (APPEND (CONS B1 B) C» 
(CONn (MEMBER A C) (MEMBER A (APPEND (CONS B1 B) C» T»» 

EVALUATION YIELDS: 

(COND 
(COND (MEMBER A C) (MEMBER A C) T) 
(CONn 
• (COND 
• (COND (MEMBER A B) 

• • (MEMBER A (APPEND B C» 
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• (COND (MEMBER A C) (MEMBER A (APPEND B C» T» 
(COND (COND (COND (EQUAL A Bl) T (MEMBER A B» 

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 

• (COND (MEMBER A C) 

• 
(COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 

T» 

• 
• • 

T) 
.T 
.NIL) 
NIL) 

T 
NIL) 

WHICH NORMALIZES TO: 

(COND 
(COND (MEMBER A C) (MEMBER A C) T) 
(COND 

• (MEMBER A B) 
• (COND 

• (MEMBER A (APPEND B C» 
(COND (EQUAL A Bl) 

... (COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 

• (COND (MEMBER A B) 

• 
• 
• 

• T) 
.(COND 

• (MEMBER A C) 

• (COND 

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 
(COND (MEMBER A C) 

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 
T) » 

• • (MEMBER A (APPEND B C» 
• • (COND (EQUAL A Bl) 
• • • (COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 
•• • (COND (MEMBER A B) 
• • • (COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 

• • • (COND (MEMBER A C) 
• • • (COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 

• • • T») 

• • T) 
• (COND (EQUAL A Bl) 

NIL) 

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 
(COND (MEMBER A B) 

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 
(COND (MEMBER A C) 

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C») 

T»» ) 

AND REDUCES TO: 

(COND 
(COND (MEMBER A C) T T) 
(COND 
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(MEMBER A B) 
(COND (MEMBER A (APPEND B C)} (COND (EQUAL A Bl) T T) T) 
(COND (MEMBER A C) 
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(COND (MEMBER A (APPEND B C}) (COND (EQUAL A Bl) T T} T) 
(COND (EQUAL A Bl) T T}}) 

WHICH NORMALIZES TO: 

T 



4.3 Sample Output 2 

This theorem states that REVERSE is idempoten~. Th., pruur 

involves fertilization and generalization. 

THEOREM TO BE PROVED: 

(EQUAL (REVERSE (REVERSE A» A) 

MUST TRY INDUCTION. 

INDUCT ON A. 

THE THEOREM TO BE PROVED IS NOW: 

(AND (EQUAL (REVERSE (REVERSE NIL» NIL) 
(IMPLIES (EQUAL (REVERSE (REVERSE A» A) 

(EQUAL (REVERSE (REVERSE (CONS A1 A») (CONS A1 A»» 

EVALUATION YIELDS: 

(COND 
(COND 
.(EQUAL (REVERSE (REVERSE A» A) 
• (COND 
• (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL») (CONS A1 A» 

T 

• NIL) 
.T) 
T 
NIL) 

WHICH NORMALIZES TO: 

(COND 
(EQUAL (REVERSE (REVERSE A» A) 
(EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL») (CONS A1 A» 
T) 

FERTILIZE WITH (EQUAL (REVERSE (REVERSE A» A). 

THE THEOREM TO BE PROVED IS NOW: 

(COND (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL») 
(CONS A1 (REVERSE (REVERSE A»» 

T 
(* 1» 

GENERALIZE COMMON SUBTERMS BY REPLACING (REVERSE A) BY GENRL1. 

THE GENERALIZED TERM IS: 



(COND (EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL») 
(CONS Al (REVERSE GENRLl») 

T 
(* 1» 

Note: After fertilizing with the induction hypothesis and 
generalizing; a lemma must be proved. This lemma links APPEND 
and REVERSE in an interesting way. When this link has been 
proved; the original theorem will have been proved. Induction 
on GENRLI is used;. 

MUST TRY INDUCTION. 

INDUCT ON GENRL1. 

THE THEOREM TO BE PROVED IS NOW: 

(AND 

(COND (EQUAL (REVERSE (APPEND NIL (CONS Al NIL») 
(CONS Al (REVERSE NIL») 

T 

• (* 1» 
(IMPLIES 

(COND (EQUAL (REVERSE (APPEND GENRL1 (CONS Al NIL») 
(CONS Al (REVERSE GENRLl») 

T 
(* 1» 

(COND 
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(EQUAL (REVERSE (APPEND (CONS GENRLII GENRLl) (CONS Al NIL») 
(CONS Al (REVERSE (CONS GENRLII GENRLl»» 

T 
(* 1»» 

EVALUATION YIELDS: 

(COND 
(COND 
.(COND (EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL») 

(CONS Al (REVERSE GENRLl») 
• 
• 
• (COND 
• (COND 

T 
(* 1» 

•• (EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL») 

· · • (CONS GENRLII NIL» 
• · • (CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»» 

· · T 
• • (* 1» 

· T 
• NIL) 
.T) 
T 
NIL) 



WHICH NORMALIZES TO: 

(COND 

(EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL») 
(CONS Al (REVERSE GENRLl») 

(COND 
• (EQUAL (APPEND (REVERSE (APPEND GENRL 1 (CONS Al NIL») 

• (CONS GENRLII NIL» 
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(CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLll NIL»» 
T 
(* 1» 

(COND 
(* 1) 
(COND 

(EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL») 
(CONS GENRLII NIL» 

(CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»» 
T 

· (* 1» 
T» 

AND REDUCES TO: 

(COND 
(EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL») 

(CONS Al (REVERSE GENRLl») 
(COND 

(EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL») 
(CONS GENRLII NIL» 

• (CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»» 
T 
(* 1» 

(COND 
(* 1) 
(COND 
• (EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL») 

(CONS GENRLII NIL» 

• 
T» 

• 

T 
T) 

(CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»» 

WHICH NORMALIZES TO: 

(COND 
(EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL») 

(CONS Al (REVERSE GENRLl») 
(COND 
• (EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL») 

• (CONS GENRLII NIL» 
• (CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»» 
T 

· (* 1) 
T) 



FERTILIZE WITH (EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL») 
(CONS A1 (REVERSE GENRLI»). 

THE THEOREM TO BE PROVED IS NOW: 

(COND 
(COND 
• (EQUAL (APPEND (CONS A1 (REVERSE GENRL1» (CONS GENRLll NIL» 
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• (CONS A1 (APPEND (REVERSE GENRL1) (CONS GENRLII NIL»» 
T 

• (* 1» 
T 
(* 2» 

EVALUATION YIELDS: 

T 



4.4 Sample Output 3 

Below is the program's proof that the output of SORT is ORDERED. 

THEOREM TO BE PROVED: 

(ORDERED (SORT A» 

MUST TRY INDUCTION. 

INDUCT ON A. 

THE THEOREM TO BE PROVED IS NOW: 

(AND (ORDERED (SORT NIL» 
(IMPLIES (ORDERED (SORT A» (ORDERED (SORT (CONS Al A»») 

EVALUATION YIELDS: 

(COND (COND (ORDERED (SORT A» 

T 
NIL) 

(COND (ORDERED (ADDTOLIS Al (SORT A») T NIL) 
T) 

WHICH NORMALIZES TO: 

,COND (ORDERED (SORT A» (ORDERED (ADDTOLIS Al (SORT A») T) 

GENERALIZE COMMON SUBTERMS BY REPLACING (SORT A) BY GENRLI. 

THE GENERALIZED TERM IS: 

(COND (ORDERED GENRLI) (ORDERED (ADDTOLIS Al GENRLI» T) 

Note: This generalization captures one of the essential properties 
of ADDTOLIS: its output is ORDERED if its second argument is ORDERED. 
This non-trivial lemma has been produced entirely automatically. It 
is proved by induction on GENRLl,Because of the way ORDERED decom
poses its argument, an unusual induction formula is generated. The 
induction hypothesis is that the theorem holds for (CONS GENRL12 GENRLI), 
and the conclusion is that it holds for (CONSGENRLII (CONS GENRL12 GENRL1». 
A second basis is also required. 

MUST TRY INDUCTION. 

(SPECIAL CASE REQUIRED) 

INDUCT ON GENRLI. 

THE THEOREM TO BE PROVED IS NOW: 



(AND 
(COND (ORDERED NIL) (ORDERED (ADDTOLIS Al NIL» T) 
(AND 

(COND (ORDERED (CONS GENRLll NIL» 
(ORDERED (ADDTOLIS Al (CONS GENRLll NIL») 
T) 

(IMPLIES 
{COND (ORDERED (CONS GENRL12 GENRL1» 

(COND 

(ORDERED (ADDTOLIS Al (CONS GENRL12 GENRL1») 
T) 

(ORDERED (CONS GENRLll (CONS GENRL12 GENRL1») 
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(ORDERED (ADDTOLIS Al (CONS GENRLll (CONS GENRL12 GENRL1»» 
T»» 

EVALUATION YIELDS: 

(COND 
(COND 
.(ORDERED (COND (LTE Al GENRLll) 

• (COND 
• (COND 
• .(COND 

(CONS Al (CONS GENRLll NIL» 
(CONS GENRLll (CONS Al NIL»» 

•• (COND GENRLl 
•• • (COND (LTE GENRL12 (CAR GENRL1» (ORDERED GENRL1) NIL) 
• • T) 
•• (ORDERED (COND (LTE Al GENRL12) 

• • (CONS Al (CONS GENRL12 GENRL1» 

· . (CONS GENRL12 (ADDTOLIS Al GENRL1»» 
•• T) 

• .(COND 
• • (COND 
• •• (COND 
• •• (LTE GENRLll GENRL12) 
• •• (COND GENRLl 
• • • (COND (LTE GENRL12 (CAR GENRL1» (ORDERED GENRL1) NIL) 
• ••• T) 
• • • NIL) 
• •• (ORDERED 
•.• • (COND 
· . . · . . · . . · . . 

• · . • T) 

• • T 
• • NIL) 
• • T) 

• T 
• NIL) 
.NIL) 

(LTE Al GENRLll) 
(CONS Al (CONS GENRLll (CONS GENRL12 GENRL1») 
(CONS GENRLll 

(COND (LTE Al GENRL12) 
(CONS Al (CONS GENRL12 GENRL1» 
(CONS GENRL12 (ADDTOLIS Al GENRL1»»» 



T 
NIL) 

WHICH NORMALIZES TO: 

(TOO BIG) 

AND REDUCES TO: 

(TOO BIG) 

EVALUATION YIELDS: 

(TOO BIG) 

WHICH NORMALIZES TO: 

(TOO BIG) 

AND REDUCES TO: 

(COND 
(COND (LTE Al GENRLII) T (LTE GENRLII AI» 
(COND 
.GENRLI 
• (COND 
• (LTE GENRLI2 (CAR GENRLI» 
• (COND 
• .(ORDERED GENRLI) 
• • (COND 
• • (LTE Al GENRLI2) 
• • (COND (LTE GENRLII GENRLI2) 

(COND (LTE Al GENRLII) T (COND (LTE GENRLII AI) T NIL» 
• •• T) 
• • (COND 
•• (ADDTOLIS Al GENRLI) 
•.• (COND 
•• .(LTE GENRLI2 (CAR (ADDTOLIS Al GENRLI») 

· . 

• .T) 
• T) 

• (COND 

.T) 

(ORDERED (ADDTOLIS Al GENRLI» 
(COND (LTE GENRLII GENRLI2) (COND (LTE Al GENRLII) T T) T) 
T) 

(COND (LTE GENRLll GENRLI2) (COND (LTE Al GENRLll) T T) T») 

• (COND 
• (LTE Al GENRLI2) 

(COND (LTE GENRLII GENRLI2) 
• (COND (LTE Al GENRLII) T (COND (LTE GENRLII AI) T NIL» 
• T) 

• (COND (LTE GENRLI2 AI) 

NIL) 

(COND (LTE GENRLII GENRLI2) (COND (LTE Al GENRLII) T T) T) 
T») 



WHICH NORMALIZES TO: 

(COND 
(COND (LTE Al GENRLll) T (LTE GENRLII AI» 
(COND 
.GENRLI 
.(COND (LTE GENRL12 (CAR GENRLI» 
• (COND (CIIDERED GENRLI) 

(COND (LTE Al GENRL12) 
• 
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(COND (LTE GENRLll GENRL12) 
(COND (LTE Al GENRLll) 
T) 

T (LTE GENRLll AI» 
• 

T) 
T) 

T) 
• (COND (LTE Al GENRL12) 

• 
• 
• 
NIL) 

(COND (LTE GENRLII GENRL12) 

T» 

(COND (LTE Al GENRLll) 
T) 

AND REDUCES TO: 

(COND 

T (LTE GENRLII AI» 

(COND (LTE Al GENRLII) T (LTE GENRLll AI» 
(COND 
.GENRLI 
• (COND 
• (LTE GENRL12 (CAR GENRLI» 
• (COND (CIIDERED GENRLI) 

• (COND (LTE Al GENRLI2) (COND (LTE GENRLll GENRLI2) T T) T) 
•• T) 

T) 
.(COND (LTE Al GENRL12) (COND (LTE GENRLII GENRLI2) T T) T» 
NIL) 

WHICH NORMALIZES TO: 

(COND (LTE Al GENRLI1) T (LTE GENRLll AI» 

Note: The hideous intermediate expressions above have been normalated 
to the statement that Al is less than or equal to GENRLII or vice versa. 
Although this is an elementary fact about LTE, it was generated as a 
necessary lemma automatically, and it must be proved by induction. Be
cause LTE recurses on both arguments simultaneously, induction on both 
Al and GENRLII is used. The proof is immediate and illustrates the 
value of induction on n variables in cases such as this. 

MUST TRY INDUCTION. 



INDUCT ON GENRLll AND Al. 

THE THEOREM TO BE PROVED IS NOW: 

(AND (AND (COND (LTE Al NIL) T (LTE NIL Al» 
(COND (LTE NIL GENRLll) T (LTE GENRLll NIL») 

(IMPLIES (COND (LTE Al GENRLll) T (LTE GENRLll Al» 
(COND (LTE (CONS All Al) (CONS GENRLlll GENRLll» 

T 
(LTE (CONS GENRLlll GENRLll) (CONS All Al»») 

EVALUATION YIELDS: 

(COND 
(COND (COND (COND Al NIL T) T T) T NIL) 
(COND (COND (COND (LTE Al GENRLll) T (LTE GENRLll Al» 
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(COND (COND (LTE Al GENRLll) T (LTE GENRLll Al» T NIL) 
T) 

• 
NIL) 

T 
NIL) 

WHICH NORMALIZES TO: 

(COND (LTE Al GENRLll) 
(COND (LTE Al GENRLll) T (LTE GENRLll Al» 
(COND (LTE GENRLll Al) 

(COND (LTE Al GENRLll) T (LTE GENRLll Al» 
T» 

AND REDUCES TO: 

(COND (LTE Al GENRLll) T (COND (LTE GENRLll Al) T T» 

WHICH NORMALIZES TO: 

T 

Thus, the theorem that SORT produces an ORDERED list has been proved. 

It is important to note that no auxilary information about ADDTOLIS or 

LTE was used except for those lemmas generated automatically. The lemmas 

required were that ADDTOLIS produces an ORDERED list when its second 

argument is ORDERED, and that for all X and Y, either X is less than or 

equal to Y, or vice versa. These lemmas were proved by induction, using 

only the definitions of the functions involved. 

In order to establish the correctness of SORT, the theorem that its 

output is a permutation of its input must be proved. The program can prove 

this theorem as well. It.s proof is not exhibited here however. 
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4.5 Sample Output 4 

FLATTEN constructs a list of the tips of a binary tree. Nodes in 

the tree are recognized by NODE and constructed by CONSNODE. SWAPTREE 

interchanges the two branches of every node in a tree. The theorem 

states a relationship between FLATTEN, SWAPTREE, and REVERSE. The proof 

illustrates an induction formula for tree-structured terms. 

THEOREM TO BE PROVED: 

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 

MUST TRY INDUCTION. 

(SPECIAL CASE REQUIRED) 

INDUCT ON A. 

THE THEOREM TO BE PROVED IS NOW: 

(AND 
(EQUAL (FLATTEN (SWAPTREE NIL» (REVERSE (FLATTEN NIL») 
(AND 

(EQUAL (FLATTEN (SWAPTREE (CONS Al NIL») 
(REVERSE (FLATTEN (CONS Al NIL»» 

(IMPLIES 
(AND (EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2») 

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»» 
(EQUAL (FLATTEN (SWAPTREE (CONS Al (CONS A2 A»» 

(REVERSE (FLATTEN (CONS Al (CONS A2 A»»»» 

Note: The induction hypothesiS is a conjunction. The first conjunct 
states that the theorem holds for A2. The second states that it holds 
for A. The conclusion is that it holds for (CONS Al (CONS A2 A». A 
second basis is also required. This formula is generated because 
FLATTEN recurses on both the CAR of the CDR and the CDR of the CDR 
of its argument. 

EVALUATION YIELDS: 

(COND 
(COND 
.(EQUAL (FLATTEN (COND (COND Al NIL NIL) 

(CONS NIL (CONS NIL NIL» 
(CONS Al NIL») 

(REVERSE (COND (COND Al NIL NIL) 



• (COND 
• (COND 

(CONS NIL (CONS NIL NIL» 
(CONS (CONS Al NIL) NIL»» 
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• .(COND 

· . 
• • 

(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2») 
(COND (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 

T 

• • NIL) 

• • NIL) 
• • (COND 
• • (EQUAL 
• •• (FLATTEN · . . · . . · . . · -. . · . . 
• • T 
• • NIL) 
• .T) 

• T 
• NIL) 
.NIL) 
T 
NIL) 

• 
• 
(REVERSE 

(COND (COND Al NIL T) 
(CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2») 
(CONS Al (CONS A2 A»» 

(COND (COND Al NIL T) 
(APPEND (FLATTEN A2) (FLATTEN A» 
(CONS (CONS Al (CONS A2 A» NIL»» 

WHICH NORMALIZES TO: 

(COND 
(EQUAL (FLATTEN (CONS Al NIL» (REVERSE (CONS (CONS Al NIL) NIL») 
(COND 
.(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2») 

• tOND 
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 

• (COND 

• .At 
• .(COND Al 
• • (EQUAL (FLATTEN 

(REVERSE 
(EQUAL (FLATTEN 

• • 
• • · . (REVERSE 

• .(COND 
•• Al 

(CONS Al (CONS A2 A») 
(CONS (CONS Al (CONS A2 A» NIL») 
(CONS Al (CONS A2 A») 
(APPEND (FLATTEN A2) (FLATTEN A»») 

•• (EQUAL (FLATTEN (CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2»» 
••• (REVERSE (CONS (CONS Al (CONS A2 A» NIL») 
•• (EQUAL (FLATTEN (CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2»» 
• • (REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»» 

• T) 
.T) 
NIL) 

AND REDUCES TO: 

(COND 
(EQUAL (FLATTEN (CONS Al NIL» (REVERSE (CONS (CONS Al NIL) NIL») 



(COND 
.(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2») 

• (COND 
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 
• (COND 
•• Al 
•• (EQUAL (FLATTEN (CONS Al (CONS A2 A») 
• • (REVERSE (CONS (CONS Al (CONS A2 A» NIL») 
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•• (EQUAL (FLATTEN (CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2»» 
• • (REVERSE (APPEND (FLATTEN A2) (FLATTEN A»») 

• T) 
.T) 
NIL) 

EVALUATION YIELDS: 

(COND 
(EQUAL (COND (COND Al NIL NIL) 

(COND 

(CONS NIL (CONS NIL NIL» 
(CONS (CONS Al NIL) NIL» 

(CONS (CONS Al NIL) NIL» 

.(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2») 

• (COND 
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 

• (COND 
• • Al 
•• (EQUAL (COND (COND Al NIL T) 

· • 

· • · • 
• 
• 
• 

(APPEND (FLATTEN A2) (FLATTEN A» 
(CONS (CONS Al (CONS A2 A» NIL» 

(CONS (CONS Al (CONS A2 A» NIL}) 

· • (EQUAL (APPEND (FLATTEN (SWAPTREE A» (FLATTEN (SWAPTREE A2») 

· • (REVERSE (APPEND (FLATTEN A2) (FLATTEN A»») 

· T) 
.T) 
NIL) 

WHICH NORMALIZES TO: 

(COND 
(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2») 
(COND 
.(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A}» 

• (COND 

• Al 
• (COND Al 

• T 
• • (EQUAL (APPEND (FLATTEN A2) (FLATTEN A» 

.T) 
T) 

• (CONS (CONS Al (CONS A2 A}) NIL») 
(EQUAL (APPEND (FLATTEN (SWAPTREE A}) (FLATTEN (SWAPTREE A2») 

(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»») 

AND REDUCES TO: 



(COND 
(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2») 
(COND 
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 

• (COND 
• Al 

T 
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• (EQUAL (APPEND (FLATTEN (SWAPTREE A» (FLATTEN (SWAPTREE A2») 
(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»») 

.T) 
T) 

FERTILIZE WITH (EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»). 

THE THEOREM TO BE PROVED IS NOW: 

(COND 
(COND 
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 
• (COND 

• Al 
• T · . 
· 

(EQUAL (APPEND (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A2») 
(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»») 

.T) 
T 
(* 1» 

FERTILIZE WITH (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»). 

THE THEOREM TO BE PROVED IS NOW: 

(COND 
(COND 
.(COND Al 

• 

.T 

.(* 2» 
T 
(* 1» 

T 
(EQUAL (APPEND (REVERSE (FLATTEN A» (REVERSE (FLATTEN A2») 

(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»») 

GENERALIZE COMMON SUB TERMS BY REPLACING (FLATTEN A) BY GENRLI AND 
(FLATTEN A2) BY GENRL2. 

THE GENERALIZED TERM IS: 

(COND (CONn (COND Al 
T 

T 
(* 1» 

T 
(* 2» 

(EQUAL (APPEND (REVERSE GENRLl) (REVERSE GENRL2» 
(REVERSE (APPEND GENRL2 GENRLl»» 
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The above formula has been produced by fertilizing with both 

conjuncts of the induction hypothesis, and then generalizing. The 

formula represents the familiar theorem that REVERSE can be distri

buted over APPEND (if the arguments to the APPEND are swapped). 

This theorem was proved in Section 2.3. The proof generates two 

nice lemmas: NIL is a right-identity for APPEND; and APPEND is 

associative. Since the proof has been described in Section 2.3, 

it is omitted here. 
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CHAPTER 5 EXTENSIONS 

5.1 Termination 

Up to now we have not discussed the notion of termination. This 

section is devoted to two topics concerned with termination. The first 

is characterizing the behaviour of the present program, formally and 

practically, in the presence of partial functions. The second topic 

is the value of the present approach to automatically proving program 

termination. 

Formally, to discuss the notion of termination, we must define how 

the value of an expression is calculated. We have not done this in the 

theory and will not do so here. Instead, we will rely upon the reader's 

intuitions about LISP when discussing this question. 

Since the theorem prover is sound, any instance of a formula which 

is proved by it is equivalent to T, provided the theory in which the 

theorem is proved is consistent. If a traditional interpreter (such 

as our eval modified so that it is no longer a symbolic interpreter) 

is used to decide whether the instance is T, it may not always terminate. 

However, any instance which does terminate when evaluated, yields T. 

For example, consider the function defined by: 

(CHOP (LAMBDA (X y) 
(COND (EQUAL X (CAR Y)) 

(CDR y) 
(CHOP X (CDR y))))). 

This function searches for the first occurrence of X as an element of Y. 

If'f6und,'it returns the CDR of Y following X. Otherwise, evaluation 

of the function recurses indefinitely. 
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The theorem prover can prove: 

(IMPLIES (MEMBER A B) (LTE (CHOP A B) B». 

If IMPLIES is an EXPR (as all defined functions are under our ~) 

and has its arguments evaluated before the definition is entered, then 

some instances of this theorem do not terminate when evaluated. (For 

example, let A be 1 and B be NIL). All instances which do terminate 

yield T, which is what the theorem prover establishes. 

It is difficult to establish whether an extension is consistent 

after the introduction of a partial function. The easiest way to decide 

some cases is to find a total fixed point for the function definition. 

If one is found, a model exists in which the defining axiom of the function 

is satisfied, so the extension is consistent. 

In practice, the theorem prover proves very few theorems about 

functions which do not always terminate. This is primarily because 

there are very few things one can say about all values of an expression 

which may not always be defined. The situation is more interesting if 

one can discuss the sequence of computations a function performs when 

evaluated. 

Turning to automatic proof of termination, it is important to 

point out that the system described here cannot deal with such proofs. 

If termination is being considered, it is necessary to allow the logic 

to discuss the notion of being well-defined, or of being undefined. 

Since our logical language is the programming language itself, we are 

inherently unable to discuss termination of programs in the language. 

From a more mundane point of view, many of the rewrite rules assume 

termination for certain subexpressions. For example, the rules: 
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(COND x Y y) ~ y, 

and 

(EQUAL x x) ~ T, 

do not preserve the termination properties of the left-hand side. 

If x does not terminate, neither of the left-hand sides above terminate 

when evaluated. But both right-hand sides can terminate. Thus, even 

if we introduced a new logical language to allow discussion of termi-

nation, about half a dozen rewrite rules could be used only after 

determining whether certain sub expressions terminated. 

However, the present approach has an important contribution to 

make to proof of termination. This is simply the observation that the 

automatic induction heuristics apply to termination problems as well 

as to the other properties of programs. 

For example, to prove that LTE always terminates for well-defined 

arguments, we proceed as follows. The definition of LTE is: 

(LTE (LAMBDA (X y) 
(COND X 

(COND Y (LTE (CDR X) (CDR Y» NIL) 
T»). 

~ determines that induction on both arguments is required. We must 

then show that if both arguments evaluate, and either is NIL, the result 

is well-defined. For X = NIL, this is easy. For Y = NIL, we must do 

a case analysis on X, using the fact that it is well-defined. For the 

induction step we assume that LTE is well-defined when the values of the 

arguments are val1 and Val2. We must show that it is well-defined when 

the values are well-defined pairs, with val1 and val2 as their respective 

CDRs. Since both X and Y are well~defined and non-NIL, we immediately 

observe that we must show that: 
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(LTE (CDR X) (CDR Y» 

is well-defined. Both arguments evaluate, since X and Y are defined. 

Furthermore, their values are va11 and val2 by construction. But we 

have assumed that LTE is defined for these arguments, so we are done. 

In short, the eValuation mechanism is still very well suited to 

choosing the terms to induct upon and for determining the form of the 

induction argument needed to prove termination. 

5.2 Iteration 

We have not considered iterative functions up to this point. The 

current program cannot deal with them. However, it is interesting to 

note that the methods developed in this thesis can be extended to allow 

proofs about such functions. More precisely, we first observe that 

iterative functions have natural recursive counterparts -- that is, 

there are recursive functions which build up or decompose their 

arguments in the same way that a particular iterative function does. 

It is possible to mechanically translate a function using PROG, SETQ, 

GO, and RETURN into its recursive version. This is discussed and illus

trated below. We then demonstrate, by example, how it is possible to 

prove theorems about such "iterative" functions by a slight extension 

of the induction heuristic and fertilization rule. In particular, it 

becomes clear that for some theorems at least it is possible to produce 

an inductive proof by purely mechanical means, even for iterative functions. 

Below we give an iterative definition of a function which reverses 

a list (constructively). The traditional LISP COND is used, along with 

FROG, SETQ, GO, and RETURN. We assume the reader is familiar with these 

primitives in LISP: 



(PROGREV (LAMBDA (X) 
(PROG (y) 

(SETQ Y NIL) 
LOOP (COND (X (SETQ Y (CONS (CAR X) y» 

(SETQ X (CDR X» 
(GO LOOP» 

(T (RETURN Y»»». 
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This function uses Y as a local variable. Y is initialized to NIL 

and then the program cycles around a loop~ CDRingX. The CAR of X is 

CONSed onto the running answer, Y, until X is empty. Y is returned. 

This behaviour is simulated by the following recursive definitions. 

The three-place COND used elsewhere in this paper is used below. 

(PROGREV (LAMBDA (X) (REV1 X NIL») 

where the definition of REV1 is: 

(REV1 (LAMBDA (X y) 
(COND X 

(REV1 (CDR X) (CONS (CAR X) Y» 
Y»). 

Here, PROGREV just calls REV 1 , initializing Y to NIL. REV1 recurses, 

CDRing X. The CAR of X is CONSed onto the running answer, Y, until X 

is empty. Y is returned. The relationship with the iterative definition 

is obvious. 

This translation can be done in a straightforward mechanical way. 

In fact, the optional routine, defineprog, exists which will translate 

a well-formed definition involving arbitrary PROGs, SETQs, GOs and 

RETURNs into the appropriate collection of mutually defined recursive 

functions. defineprog will produce the two definitions above, given 

the original PROG version. It will also handle more complicated loops 

and jumps. 

The basic idea in defineprog is that one generates functions which 

have as many variables as there are arguments and locals in the current 
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PROG. Each label indicates that a new recursive function must be 

produced. This function will be called whenever a GO statement to 

the associated label is encountered. SETQs are handled by accumulating 

the assignments until a GO is encountered. At that point, a call to 

the relevant function is planted, with the argument positions set to 

the resul~of the accumulated assignments to each variable. Thus, in 

the recursive call, the variables are bound as desired. RETURNs 

indicate that the process is done. The reader should now be able to 

construct REV1 from the PROG version of PROGREV. 

We now wish to illustrate how we can prove theorems about these 

recursive translations of iterative functions, without requiring user 

supplied inductive assertions. We will prove the equivalence of 

REVERSE (the traditional definition) and PROGREV (the recursive trans-

lation of the iterative version). The theorem to be proved is: 

·(EQUAL (REVERSE A) (PROGREV A». 

This just becomes: 

(1) (EQUAL (REVERSE A) (REV1 A NIL», 

by normalation, since PROGREV is not recursive. 

We shall approach the proof just as the current program does, and 

point out the necessary extensions when they are encountered. 

The evaluation routine indicates that induction on A is required. 

The NIL-case evaluates to T. We assume (1) as our induction hypothesis, 

and set out to prove: 

(EQUAL (REVERSE (CONS A1 A» (REV1 (CONS A1 A) NIL». 

This just evaluates to: 

(2) (EQUAL (APPEND (REVERSE A) (CONS A1 NIL» 
(REV1 A (CONS A1 NIL»). 



Cross-fertilizing with the induction hypothesis, (1), by replacing 

(REVERSE A) by (REV1 A NIL), we obtain: 

(EQUAL (APPEND (REV1 A NIL) (CONS A1 NIL» 
(REV1 A (CONS A1 NIL»). 

Since (CONS A1 NIL) is common to both sides, we generalize it: 

(EQUAL (APPEND (REV1 A NIL) B) (REV1 A B». 

This is an interesting lemma about APPEND and REV1. 
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Up to this point we have used only techniques available in the 

current program. However, in setting up the induction hypothesis to 

prove the lemma above, we diverge slightly, but in a very mechanical 

way. 

Let us consider the induction principle. If we are trying to prove 

p(X,Y) where X and Y are universally quantified, and wish to use induction 

on X, a valid induction step is: 

YX(YY(p(X,Y» -> YY,X1(p«CONS X1 X),Y»). 

This corresponds to taking as our induction hypothesis, the expression 

p(A,Y), where Y is a free variable, and trying to prove p«CONS A2 A),B). 

That is, we get to assume that p is true for A and all Y, and we must 

prove that it is true for (CONS A2 A) and B. Intuitively, the "opponent" 

gets to choose A, A2, and B, and we know nothing about them; but we can 

choose any Y we like. Indeed, we can use as many instances of p(A,Y) as 

we wish. 

In the past we have predicted that the only instance we will want 

to use is p(A,B) and assumed it explicitly. This could be predicted be-

cause none of the functions CONSed things on to their arguments during 

recursion, so that in the conclusion, B would remain unchanged. This is 

not the case with REV1 and the extension desired is clear: If when 



198 

evaluation is determining what to induct upon, it is noted that skolem 

constants are being built up in the recursion, then let those skolem 

constants be free in the hypothesis (provided they are not being 

inducted upon). 

Returning to the REV1 theorem above, we therefore choose as our 

induction hypothesis: 

(3) (EQUAL (APPEND (REV1 A NIL) Y) (REV1 A Y)), 

where Y is a free variable. The conclusion to be established is: 

(EQUAL (ApPEND (REV1 (CONS A2 A) NIL) B) (REV 1 (CONS A2 A) B)). 

Using the program's approach, we evaluate this and get: 

(4) (EQUAL (APPEND (REV1 A (CONS A2 NIL)) B) (REV1 A (CONS A2 B))). 

As usual, we must now use our hypothesis, (3). Since it has Y free in 

it, we can use it in two places and choose to do both. The first is 

done by letting Y be (CONS A2 B) and fertilizing the right-hand side 

of (4) with (3). This produces: 

(5) (EQUAL (APPEND (REV1 A (CONS A2 NIL)) B) 
(APPEND (REV1 A NIL) (CONS A2 B))). 

The second use of (3) is by letting Y be (CONS A2 NIL), and fertilizing 

the left-hand side of (5) with (3): 

(6) (EQUAL (APPEND (APPEND (REV1 A NIL) (CONS A2 NIL)) B) 
(APPEND (REV1 A NIL) (CONS A2 B))). 

Having made these two non-standard fertilizations, we now proceed as the 

program would. 

Noting that (REV1 A NIL) is common to both sides, we generalize 

(6) to get: 

(EQUAL (APPEND (APPEND C (CONS A2 NIL)) B) 
(APPEND C (CONS A2 B))). 
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This is just a trivial lemma about APPEND which the current theorem 

prover can establish immediately, by induction on C. We are therefore 

finished, and have shown that PROGREV is equivalent to REV. 

The extensions necessary to produce this proof were: (1) Induction 

had to notice that the skolem constant B was being built up and leave it 

free in the hypothesis. (2) Fertilization had to use two different 

instances of the induction hypothesis. 

The proof had exactly the same structure as those produced by the 

program. In particular, fertilization and generalization produced the 

necessary lemmas. This kind of extension is sufficient to allow proofs 

of several other theorems involving iterative functions. 

As a topic of further research, the theorem prover is being modified 

to handle such functions. However, allowing free variables in the 

hypothesis introduces many problems. In particular, it allows the 

hypothesis to be used in many ways, not all of which are good. Note 

that in the proof just described, the result of the second fertilization, 

(6), can again be fertilized. In fact, because an instance of the 

right-hand side of (3) occurs in the left-hand side of (3), fertilization 

with this equality can continue indefinitely. Furthermore, if free 

variables are introduced into induction hypotheses, then quantification 

gets messy if induction must be resorted to a second time. Both problems 

can be avoided if eval is used to predict exactly which instances will 

be needed, and then have induct supply just those instances. This is 

the direction of current research. 
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CHAPTER 6 CONCLUSIONS 

6.1 Built-in Information 

The program "knows" a lot about the primitives of LISP, about 

how to determine whether certain expressiDns have certain properties, 

about how to use an inductive argument to write recursive functions, 

and about how to use its knowledge of recursive functions to produce 

inductive arguments. However, no information is built-in about non-

primitive functions. This statement is discussed and amplified below. 

Although EQUAL is a primitive function, it can be written in 

terms of the other primitives: 

(EQUALP (LAMBDA (X y) 
(COND X 

(COND y 
(COND (EQUALP (CAR X) (CAR y)) 

(EQUALP (CDR X) (CDR y)) 
NIL) 

NIL) 
(COND Y NIL T)))). 

In addition to being abae to prove that EQUALP is symmetric, reflexive, 

and transitive, the program can prove that it is equivalent to EQUAL: 

(EQUAL (EQUALP A B) (EQUAL A B)). 

This is done by breaking the theorem into two conjuncts: 

(COND (COND (EQUALP A A) T (·1)) 
(COND (EQUALP A B) (EQUAL A B) T) 
NIL) , 

with normalation and fertilization, and then normalation again. The 

first conjunct requires EQUALP to be reflexive, and the second requires 

that it implies equality. Thereafter, fertilization is not used in 

this theorem. 
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The first conjunct is proved by CAR and CDR induction on A, and the 

second by CAR and CDR induction on A and B simultaneously. The theorem 

requires 9 seconds. 

It should be noted that many of the rewrite rules applied to 

EQUAL expressions behave as though the expressions were really EQUALP 

expressions. In particular, ~ expands 

(EQUAL (CONS A B) (CONS C D» 

in exactly the way it recursively expands 

(EQUALP (CONS A B) (CONS CD». 

Also, normalize rewrites (EQUAL x NIL) to (COND x NIL T), in the same 

way that normalation would rewrite (EQUALP x NIL). So in many senses, 

EQUAL is not as built-in as it might appear. 

However, certain critical information is available about EQUAL 

which is not available about EQUALP. This of course is found in 

fertilization and equality substitution. The theorem prover "knows" 

that if (EQUAL A B) is T, then A = B. The only sense in which it 

"knows" this fact for (EQUALP A B) is in being able to prove the theorem 

stating the equivalence of EQUALP and EQUAL. 

Since EQUAL is the characteristic function of the only predicate 

in the theory, namely, equality, it was felt that it should be primitive. 

The only knowledge the program has of non-primitives is their defi

nitions. In fact, only ~ and the typing functions even know of the 

existence of definitions for non-primitives. 

A review of the description of the program will reveal only two 

places in which non-primitives are mentioned outside of function entry 

in eval. These two places are generalization and induction. Both may 
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introduce the non-primitive IMPLIES, and induct may introduce AND. 

Of course, both of these routines could use the equivalent compound 

COND statements into which these functions expand. Since normalation 

immediately removes the IMPLIES and AND, their use by these two routines 

is actually an inefficiency. It is tolerated because it makes the 

output of these routines more readable to the user. 

A more interesting use of non-primitives occurs elsewhere in 

generalization, specifically, in tY}leexpr. As noted, this function 

makes explicit, programmed checks for types BOOLEAN and NUMBERP, 

before bothering to generate new type functions. It could be argued 

that information about these two non-primitives is therefore 

critically built-in. 

But as pointed out, without these explicit checks, typeexpr will 

write its own (identical) definitions of these. functions. (If NUMBERP 

did not exist, typeexpr would invent it.) Since no non-definitional 

properties of these two functions are known, it hardly matters that 

the type functions introduced have the names BOOLEAN and NUMBERP, or 

FOOTYPE and BARTYPE. 

Of course, the most interesting use of non-primitives by the program 

is when it automatically writes a new function to help a generalization. 

This involves no built-in information about any specific functions, but 

rather general knowledge of the types of the primitives and the relation

ship between recursion and induction. 

Introducing the logical connectives, AND, OR, NOT, and IMPLIES, as 

non-primitives to a theorem prover may appear to carry the ban on 

programmed non-prin,itive information a little too far. However, since 
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all of these are naturally defined with COND, and since the relevant 

properties of COND must be known to the theorem prover anyway, intro-

ducing special logical facilities would only add more code and produce 

an interface problem between the logical rules and the knowledge of 

LISP. 

The program uses no lemmas whatsoever concerning user defined 

functions. (This holds even for AND, OR, NOT, and IMPLIES.) Because 

no such lemmas are used, the system frequently reproves facts. A very 

common such fact is that APPEND is associative. This is proved as a 

lemma for several theorems (a process requiring 3 seconds). 

Lemmas are avoided for three reasons. The first is simply that a 

(malicious) user could introduce FOOAPPEND in a theorem and any time 

spent by the program looking for applicable lemmas would be wasted, 

even though the proof of the theorem is just as obvious as before. 

Secondly, the ability of the program to automatically generate nice 

lemmas is accentuated by the fact that none of these lemmas are built-

in. Finally, one of the primary aims of this project has been to 

demonstrate clearly that it is possible to prove program properties 

entirely automatically. A total ban on all built-in information about 

user defined functions thus removes any taint of user supplied information. 

6.2 Automatic Generation of Natural Lemmas 

One of the most striking features of proofs produced by the program 

is the frequency with which natural lemmas are automatically generated. 

The earliest example of this was in Section 2.3 in which the theorem: 

(EQUAL (APPEND (REVERSE A) (REVERSE B)) 
(REVERSE (APPEND B A))) 
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was proved. During the proof the program generates the two lemmas: 

(EQUAL (APPEND C NIL) C), 

and 

(EQUAL (APPEND C (APPEND D E)) (APPEND (APPEND CD) E)). 

The first states that NIL is a right identity for APPEND, and the 

second states that APPEND is associative. 

Further examples are provided in Chapter 4. The proof of 

(ORDERED (SORT A)), 

produces the two lemmas: 

(IMPLIES (ORDERED C) (ORDERED (ADDTOLIST B C))) 

and 

(OR (LTE B D) (LTE DB)). 

Both of these are very basic properties of the functions concerned, 

although that fact is certainly not known to the system. The lemmas 

are generated entirely automatically by the combination of induction 

and the generalization and normalation routines. 

Proof of the theorem in Section 4.5: 

generates: 

(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A))), 

(EQUAL (APPEND (REVERSE B) (REVERSE C)) 
(REVERSE (APPEND C B))), 

as a lemma, which was the first theorem discussed in this section. 

As a final example of how natural lemmas are produced, consider 

the program's proof that TIMES (multiplication defined in terms of 

addition) is associative: 

(EQUAL (TIMES A (TIMES B C)) (TIMES (TIMES A B) C)). 



An induction on A produces the induction step: 

(eOND (EQUAL (TIMES A (TIMES Be» 
(TIMES (TIMES A B) C» 

(EQUAL (PLUS (TIMES B C) (TIMES A (TIMES Be») 
(TIMES (PLUS B (TIMES A B» C» 

T), 

after normalation. Cross-fertilization produces: 

(eOND (EQUAL (PLUS (TIMES B C) (TIMES (TIMES A B) C» 
(TIMES (PLUS B (TIMES A B» C» 

T 
(*1». 

Ignoring the (*1) term and generalizing produces: 

(EQUAL (PLUS (TIMES B C) (TIMES DC» 
(TIMES (PLUS B D) C», 

which is just the theorem that TIMES distributes over PLUS. 

This is proved by induction on B. The normalated induction 

step is: 

(eOND (EQUAL (PLUS (TIMES B C) (TIMES D C» 
(TIMES (PLUS B D) C» 

(EQUAL (PLUS (PLUS e (TIMES B C» (TIMES DC» 
(PLUS C (TIMES (PLUS B D) C») 

T) • 

Cross-fertilization and generalization produce: 

(EQUAL (PLUS (PLUS e E) F) (PLUS e (PLUS E F»), 

(ignoring the (*2) term). This is just the associativity of PLUS. 

The ability of the system to automatically generate critical 

lemmas accounts for a large degree of its success. This ability 

is largely a product of the design philosophy discussed in the 

next section. 

6.3 Design Philosophy of the Program 

205 

The program was designed to behave properly on simple functions. 

The overriding consideration was that it should be automatically able to 
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prove theorems about simple LISP functions in the straightforward way 

we prove them. This, I believe, has been achieved. The principle is 

clearly reflected in the following areas: 

Evaluation is of monumental importance to the system. This routine 

was designed to perform the task of "stepping through" the evaluation of 

a function. It cautiously goes into recursion, and notices what struc

tures are being decomposed, what is necessary for the function to run 

properly, and how the arguments are used. It returns a symbolic expres

sion describing the result of the eValuation and notes where recursive 

functions halted and why. It is very natural that the backbone of a 

theorem prover for LISP should be an interpreter for LISP. Furthermore, 

most of the intuitions that a human programmer/theorem prover possesses 

about LISP comes directly from the behaviour of the interpreter upon 

given expressions. 

The second area in which the desire for autonomy and a sound, simple 

approach is evident is the typing function, typeexpr. The very existence 

of this function (as opposed to, say, user interaction) strongly shows 

the influence of the above design principle. The program has the means 

to discover for itself the kind of output an expression may yield. It 

is flexible enough to express this as an automatically produced descrip

tion of the output, rather than merely naming one of a predetermined 

number of type classes. Finally, its orientation is such that this 

description is in the form of a LISP program which returns T or NIL 

according to membership in the defined class, rather than in some 

other language. 

In addition to the existence of typeexpr, its methods are in 

accordance with the principle expressed above. It generates its 
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description by recursively exploring the expression, and it recognizes 

when a recursive description is called for by using an inductive 

approach. Furthermore, once its first pass has produced a rather 

sloppy piece of LISP code which will do the job, it uses its extensive 

knowledge of the language to optimize it. This is much like a programmer. 

It allows the production of efficient code, known to work, without 

the aid of outside help or search. 

A third area reflecting the influence of the desire to approach 

theorems as a human might is induct. Again, its existence alone is 

indicative of the spirit of the program. Most programmers merely 

"observe" that APPEND is associative, or that some fact about SORT 

holds. They are not given hints regarding how to understand that a 

particular piece of recursion has a certain property. Neither do 

they require each statement in a program to be accompanied by a descrip

tion of what it does; presumably that is unambiguously clear in a 

programming language. Their "observation" of a property is apparently 

the result of running the function symbolically, with enough control 

to know when the recursive calls are satisfied by an induction hypothesis. 

This is precisely how the program works, using ~ to inform induct 

how the functions are running and what inductive "patches" are needed 

to handle the recursion. 

The structure of the program is remarkably simple by artificial 

intelligence standards. This is primarily because the control structure 

is embedded in the syntax of the theorem. This means that the system 

does not contain two languages, the "object language", LISP, and the 

"meta-language", predicate calculus. They are identified. This mix of 



208 

computation and deduction was largely inspired by the view that the 

two processes are actually identical. Bob Kowalski, Pat Hayes, 

and the nature of LISP deserve the credit for this unified view. 

One implication of its use here is that there are no communication 

or interface problems between a LISP knowledge system and a logic 

knowledge system. This not only helps reduce the program's size 

and complexity, but increases its power. Although no analogy of 

method is intended, such a complete integration of programming skills 

and logical reasoning is certainly present in a good programmer. 

It was noted that several of the routines used the same rewrite 

rules. This is a design feature, and partially accounts for the speed 

of the program. It is far more efficient to check frequently whether 

the first argument of a COND is a CONS, than it is to wait and let 

eval do it. This is a product of the view that the program's knowledge 

should be as integrated as possible, and that fast powerful simpli~ 

fication routines should be used before any more sophisticated 

techniques are used. 

Finally, it should be pointed out that the program uses no search. 

At no time does it "undo" a decision or back up. This is both the 

primary reason it is a fast theorem prover, and strong evidence that 

its methods allow the theorem to be proved in the way a programmer 

might "observe" it. The program is designed to make the right guess 

the first time, and then pursue one goal with power and perserverance. 



APPENDIX A FUNCTION DEFINITIONS 

(ADDl (LAMBDA (X) (CONS NIL X») 

(ADD'lULIS (LAMBDA (X y) 
(COND Y 

(COND (LTE X (CAR y» 
(CONS X y) 
(CONS (CAR y) (ADDTOLIS X (CDR y»» 

(CONS X NIL»» 

(AND (LAMBDA ex y) (COND X (COND Y T NIL) NIL») 

(APPEND (LAMBDA (X Y) 
(COND X (CONS (CAR X) (APPEND (CDR X) Y» Y») 

(ASSOC (LAMBDA (X Y) 
(COND 
Y 
(COND 

(CAR y) 
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(COND (EQUAL X (CAR (CAR Y») (CAR Y) (ASSOC X (CDR y») 
(ASSOC X (CDR Y») 

NIL») 

(BOOLEAN (LAMBDA (X) {COND X (EQUAL X T) T») 

(CDRN (LAMBDA (X y) 
(COND Y (COND X (CDRN (SUBl X) (CDR ~» y) NIL») 

{CONSNODE (LAMBDA (X y) (CONS NIL (CONS X y»» 

(CONSTTRU (LAMBDA (X) T» 

(COPY (LAMBDA (X) 
(COND X {CONS (COPY (CAR X» (COPY (CDR X») NIL») 

(COUNT (LAMBDA (X y) 
(COND Y 

(COND (EQUAL X (CAR Y» 

0») 

(DOUBLE (LAMBDA (X) 

(ADDl (COUNT X (CDR y») 
(COUNT X (CDR y») 

(COND X (ADDl (ADDl (DOUBLE (SUBl X»» 0») 

(ELEMENT {LAMBDA (X y) 
{COND Y (COND X {ELEMENT (CDR X) (CDR Y» (CAR y» NIL») 

(E~ALP (LAMBDA (X y) 
(COND X 



(COND Y 
(COND C EQUALP (CAR X) (CAR Y» 

(EQUALP (CDR X) (CDR y» 
NIL) 

NIL) 
(CONn Y NIL T»» 

(EVEN1 (LAMBDA (X) 
(COND X (NOT (EVEN! (SUB! X») T») 

(EVEN2 (LAMBDA (X) 
(COND X (COND (SUB! X) (EVEN2 (SUB! (SUB! X») NIL) T») 

(FLATTEN (LAMBDA (X) 
(COND 

(NODE X) 
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(APPEND (FLATTEN (CAR (CDR X») (FLATTEN (CDR (CDR X»» 
(CONS X NIL»» 

(GT (LAMBDA (X y) 
(COND X (COND Y (GT (SUB! X) (SUB! y» T) NIL») 

(HALF (LAMBDA (X) 
(COND X (COND (SUB! X) (ADD! (HALF (SUB! (SUB! X»» 0) 0») 

(IMPLIES (LAMBDA (X y) (COND X (COND Y T NIL) T») 

(INTERSEC (LAMBDA (X Y) 
(COND X 

(CONn (MEMBER (CAR X) Y) 

NIL») 

(LAST (LAMBDA (X) 

(CONS (CAR X) (INTERSEC (CDR X) Y» 
(INTERSEC (CDR X) Y» 

(COND X (COND (CDR X) (LAST (CDR X» (CAR X» NIL») 

(LENGTH (LAMBDA (X) 
(COND X (ADD! (LENGTH (CDR X») 0») 

(LIT (LAMBDA (X Y Z) 
(COND X (APPLY Z (CAR X) (LIT (CDR X) Y Z» Y») 

(LTE (LAMBDA (X y) 
(COND X (COND Y (LTE (SUB! X) (SUB! Y» NIL) T») 

(MAPLIST (LAMBDA (X y) 
(CONn X (CONS (APPLY Y (CAR X» (MAPLIST (CDR X) Y» NIL») 

(MEMBER (LAMBDA (X Y) 
(COND Y (COND (EClJAL X (CAR Y» T (MEMBER X (CDR y») NIL») 

(MONOT! (LAMBDA (X) 
(COND 
X 



(COND 
(CDR X) 
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(COND (EQUAL (CAR X) (CAR (CDR X») (MCNOTl (CDR X» NIL) 
T) 

T») 

(ltIlNOT2 (LAMBDA (X y) 
(COND Y (COND (EQUAL X (CAR y» (MDNOT2 X (CDR y» NIL) T») 

(MONOT2P (LAMBDA (X) 
(COND X (MCNOT2 (CAR X) (CDR X» T») 

(NODE (LAMBDA (X) 
(CONn X (COND (CAR X) NIL (COND (CDR X) T NIL» NIL») 

(NOT (LAMBDA (X) (COND X NIL T») 

(NUMBERP (LAMBDA (X) 
(COND X (COND (CAR X) NIL (NUMBERP (CDR X») T») 

(OCCUR (LAMBDA (X Y) 
(COND 

(EQUAL X y) 
T 
(COND Y (COND (OCCUR X (CAR y» T (OCCUR X (CDR Y») NIL»» 

(OR (LAMBDA (X Y) (COND X T (COND Y T NIL»» 

(ORDERED (LAMBDA (X) 
(COND 
X 
(COND 

(CDR X) 
(COND (LTE (CAR X) (CAR (CDR X») (ORDERED (CDR X» NIL) 
T) 

T») 

(PAIRLIST (LAMBDA (X y) 
(COND 
X 
(COND 

Y 
(CONS (CONS (CAR X) (CAR y» (PAIRLIST (CDR X) (CDR y») 
(CONS (CONS (CAR X) NIL) (PAIRLIST (CDR X) NIL») 

NIL» ) 

(PLUS (LAMBDA (X y) 
(COND X (ADDl (PLUS (SUBl X) Y» (LENGTH y»» 

(REVERSE (LAMBDA (X) 
. (COND X 

(APPEND (REVERSE (CDR X» (CONS (CAR X) NIL» 
NIL) » 

(SORT (LAMBDA (X) 



(COND X (ADDTOLIS (CAR X) (SORT (CDR X») NIL») 

(SUB! (LAMBDA (X) (CDR X») 

(SUBSET (LAMBDA (X y) 
(COND X 

(COND (MEMBER (CAR X) Y) (SUBSET (CDR X) y) NIL) 
T») 

(SUBST (LAMBDA (X Y z) 
(COND (EQUAL Y Z) 

X 
(COND Z 

(CONS (SUBST X Y (CAR Z» (SUBST X Y (CDR Z») 
NIL»» 

(SWAP'lREE (LAMBDA (X) 
(COND (NODE X) 

(CONSNODE (SWAPTREE (CDR (CDR X») 
(SWAPTREE (CAR (CDR X»» 

X») 

(TIMES (LAMBDA (X y) 
(COND X (PLUS Y (TIMES (SUB1 X) Y» 0») 

(TIPCOUNT (LAMBDA (X) 
(COND 

(NODE X) 

212 

(PLUS (TIPCOUNT (CAR (CDR X») (TIPCOUNT (CDR (CDR X»» 
1») 

(UNION (LAMBDA (X y) 
(COND X 

(COND (MEMBER (CAR X) Y) 
(UNION (CDR X) Y) 
(CONS (CAR X) (UNION (CDR X) Y») 

Y») 



APPENDIX B SOME THEOREMS PROVED AU1UMATICALLY 

Theorems about APPEND, REVERSE, and LENGTH 

(EQUAL (APPEND A (APPEND B C)} (APPEND (APPEND A B) C}} 

(IMPLIES (EQUAL (APPEND A B) (APPEND A C}) (EQUAL B C}) 

(EQUAL (LENGTH (APPEND A B» (LENGTH (APPEND B A)}} 

(EQUAL (REVERSE (APPEND A B)} (APPEND (REVERSE B) (REVERSE A}» 

(EQUAL (LENGTH (REVERSE D}) (LENGTH D}) 

(EQUAL (REVERSE (REVERSE A» A} 

(IMPLIES A (EQUAL (LAST (REVERSE A)} (CAR A)}} 

Theorems about membership 

(IMPLIES (MEMBER A B) (MEMBER A (APPEND B C»} 

(IMPLIES (MEMBER A B) (MEMBER A (APPEND C B)}} 

(IMPLIES (AND (NOT (EQUAL A (CAR B)}} (MEMllER A B}) 
(MEMBER A (CDR B)}} 
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(IMPLIES (OR (MEMBER A B) (MEMBER A C)} (MEMBER A (APPEND B C)}} 

(IMPLIES (AND (MEMBER A B) (MEMBER A C)} (MEMBER A (INTERSEC B C)}} 

(IMPLIES (OR (MEMBER A B) (MEMBER A C)} (MEMBER A (UN ION B C)}} 

(IMPLIES (SUBSET A B) (EQUAL (UNION A B) B}} 

(IMPLIES (SUBSET A B) (EQUAL (INTERSEC A B) A}} 

(EQUAL (MEMBER A B) (NOT (EQUAL (ASSOC A (PAIRLIST B C)} NIL}}} 

Theorems about MAPLIST 

(EQUAL (MAPLIST (APPEND A B) C} 
(APPEND (MAPLIST A C) (MAPLIST B C)}} 

(EQUAL (LENGTH (MAPLIST A B}) (LENGTH A}) 

(EQUAL (REVERSE (MAPLIST A B)} (MAPLIST (REVERSE A) B}} 



Theorems about miscellaneous function. 

(EQUAL (LIT (APPEND A B) C D) (LIT A (LIT BCD) D» 

(IMPLIES (AND (BOOLEAN A) (BOOLEAN B» 
(EQUAL (AND (IMPLIES A B) (IMPLIES B A» (EQUAL A B») 

(EQUAL (ELEMENT B A) (ELEMENT (APPEND C B) (APPEND C A») 

(IMPLIES (ELEMENT B A) (MEMBER (ELEMENT B A) A» 

(EQUAL (CDRN C (APPEND A B» 
(APPEND (CDRN C A) (CDRN (CDRN A C) B») 

(EQUAL (CORN (APPEND B C) A) (CDRN C (CDRN B A») 

(EQUAL (EQUAL A B) (EQUAL B A» 

(IMPLIES (AND (EQUAL A B) (EQUAL B C» (EQUAL A C» 

(IMPLIES (AND (BOOLEAN A) (AND (BOOLEAN B) (BOOLEAN C») 
(EQUAL (EQUAL A (EQUAL B C» (EQUAL (EQUAL A B) C») 

Theorems about arithmetic functions 

(EQUAL (PLUS A B) (PLUS B A» 

(EQUAL (PLUS A (PLUS B C» (PLUS (PLUS A B) C» 

(EQUAL (TIMES A B) (TIMES B A» 

(EQUAL (TIMES A (PLUS B C» (PLUS (TIMES A B) (TIMES A C») 

(EQUAL (TIMES A (TIMES B C» (TIMES (TIMES A B) C» 

(EVENl (OOUBLE A» 

(IMPLIES (NUMBERP A) (EQUAL (HALF (DOUBLE A» A» 

(IMPLIES (AND (NUMBERP A) (EVENl A» (EQUAL (OOUBLE (HALF A» A» 

(EQUAL (OOUBLE A) (TIMES 2 A» 

(EQUAL (DOUBLE A) (TIMES A 2» 

(EQUAL (EVENl A) (EVEN2 A» 

Theorems about ordering relations 

(OT (LENGTH (CONS A B» (LENGTH B» 

(IMPLIES (AND (OT A B) (GT B C» (GT A C» 
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(IMPLIES (GT A B) (NOT (OT B A») 

(LTE A (APPEND B A» 

(OR (LTE A B) (LTE B A» 

(OR (GT A B) (OR (GT B A) (EQUAL (LENGTH A) (LENGTH B»» 

(E~AL (MONOT2P A) (MONOTl A» 

(ORDERED (SORT A» 

(IMPLIES (AND (MONOTl A) (MEMBER B A» (E~AL (CAR A) B» 

(LTE (CDRN A B) B) 

(EQUAL (MEMBER A (SORT B» (MEMBER A B» 

(EQUAL (LENGTH A) (LENGTH (SORT A») 

(EQUAL (COUNT A B) (COUNT A (SORT B») 

(IMPLIES (ORDERED A) (EQUAL A (SORT A») 

(IMPLIES (ORDERED (APPEND A B» (ORDERED A» 

(IMPLIES (ORDERED (APPEND A B» (ORDERED B» 

(EQUAL (EQUAL (SORT A) A) (ORDERED A» 

(LTE (HALF A) A) 

Theorems about functions which inspect tree-structured lists 

(EQUAL (COpy A) A) 

(EQUAL (EQUALP A B) (E~AL A B» 

(EQUAL (SUBST A A B) B) 

(IMPLIES (MEMBER A B) (OCCUR A B» 

(IMPLIES (NOT (OCCUR A B» (EQUAL (SUBST C A B) B» 

(EQUAL (EQUALP A B) (EQUALP B A» 

(IMPLIES (AND (EQUALP A B) (EQUALP B C» (EQUALP A C» 

(EQUAL (SWAPTREE (SWAPTREE A» A) 

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A») 

(EQUAL (LENGTH (FLATTEN A» (TIPCOUNT A» 
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APPENDIX C FOUNDATIONS II 

We wish to demonstrate the consistency of list theory by exhibiting 

it as a conservative extension of number theory. Results derived in 

Shoenfield 1967 establish that any extension of number theory by 

total,recursive functions is a conservative extension. Thus, by exhibiting 

total, recursive definitions of the primitives in list theory, we will 

have established that list theory is a conservative extension of 

number theory. Furthermore, this automatically means that any extension 

of the theory of lists by total, recursive functions is a conservative 

extension. 

In the following, LISP notation will be used to denote function 

application. However, the usual number theoretic operations, such as 

+ and <, will be denoted by the traditional infix notation. 

All abbreviations introduced into list theory will be inoperative 

below to prevent confusion. In particular, we will be discussing the 

natural numbers, Nj any occurrence of an integer will denote an element 

of N, not a list of NILs. 

We will assign an element of N to every distinct specific list. 

This is done by letting NIL be (an abbreviation for) O. CONS will be 

a "pairing function", which map_s elements of N x N into the non-zero 

elements of N. The definition is: 

(CONS X y) = (X + y) eX + Y + 1) + X + 1. 
2 

This is just the traditional diagonal enumeration of pairs: 



That is, 

etc. 

• 

(CONS NIL NIL) = (CONS a 0) = 1, 

(CONS NIL (CONS NIL NIL» = (CONS a 1) = 2, 

(CONS (CONS NIL NIL) NIL) = (CONS 1 0) = 3, 

It should be noted that: 

x < (CONS X y) & Y < (CONS X y). 
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CAR and CDR are just the functions which map from N to N such that: 

X ~ a -> (CONS (CAR X) (CDR X» = X. 

The recursive definitions of CAR and CDR are derived in terms of the 

diagram above. Call the point (x.y) the kth point if k = (CONS x y). 

Let (DIAGCNT K) be the number of complete diagonals up to (and 

possibly including) the one passing through the Kth point. The defi-

nition is: 
N+1 

(DIAGCNT K) = liN( (L I) > K). r- I=O 

For notational simplicity, let (POINTCNT K) be the total number 

of points on complete diagonals up to (and possibly including) the one 

passing through point K: 
(DIAGCNT K) 

(POINTCNT K) = L I. 
I=O 

Then consideration of the diagram above shows that CAR and CDR 

depend upon whether the point in question is at the end of its diagonal, 
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upon the number of complete diagonals up to (and possibly including) 

the one through the point, and upon the number of points on the 

given point's diagonal before the given point. The definitions 

of CAR and CDR are: 

= {(DIAGCNT K) ~ 1, if K = (POINTCNT K), 
(CAR K) 

(K ~ (POINTCNT K» .~ 1, otherwise. 

= {
o, if K = (POINTCNT K), 

(CDR K) 
(DIAGCNT K) ~ (K ~ (POINTCNT K» + 1, otherwise. 

The definitions of EQUAL and COND are: 

{ 
1, 

(EQUAL X y) = 
0, 

if X = Y, 

otherwise. 

{
Z' 

(COND X Y Z) == 
Y, 

if X = 0, 

otherwise. 

In view of the total, recursive definitions of all of the functions 

introduced, adding them to number theory produces a conservative exten-

sion. However, in this extension, it is possible to derive, as theorems, 

the non-logical axioms of the theory of lists. This is straightforward. 

As shown below, the induction schema is also a theorem in this extension. 

Thus, this extension represents the theory of lists as a conservative 

extension of number theory. Therefore, not only is it consistent, but 

any extension of it by a total, recursive function is a conservative 

extension. 

The induction schema {of list theory) is now: 

p(O) & YX,Y(p(X) & p(Y) -> p«CONS X Y») -> YX(p(X». 

where X and Y are quantified over the elements of N, and CONS is the 

number theoretic function defined above. 
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We wish to show that this is a theorem in the extension. Therefore, 

assume that the hypothesis is true, but the conclusion (that p(X) is true 

for all X) is false. Then by the least number principle of number theory, 

there is a smallest K such that p(K) is false. Let this K be K • o 

If K is 0 the hypothesis is violated, since p(O) is true. Therefore, o 

K 1= O. o 

In this case, we know that: 

and that: 

K = (CONS (CAR K ) (CDR K », 
000 

(CAR K ) < K & (CDR K ) < K • o 0 0 0 

Since (CAR K ) and (CDR K ) are both strictly less than K , and o 0 0 

since K is the smallest K such that p(K) is false, we know that: o 

p«CAR Ko» & p«CDR Ko». 

But since the hypothesis of (1) is true, we get: 

p(CONS (CAR K ) (CDR K »)), 
o 0 

or p(K). But this is a contradition. Therefore, the right-hand side o 

of (1) must be tnue, and the induction schema holds in the extension. 

Since the theory of lists can be represented as a oonservative 

extension of number theory, we know any total, recursive function can 

be added to produce a conservative extension. At this point we can 

rely upon any of the well-known recursive schemas. One such schema is: 

(f X Y) = (COND X 
(h (f (CAR X) Y) (f (CDR X) Y) X y) 
(g Y», 

where h and g are total, recursive functions. This is just a variant 

of course-of-values recursion. 
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APPENDIX D COMPARATIVE SURVEY OF OTHER WORK 

There are four commonly used inductive methods for proving 

properties of programs. These are: computational induction (Park 

1969, and deBakker and Scott 1969), structural induction (Burstall 

1969), recursion induction (McCarthy 1963), and inductive assertions 

(Naur 1966, Floyd 1967, and Manna 1969). The first three of these 

are primarily concerned with recursive functions, while the fourth 

deals with iterative processes and assignment. Floyd's method has been 

generalized to handle recursive functions by Manna and Pnueli (1970). 

The first and third methods are essentially induction on the depth of 

function calls. The second is induction on the data structures being 

altered, and the fourth is induction on the length of the computation 

path. As shown in Manna, Ness, and Vuillemin 1972, these methods are 

all essentially equivalent. 

The paper by Manna, et ale 1972 is a very readable introduction 

to the various inductive methods. The volume containing that paper 

presents a good cross-section of the current work. It should be pointed 

out that many of the theorems cited in the literature as illustrative 

examples of a particular proof technique, have been proved automatically 

by the program described here. In particular, proofs of properties 

of simple functions such as APPEND and REVERSE are generated by this 

program. However, it should also be said that many other theorems cited 

in the literature are beyond the capabilities of the current program 

particularly those dealing with termination arguments or functions 

which recurse "up" rather than "down". 
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The most commonly used inductive method is that of Floyd. In this 

approach, assertions are attached to key points (such as loops) in the 

flow-diagram, and an assertion must be true each time control passes 

through the relevant point. Verifying the correctness of the program 

consists of proving that, for each path through the diagram, each asser

tion implies the next one in the path provided the effects of the inter

vening program statements are taken into account. Manna 1969 describes 

a similar method used to prove termination. This method may be thought 

of as attaching assertions to points such that the assertion is true 

during some pass through the point, rather than all passes as in Floyd's 

method. 

All of the implemented systems which use Floyd's methods assume the 

assertions are supplied by the user. Recent work by Wegbreit (1973) and 

Katz and Manna (1973) present some heuristics for automatically generating 

inductive assertions using the entry/exit conditions required and the 

program text. The automatic generation of induction formulas and lemmas 

by our program is equivalent to the automatic generation of assertions 

for Floyd's method. 

The inductive approach used by the program described here is struc

tural induction. Burstall's 1969 paper gives an excellent account of 

this technique and presents several proofs similar to those automatically 

generated by this program. Logicians frequently use structural induction 

to establish meta-theorems, by inducting upon the structure of formulas 

in the theory. This was used several times in this paper. Curry and 

Feys (1958) named the method, and McCarthy and Painter (1967) used it to 

establish the correctness of a compiler. Burstall points out the 
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similarity between the form of the proofs and the form of the recursive 

functions involved. However he does not explicitly describe heuristics 

for choosing what to induct upon, or how to generate the induction 

formula. 

There is, of course, no reason why one should feel restricted to 

one inductive method over another. Each has its own merits and dis

advantages. For example, in the presence of assignments to data struc

tures, Floyd's methods have been shown to be applicable. But since 

circular structures exist in such systems, structural induction does 

not readily apply. (There are objects which cannot be constructed by 

CONSing atoms together. In fact, there are structures which contain 

no atoms at all. Burstall (1972) discusses the problems of destructive 

assignment and the unique problems it presents.) Thus, one's approach 

to the problem of proof of program properties largely depends upon the 

features of the particular language discussed and the theorems at hand. 

We will now review other implemented systems and make some compar

isons with the program described here. The primary points of interest 

are the aims and methods of the system, and the features of the languages 

used to present programs and assertions (or theorems). Several general 

remarks are in order. 

The only published references to an implementation of computational 

induction and recursive functions are those of Milner (see references 

below). The remaining systems are concerned with Floyd-like methods 

for flow-diagram languages. 

It should be noted that except for King and Cooper, all of the systems 

were designed to provide mechanical aid to a human verifier. They 
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concentrate on the generation of the verification conditiollo given the 

program and the attached assertions, algebraic and logical nimplication, 

and bookkeeping services during the human's proof. Their automatic 

theorem proving capabilities are purposely limited or nonexistent. 

No previous system (known to this author) has automated the 

"creative" parts of the proof process, namely: generalization of the 

theorem to be proved, application of automatic progr'am writing to 

simplify the problem, and the automatic generation of induction formulas. 

Automation of these parts of the process has been the primary goal of 

the project reported here. 

Milner's 1972 papers describe his implementation of Scott's Logic 

for Computable Functions (LCF) (Scott 1970). He shows how the syntax 

and semantics of a programming language allowing assignment, conditionals, 

while statements, and compound statements may be expressed in LCF. His 

program is an LCF proof-checker. The basic induction rule is computa

tional induction, although a proof of the recursion induction rule is 

presented as an example of a theorem proof-checked by the program. The 

program accepts expressions in LCF as theorems to be proved, and then 

obeys commands from the user directing the application of the rules of 

inference. The program keeps track of the goals to be established and 

the steps carried out in each proof. 

LCF is designed for handling functions of higher type computed by 

arbitrary recursive programs. The system is therefore quite capable 

of handling programs which may not terminate, and, unlike any other 

system currently available, programs which deal with other programs as 

arguments and results. This is probably the most powerful and flexible 

verification system implemented. As noted above, this power is completely 

controlled and directed by the user. 
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In Milner and Weyhrauch 1972, the authors describe the use of the 

LCF proof-checker to verify the correctness of a compiler. The authors 

state that parts of many proofs followed patterns that appeared to be 

amenable to complete automation. Those parts not so amenable were, 

predictably, the selection of the induction formulas. 

King 1969 and Good 1970 deal with ALGOL-like flow-diagram languages 

with Floyd-like methods. They allow integer valued variables and one 

dimensional arrays with integer elements. Statements include assignments 

to variables and array elements, conditional statements, and jump state

ments. The usual arithmetic functions may be used in assignment state

ments, and the usual boolean arithmetic relations are allowed in the 

tests in conditionals. Procedure calls are not allowed. 

King's program was designed as a fully automatic system for the 

Floyd method. Once the user has submitted his program text with assertions, 

King's system constructs the verification conditions and then tries to 

prove them. Proof is carried out by an arithmetic theorem prover 

designed specifically for this task. Knowledge of the arithmetic 

functions and predicates is built-in. 

An assertion is just a boolean ALGOL statement, with universal 

anq/or existential quantification. It is not possible to introduce a 

procedure to express an assertion. Thus, assertions are restricted 

to expressions compounded from the primitive boolean relations and 

arithmetic functions. This severely limits the expressive power of the 

assertion language. For example, functions such as summation and 

greatest common divisor are not built-in, and thus, not available. 

In order to make them available, new routines (in assembly code) 

must be written. This means that the system will contain two very large 
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and completely independent knowledge bases, one about ALGOL procedures, 

and one about mathematical functions and relations. In particular, the 

extensive knowledge of ALGOL cannot be used to "understand" a mathematical 

function, given an ALGOL procedure for computing it. Thus, in building

in a new function, all of the facts which may ever be needed about the 

properties of the new function and its relationships with the existing 

primitives must also be built-in. 

King's system has automatically verified several interesting 

programs, including an array sorting program and a program which raises 

an integer to a power using the binary representation of the power. 

Good's program generates verification conditions from the user 

supplied text and assertions. However, it makes no attempt to auto

matically prove them. Because the machine was not designed to "understand" 

the assertions, the assertion language is maximally flexible: it is 

simply arbitrary text strings, usually expressing relations in English. 

The program only recognizes occurrences of program variables in these 

strings, and forms verification conditions by substituting for them, 

according to the semantics of the intervening statements. It informs 

the user of the conditions to be verified and will perform a bookke~ping 

service as the user convinces himself of the validity of the conditions. 

Cooper 1971 presents a theorem prover that deals with flow-diagram 

languages like those above, without provision for arrays. Programs 

are based on block structures, and blocks are allowed to contain sub

blocks. The usual integer relations and functions are again available. 

The program is designed to automatically generate and prove the termina

tion conditions for flow-diagrams. It recognizes simple counting loops, 

and under certain conditions of linearity, will automatically generate 
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a termination condition for such a loop. If the condition cannot be 

generated, the user must supply one. These conditions are always logical 

formulas compounded from the primitives. New functions cannot be 

expressed. Once termination conditions have been produced, either auto

matically or manually, they are passed to an automatic arithmetic 

theorem prover based on the Presburger algorithm. 

Gerhart 1972 describes the use of Floyd's methods on an APL subset. 

Her assertion language is APL, but again, she allows no defined procedures, 

either in the program or in assertions. The only process automated is 

the verification of the compatibility of argument types and APL operators. 

Topor and Burstall (1973) have implemented a Floyd-like system 

using symbolic evaluation. They deal with an ALGOL-like language allowing 

integer arithmetic. Recursive procedures are allowed. They attach 

inductive assertions to points in the program; these assertions are 

expressed as alternative programs in the language, usually involving 

higher-level primitives. For example, a program for raising an integer 

to an integer power using repeated multiplication has inductive assertions 

using the exponentiation operator of the language. They observe that 

by symbolically evaluating a program around a given path to a point,' 

the description of the program state upon reaching that point is generated. 

As in our system, they use symbolic evaluation to produce a case analysis 

of conditions to be proved. This case analysis is expressed in a sepa

rate language. Although some automatic theorem proving is currently 

done, they intend to automate as much of it as possible in a separate 

theorem proving stage. 

The field is very active and there are many systems currently being 

implemented about which very little has been published. Among these is 

a Floyd-like system by Peter Deutsch. 
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From a programming language point of view, the features of the LISP 

subset in the system described here are as follows: Arbitrary (non

circular) data structures constructed from list cells are allowed. 

Besides the four primitives for constructing and accessing list cells, 

a conditional statement and equality function are provided. The user 

may introduce any number of recursive functions defined in terms of : 

these primitives or other recursive functions. Theorems are boolean 

LISP statements, possibly involving non-primitive functions, but 

restricted to universal quantification. The program is designed to 

be a fully automatic theorem prover, but does not deal with termination 

problems. Any instance of a theorem proved is true, provided the functions 

involved terminate for that instance. The program requires no user 

supplied assertions other than the statement of the theorem to be proved. 

Structural induction is the inductive method used. 

The flexibility on data structures means that integers, linear 

lists, and tree structures are trivially available. Functions for accessing 

the nth element of a list, and for changing the nth element (by copying 

the initial segment) can be added by the user; this simulates arrays. 

The flexibility on the introduction of non-primitive functions means 

that the tradi tional ari thmetic functions and relations are available 

(since they are recursively computable), as well as many other functions. 

Since new relations are added as LISP functions, their properties are 

derived by the system as needed rather than being built-in. 

Although the language prohibits PROG, SETQ, GO, and RETURN, an 

optional routine is available which converts function definitions using 

these primitives into a set of mutually defined recursive functions. 
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However, the language also prohibits the concept of an address 

and assignment to it. This is basic to King and Good, and accounts 

for a good deal of the complexity of their systems. In the LISP subset 

allowed here, there is no way to detect the difference between two 

EQUAL lists, regardless of how they were constructed. (The LISP 

primitive EQ, which detects equivalence of machine addresses, is not 

available.) Destructive assignments,RPLACA and RPLACD, are not avail

able either. As a particularly horrid example of the problems involved, 

let REV be a LISP function which reverses a list by rearranging the 

pointers in the list cells. Then 

(EQUAL (REV X) (REV X)) 

does not, in general, evaluate to T. In evaluating the first (REV X), 

the contents of X are destructively altered, so that when the second 

(REV X) is evaluated, X represents a different list. 

In summary, our system and Milner's are the only ones which allow 

tree structured data. (Milner even allows functions as data objects.) 

The arrays allowed by King, Good, and Gerhart are restricted to integer 

elements. They correspond to linear lists. Of course, the integers 

are rich enough to simulate trees, but without the necessary primitives 

the enumeration schemes are prohibitively complicated. 

Iteration and assignment to variables can be adequately simulated 

by recursive function calls. Therefore, the distinquishing features 

of the various programming languages are whether they allow subroutine 

calls an~or destructive assignment. 

Our system, Milner's, and Topor and Burstall's are the only ones 

allowing an easily extended assertion or logical language. This just 

reflects the degree to which this language is restricted to the built-in 

primitives. 
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Our system and those of King and Cooper are the only ones encor

porating automatic theorem provers. However, ours is the only one 

which attempts to solve the induction problem directly, by including 

induction as an automatic rule of inference. The other two theorem 

provers are restricted to arithmetic, and use algorithms which are 

capable of deciding many problems in this domain. Without such 

decision procedures, these problems would require induction to solve. 

Bledsoe (1971) encorporated an induction rule in a set theory 

theorem prover. However, its use was triggered by the occurrence in 

the theorem of a statement of the form "for all natural numbers, n", 

and caused induction on n. Such a trigger in our system could cause 

induction on C in: 

(TIMES A (TIMES B C)) = (TIMES (TIMES A B) C), 

even though C is not being recursed upon. 

Brotz and Floyd (1973) have implemented an automatic theorem 

prover for arithmetic which is remarkably similar to ours. The user may 

introduce non-primitive functions by adding the defining equations. 

These equations may use successor, predecessor, and other defined 

functions, and recursion. The system uses induction as a rule of inference 

and generalizes common subterms as described here (although type functions 

do not exist). However, no equivalent of the bomb list exists. The 

term chosen for induction is always the right-most argument appearing 

in the theorem (this puts a trivial syntactic constraint on the order of 

the arguments to recursive functions). No attempt is made to analyze the 

recursive structure of the functions involved. This heuristic will not 

always choose the "right" term to induct upon. For example, if we 

alter the rule to choose the left-most so that the conventions used 



in the functions introduced here are respected, the system would attempt 

induction on A in the theorem: 

(EQUAL (APPEND (REVERSE A) (REVERSE B» 
(REVERSE (APPEND B A»). 

Although A is recursed upon, it is not at all clear how a proof by induc-

tion on A would proceed. The program described here would choose B, 

on the grounds that it is recursed upon more often; as we have seen, 

this allows a straightforward proof. 

The Brotz and Floyd program does not currently handle induction on 

multiple terms simultaneously, or induction requiring two or more 

bases. These would be trivial additions (in the sense that they are 

completely compatible with the existing heuristics). Many of the 

proofs produced by their system are identical to the proofs of the 

same theorems by our system. 

Returning to the program verification systems discussed, I feel they 

are noticeably less ambitious than we have been in their desire to auto-

mate the processes involved. This thesis has demonstrated that for a 

large class of functions it is possible to fully automate the inductive 

proofs of non-trivial properties, without the aid of user supplied 

assertions or information. 

Our work is nicely complemented by (and complements) the work of 

Darlington 1972. Darlington discusses a system which accepts a recursive 

function definition and translates it into an equivalent flow-diagram. 

The input expressions are very similar to the recursive functions allowed 

here. The output expressions are programs in which recursion has been 

eliminated when possible, loops have been merged, and destructive 

assignment and shared data structures used when permitted. Thus, the 
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input is usually an elegant, easily understood program, while the output 

is an efficiently implemented but equivalent program. The implications 

are obvious: A programmer could write a procedure in a highly struc

tured, recursive language. This would allow the methods of this 

thesis to be used to establish the correctness of the procedure. 

Then Darlington's methods could be used to produce an effioiently coded 

version which is known to have the same properties. 
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