

COMPUTATIONAL LOGIC:

STRUCTURE SHARING AND PROOF OF PROGRAM PROPERTIES

J Strother Moore II

Doctor of Philosophy

University of Edinburgh

1973

ABSTRACT

This thesis describes the results of two studies in computational

logic. The first concerns a very efficient method of implementing

resolution theorem provers. The second concerns a non-resolution program

which automatically proves many theorems about LISP functions, using

structural induction.

In Part I, a method of representing clauses, called 'structure

sharing', is presented. In this representation, terms are instantiated

by binding their variables on a stack, or in a dictionary, and derived

clauses are represented in terms of their parents. This allows the

structure representing a clause to be used in different contexts without

renaming its variables or copying it in any way. The amount of space

required for a clause is (2 + n) 36-bit words, where n is the number

of components in the unifying substitution made for the resolution or

factor. This is independent of the number of literals in the clause

and the depth of function nesting.

Several ways of making the unification algorithm more efficient

are presented. These include a method of preprocessing the input terms

so that the unifying substitution for derived terms can be discovered

by a recursive look-up procedure. Techniques for naturally mixing

computation and deduction are presented. The structure sharing imple

mentation of SL-resolution is described in detail. The relationship

between structure sharing and programming language implementations is

discussed. Part I concludes with the presentation of a programming

language, based on predicate calculus, with structure sharing as the

natural implementation.

ii

Part II of this thesis describes a program which automatically

proves a wide variety of theorems about functions written in a subset

of pure LISP. Features of this program include: The program is fully

automatic, requiring no information from the user except the LISP defi

nitions of the functions involved and the statement of the theorem to

be proved. No inductive assertions are required from the user. The

program uses structural induction when required, automatically gener

ating its own induction formulas. All relationships in the theorem are

expressed in terms of user defined LISP functions, rather than a second

logical language. The system employs no built-in information about

any non-primitive function. All properties required of any function

involved in a proof are derived and established automatically. The

program is capable of generalizing some theorems in order to prove them;

in doing so, it often generates interesting lemmas. The program can

write new, recursive LISP functions automatically in attempting to

generalize a theorem. Finally, the program is very fast by theorem

proving standards, requiring around 10 seconds per proof.

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

PREFACE AND ACKNOWLEDGEMENTS

INTRODUCTION TO PART I

CHAPTER 1 GENERAL STRUCTURE SHARING

1.1 Introduction

1.2 Terms and Substitutions

1.3 Expressions and Bindings

1.4 The Unification Algorithm

iii

i

iii

1

4

12

12

13

15

18

1.5 Incrementing Indices and Standardizing Expressions Apart 20

1.6 Resolving Clauses Using Expressions and Indices 20

1.7 The Details of the Representation 25

1.8 Notes on the General Representation 30

CHAPTER 2 MODIFICATIONS OF UNIFY AND OCCUR FOR EFFICIENCY 32

2.1 UNIFY and its Variants 32

2.2 Preprocessing Input Terms 34

2.3 Avoiding Unnecessary OCCUR Checks 41

CHAPTER 3 MODIFICATIONS OF ISBOUND AND BIND FOR EFFICIENCY 43

3.1 The VALUE Array 43

CHAPTER 4 COMBINING COMPUTATION AND DEDUCTION 48

4.1 Restrictor Functions 48

4.2 Automatic Evaluation 53

CHAPTER 5 THE SL-RESOLUTION IMPLEMENTATION 59

5.1 Introduction to SL-resolution 59

5.2 The Implementation 62

CHAPTER 6 A PROGRAMMING LANGUAGE FOR STRUCTURE SHARING

6.1 Introduction

6.2 BAROQUE

6.3 A LISP Subset in BAROQUE

INTRODUCTION TO PART II

CHAPTER 1 FOUNDATIONS

1.1 The Theory of Lists

1.2 LISP and the Theory of Lists

CHAPTER 2 PROVING THEOREMS IN THE THEORY

2.1 Evaluation, Recursion, and Induction

2.2 An Example of Evaluation and Induction

2.3 An Example of Additional Techniques

CHAPTER 3 DESCRIPTION OF THE THEOREM PROVER

3.1 Overview and Control Structure

3.2 Evaluation

3.3 Normalization

3.4 Reduction

3.5 Normalation

3.6 Fertilization

3.7 Generalization and Type Functions

3.8 Induction

3.9 Technical Information

CHAPTER 4 DETAILED EXAMPLES OF PROGRAM OUTPUT

4.1 Introduction to the Examples

iv

68

68

70

73

77

85

85

93

96

96

99

101

104

104

109

122

129

133

135

144

159

171

173

173

4.2 Sample Output 1

4.3 Sample Output 2

4.4 Sample Output 3

4.5 Sample Output 4

CHAPTER 5 EXTENSIONS

5.1 Termination

5.2 Iteration

CHAPTER 6 CONCLUSIONS

6.1 Built-in Information

6.2 Automatic Generation of Natural Lemmas

6.3 Design Philosophy of the Program

APPENDIX A FUNCTION DEFINITIONS

APPENDIX B SOME THEOREMS PROVED AUTOMATICALLY

APPENDIX C FOUNDATIONS II

APPENDIX D COMPARATIVE SURVEY OF OTHER WORK

BIBLIOGRAPHY

v

174

177

181

186

191

191

194

200

200

203

205

209

213

216

220

232

1

PREFACE AND ACKNOWLEDGEMENTS

This thesis is composed of two independent parts. The first

deals with an extremely efficient way to represent clauses in

resolution theorem proving programs. The second deals with proving

properties of LISP programs automatically, using structural induction.

The link between these two topics is historical: The first study

led to a representation of clauses that shares many features with

techniques used in implementing programming languages. This allowed

a resolution theorem prover to be written which efficiently interpreted

a set of axioms which defined a programming language based on LISP.

Since this program was a theorem prover (as well as an interpreter)

it could be used to prove general theorems about some of the LISP

functions defined. However, most interesting theorems required

induction, and induction was not part of this theorem prover. This

led to the second study, in which a completely new theorem prover was

written. This system was not based on resolution, and incorporated

induction as an automatic rule of inference. The only thing that

survived the change was the LISP subset about which theorems were

proved.

The two parts of this thesis are completely independent. Although

the organization of both parts is the same, all chapter and section

references are relative to the part containing the reference. Similarly,

any reference to a formula with a certain name or number, refers to the

so named formula of the section containing the reference.

2

During the work reported in both parts I received much help and

encouragement from many people. Among these are: Woody Bledsoe,

Alan Bundy, John Darlington, Michael Gordon, Pat Hayes, Bob Kowalski,

Donald Kuehner, Robin Milner, Gordon Plotkin, Aaron Sloman, Rodney

Topor, and JophinB van Vaalen.

In addition, I would like to thank Alan Robinson for his whole

hearted support of the structure sharing work, and Rod Burstall for

his encouragement of the induction work.

I also want to give special thanks to Bernard Meltzer. He not

only encouraged me constantly with his interest in the work being

carried out, but he tolerated my unusual working habits and office

hours. His leadership of the Department of Computational Logic has

made it an exceptionally open and interesting group in which to work.

This atmosphere in no small way contributed to the success of my endeavors.

The Science Research Council should be thanked for their financial

support.

One of my supplementary thesis advisors, Robert S. Boyer, was of

great help during the development of the ideas reported in this thesis.

He made significant contributions to several of the concepts discussed.

It was his conviction that an SL-resolution chain could be efficiently

represented in terms of its parents and the unifying substitution. This

led to the introduction of indices, and eventually, to general structure

sharing. He originated the effort to automate induction by observing

that it should be possible to discover what to induct upon by inspecting

the definitions of the functions involved. He was also instrumental

in the development of cross-fertilization and throwing the induction

hypothesis away when it had been "used".

3

My gratitude to Bob Boyer, as an advisor, co-worker, and friend,

is inexpressible. His experience with other formal systems and theorem

provers was responsible for keeping the induction theorem prover

firmly (and soundly) grounded in logic. This experience also led

him to suggest the only strict rule regarding the manner in which

research was conducted: No change in the program, no matter how

trivial, was finalized until every theorem proved by the previous

version was proved by the new version.

Finally, I wish to thank Bob Boyer, his wife, Anne, and my wife,Liz,

for exceptional cooperation and understanding. They have all sacrificed

much to a project which was of no benefit to any of them. Without these

three people, this thesis would never have been written.

4

INTRODUCTION TO PART I

In implementing resolution theorem provers, one is immediately

faced with the problem of how to represent clauses in the machine.

The traditional approach is to use list structures. This auffers

from the disadvantage of often requiring clauses to be copied before

they can be used, and requiring the application of substitutions.

This paper presents an alternative method, called structure sharing,

which represents a derived clause by pointing to the parents and noting

how the variables in them have been instantiated.

This method is very akin to the way programming languages are

implemented. In particular, when a subroutine is called, the values of

the formal arguments of the subroutine must be substituted into the

body. In addition, care must be taken to prevent the confusion of

variables in the calling program with those in the subroutine. The

traditional theorem proving approach would be to copy the subroutine

body and change the names of all of its variables. Then, copy it

again, substituting the values for the variables. What is actually

done is that the variables are kept straight by keeping track of how

the recursion or function calling has been done, and they are "substi

tuted for" by binding them in a stack or dictionary. The overhead

involved is having to look up the values of variables whenever they

are encountered, but there are ways that this can be done efficiently.

The situation in theorem proving is somewhat more complex than it is

in most programming languages, but an extension of the above methods

actually works well.

5

Chapter 1 describes the basic ideas of structure sharing.. Much of

thi$'chapter has been previously published (sse Boyer and 'Moore, '1972).

Chapter 1 alone is sufficient to obtain a complete understanding of

structure sharing. The remaining chapters discuss modifications for

efficiency and capabilities that structure sharing possesses which are

not intuitively obvious.

Chapters 2 and 3 explain how the basic representation described .

in Chapter 1 can be reformulated for efficiency. These modifications

can increase the speed of unification by an order of magnitude. These

chapters are especially important to readers interested-in implementing

structure sharing.

Chapter 4 describes how structure sharing allows computation to be

mixed arbitrarily with deduction. For example, it is both easy and

efficient to introduce procedures in the implementation language

which are automatically invoked when a term of a certain form is instan

tiated. Such a procedure might compute the value of the term.

Chapter 5 describes the implementation of 51-resolution. This is

a particularly attractive linear resolution system. The implementation

of it is very efficient and demonstrates how the basic ideas of structure

sharing can be modified to deal efficiently with a restricted domain.

Finally, Chapter 6 presents a programming language based on predi

cate calculus, of which structure sharing is the natural implementation.

Throughout this paper, the programming language POP-2 is used to

present algorithms. POP-2 has an ALGOL-like syntax and a LISP-like

power. It was designed by R. Burstall and R. Popplestone of the

6

Department of Machine Intelligence, School of Artificial Intelligence,
•

University of Edinburgh. A brief description of it is given below

for readers unfamiliar with it.

All assignment, argument passing, and result returning is accomplished

with a pushdown stack which is freely available to the user. To assign

5 to the identifier X, the syntax used is:

5 -> X; (SETQ X 5)

(Equivalent LISP code will be exhibited in this introduction, where

possible.)

Actually, the 5 in this context means "push 5 on the stack"

and "-> X;" means "pop the (top of the) stack into the value cell

for X". To push 5 on the stack and leave it there, one writes:

5;

If there is something on the stack, it can be popped and assigned to X

with:

-> X;

Thus, to assign 5 to X and 4 to Y, either of the following may be used:

or:

5 -> X;
4 -> Y;

4; 5; -> X -> Y;

(SETQ X 5)
(SETQ Y 4)

To assign 5 to the HD (CAR) of a list, X, one writes:

5 -> HD(X); (RPLACA X 5)

To assign to the TL (CDR), an analogous statement is used:

NIL -> TL(X); (RPLACD X NIL)

7

In fact, all assignment takes this form. The expression on the right

of the "_>" must just be an IIupdater" function, which takes as many things

off the stack as it requires. If A is an array, it is accessed, and up

dated in the expected way:

A(I) + 3 -> A(J+2);

The stack is not protected against function entry and exit. In

fact, arguments are passed via the stack, and results are returned

on the stack. In the example above, the array A is actually a function

which takes one argument off the stack, and leaves one result on the

stack (when on the left-hand side of "->"). Thus, an equivalent way

to get the Ith element of A onto the stack is:

I; A();

That is, put I (the argument) on the stack, and then call A. This

takes one thing off the stack, retrievES the relevant element, and

puts it on the stack.

To form a list cell with 5 in the HD and NIL in the TL, and then

assign it to X, the syntax is:

CONS(5,NIL) ~ X; (SETQ X (CONS 5 NIL»

What actually happens is that 5 and NIL are pushed, CONS is called

and takes two things off the stack. CONS pushes a new list cellon

the stack and exits, and the: cell i8 popped into X. An equivalent

piece of code is:

5; NIL; CONS() -> X;

The syntax used in this paper is consistently that of the first

CONS example above. This discussion has been to acquaint the reader with

the stack.

8

To define a function in POP-2 with nameFOO, formal arguments X and

Y, and the locals Z and W, one writes:

FUNCTION FOO X Y;
VARS Z W;

body
END;

(DEFPROP FOO
(LAMBDA (X Y)
(<FROG (Z VI)

body»
EXPR)

An example of a function which returns the sum and the product of its

two arguments is:

FUNCTION SUMPROD X Y;
X + Y;
X * Y;
END;

The statement:

SUMPROD(4,5) -> PROD -> SUM;

assigns 20 to PROD and 9 to SUM.

The conditional statement in POP-2 has the form:

IF foo (COND (foo bar) (T mumble»
THEN bar
ELSE mumble CLOSE;

where foo, bar, and mumble are arbitrary POP-2 statements. The value

of foo is tested against 0 rather than NIL. FALSE in POP-2 is 0;

lrRUE is 1.

The statement

IF foo THEN bar CLOSE; (COND (foo bar»

allows ELSE clauses to be dropped if not needed.

IF foo
THEN bar
ELSE IF mumble

THEN p
ELSE q CLOSE;

CLOSE;

(COND (foo bar)
(mumble p)
(T q»

can be abbreviated to:

IF foo
THEN bar
ELSEIF mumble

THEN p
ELSE q CLOSE;

to save the extra "CLOSE".

9

One very common feature in POP-2 programming is the use of the stack

to return a truthvalue and one or more results. Throughout this paper

the function ISBOUND is used. It takes two arguments and returns

either TRUE and two additional results, or it returns FALSE. The

common use of such a function is as follows:

IF ISBOUND (V, I) THEN -> T -> J; CLOSE;

If ISBOUND(V,I) returns TRUE, two things are taken off the stack and

assigned to T and J; otherwise, nothing is done. In either case,

there~is: no net bhan,ge with respect to the stack configuration after

the above statement.

A function for testing whether X is in the list Lis:

FUNCTION MEMBER X L;
IF L = NIL

THEN FALSE;
ELSEIF IID(L) = X

THEN TRUE;

END;

ELSE MEMBER(X,TL(L»;
CLOSE;

(DEFPROP
MEMBER
(LAMBDA (X L)

(COND ,
«EQ L NIL) N1L)
«EQ (CAR L) X) T)
(T (MEMBER X (CDR X»»)

-. EXPa)

Iteration is available, but is used in only two forms in the programs

exhibited here. One is the "LOOPIF" statement, which has the syntax

of an IF without an ELSE:

LOOPIF P THEN q CLOSE;

The meaning of the statement is that as long as p evaluates to non-FALSE,

evaluate q and loop (back to the p test).

This is equivalent to:

LOOP:
IF P

THEN
q;
GOTO LOOP;
CLOSE;

(PROG (•••)
•
•
LOOP
(COND

10

(pq (GO LOOP»)

· ·)

Because statements of the following form are used frequently:

VARS L X;
•

P -> L;
LOOPIF L /= NIL

THEN
IID(L) -> X;
TL(L) -> L;
q;
CLOSE;

the following abbreviation will be used:

FOREACH X IN p;
q;
CLOSE;

(PROG (L X •••)
•
•
(SETQ L p)
LOOP
(COND

«NOT (EQ L NIL»
{SETQ X (CAR L»
(SETQ L (CDR L»
q
(GO LOOP»)

·)

POP-2 data structures include lists, arrays, and records. Pairs

are an example of records. These are records with two components, FRONT

and BACK. A pair is formed with the function CONSPAIR, which takes two

arguments and constructs a record with two components. List cells are

pairs, except that the TL of a list in POP-2 must be another pair, or NIL,

while the BACK of a pair can be anything. If FOO is a function which

accesses a component of a record, R, then accessing and assigning to

that component is done with FOO as might be expected:

FOO(R) + 5 -> FOO(R);

11

Only a very small subset of POP-2 is used in the programs exhibited.

The syntax and language features provided are far richer than this

introduction suggests. The POP-2 reference manual contains a complete

description of the language.

12

CHAPTER 1 GENERAL STRUCTURE SHARING

1.1 Introduction

This paper is concerned with representing literals and clauses in

computers. Lists provide the most obvious and natural representation of

literals because function nesting imposes a tree-structure on literals.

A list is also a reasonable representation of a set, in particular, of a

clause. Lists however can consume large amounts of space and cause fre

quent garbage collections. This Ohapter presents a representation of clauses

and literals which is as natural as lists but far more compact. This

economy is achieved by sharing the structure of the parents of a resolvent

in the representation of the resolvent.

A clause is a set of literals; but throughout this paper the literals

of a clause will be considered to be ordered.

Suppose C and D are clauses; and K is the ith literal of C, and L is

the jth literal of D. Suppose further that the signs of K and L are oppo

site and that the substitution cI most generally unifies the atoms of K and

L.

Under these hypotheses, C and D may be resolved on K and L to obtain

the resolvent R = «C - {K}) l) (D - {L]))cI. The literals of R that

come from C are considered to be "bE;fore" the literals that come from D.

(Merging and factoring are ignored until Section 1.8.)

The tuple < C,i,D,j,cJ> contains sufficient information to enable the

reconstruction of R. Therefore, in some sense, it represents R. At first

sight it may not appear to be a very good representation of R, since it

appears that the only way to use it would be to construct the list of literals

and then apply d to it.

13

However, a tuple like this is in fact very easy to use without

constructing any lists or applying any sUbstitutions.

1.2 Terms and Substitutions

To understand how to avoid applying substitutions, it is first

necessary to understand the concept of the value of a term in the

context of a substitution. First, an example:

(p X (F Y (G Z X)))

in the context of the substitution:

«Y.(F V W)) (Z.(G XU)) (U.(H X))),

is the term:

(p X (F (F V W) (G (G X (H X)) X))).

By a term is meant either a variable (e.g., X, Y, Z) or a list

whose first member is a symbol (e.g., F, G, P, Q) and whose other

members are terms.

By a substitution is me rut a collection of pairs; the first member

of each pair is a variable, and the second is a term. If (V.T) is a

member of a substitution S, then V is said to be bound to T in S.

By the value of a term, TERM, in the context of a substitution,S,

is meant the result of replacing each variable in TERM that is bound in

S to a term, T, by the value of T in S.

These definitions are not those standard to the theorem proving

literature. For example, there is no need to distinquish between predi

cate and function symbols (until one talks about what clauses represent).

Also, there exists substitutions S such that some terms have no well

defined value in S. Precautions are taken never to generate such substi

tutions. Roughly speaking, a variable should not be bound twice or bound

to a term whose value contains the variable.

14

It is possible to determine anything about the value of a term

in the context of a substitution S without physically creating the

value. The only thing one must do is: Whenever a variable, V,

is encountered, S should be inspected to determine if V is bound in

S to some term, TERM. If so, proceed as if TERM had been encountered

instead of V.

Suppose that a substitution is represented by a list of pairs.

Then the function ISBOUND, below, determines if its argument is bound

in the global substitution S. If so, it leaves the term to which it is

bound on the stack, along with TRUE, otherwise it returns FALSE:

FUNCTION ISBOUND V;
FOREACH PAIR IN S;
IF VAR = FRONT(PAIR) THEN BACK(PAIR); TRUE; EXIT;
CLOSE;
FALSE;
END;

If the function ISVAR returns TRUE if and only if its argument is

a variable, then the following function determines whether some variable,

V, occurs in the value of the term TERM, in the context of the global

substitution S. Note that S is not applied to TERM.

FUNCTION OCCUR V TERM;
IF ISVAR(TERM)

THEN
IF ISBOUND(TERM)

THEN -> TERM; OCCUR (V, TERM) ;
ELSEIF V = TERM

THEN TRUE;
ELSE FALSE; CLOSE;

ELSE
FOREACH ARG IN TL(TERM);
IF OCCUR (V, ARG) THEN TRUE; EXIT;
CLOSE;
FALSE;
CLOSE;

END;

15

Notice that OCCUR checks to see if it has encountered a variable V' as

TERM. If so, it checks to see if V'is bound. If V'is bound, it proceeds

as if it had encountered the term to which V'is bound, by calling i,self

recursively on that term. If V'is not bound, it checks to see if V'is

the variable V.

each argument.

If TERM is not a variable at all, it recursively checks

By avoiding the application of substitutions to terms it is possible

to acheive a dramatic savings in space, which, of course, is paid for by

looking up the bindings of variables. That this is worthwhile is demonstrated

by the successful use of similar methods to "substitute" the values of formal

parameters in programming languages, such as LISP and ALGOL.

1.3 Expressions and BindiLgs

The key to the representation of clauses presented here is the avoidance

of physically creating the value of a term in the context of a SUbstitution.

This idea is at least as old as the first LISP. Terms and substitutions are

not quite sufficient for the purpose, however, because it is often necessary

to refer to different versions of a term. The concepts of an expression,

a binding environment, and the value of an expression in a binding environment

are introduced. First, some examples:

The value of the expression:

(p X (F Y (G Z X))),10

in the empty binding environment is the term:

(p X10 (F Y10 (G Z10 X10))).

The value of the expression:

(p X (F Y (G Z X))),5

in the empty binding environment is the term:

16

(p X5 (F Y5 (G Z5 X5)))·

Notice that the two values have no variable in common, despite the

similarity of the two expressions.

The value of the expression:

(p X (F Y (G Z X))),5

in the binding environment:

« Y, 5, (F X y), 4 >

< Z,5, (G X U),5 >

< U,5,(H X),5 »,

is the term:

(p X5 (F (F X4 Y4) (G (G X5 (H X5)) X5))).

By an index is meant a positive integer. By an expression is meant

a term together with an index. If an expression is denoted by T,I,

then T is a term~ and I is an index.

By a binding is meant a four-tuple of the form < V,I,T,J >, where

V is a variable, T is a term, and I and J are indices.

By a binding environment is meant a collection of bindings. If

< V,I,T,J > is a member of the binding environment BNDEV, then V,I is

said to be bound to T,J in BNDEV.

The value of an expression TERM,I in a binding environment, BNDEV,

is the result of replacing each variable V in TERM by the value of V,I

in BNDEV. If V,I is not bound in BNDEV, its value is the variable VI

(1. e., V subscript I). If V, I is bound in BNDEV to T ,J, then its value

is the value of T,J in BNDEV.

It is possible to determine anything about the value of an expression

in a binding environment without physically creating the value.

17

Throughout this paper two routines will be used to facilitate the

handling of binding environments. ISBOUND takes two arguments, V and I,

and returns TRUE if V,I is bound in the global binding environment BNDEV.

If it returns TRUE, the term and index to which V,I is bound are also put

on the stack. If V,I is not bound, ISBOUND returns FALSE. Thus, if

ISBOUND(V,I) returns TRUE, the statements:

-> TERM -> INDEX;

will assign the components of the expression to which V,I is bound to

TERM and INDEX. The second routine is BIND. BIND(V,I,T,J).modifies·

the global binding environment, BNDEV, so that thereafter V,I is bound

to T,J :j.n BNDEV.

In the next three sections binding environments will be displayed as

lists of bindings. This is done to help introduce the representation of

clauses. The actual structure of a binding environment is made precise

in Section 1.7. The only essential feature of a binding environment is that

bindings can be discovered with ISBOUND and added with BIND.

Suppose it is necessary to determine whether some variable VI occurs

in the value of the expression TERM,J, in the binding environment BNDEV.

The following recursive routine, OCCUR, does this:

FUNCTION OCCUR V I TERM J;
IF ISVAR(TERM)

THEN
IF ISBOUND(TERM,J)

THEN -> TERM -> J; OCCUR(V,I,TERM,J);
ELSEIF V = TERM AND I = J

THEN TRUE;
ELSE FALSE; CLOSE;

ELSE
FOREACH ARG IN TL(TERM);
IF OCCUR(V,I,ARG,J) THEN TRUE; EXIT;
CLOSE;
FALSE;
CLOSE;

END;

18

1.4 The Unification Algorithm

Suppose that VAL1 is the value of the expression TERM1,INDEX1 in the

binding environment BNDEV. Suppose further that VAL2 is the value of the

expression TERM2,INDEX2 in BNDEV. Finally, suppose that VAL is the most

general common instance of VAL1 and VAL2 (if one exists). Then

UNIFY(TERM1 , INDEX 1 ,TERM2,INDEX2) alters BNDEV so that the value of

TERM1,IhDEX1 in BNDEV and the value of TERM2,INDEX2 in BNDEV are both

equal to VAL. If VAL1 and VAL2 have no common instance, the call to UNIFY

returns FALSE. Otherwise, it returns TRUE. Like the definition of OCCUR

in the previous Section, the routine below applies no substitutions.

FUNCTION UNIFY TERM1 INDEX1 TERM2 INDEX2;
LOOPIF ISVAR('tERM1) AND ISBOUND(TERM1, INDEX1)

THEN -> TERM1 -> INDEX1; CLOSE;
LOOPIF ISVAR(TERM2) AND ISBOUND(TERM2,INDEX2)

THEN -> TERM2 -> INDEX2; CLOSE;
IF TERM1 = TERM2 AND INDEX1 = INDEX2 THEN TRUE; EXIT;
IF ISV AR(TERM1)

THEN
IF OCCUR(TERM1, INDEX1, TERM2, INDEX2)

THEN FALSE;
ELSE BIND(TERM1, INDEX1, TERM2, INDEX2); TRUE; CLOSE;

ELSEIF ISVAR(TERM2)
THEN
IF OCCUR(TERM2, INDEX2, TERM1, INDEX1)

THEN FALSE;
ELSE BIND(TERM2,I~DEX2,TERM1,INDEX1); TRUE; CLOSE;

ELSEIF HD(TERM1) = HD(TERM2)
THEN
FOREACH ARG1 ARG2 IN TL(TERM1) TL(TERM2);
IF NOT(UNIFY(ARG1,INDEX1,ARG2,INDEX2)) THEN FALSE; EXIT;
CLOSE;
TRUE;
ELSE FALSE; CLOSE;

ENP;

Here is an example of unification. Let TERM1 be (p X y). Let

TERM2 be (p (G X) Z). Let BNDEV be:

« X,2,X,3 >

< Y,2,(F X y),4 >

< Y,4,X,3 >

< Z,7,(F X y),8 >

< x,8,X,7 >

< Y, 8, (G y), 5 ».

The value of TERM1, 2 in BNDEV is:

(p X3 (F X4 X3))·

The value of TERM2,7 in BNDEV is:

(p (G X7) (F X7 (G Y5))).

After a call of UNIFY(TERM1, 2,TERM2, 7),· :aNDEV is;

« .X,?, Y , 5 >

< x,4,X,7 > added by UNIFY

< X,3, (G X), 7- >

< X,2,X,3 >

< Y,2,(F X Y),4 >

19

< Y,4,X,3 > old bindings in BNDEV

< Z,7,(F X Y),8 >

< x,8,X,7 >

< y,8,(G Y),5 ».

The value of TERM1,2 in the new BNDEV is:

(p (G Y5) (F Y5 (G Y5))).

The value of TERM2,7 in the new BNDEV is:

1.5 Incrementing Indices and Standardizing Expressions Apart

Let T be the term:

(Q (F X (A)) (G Y Z)).

20

The value of the expression T,5 in the binding environment BNDEV1:

« X,5,(G Y Z),5 >

< Z,5,(F (A) u),6 >

< u,6,x,3 »,

is the term:

(Q (F (G Y5 (F (A) X3)) (A)) (G Y5 (F (A) X3))).

The value of the expression T,11 in the binding environment BNDEV2:

is:

« X,11,(G Y Z),11 >

< Z,11,(F (A) U),12 >

< U,12,X,9 »,

(Q (F (G YJ1 (F (A) X9)) (A)) (G Y~1(F (A) X9))).

Notice that the value of T,5 in BNDEV1 is a variant of the value of

T,11 in BNDEV2j furthermore, the values have no common variables. The

values are 'standardized apart.' Notice also that BNDEV2 is just the

result of incrementing every index in BNDEV1 by 6.

Suppose that T is a term, BNDEV1 is a binding environment, and BNDEV2

is obtained by adding increment INC to every index in BNDEV1. Then the value

of T,J in BNDEV1 is a variant of the value of T,J+INC in BNDEV2. If INC

is greater than or equal to the largest index in BNDEV1,thenthe two

values have no variables in common.

1.6 Resolving Clauses Using Expressions and Bindings

This Section describes by example how expressions, incrementing indices,

and the unification procedure work together in resolution. In this Section

21

a simple representation of clauses is used, namely, a list of expressions

in a binding environment. After one resolution has been performed using

this representation the main point of this chapter is presented.

The list C1:

«+ (Q Y Y)),2 (+ (p X Y)),2 (- (p X (F Y z))),4)

in the binding environment BNDEV1:

« X,2,X,3 >

<Y,2,(FXY),4>

< Y,4,X,3 >

< Z,4,(F X Y),2 »,

represents the clause CLAUSE1:

«+ (Q (F X4 X3) (F X4 X3)))

(+ (p X3 (F X4 X3)))

(- (p X4 (F X3 (F X3 (F X4 X3))))))

in an obvious way.

Similarly, the list C2:

«- (Q X Y)),1 (- (p (G X) Z)),3 (+ (R X (F X y))),4),

in the binding environment BNDEV2:

« Z,3,(F X y),4 >

< x,4,X,3 >

< Y,4,(G Y),1 >

< Y,2,(G Z),3 »,

represents the clause CLAUSE2:

«-'(Q X1 Y1))

(- (p (G X3) (F X3 (G Y1))))

(+ (R X3 (F X3 (G Y1))))).

22

To resolve CLAUSE1 and CLAUSE2 on their second literals, they must

be standardized apart. This is done by incrementing all of the indices

in C2 and BNDEV2 by 4 (the maximum index in C1 or BNDEV1). Call the

results C2' and BNDEV2', respectively. C2' in the binding environment

BNDEV2' represents the clause, CLAUSE2':

«- (Q X5 Y5))

(- (p (G X7) (F X7 (G Y5»»)

(+ (R X7 (F X7 (G Y5))).

The expression representing the second literal of CLAUSE1 is:

(+ (p X Y»,2.

The expression representing the second literal of CLAUSE2' is:

(- (p (G X) Z»,7.

Since their signs are opposite, UNIFY is called as follows:

UNIFY«P X Y),2,(P (G X) Z),7).

Of course, UNIFY requires the global binding environment BNDEV to be set.

In this case, it is initialized to BNDEV1 l)BNDEV2'. The call to UNIFY

returns TRUE and side effects BNDEV so that it is:

« X,?,Y,5 >

< X, 4,x, 7 >

< X,3, (G X), 7 >

< X,2,X,3 >

< Y,2,(F X Y),4 >

< Y,4,X,3 >

< Z,4,(F X Y),2 >

< Z,7,(F X Y),8 >

< x,8,X,7 >

< y,8,(G Y),5 >

< y,6,(G Z),7 ».

added by UNIFY

BNDEV1

BNDEV2'

23

The resolvent, RESOLVENT, could be represented by a list of expressions,

R, in the binding environment BNDEV, above. R is obtained by appending

C1 and C2' after deleting their second literals:

«+ (Q Y Y»,2

(- (p X (F Y Z»),4

(- (Q X Y»,5

(+ (R X (F X Y»),8).

In the binding environment BNDEV, R represents:

«+ (Q (F Y5 (G Y5» (F Y5 (G Y5»»

(- (p Y5 (F (G Y5) (F (G Y5) (F Y5 (G Y5»»»

(- (Q X5 Y5»

(+ (R Y5 (F Y5 (G Y5»»)

It should be obvious that it is exceedingly wasteful to physically

create the lists C2' and R, and the binding environments BNDEV2' and

BNDEV, given their definitions in terms of C1, BNDEV1, C2, and BNDEV2.

The representation does not actually create any of C2', R, BNDEV2', or

BNDEV. A clause is represented so that the following may be ea~ily

retrieved: (1) the expression for the nth literal, and (2) the binding

of V,I (if it is bound). Under the hypothesis that (1) and (2) can be

retrieved for CLAUSE1 and CLAUSE2, the tuple used to represent RESOLVENT

contains precisely enough information to allow the retrieval of (1) and

(2) for RESOLVENT.

Assume inductively that it is possible to retrieve the expression

for the nth literal of either parent, CLAUSE1 or CLAUSE2, of a resolvent

RESOLVENT. The expression for the nth literal of RESOLVENT is either

the expression for some literal of CLAUSE1 or the expression for some

literal of CLAUSE2 with the index incremented by MI, the maximum index of

CLAUSE1. Exactly which literal of the parent is a function of n, the

24

number of literals in CLAUSE1, and the numbers of the literals resolved

upon in CLAUSE1 and CLAUSE2. The following diagram should make it clear

how to compute the position of the expression in the parent. The

algorithm is given in the next Section. In the example below, L3

and K2 are resolved upon.

CLAUSE1 CLAUSE2
,~ ______ JA~ _______ , ,r ________ JA ,

L1 L2 L3 L4 L5 K1 K2 K3 K4 K5 K6

R1 R2 R3 R4 R5 R6 R7 R8 R9
~~------------------~v~-----------------J'

RESOLVENT

Assume, again inductively, that it is possible to determine

whether V,I is bound to T,J in the binding environment of either

parent. If the representation of a resolvent includes the bindings

made by the unification for the resolution, it is possible to determine

if V,I is bound in the binding environment of the resolvent. In

particular, V,I is bound to T,J if and only if:

V,I is bound to T,J in the bindings added by the
unification for RESOLVENT, or

I < MI and V,I is bound to T,J in the binding
- environment of the left-hand parent,

CLAUSE1, or

I > MI and V,I-MI is bound to T,J-MI in the
binding environment of the right-hand
parent, CLAUSE2.

If the expressions and binding environments for input clauses can

be computed, then they can be computed for a derived clause if the

following information is included in the record of such a clause:

25

(1) the record representing the left parent,

(2) the number of the literal resolved upon in the left parent,

(3) the record representing the right parent,

(4) the number of the literal resolved upon in the right parent,

(5) the number of literals in the resolvent,

(6) the maximum index in the resolvent,

(7) the bindings added during the unification for
the resolvent.

This is precisely the information in the clause representation described

in detail in the next Section.

1.7 The Details of the Representation

By a clause record is meant either an input record or a resolvent record.

An input record is a list of literals. A literal has a sign, which may be

+ or -, and an atomic formula, which is a term in the sense of Section 1.2.

Here are two input records:

«+ (p X (F y»»

«- (Q X X» (+ (p (F X) y» (+ (R (A) Z»).

If IP is an input record, then LITCNT(IP) is the length of IP, and

MAXINDEX(IP) is 1.

By a resolvent record, R, is meant a structure with seven components.

The components are described below and the name of the function which

accesses each component is given in parentheses:

(1) a clause record (LEFTPAR),

(2) an integer (LEFTLIT),

(3) a clause record (RIGHTPAR),

(4) an integer (RIGHTLIT),

(5) an integer (LITCNT) ,

(6) an integer (MAXINDEX),

(7) a list of bindings (BINDINGS).

26

The function CONSCLAUSE takes seven arguments and constructs a clause

record.

By a binding is meant a record with four components. The components

are as described below.

(1) a variable (VCOMP),

(2) an integer (VICOMP),

(3) a term (TCOMP),

(4) an integer (TICOMP).

The function CONSBIND takes four arguments and constructs a binding record.

The components of the resolvent record represent those objects listed

at the end of Section 1.6. The components of a binding record represent

those listed in Section 1.3.

To obtain the expression for the Kth literal of a clause record, CL,

GETLIT is used. GETLIT returns the term and index for the appropriate

expression. NTHMEMB returns the nth member of a list.

FUNCTION GETLIT K CL;
V ARB TERM INDEX;
IF ISINPUT(CL)

THEN 1; NTHMEMB(K,CL);
ELSEIF K < LEFl'LIT(CL)

THEN GETLIT(K,LEFTPAR(CL»;
ELSEIF K < LITCNT(LEFTPAR(CL»

THEN GETLIT(K+1,LEFTPAR(CL»;
ELSEIF K < LITCNT(LEFTPAR(CL» - 1 + RIGHTLIT(CL)

THEN
GETLIT(K-LITCNT(LEFTPAR(CL»+1,RIGHTPAR(CL»

-> TERM -> INDEX;
INDEX + MAXINDEX(LEFTPAR(CL»;
TERM;
ELSE
GETLIT(K-LITCNT(LEFTPAR(CL»+2,RIGHTPAR(CL»

-> TERM -> INDEX;
INDEX + MAXINDEX(LEFrPAR(CL»;
TERM;
CLOSE;

END;

27

To determine if V,I is bound in the global binding environment of

the clause record BNDEV, ISBOUND is used. As defined below, ISBOUND has

the same calling structure and results as previously defined. However,

the definition below is in terms of the actual representation of binding

environments.

FUNCTION ISBOUND VAR INDEX;
ISBOUND1(VAR,INDEX,O,BNDEV);
END-,

ISBOUND1 is a recursive function which inspects the bindings in BNDEV

and then branches to the left or right parent if a binding is not found:

FUNCTION ISBOUND1 VAR INDEX INCRMT BNDEV;
IF ISINPUT(BNDEV) THEN FALSE; EXIT;
FOREACH B IN BINDINGS(BNDEV);
IF VAR = VCOMP(B) AND INDEX = VICOMP(B)

THEN
TICOMP(B) + INCRMT;
TCOMP(B) ;
TRUE;
EXIT;

CLOSE;
IF INDEX =< MAXINDEX(LEFTPAR(BNDEV))

THEN
ISBOUND1(VAR,INDEX,INCRMT,LEFTPAR(BNDEV));
ELSE
ISBOUND1(VAR,

CLOSE;
END-,

INDEX - MAXINDEX(LEFTPAR(BNDEV)) ,
INCRMT + MAXINDEX(LEFTPAR(BNDEV)) ,
RIGHTPAR(BNDEV));

To add a binding of V,I to T,J to BNDEV, BIND is used:

FUNCTION BIND V I T J;
CONS(CONSBIND(V,I,T,J),BINDINGS(BNDEV)) -> BINDINGS(BNDEV);
END;

To resolve two clause records, CL1 and CL2 on their Ith and Jth

literals respectively, RESOLVE is used:

FUNCTION RESOLVE CL1 I CL2 J;
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) -> LEFTTERM -> LEFTI;
GETLIT(J,CL2) -> RIGHTTERM -> RIGHTI;
CONSCLAUSE(CL1,I,

CL2~J,
LITCNT(CL1) + LITCNT(CL2) - 2,
MAXINDEX(CL1) + MAXINDEX(CL2) ,
NIL) -> BNDEV;

IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
UNIFY (HL (TL(LEFTTERM)) , LEFT I ,

HD(TL(RIGHTTERM»,RIGHTI + MAXINDEX(CL1»
THEN BNDEV; TRUE;
ELSE FALSE; CLOSE;

END' ,

28

If the unification is successful, BNDEV is the clause record of the

resolvent (UNIFY modifies its BINDINGS component with the function BIND).

In this case, it is left on the stack along with TRUE. If the unification

fails, FALSE is returned. The functions UNIFY and OCCUR are exactly as

in Sections 1.4 and 1.3, except that they use the definitions of BIND

and ISBOUND given in this Section.

The most time consuming function in RESOLVE is the unification step.

In particular, it should be noted that the clauses are standardized apart

entirely by incrementing indices. Except for the exploration on the two

literals by UNIFY, the work involved in creating the resolvent is indepen-

dent of the complexity of the two parents. No copying is done, and no

substitutions are applied.

Figure 1 exhibits a derivation involving three input clauses an~

four resolvents. The clause records, delimited by '<i and '>', are

presentedtalong;with the clauses they represent.

" The clauses labelled C1, C2, and C3 are input clauses. The four

remaining clauses are generated by RESOLVE as follows:

C4 = RESOLVE(C1,1,C2,2);

C5 = RESOLVE(C1,1,c4,2);

C1: «- (p x (F Y») (- (Q (F X) (F y»»

C2: «+ (p X y» (+ (p Y X» (+ (Q X Y»)

C3: «+ (Q X (F X») (+ (Q X y»)

c4: < C1,1,C2,2,3,2,« X,2,(F Y),1 > < X,1,Y,2 » >

C5: < C1,1,C4,~,3,3,« Y,3,(F Y),1 > < X,1,(F Y)~2» >

c6: < C4,1,C3,1,3,3,« Y,1,(FX),1 >< X,3,(F'X),1,» >

C7: < C5,1,c6,3,4,6,« Y,6,(F Y),1 > < Y,5,(F,Y:)~2 » >

The records c4 through C7 represent the clauses:

29

c4: «- (Q (F Y2) (F Y1») (+ (p (F Y1) Y2» (+ (Q (F Y1) Y2»)

C5: «- (Q (F (F Y2» (F Y1») (- (Q (F (F Y1» (F Y2»)
(+ (Q (F Y2) (F Y1»»

c6: «+ (p (F (F Y2» Y2» (+ (Q (F (F Y2» Y2» (+ (Q (F Y2) Y3»)

C7: (~- (Q (F (F Y1» (F Y2») (+ (Q (F Y2) (F Y1»)
(+ (p (F (F (F Y2») (F Y2») (+ (Q (F (F (F Y2») (F Y2»»

The tree representing the derivation of C7 is:

Figure 1. At the top are three input clauses and four clause records.
The order of the components in the records is the same as that given
in this Section.

c6 = RESOLVE(c4,1,C3,1);

C7 = RESOLVE(C5,1,C6,3);

30

It is useful to trace the descent of the third literal of C2 through

the tree. In C2 it is represented by the expression T,1, where Tis:

(+(QXY».

In the binding environment of C2, this expression has the value:

(+ (Q X1 Y1»·
The descendant of this literal in clause c4 is the third literal of

that clause. There the expression is T,2, and has the value:

(+ (Q (F Y1) Y2».
In C5 the term has index 3 and represents the third literal:

(+ (Q (F Y2) (F Y1»).
Meanwhile, back at c4, the expression T,2 descends along a different

branch to become the second literal of C6, as the expression T,2:

(+ (Q (F (F Y2» Y2».
When C5 and c6 are resolved to form C7, the term T descends from

both parents. With ;index 3 it represents the.second literal, and with

index 5 it represents the fourth literal. In C7, T,3 has value:

(+ (Q (F Y2) (F Y1»),

and T,5 has value:

In obtaining the value of T,3, bindings in C5 are used, while for T,5,

bindings in c6 are used. In both cases, bindings in c4 are used.

1.8 Notes on the General Representation

Merging and factoring have been ignored up to this point. They

present no difficulty however. In order to represent a merge,

31

or factor, some literal has to be deleted and some substitution applied.

This can be done in structure sharing by providing a dummy input clause

with one literal. In order to merge two literals in a clause, C, the

unifying bindings are produced and a resolvent record is built which uses

the dummy input clause as one of the parents, and C as the other. The

BINDINGS are those produced by UNIFY. The literal in C resolved upon,

LEFTLIT, is the one to be deleted.

Since many components of resolvent records are small integers, it

is possible to pack these so that the record requires very few machine

words. An efficient POP-2 implementation of the representation described

above requires 7+2n 24-bit words per clause, where n is the number of

bindings produced by UNIFY. A machine code implementation of the general

representation on a 36-bit word machine would require 2+n words per clause.

Statistics have been obtained comparing this representation to two

others, namely the most obvious list representation, and the most compact

character array imaginable. The latter is extremely slow to use since most

of one's time is spent parsing. Assuming a 36-bit word machine is used,

structure sharing is 10 times more compact that character arrays (at 5 char

acters per word) and 50 to 100 times more compact than lists (at 1 cons per

word). This is based on 3000 randomly generated clauses.

Using the simple implementation described in this chapter, the program

requires 160 milliseconds per unification (on the average). The average

longest branch searched by ISBOUND was 8.3. The average function nesting

depth was 5. For comparison purposes with other machines, it should be

pointed out that these timings were done in POP-2 on an ICL 4130, where the

time required to execute the POP-2 expression '1 + 2' in a compiled function

body is 160 microseconds.

32

CHAPTER 2 MODIFICATIONS OF UNIFY AND OCCUR FOR EFFICIENCY

2.1 UNIFY and its Variants

There are four very similar procedures commonly found in resolution

theorem provers. These are used for deciding whether some term, TERM1,

unifies with a term TERM2, is identical to TERM2, is a variant of TERM2,

or subsumes TERM2.

It is obvious that two terms are identical if and only if they

are unified by the empty substitution. Therefore, if binding is pro

hibited, the code for UNIFY can be made to perform the task of IDENT.

However, binding can be prevented by simply redefining the function

OCCUR so that it always returns TRUE. Since OCCUR must return FALSE

if a binding is to be made, no binding will occur. If UNIFY must make

a binding to succeed, it will call OCCUR, which will return TRUE, causing

UNIFY to fail.

In structure sharing it is possible to redefine OCCUR in two other

ways to cause UNIFY to perform the tasks of VARIANT and TERMSUBSUME,

provided TERM1 and TERM2 are standardized apart.

Let TERM1 be the value of T1,I1 (in some binding environment), and

let TERM2 be the value of T2,I2 (in the same binding environment). Assume

that all the indices of T1,I1 are less than those of T2,I2. This can be

arranged by incrementing indices provided the two terms ~e to be standardized

apart.

TERM1 is a variant of TERM2 if they are identical up to a one-to-one

renaming of the variables of TERM1 onto those of TERM2. This means they

are variants if and only if they are unified by a substitution which only

binds variables from T1,I1 to variables from T2,I2, such that no variable

33

from T2,I2 appears as the term components of more than one binding in

the SUbstitution. Since a redefinition of OCCUR can use the index

of a variable or term to determine whether the variable or term has

come from T1,I1 or T2,I2, such a function can be used to guarantee that if

UNIFY succeeds, the substitution produced has the above form.

Assume that BNDEV has been set as if the clauses from which T1,I1

and T2,I2 come were to be resolved. Then OCCUR can allow a binding

(that is, it can return FALSE) if and only if the index of the variable

is less than or equal to MAXINDEX(LEFrPAR(BNDEV», the term is a

variable, and the term is not already the term component of any

binding in BINDINGS(BNDEV). A suitable definition of OCCUR for

VARIANT testing is:

FUNCTION VAROCCUR V I TERM J;
IF ISVAR(TERM) AND I =< MAXINDEX(LEFrPAR(BNDEV»

THEN
FOREACH B IN BINDINGS (BNDEV) ;
IF TERM = TCOMP(B) AND J = TICOMP(B)

THEN TRUE; EXIT;
CLOSE;
FALSE;
ELSE TRUE; CLOSE;

END;

Thus, T1,I1 from clause C1 is a variant of T2,I2 from clause C2

if when BNDEV is set as it would be to resolve C1 and C2 and OCCUR is

redefined as VAROCCUR above, UNIFY(T1,I1,T2,I2) returns TRUE.

If TERM1 and TERM2 are standardized apart, TERM1 subsumes TERM2 if and

only if they can be unified by a substitution that binds only variables

from TERM1. Provided the indices of TERM1 are less than those of TERM2,

a suitable definition of OCCUR for TERMSUBSUME is:

FUNCTION SUBOCCUR V I TERM J;
IF I ::< MAXINDEX(LE?rPAR(BNDEV))

THEN FALSE;
ELSE TRUE; CLOSE;

END' ,

34

Thus, the procedure for determining whether one term subsumes another

is exactly like the above description for VARIANT, except that the

definition of SUBOCCUR is used as OCCUR in UNIFY.

Being able to use the code for UNIFY in four distinct ways to

provide four very basic resolution functions is a significant economy

of space. It is possible because the index of an expression indicates

the origin of the term in the derivation of the clause represented by

BNDEV.

2.2 Preprocessing Input Terms

One of the most remarkable facts about structure sharing is that

it is possible to preprocess the input terms in such a way that they

can be thrown away before the search begins. The only information

needed about any two terms in a pure resolution theorem prover is

that needed to compute their most general unifier and to determine

whether a given variable occurs in them. If one determines these

things for the input terms, then one can do it for derived terms.

Suppose that T1,1 and T2,2 in the empty binding environment

are unified by the bindings in the list BINDLIST. FUrther, suppose

that T1,I1 and T2,I2 in the binding environment BNDEV are to be unified.

Let BINDLIST' be the result of replacing every occurrence of 1 as an

index in BINDLIST by I1, and every such occurrence of 2 by I2. Then

T1,I1 and T2,I2 are identical in any binding environment if and only

if V,I and TERM,J are identical in that environment, for every binding

35

< V,I,TERM,J > in BINDLIST'. Thus, to unify T1,I1 and T2,I2 in BNDEV

it is sufficient to treat BINDLIST' as a list of pairs of expressions

which must be unified.

An example should make this clear. Let T1,I1 be:

(p (F (G X)) (G Y)),7

and let T2,I2 be:

(p (F y) Y),8.

The list of bindings that unify T1,1 and T2,2 in the empty binding

environment is BINDLIST:

« Y,1,X,1 > < Y,2,(G X),1 ».
Thus, BINDLIST' is:

« Y,7,X,7 > < y,8,(G X),7 ».

Then T1,I1 and T2,I2 in BNDEV may be unified by unifying Y,7 and X,7

and Y,8 and (G X),7 in BNDEV. The point is that T1 and T2 do not have

to be reexplored to determine how to unify them: a table-lookup of

the original unifying substitution may be used.

In the example above, Y,8 may be bound in BNDEV to, say, (G (G z)),6.

Then when UNIFY(Y,8,(G X),7) is called, it will discover the binding and

recursively try to unify (G (G z)),6 and (G X),7. It is clear that if

the initial unifying substitution for (G (G Z)),1 and (G X),2 were available

in a table, the procedure could be applied again.

Except for OCCUR checking, the only thing needed to unify any two

T1,I1 and T2,I2 is the initial unifier.

If all the input terms are replaced by integers that denote their

positions in a table of unifications, and if the bindings in the table

are expressed in terms of these integers, then the terms themselves may

be thrown away as far as unification is concerned.

36

The details are as follows. Associate with each of the N distinct

terms in the input set an integer, called the position of the term.

Let UNITABLE be an N x N array. UNITABLE(P1,P2) contains either the

message that the term with position P1, index 1 does not unify with the

term with position P2, index 2 in the empty binding environment, or a

list of bindings unifying those two expressions. The bindings are of

the form < V,I,P,J >, where V is a variable, P is a position (the

position of the term to which V,I is bound), and I and J are each 1 or 2.

Once UNITABLE is produced, the clauses can be replaced by lists of

positive and negative integers. The absolute value of such an integer

gives the position of the appropriate atom in the table, and the arithmetic

sign gives the logical sign of the literal. The literal access function,

GETLIT, is unchanged by this radical modification of input clauses. The

function RESOLVE must check that the arithmetic signs of the two "literals"

are opposite, and then call UNIFY on their absolute values and the normal

indices.

UNIFY is just as it was before, except that if neither term is a vari-

able, it retrieves the contents of UNITABLE(T~1,TERM2). If this is'

a list, UNIFY recurses on each pair of expressions in the list, replacing

the dummy indices 1 and 2 by the values of INDEX1 and INDEX2. The code

is given belo~. RDUMMYIND is a function which replaces a dummy index by

the proper one:

FUNCTION RDUMMYIND DUMMY;
IF DUMMY = 1

THEN INDEX1;
ELSE INDEX2; CLOSE;

END;

FUNCTION TABUNIFY TERM1 INDEX1 TERM2 INDEX2j
LOOPIF ISVAR(TERM1) AND ISBOUND(TERM1,INDEX1)

THEN -> TERM1 -> INDEX1; CLOSE;
LOOPIF ISVAR(TERM2) AND ISBOUND(TERM2,INDEX2)

THEN -> TERM2 -> INDEX2; CLOSE;

37

IF TERM1 = TERM2 AND INDEX1 = INDEX2 THEN TRUE; CLOSEj
IF ISVAR(TERM1)

THEN
IF TABOCCUR (TERM 1 , INDEX 1 , TERM2, INDEX2)

THEN FALSE;
ELSE BIND(TERM1,INDEX1,TERM2,INDEX2); TRUE; CLOSE;

ELSEIF ISVAR(TERM2)
THEN
IF TABOCCUR(TERM2,INDEX2,TERM1,INDEX1)

THEN FALSE;
ELSE BIND (TERM2 , INDEX2 , TERM 1 , INDEX 1); TRUE; CLOSE;

ELSEIF UNITABLE(TERM 1 , TERM2) = rttAIL"
THEN FALSEj
ELSE
FOREACH B IN UNITABLE(TERM1, TERM2);
IF NOT(TABUNIFY(VCOMP(B),RDUMMYIND(VICOMP(B)),

TCOMP(B),RDUMMYIND(TICOMP(B))))
THEN FALSE; EXIT;

CLOSE;
TRUE;
CLOSE;

END;

The preprocessing thus frees the unification algorithm from exploring

the terms. Instead it jumps immediately to the position where they

may not match and attempts to unify the critical terms. Furthermore,

if two nested terms fail to unify initially, UNIFY does not recurse

to discover it. Each term is initially explored and thereafter only

the information gained by that exploration is needed.

However, it is still necessary to be able to determine whether a

variable occurs in the term with position P. This has a solution

precisely parallel to the table driven unification. Each term is pre-

processed, and a list is formed containing the variables that occur

in it. This list is stored at position P of the linear array of length

N, OCCTABLE.

38

OCCUR then becomes a function with four arguments as before, V,I

and P,J. However, now P can either be a variable or a positicn. If it

is a variable, OCCUR is just as it was before. If it is a position,

the contents of OCCTABLE(P) are retrieved and OCCUR recurses on each

variable in that list. Once again, the preprocessing has prevented

the exploration of the terms.

The input terms can be completely discarded given the existence

of UNITABLE and OCCTABLE. The only difficulty is that it is then

impossible to print anything meaningful. However, UNIFY and OCCUR are

several times faster, depending upon the function nesting in the input

set and the degree of instantiation of the "typical" derived terms being

unified.

Below is an example of a set of input clauses preprocessed in the

manner described.

Let three of the clauses be:

C1: «- (p (F X) X)) (+ (Q (G Y X)))),

C2: «+ (p (A) (F X))) (+ (p (F (A))Y)) (- (Q (G (F X) (A))))),

C3: «- (p (A) X)) (+ (Q (G X X)))).

The association of terms to numbers (as assigned by the most obvious

recursive function) is:

.1 (p (F X) X)

2 (F X)

3 (Q (G Y X))

4 (G Y X)

5 (p (A) (F X))

6 (A)

7 (p (F (A)) y)

39

8 (F (A»

9 (Q (G (F x) (A»)

10 (G (F X) (A»

11 (p (A) X)

12 (Q (G x X»

13 (G X X)

This association is used to print terms.

The OCCTABLE has the following entries:

I OCCTABLE(I)

1 (X)

2 (X)

3 (X y)

4 (X y)

5 (X)

6 NIL

7 (y)

8 (X)

9 (X)

10 (X)

11 (X)

12 (X)

13 (X)

Finally, the non-trivial elements of UNITABLE are as below. All other

elements are the failure message.

40

I J UNITABLE(I,J)

1 1 « X,1,X,2 »

1 7 « Y,2,6,2 > < X,1,6,2 »

2 2 « X,1,X,2 »

2 8 « x,1,6,2 »

3 3 « X,1,X,2 > < Y,1,Y,2»

3 9 « x,1,6,2 > < Y,1,2,2 »

3 12 « X,1,X~2> < Y,1,X,2 »

4 4 « X,1,X,2 > < Y,1,Y,2 »

4 10 « x,1,6,2 > < Y,1,2,2 »

4 13 « X,1,X,2 > < Y,1,X,2 »

5 5 « X,1,X,2 »

5 11 « X,2,2,1 »

6 6 NIL

7 1 « Y,1,6,1 > < X,2,6,1 »

7 7 « Y,1,Y,2 »

8 2 «x,2,6,1 »

8 8 NIL

9 3 « x,2,6,1 > < Y,2,2,1 »

9 9 « X,1,X,2 »

10 4 « x,2,6,1 > < Y,2,2,1 »

10 10 « X,1,X,2 »

11 5 « X,1,2,2 »

11 11 « X,1,X,2 »

12 3 « Y,2,X,2 > < X,1,Y,2 »

12 12 « X,1,X,2 »

13 4 « Y,2,X,2 > < X,1,Y,2 »
13 13 « X,1,X,2 »

41

The three input clauses become:

C1: (-1 3),

C2: (57-9),

C3: (-11 12).

To unify the first literal of C1 and the second literal of C2, with

indices 5 and 8 respectively, TABUNIFY(1,5,7,8) is called. This retrieves

UNITABLE(1,7):

« Y,2,6,2 > < x,1,6,2 »,

and produces two recursive calls:

TABUNIFY(y,8,6,8), and (if that succeeds)

TABUNIFY(X,5,6,8).

These two recursive calls use the same procedure.

Note that TABUNIFY does not need to know that term 1 is:

(p (F X) X),

and term 7 is:

(p (F (A» y).

It only needs to know that to unify 1 and 7, the X must be unified

with (A) and Y with (A). The original inspection of 1 and 7 detected

that the pIS and F's were matched.

The idea of preprocessing the input terms in this way was developed

jointly by several members of the Department of Computational Logic,

including Bob Kowalski, Bob Boyer, and Ed Wilson. In addition,

J. van Vaalen, of Mathematisch Centrum, Amsterdam, contributed to this

work during her visit to the Department of Machine Intelligence.

2.3 Avoiding Unnecessary OCCUR Checks

It is possible to significantly reduce the number of calls to OCCUR

during a resolution unification by the following observation. If two

42

clauses are being resolved, they are standardized apart. Thus, a variable

from the left-hand parent will not occur in a term from the right-hand

parent unless during this unification, there has been a binding of a

variable from the right to a term from the left. A similar statement

holds for 1eft-to-right bindings. Once again, in structure sharing,

this condition is easy to check.

All bindings are made by the function BIND, which can use the

indices to determine the origins of the variable and term. Let BIND be

modified so that when the variable's index is greater than

MAXINDEX(LEFTPAR(BNDEV)) and the term's index is less than or equal to

MAXINDEX(LEFTPAR(BNDEV)), a right-to-1eft flag is set. This signifies

that there has been a binding of a variable from the right to a term

from the left.

When OCCUR is called it can return FALSE if the variable's index

is less than or equal to MAXINDEX(LEFTPAR(BNDEV)), the term's index is

greater than MAXINDEX(LEFTPAR(BNDEV)), and the right-to-1eft flag is not

set. Under these conditions, the variable (which is from the left)

cannot possibly occur in the term (from the right). If the indices are

not in the proper relationship, or the flag is set, the traditional

(table-driven) OCCUR is called.

Similar modifications are made for the symmetric, 1eft-to-right, case.

The result is that the first OCCUR check in a resolution is always avoided,

and the second is avoided 25 percent of the time.

P. Roussel, of the Groupe d'Inte11igence Artificie11e, Universite

d'Aix-Marsei11e, Marseille, has also made these observations, about OCCUR.

43

CHAPTER 3 MODIFICATIONS OF ISBOUND AND BIND FOR EFFICIENCY

3.1 The VALUE Array

A significant amount of time is spent in ISBOUND. However, if a

clause is going to be used extensively, for example, involved in several

resolutions, it can be processed so as to mak~ the time spent in ISBOUND

insignificant. This is achieved by collecting all of the bindings made in

the derivation,of the clause, and storing them (temporarily) in an array

that allows direct access to them. This two dimensional array is called

the VALUE array. Its columns are labelled by variables and its rows by

indices. Conceptually, VALUE(V,I) contains either the atom UNBOUND, meaning

V,I is not bound in the binding environment,BNDEV, of the clause, or it

contains an expression, T,J, to which V,I is bound in BNDEV. Actually,

it will contain the conventional four-tuple binding record. VCOMP and

VICOMP of this record will always be V and I. The TCOMP component will

contain either the message UNBOUND, or a term, and TICOMP will contain the

index of the term.

The following is the VALUE array as it would conceptually look if it

were loaded with the bindings in the binding environment of C7 in Figure 1.

x Y Z

1 (FY) ,2 UNBOUND UNBOUND

2 Y,3 UNBOUND UNBOUND

3 (F Y),2 (F Y),1 UNBOUND

4 Y,5 (F,X),4 UNBOUND

5 (F Y),4 (FY) ,2 UNBOUND

6 (F x),4 (F Y),1 UNBOUND

7 UNBOUND UNBOUND UNBOUND

44

Note that when the bindings of RIGHTPAR of C7 are loaded, the indices

are uniformly incremented by MAXINDEX of LEFTPAR, since this is how ISBOUND

would interpret them from C7.

The recursive function for loading the VALUE array, given a clause CL

and an increment INC is just:

FUNCTION LOAD CL INC;
IF ISINPUT(CL) THEN EXIT;
FOREACH B IN BINDINGS(CL);
TCOMP(B) -> TCOMP(VALUE(VCOMP(B),VICOMP(B)+INC»;
TICOMP(B) + INC -> TICOMP(VALUE(VCOMP(B),VICOMP(B)+INC»;
CLOSE;
LOAD(LEFTPAR(CL), INC);
LOAD(RIGHTPAR(CL),INC+MAXINDEX(LEFTPAR(CL»)j
END;

To LOAD a clause into VALUE is considerably faster than checking ISBOUND

just once for each variable in its representation, since each node in the

tree is inspected exactly once. However, after the binding environment has

been loade~, ISBOUND is an insignificant array access:

FUNCTION VALISBOUND V Ij
IF TCOMP(VALUE(V,I» = UNBOUND

THEN FALSE;
ELSE TICOMP(VALUE(V,I»j TCOMP(VALUE(V,I»j TRUEj CLOSEj

ENDj

If VALIS BOUND is used in place of ISBOUND in UNIFY, then BIND must be

altered to modify the VALUE array rather than the BINDINGS list of BNDEV.

Of course, the only thing that VALBIND (the VALUE array version of BIND)

does is assign the term and index to the appropriate components of the

VALUE cell determined by the variable and its index. The previous

definitions of UNIFY and OCCUR will work as usual, but considerably

faster.

When the binding environment currently in the VALUE array is of no

more interest (a search strategic decision) VALUE must be unloaded in

45

preparation for loading a new clause. The function UNLOAD does this; this

function has the same structure as LOAD, except that it assigns UNBOUND to

TCOMP of the appropriate VALUE cells.

The VALUE array is particularly suited to depth first search. Assume

that the resolvent, C3, of C1 and C2 is to be the left parent of the next

resolvent, and assume that C1 is already loaded in preparation for resolu-

tion with C2. If C2 is loaded into the VALUE array with its index incre-

mented by MAXINDEX(C1), then the array will contain the proper environment

for the unification step for forming C3. If VALISBOUND and VALBIND are

used, then when the unification is completed, VALUE contains the binding

environment for C3. Thus, C3 is now properly loaded as the left parent of

the next resolvent.

As outlined above, it is impossible to recover the list of bindings

produced by unification. To do this, VALBIND must also keep a record of

the VALUE cells it modifies. The most natural way to do this is to keep

pointers to the cells on a pushdown stack. Let BINDSTACK be a pushdown

stack with stack pointer BINDPTR. Let PUSH be a function which pushes

its first argument on the stack pointed to by its second argument. Then

VALBIND may be defined as:

FUNCTION VALBIND V I TERM J;
TERM -> TCOMP(VALUE(V,I));
J -> TICOMP(VALUE(V,I))j
PUSH(VALUE(V,I),BINDSTACK)j
END· ,

To recover the substitution produced by UNIFY and written into the

VALUE array by VALBIND, the value of BINDPTR should be saved before the

unification is initiated. After the unification is completed, the bindings

on BINDSTACK between the top of the stack (BINDPTR) and the old value of

46

BINDPTR are the appropriate bindings. Note that if the bindings are collected

to store in the BINDINGS component of a clause record, the bind records

must be copied (since to share the bind records with the VALUE array would

be disastrous). The function GETBINDS collects the bindings and returns

them in a list.

FUNCTION GETBINDS OLDPTR;
VARS SAVEPTR BINDLIST;
BINDPTR -> SAVEPTR;
NIL -> BINDLIST;
LOOPIF BINDPTR / = OLDPTR

THEN
CONS(COPYBINDS(POP(BINDSTACK)),BINDLIST) -> BINDLIST;
CLOSE;

SAVEPTR -> BINDPTRj
BINDLIST;
ENDj

An additional complication of using the VALUE array is that if E,

unification fails, the BINDSTACK must be used to reset the VALUE cells

modified before the failure occurred. The function UNBIND does thisj

it merely writes UNBOUND into the TCOMP component of each cellon

BINDS TACK between the current pointer and the saved one. The stack

pointer is restored to its previous configuration.

FUNCTION UNBIND OLDPTRj
LOOPIF BINDPTR /= OLDPTR

THEN
UNBOUND -> TCOMP(POP(BINDSTACK))j
CLOSEj

END;

BINDSTACK and UNBIND can be used to write very efficient and elegant

recursive programs for depth-first search. Below is a description of a

recursive factoring routine, which factors the factors as they are produced.

Suppose that the clause being factored is initially loaded into the VALUE

array.

47

Upon entry to FACTOR, the current value of BINDPTR is saved in

OLDBINDPTR.· Then a two pointer search through the pairs of literals in

the clause is started. Unification is attempted on those literals \<l:i.th

with the same sign. If a unification succeeds, the VALUE array will have

been modified by the UNIFY so that it is properly loaded for the factor.

The program then forms the record for the factor, deleting the appropriate

literal, stores the clause produced on an answer list, and then calls

itself recursively on the factor. When the recursive call returns,

the routine uses UNBIND between BINDPTR and OLDBINDPTR to restore VALUE

to its configuration before the unification. The two pointer search is

then continued. When finished, the routine exits with VALUE in precisely

the configuration it was in upon entry.

A very similar recursive routine for subsumption checking can be

written using TERMSUBSUME, defined in Chapter 2.

The VALUE array can be created once and for all at the beginning of

a theorem proving session, and can be used to make the processing of any

clause (or set of clauses) very efficient. It also prevents the allocation

of space during unifications which fail. A theorem proving program running

with structure sharing and a VALUE array requires additional space only

when the decision to keep a clause has been made. No space is required

during the unification process itself. This makes the garbage collection

behaviour of the program very efficient. Finally, the VALUE array means

that the binding information in a clause record can be efficiently packed

without sacrificing processing time in using the clause.

48

CHAPTER 4 COMBINING COMPUTATION AND DEDUCTION

4.1 Restrictor Functions

It is sometimes useful to attach recommendations to a clause as to

how it should be used. A good example of this occurs in the Blind Hand

Problem by Robin Popplestone (Michie et al., 1972). One of the axioms

in this problem is:

«- (AT X Y Z» (+ (AT X Y (DO (LETGO) Z»»,

which means that if X is at place Y in situation Z, then it is still at

Y in the situation that results if a LETGO action is performed in situa

tion Z. This is a "frame axiom" used to ensure that a LETGO does not

change the positions of objects. However, it has the property that it

can be resolved with itself, or several similar axioms, to produce

literals of the form:

(+ (AT X Y (DO (LETGO) (DO (LETGO) (DO ••• »»)

involving a situation term of little or no use.

While this problem can be solved by reformulating the axioms, it

is very natural to simply attach some restrictions on the use of the

axioms. A particularly simple approach is to require that Z above never

be bound to a term of the form (DO (LETGO) •••).

Of course, this restriction cannot be checked merely when the axiom

is used. For instance, when the axiom is resolved with, Z may get bound

to some free variable, Z', and later, Z' may be bound to (DO (LETGO) •••).

Another possibility is for Z to be bound to (DO Z' •••) when the axiom is

used, and for Z' to be bound to (LETGO) later. The point is that these

restrictions must be checked throughout the derivation.

49

Thus, if Z is bound to any term, T, with free variables, Z., then
J.

the relationship between Z and the Z. must be known to the routine that
J.

enfor"ces restrictions, since binding the Z. affects the value of Z.
J.

Furthermore, to detect whether some variable, Z, has a restriction on it,

the input clause from which Z descended must be known, since presumably

the restriction will be found there. Clearly, structure sharing is

called for.

Assume throughout the following that the VALUE array is being used.

Let a restriction be expressed in terms of a function which is called on

two arguments, a term and an index, and returns TRUE or FALSE. Assume

that it is possible to optionally associate with any variable in an input

clause a restrictor function which returns TRUE if and only if the current

value of the expression represented by the arguments is a permitted binding

of the variable concerned. (Restrictor functions usually inspect the VALUE

array and are associated with variables via an association list stored with

the input clause.)

Let LINKARRAY be an array of the dimensions of VALUE. It will be used

to hold a possibly empty list of variables whose values are affected by

the value of each V,I in the array.

Let RESTARRAY be an array of the dimensions of VALUE. It will be used

to hold a possibly empty l~ of restrictions on V,I.

The function LOAD must be modified so that when it loads an expression

T,J with variables Z1' ... , Z n in T, into VALUE(V,I), it adds V,I to the

lists in LINKARRAY(Z. ,J) for i = 1 to n. When LOAD encounters an input
J.

clause it retrieves the association list of restrictor functions for

variables in that clause and for each pair (V.f) on the list, it adds f

50

to RESTARRAY(V,INC+1), where INC is the increment at which the clause is

being LOADed. f is supposed to be a function of two arguments, which

returns TRUE if and only if its arguments represent an expression whose

value is a permitted instantiation of the variable V.

The definition of LOAD is:

FUNCTION LOAD CL INCj
IF ISINPUT(CL)

THEN
FOREACH PAIR IN RESTFNS(CL) j
CONS(BACK(PAIR),RESTARRAY(FRONT(PAIR),INC+1))

-> RESTARRAY(FRONT(PAIR),INC+1)j
CLOS~j
EXITj

FOREACH B IN BINDINGS(CL)j
TCOMP(B) -> TCOMP(VALUE(VCOMP(B),VICOMP(B)+INC))j
TICOMP(B)+INC -> TICOMP(VALUE(VCOMP(B),VICOMP(B)+INC))j
ADDLINKS(VCOMP(B),VICOMP(B)+INC,TCOMP(B),TICOMP(B)+INC)j
CLOSEj
LOAD(LEFTPAR(CL),INC)j
LOAD(RIGHTPAR(CL),INC+MAXINDEX(LEFTPAR(CL)))j
END-,

where the function ADDLINKS adds a new set of links to LINKARRAY:

FUNCTION ADDLINKS V I T Jj
IS ISVAR(T)

THEN
CONS(CONSPAIR(V,I),LINKARRAY(T,J)) -> LINKARRAY(T,J)j
ELSE
FOREACH ARG IN TL (T) j
ADDLINKS(V,I,ARG,J)j
CLOSEj
CLOSEj

ENDj

Thus, if V,I is on the list in LINKARRAY(Z,J), then the value of V,I

is affected by that of Z,J. That is, when the value of Z,J is instantiated,

then so is that of V,I. If FOO is a function on the list in RESTARRAY(V, I) ,

then FOO is a restrictor function which must "approve" of the value of V,I.

In particular, FOO must approve of any changes in the value of V,I pro-

duced by instantiation.

51

For example, assume that Y,8 is bound to (DO Y (NOW)),7, with

Y,7 free, and assume that FOO is a restrictor function on Y,8 that

prohibits it from being bound to a term with value of the form

(DO (LETGO) •••). LINKARRAY(Y,7) will contain y,8 (and perhaps

other variable expressions), and RESTARRAy(y,8) will contain]UO

(and perhaps other restrictor functions).

If Y,7 is to be bound to (LETGO), it must be "satisfied" with

that value. That is, all of the restrictions in RESTARRAY(Y,7) must

be met when that binding is in force. Furthermore, all of the variables

in LINKARRAY(Y,7) must also be satisfied with their new values. In

particular, even if the restrictions on Y,7 permit it to be bound to

(LETGO), Y,8 must be satisfied with that binding in force. So the

restrictions in RESTARRAY(Y,8) must be checked and FOO will be found.

FOO will discover that the new value of Y,8 is (DO (LETGO) (NOW)),

and will return FALSE. Thus, Y,8 is not satisfied with its value,

so neither is Y,7. The result is that Y,7 cannot be bound to (LETGO).

The above sketch should suggest the necessary modifications to

BIND and UNIFY. When BIND is called on V,I and T,J, it should temporarily

insert T,J into VALUE(V,I) and then call the new function ISSATISFIED

on V,I to see if V,I is satisfied with its value.

The function ISSATISFIED takes a variable and index as arguments

and retrieves the list of restrictions on the variable expression. If

all of the restrictions are met, it retrieves the list of linked variables

and recursively determines whether each of them is satisfied. If so,

it returns TRUE. Otherwise, it returns FALSE.

FUNCTION ISSATISFIED V I;
FOREACH RESTFN IN RESTARRAY(V,I);
IF RESTFN(V,I) = FALSE

THEN FALSE; EXIT;
CLOSEj
FOREACH PAIR IN LINKARRAY(V,I)j
IF ISSATISFIED(FRONT(PAIR),BACK(PAIR)) = FALSE

THEN FALSE; EXIT;
CLOSE;
TRUE;
END;

52

If BIND finds that ISSATISFIED returns FALSE, it must remove T,J

from VALUE(V,I) and return FALSE to UNIFY. Otherwise, BIND must update

LINKARRAY for the new binding (adding V,I to the lists associated with

the variables in T), and return TRUE to UNIFY.

Thus, the definition of BIND is now:

FUNCTION BIND V I T J;
V ARS OLDPTR;
BINDPTR -> OLDPTR;
T -> TCOMP(VALUE(V,I));
J -> TICOMP(VALUE(V,I));
PUSH(VALUE(V,I),BINDSTACK);
IF ISSATISFIED(V,I)

THEN ADDLINKS(V ,I ,T ,J); TRUE;
ELSE UNBIND(OLDPTR); FALSE; CLOSE;

END;

UNIFY must treat BIND as a predicate with side-effects. If BIND returns

TRUE, then the VALUE array has been updated to cause the binding, and all

restrictions have been met, so UNIFY can return TRUE. If BIND returns

FALSE, the VALUE array is unchanged because some restriction was violated

by the desired binding, and UNIFY must return FALSE, just as if V,I had

occurred in T,J.

While involving substantial modifications of several routines, the

inclusion of restrictor functions is extremely natural to structure sharing.

In addition, the axiom writer is given great flexibility. In particular,

he is able to impose restrictions on the use of the axioms in a way that

53

is powerful and intuitive. Furthermore, the restrictions are implemented

as computational steps rather than derivational ones.

The Blind Hand Problem, referred to earlier, provides a good example

of the use of restrictor functions. The refutation of this set of axioms

is known for its difficulty. An SL-resolution theorem prover, using a

depth-first search with depth limit 17 (the depth of the refutation) generated

30000 clauses without finding a proof. However, very intuitive restrictor

functions permitted the same program to find a proof after about 30 clauses.

This is the only known, fully automatic, first order proof of this theorem.

The restrictor functions used were as follows. If Z occurred in an

input term of the form (DO (LETGO) Z), the restriction on Z was that it

could not be bound to a term which had a (LETGO) action in it unless that

(LETGO) was succeeded by a (PICKUP) in the term. Thus, the action (LETGO)

was not allowed unless a (PICKUP) had occurred after the last (LETGO) in

the situation. A similar restriction on (PICKUP) was imposed, and (GO •••)

was allowed only if some other action had occurred after the last (GO •••).

These functions are trivial list processing (shared structure processing)

functions which inspect expressions. Their effects were dramatic.

The mechanisms set up to handle restrictor functions have a more

general application, described in the next Section.

4.2 Automatic Evaluation

In many kinds of problems axiomatized for automatic theorem provers,

it is necessary to include axioms for arithmetic, even though they are

only to be used to compute trivial arithmetic facts, such as:

(GT (ADD 3 4) 5).

Arithmetic is one of many domains where it is easier to compute the

valuesof certain expressions than it is to derive them. It turns out that

54

it is trivial to use the mechanisms described above to allow the automatic

evaluation of terms upon instantiation of their arguments.

Assume that x,8 is bound to (ADD Y 4),7, and that Y,7 is to be bound

to the constant 3. Then x,8 is on the list in LINKARRAY(Y,7). When

ISSATISFIED inspects that list, after BIND binds Y,7 to 3, it can discover

that the value of x,8 is (ADD 3 4). If a procedure for evaluating a

ground term with function symbol ADD is available to ISSATISFIED,

it could be activated, with arguments 3 and 4, and cause x,8 to be rebound

to 7.

Now if x,8 occurred in another term, for example, (GT X 5),8, then

the recursive call of BIND used to rebind x,8 to 7, would cause the GT

evaluation function to be applied just as the ADD evaluation function was.

Thus, (GT X 5),8 would be changed from (GT (ADD Y7 4) 5) to (GT 7 5) to TRUE,

simply by the binding of Y,7 to 3 and evaluation.

It is therefore quite easy to add automatic evaluation of terms when-

ever they become instantiated in such a way as to allow evaluation to take

place. The RESTARRAY and LINKARRAY mechanisms, together with ISSATISFIED

in BIND, provide the necessary mechanisms. The only new idea is the re-

binding of a variable.

In order to replace (ADD 3 4) by its value, it was essential that it

be bound to some variable. This means that input clauses have to be re

structured to be lists of literal'~emplate~ with binding environments to

properly instantiate them. If evaluation is to proceed all the way to

the literals, then even the literals must be variable expressions bound

to the desired expressions.

That is, if (+ (GT (ADD X y) Z)) is an input literal, it would have

been previously represented by the list (+ (GT (ADD X y) Z)). To allow

55

it to be partially evaluated as X, Y, and Z are instantiated, it must

be represented by some variable expression, X,n, where X,n is bound to

(+ X),m, X,m is bound to (GT X Y),k, and X,k is bound to (ADD X Y),l.

Thus, the value of X,n is (+ (GT (ADD Xl Yl) Yk», and any subterm

can be evaluated and replaced by binding. An input clause become~

a list of variable expressions and a list of bindings as in the general

resolvent. The maximum index of an input clause is, of course, no

longer 1. The function that decomposes a list expression into this

form is straightforward.

This modification allows paramodulation to be implemented using

structure sharing.

One ramification of this representation is that there now need be

only one term for each function symbol, that is, only one (GT X y)

template \ and only one (ADD X y) template. The input atoms:

(GT (ADD X 0) Z)

and

(GT X (ADD Y y»
are actually composed of identical terms with different instantiations.

Integers become very natural representations for these unique templates.

Evaluation procedures must be associated with function symbols so

that ISSATISFIED can detect that a term has an evaluation procedure. In

current implementations, the procedure is given the same name as the

function symbol, and ISSATISFIED merely checks to see if there is a functiol~

in the system with the appropriate name.

The definition of ISSATISFIED is given'below~ The first half of

the funotion is:as in the'original definition.' The la.st half is concerned

56

with evaluating terms. The function EVALUATE is used to clarify the

code. What this function does is take a variable and index as arguments

and attempt to evaluate it. The term to which the variable expression

is bound is retrieved and if an evaluation function is associated with

its function symbol, this function is called on the expressions repre-

senting the arguments. This evaluation function must retrieve the bindings

of any variables in these expressions. If the function returns the special

atom UNDEF, it means the arguments were not such that the function was

applicable (for example, the evaluation function for ADD returns UNDEF

if one of the argument expressions is an unbound variable). The

special atom FAIL is returned if one of the arguments is "illegal".

The evaluation function for DIVIDES returns FAIL if its second argument

has the value O. Otherwise, the evaluation function is assumed to

return a new term and index, representing the new value the evaluated

expression is to be replaced by.

FUNCTION ISSATISFIED V I;
V ARB NEWTERM NEWINDEX;
FOREACH RESTFN IN RESTARRY(V,I);
IF RESTFN(V,I) = FALSE

THEN FALSE; EXIT;
FOREACH PAIR IN LINKARRAY(V,I);
IF ISSATISFIED(FRONT(PAIR),BACK(PAIR» = FALSE

THEN FALSE; CLOSE;
CLOSE;
EVALUATF.(V,I) -> NEWTERM -> NEWINDEX;
IF NEWTERM = FAIL

THEN FALSE; EXIT;
IF NEWTERM / = UNDEF

THEN
IF BIND(V ,I ,NEWTERM,NEWINDEX) = FALSE

THEN FALSE; EXIT;
CLOSE;

TRUE;
END;

An example of an evaluation function for ADD is:

FUNCTION ADD ARG1 INDEX1 ARG2 INDEX2;
LOOPIF ISVAR(ARG1) AND ISBOUND(ARG1, INDEX1)

THEN -> ARG1 -> INDEX1; CLOSE;
LOOPIF ISVAR(ARG2) AND ISBOUND(ARG2,INDEX2)

THEN -> ARG2 -> INDEX2; CLOSE;
IF ISNUMBER(ARG1) AND ISNUMBER(ARG2)

THEN
DUMMYINDEX;
ARG1 + ARG2;
ELSE
DUMMYINDEX ;
UNDEF;
CLOSE;

END;

57

DUMMYINDEX is just any index whatsoever. An evaluation function must

return two arguments (according to the conventions used in ISSATISFIED)

arid in either case above, the value of the index does not matter.

Note that in the definition of ISSATISFIED, BIND is called to

rebind V,I to its new value. This recursive call of BIND may well

set off further evaluations (since BIND calls ISSATISFIED to check the

repercussions of a binding). It is in this way that the evaluation

of a term propagates through all of the terms involving that term.

Rebinding is somewhat complicated because now UNBIND must not

merely reset a modified VALUE cell to UNBOUND, but must restore the

previous binding. If V,I is bound to T,J and is to be rebound to

T',J', then T',J' should be assigned to the TCOMP and TICOMP compo-

nents of VALUE(V,I). However, an UNBIND must restore T,J. The most

natural way to do this is to push T,J onto the BINDSTACK stack, along

with the cell modified. UNBIND then simply pops three things off the

stack and assigns the last two (T and J) to the appropriate components

of the first (the VALUE cell modified). Adding the rebindings to the

BINDINGS component of the new clause record in the normal way allows

ISBOUND to correctly fetch the latest binding (as LISP's ASSOC does).

However, LOAD must be modified so as to not overwrite a new binding

with an older one encountered later in its recursion.

Automatic evaluation can be made to subsume certain restriction

functions since ISSATISFIED recognizes the FAIL result of evaluation.

Thus, in order to enforce a certain restriction on the syntax of

all terms starting with some function symbol, regardless of what

clauses are involved in the derivation of the terms, an; evaluation

function for the function symbol will do the job. For example,

in the Blind Hand Problem discussed in the last Section, an-evaluation

function on DO which returns FAIL whenever the nested situations

contain illegal action sequences will cause the same behaviour as

the restrictor functions described.

The main point of this Chapter has been to illustrate that

structure sharing allows computationally defined symbols to be

mixed arbitrarily with logically defined ones. This mixing of compu

tation and deduction allows the axiom writer greater flexibility in

controlling the use of his axioms and greater power in specifying the

desired behaviour of certain terms. Furthermore, this mix can be

efficiently implemented with structure sharing.

59

CHAPTER 5 THE SL-RESOLUTION IMPLEMENTATION

5.1 Introduction to SL-resolution

Readers familiar with SL-resolution will find the notation in the

following description somewhat different from that used by Kowalski

and Kuehner (1971). However, it is felt that this notation helps

clarify the representation of clauses.

SL-resolution operates on chains. A chain is composed of cells,

which contain literals. Cells will be separated by a slash ('I').

The left-most cell in a chain is called the most recent cell. A chain

is thus of the form:

ABC IDE I,

where A, B, C, D, and E are literals.

Before a chain may be resolved with an input clause, a literal

from the most recent cell must be selected. This selected literal

must be the literal resolved upon in all resolutions of the chain.

The selected literal of a cell is denoted by underlining it:

A]!C/DE/.

SL has three operations on chains. Extension corresponds to

resolution with an input clause. Reduction is similar to factoring

but also replaces ancestor resolution. Truncation is a bookkeeping

device for chains.

To extend upon a chain, C, with selected literal L, an input

clause B is used. B must contain some literal K of sign opposite

that of L, such that the atoms of K and L unify via most general

unifier if. The result of extending C (the nearparent) by B (the

60

input, or farParent) is the chain 0' cr , where 0' is the chain whose

most recent cell is composed of all of the literals in B except K, and

the remainder of 0' is just O. For example, extending A B 0 / D E /

with the input clause -B G H, yields:

G H / A B 0 / D E /.

The selected literal, L, in 0 is called an A-literal (A for

ancestor) in chain 0'. Note that in the above example, either G

or H must be chosen as the selected literal before the chain can be

used in extension.

A chain is admissible if and only if no two literals in any

cells of the chain have identical atoms. A chain may be extended

upon only if it is admissible and the most recent cell is non-empty.

A chain 0 may be reduced if the atom of some literal L in the

most recent cell unifies with the atom of an A-literal (other than

the most recent) of opposite sign, or a non-A-literal (other than

another most recent one) of the same sign. The result of such a

reduction is the chain obtained by deleting L from 0 and applying the

unifying substitution.

The first case defined above is called ancestor reduction and

performs the function of ancestor resolution in other linear systems.

The other case is the usual factoring. Two examples of reduction are:

ABO / £ B / reduces to A 0 / £ B / (factoring)

ABO / DE/ F -B / reduces to A C / D E / F -B /
(ancestor redu.ction) --

The final operation in SL is truncation. A chain must be truncated

when the most recent cell is empty. This condition can be caused by

61

extension with a unit clause, reduction of all the most recent literals,

or truncation. The result is simply the chain obtained by deleting the

(empty) first cell and deleting the A-literal from the exposed cell

(which is now the most recent). Thus,

I ABO IDE I truncates to A 0 IDE I, - - -
and

I ~I D!I truncates to D I.
An example of an SL derivation follows. Let (1) through (6)

be ground input clauses:

(1) -A B

(2) -B 0

(3) -0 D

(4) -D A

(5) A 0

(6) -B -D

Below is a refutation of this set of clauses in SL format:

-~ -D I top chain (6)

-! I -~ -D I extension with (1)

-D I -! I -B -D I extension with (4)

I -! I -B -D I reduction

-Q, I truncation

-0 I -Q, I extension with (3)

-~ I -£ I -Q, I extension with (2)

-A I -~ I -£ I -Q, I extension with (1)

01 -!I -~I -£1 -Q, I extension with (5)

I -! I -~ I -£ I -Q, I reduction

D truncation

62

Of course, in general, the unifying substitution must be applied to

chains produced by extension and reduction. Readers interested in a

formal account of SL-resolution should consult Kowalski and Kuehner 1971 •

5.2 The Implementation

Before discussing the details of the structure sharing implementa

tion of SL-resolution, several points should be brought out.

(1) Since SL derivations are truly linear, the right parent is

always an input clause. Therefore, its maximum index will be 1. When

a clause is extended, all of the variables in the right parent will have

index MAXINDEX(LEFTPAR(CL)) + 1, where CL is the nearparent.

(2) Since some literal in the most recent cell in any derived

clause must be marked as the selected literal, some component of the

clause record must be reserved for this. However, no information must

be stored in a resolvent's representation describing which literal from

the left parent was resolved upon, since it will always be the selected

literal of that parent.

(3) Both reduction and truncation remove only literals from the

most recent cell. Thus, every cell in an SL chain is just a subset of

the literals in the input clause that gave rise to that cell by extension.

To specify the literals in a cell a bit string or logical word can be

used to "mask" the original input list of literals. Removing a literal

will then be simply turning off the appropriate bit in the mask.

Another mask can be used to specify the selected literal.

The representation of an input clause is just as it was in the

general case. The representation of an SL derived chain is a record with

the following components.

(1) the left parent (a clause record) (LEFTPAR)

(2) the input clause supplying the literals in the current
cell (RIGHTPAR)

(3) a logical word with bit n on if and only if the nth
literal in the list specified by RIGHTPAR is in the
current cell (CELLMASK)

(4) a logical word with bit n on if and only if the nth
literal in RIGHTPAR is the selected literal for the
current cell (SELMASK)

(5) the index for the literals in the current cell
(CELLINDEX) ,

(6) a list of bindings as in the general case (BINDINGS)

If CL is an SL derived clause record, then the components of it

describe the leading cell in the bhain represented by CL. In particular,

each literal in the the cell is represented by an expression of the

form T ,CELLINDEX(CL), where T is the nth literal of RIGHTPAR(CL) and
n n

the nth bit of CELLMASK(CL) is on. The literal is the selected

literal of the cell if the nth bit of SELMASK(CL) is on. The binding

environment is, as expected, the BINDINGS of CL along with the binding

environment of LEFTPAR(CL).

The basic idea is that a record, CL, should represent a cell and

then point, via LEFTPAR, to the chain from which CL was derived. That

chain will contain the additional cells in the chain represented by CL.

If a cell is to be changed, for example, a literal deleted by reduction,

a new record is built to specify the new cell. The old record cannot

be modified since it might be used differently in another derivation.

But the new record must point back to the old one, to ensure that the

bindings there are available. Thus, the cell specified by the old record

should not always be included in the chain represented by the new one.

64

As in the general case, an SL record simultaneously represents an SL

chain and the derivation of that chain. The derivation will contain cell

descriptions of cells no longer in the chain. Such cells are implicitly

marked by their indices, as will become clear in the description of the

SL operations, below.

To represent the extension, CL', of some chain, CL, a record is built

which refers to the appropriate input par-ent with RIGHTPAR, and masks off

the appropriate literals in it with CELLMASK. CELLINDEX is set to one

plus the maximum index found in the records in the structure CL, and

BINDINGS are those produced by unification. The LEFTPAR of CL' is CL,

indicating that the rest of the cells in CL' are those of CL, and that

the rest of the bindings come from CL. SELMASK is set according to

whatever literal is to be selected.

To represent a reduction of CL, a new record, CL', is built which

has the same RIGHTPAR and CELLINDEX as CL (to specify the same literals

as composing the new version of the most recent cell), and CELLMASK is

the same except that the single bit corresponding to the reduced literal

is turned off. The BINDINGS are produced by unification, and LEFTPAR

points to CL to indicate that the rest of the cells in the chain repre

sented by CL' are found in CL (as well as the bindings). However, now

CL'specifies the form of the leading cell, and the fact that the indices

of CL and CL' are the same indicates that they are different versions of

the "same" cell. The cell specification in the record CL will be ignored

when exploring for cells in CL'o

To represent a truncation of CL, a new record, CL', is built which

has as RIGHTPAR and CELLINDEX the same components of the first record

65

OL", in the chain of OL which has a literal in it other than the one

marked by SELMASK. The CELLMASK of CL'is the same as for CL", except

that the selected literal bit in it is turned off. BINDINGS is always

NIL in a truncation. LEFTPAR points to CL (rather than LEFTPAR(CL"))

since the bindings in the derivation of CL are still relevant. However

any cell in the chain of CL with index higher than that of CL" is ignored

since it has been truncated.

Thus, the cells in the chain represented by any CL' are: the cell

specified by CL' and the cells in the chain represented by the first

record with CELLINDEX strictly less than that of CL' in the list of

records linked via LEFTPAR from CL'.

If the CELLINDEX of CL' is strictly greater than that of LEFTPAR(CL')

OL' is an extension of LEFTPAR(CL'). If equal, CL' is a reduction of

LEFTPAR(CL'). If less than, CL' is a truncation of LEFTPAR(CL').

While the functions BIND, OCCUR, and UNIFY are exactly the same

as in the general case, the functions ISBOUND and GETLIT are slightly

different (and more efficient).

ISBOUND no longer has to decrement the index of the variable, since

it must always loop down the left branch. It never has to be prepared to

jump down the right branch, since that is always an input clause.

GETLIT merely runs down the cells in the chain represented by

the record specified, counting the number of bits on in the CELLMASKs

until it finds the appropriate cell. The literal is then masked out of

the parent and the index is just the CELLINDEX of the record involved.

Below is an example of an SL derivation including extension,

reduction, and truncation.

01: «+ (Q (A) X» (+ (p y»)

02: «- (p (F X») (+ (R X X»)

03: «+ (Q X (F (B»» (- (R (A) y»)

04: < NIL,C1,110,010,1,NIL >

05: < C4,C2,010,010,2,« Y,1,(F X),2 » >

06: < C5,03,100,000,3,« Y,3,(A),3 > < X,2,(A),3 » >

07: < c6,c3,000,000,3,« X,1,(F (B»,3 > < X,3,(A),1 » >

08: < C7,C1,100,100,1,NIL >

c4: (+ (Q (A) X1» (+ (p Y1» /

«- (p (F X2») (+ (R X2 X2»)

extension

C5: (+ (R X2 X2» / (+ (Q (A) X1» (+ (p (F X2») /

«+ (Q X3 (F (B»» (- (R (A) Y3»)

extension

66

(+ (Q X3 (F (B»» / (+ (R (A) (A») / (+ (Q (A) X~»

\
(+ (p (F (A»» /

reduction

C\: / (+ (R (A) (A») / (+ (Q (A) (F (B»» (+ (p (F (A»» /

\ truncation

c8: (+ (Q (A) (F (B»» /

Figure 2. (a) At the top are three input clauses and five SL clause
records representing the derivation of chain 08. The order of the
components in the records is that given at the beginning of this
Section. The bit masks have been shortened to only three bits for
simplicity in this example. (b) The tree exhibits the SL derivation
represented by the records in (a).

67

The VALUE array is very natural with SL-resolution, since no bindings

from the RIGHTPAR are ever loaded. Thus, in a depth-first search, the only

way that VALUE is written into is the BIND calls in UNIFY.

The structure sharing implementation of SL is extremely efficient

in use of space (in actual implementations, the bit masks are packed into

a single word, the CELLINDEX and the specification of the RIGHTPAR

are packed into a single word, and the BINDINGS are stored in an array).

The program is three times faster than the general structure sharing

program, and causes no garbage collections.

Constructing an extension record is as simple as a unification and

a few logical operations to construct two masks. Reduction is a unifi

cation and turning off one bit in a mask. Truncation is necessary when

the CELLMASK is zero and it continues as long as the CELLMASK and the

SELMASK of records in the chain are equal. Constructing a truncation

record is essentially ANDing the NOT of the SELMASK and the CELLMASK.

Sweeping through the literals for reductions or admissibility is the

usual TL operation, except that a bit mask is leftshifted each time and

the literal is inspected only if the high order bit is on. Thus, the

implementation preserves the fast and natural recursive unification

algorithm, but allows clauses to be constructed with logical AND, OR,

NOT, and SHIFT.

As demonstrated in this chapter, it is often possible to modify

general structure sharing to implement specific systems very economically.

68

CHAPTER 6 A PROGRAMMING LANGUAGE FOR STRUCTURE SHARING

6.1 Introduction

There are several similarities between structure sharing imple

mentations of predicate calculus theorem provers and traditional

implementations of programming languages.

Recursion in languages such as LISP and ALGOL uses pushdown stack

like structures to bind variables to different values at different levels

in the recursion. When the recursive definition of, say, factorial, is

evaluated, the same function body is used for each recursive step. However

the argument is bound to a different integer each time, and the binding

is looked up in a list, or stack, or dictionary, which has been modified

for each recursive call. The alternative is to copy the definition

over again each time with the new integer textually substituted, and

then use the copy. This is clearly absurd for a programming language,

but ~t is precisely what is done in traditional theorem provers when an

axiom is to be applied. Structure sharing takes a programming language

approach and merely refers to the appropriate axiom after modifying an

association list (the binding environment represented by the tree of

BINDINGS) or a dictionary (the VALUE array) to effect variable binding.

In SL-resolution implementations, the clause records resemble acti

vation records, and can be described in such terms: The selected literal

mask is the current instruction pointer, relative to the procedure

specified by RIGHTPAR. The LEFTPAR component points to the previous

level of recursion (in fact, in a depth-first search, the next cell

in the chain is the record that should be reactivated if the current

69

computation succeeds, and the record pointed to immediately by LEFTPAR is

the record that should be reactivated if the computation fails). BINDINGS

specify the bindings of the "local" variables in this procedure call.

However, unlike most programming languages, predicate calculus

allows a "function" to be called with free variables in the argument

positions, and allows results to contain free "locals" of the function.

Thus, space allocated at run-time to hold bindings cannot be g~rbage

oollected after a function has been exited, since the results of that

function may still contain references to the allocated space. Further

more, when the interpreter encounters a variable, X, it must know whether

it is the X from the current level of recursion or an X from an earlier

level. In either case, the X may be free or bound, and if free, it could

beoome bound at the current level.

Thus, a simple pushdown stack allocation scheme is not sufficient.

Instead, a system which reflects not just the current "trace" of the

computation, but the entire history of it is needed. This is why structure

sharing must allocate space for bindings in a tree structure, and keep

track of variables by indices rather than simply depth of recursion.

These similarities suggest that there is a programming language

natural to structure sharing. The language must allow free variables

to occur in arguments and results, and the system must be automatically

responsible for looking up the bindings of variables, and keeping track

of indices. Access to variables of other levels must be allowed, including

levels which have been exited.

The language is, in fact, a simple extension of predicate calculus.

A natural interpreter for the language is an SL-resolution theorem prover.

70

6.2 BAROQUE

An SL theorem prover for interpreting predicate calculus as a

programming language has been implemented using structure sharing.

Input clauses can only be resolved on their first literal. The

literals in a cell are worked on from left to right, and a depth

first search is employed. Evaluation is used to provide basic arith

metic functions, as well as term identity testing with the (predicate

calculus function symbol) IDENT. Lists in the language are repre

sented by terms. The list (A B) is the term:

(CONS (A) (CONS (B) (NIL))).

Programs are Horn clauses.

The axioms to define LENGTH (which calculates the length of a

list in the above representation) are:

LEN1: «+ (V (LENGTH (NIL)) 0)))

LEN2: «+ (V (LENGTH (CONS X y)) z))

(- (V (LENGTH Y) U))

(- (V (ADD U 1) Z))).

The predicate symbol V is the only predicate used. (V x y) means

"the result of evaluating x is y." The positive (first) literal of

a clause specifies the "calling pattern" required to use the procedure.

The negative literals represent the sequence of statements to be

evaluated as the body of the function. Thus, LEN1 means that the value

of (LENGTH (NIL)) is the constant O. LEN2 means that the value of

a term of the form (LENGTH (CONS X y)) is Z, where Z is computed by

computing the LENGTH of Y (which is U) and then adding 1 to it.

71

If the SL theorem prover is given the two axioms above and the top

clause:

«- (V (LENGTH (CONS (A) (CONS (B) (NIL»» X»),

then it will use the axioms LEN1 and LEN2 exactly as a recursive defi-

nition of LENGTH to decompcse the list into successive components and

calculate that X is 2 (in the process, it will bind X,1 to 2).

Since the axioms used to define programs are Horn clauses and

there is only one predicate symbol, a more convenient notation can be

adopted. The numbers and the atoms NIL and T can be recognized as

constants, and the axioms:

and

«+ (V NIL NIL»)

«+ (V T T»)

«+ (V n n»), where n is a number,

are automatically included. The notation used to define LEN1 and LEN2

above becomes:

LEN1: (LENGTH NIL) -> 0;

LEN2: (LENGTH (CONS X Y» -> Z
WHERE
(LENGTH y) -> U;
(ADD U 1) -> Z;
END;

This language is called BAROQUE. It has several properties not found in

traditional programming languages. Among these are: pattern directed

invocation and return, backtracking, and the ability to run functions

"backwards" (from results to arguments).

If the" theorem prover (interpreter) is given as top clause:

WHERE (LENGTH (CONS (A) NIL» -> X; END ;

72

the following sequence of operations occurs. LEN2 is used to extend

with the top clause (LEN1 is tried but does not unify because NIL will

not unify with (CONS X y». This produces a chain in which the leading

cell contains two literals. The first is a recursive call of LENGTH on

NIL, giving the value U,2, and the second is (ADD U,2 1) yielding the

value X,1. The first literal is extended upon with LEN 1 , binding U,2 to

0. After a truncation (because LEN1 is a unit clause) the second literal

is extended upon (with the ADD eValuation function). Since U,2 is now

0, this binds X,1 to 1. Now both literals of this cell have been

deleted, so truncation yields the empty clause and the computation

is done. The answer, X,1, is 1. No search is performed.

Since unification is the only thing really happening, pattern directed

invocation and returning is clearly present. Regardless of how many defi-

nitions of LENGTH there may be, only those which unify with the calling

pattern are ever used. Thus, if LEN3 is added:

LEN3: (LENGTH (TRIP X Y Z» -> U
WHERE
(LENGTH y) -> Y1;
(LENGTH Z) -> Z1;
(ADD Y1 Z1) -> U;
END;

then a call of the form:

(LENGTH (TRIP ••• » -> X;

will only be handled by LEN3, since LEN1 and LEN2 do not unify.

As for the ability to run functions backwards, consider a call of

the form:

(LENGTH X) -> 2;

(and assume LEN3 has not been added, just for simplicity).

73

On the first extension with LEN2, the value of X,1 will be:

(CONS X,2 Y,2).

A second extension with LEN2 causes X,1 to become:

(CONS X,2 (CONS X,3 Y,3».

Finally, LEN1 can be used to produce:

(CONS X,2 (CONS X,3 NIL».

LEN1 could not be used earlier because (on the first extension)

it would attempt to unify 0 and 2, or (on the second extension) it

would attempt to unify 1 and 2. That is, the expected result must

unify with the result provided by any function. If it does not, the

extension fails and another is tried. Note that what the above

process has done is to generate the general list of LENGTH 2.

In general, BAROQUE will explore all possiblities in trying

to find a successful path through the search space (to the empty clause).

Since a depth-first search is used, infinite branches are easy to get

lost on. However, since BAROQUE is actually just an SL-resolution theorem

prover, there is a clear distiction between the logical features of the

language and the search strategic ones.

6.3 A LISP Subset in BAROQUE

BAROQUE is very much like assempler-code. Consider the BAROQUE

·2
function for calculating (X + 1)/2:

POLY: (POLY X) -> U
WHERE
(MULT X X) -> V;
(ADD V 1) -> W;
(DIV W 2) -> U;
END;

A call of the form:

74

(POLY 4) -> Xj

binds X (at the current level) to 8.5.

However, a call of the form:

(POLY (POLY 4» -> Xj

fails, because the inner (POLY 4) is not evaluated. To get the desired

effect in BAROQUE, one must write:

(POLY 4) -> X1;
(POLY X1) -> Xj

However, it is possible to write an interpreter for another language

~n BAROQUE, and in this language use nested expressions. As an example,

a list processing language based on pure LISP was written. The BAROQUE

functions are listed below:

CONS: (CONS X y) -> (CONS U V)
WHERE
X -> Uj
Y -> Vj
END;

CAR: (CAR X) -> U
WHERE
X -> (CONS U V);
END;

CDR: (CDR X) -> V
WHERE
X -> (CONS U V);
END;

COND1: (COND X Y Z) -> U
WHERE
X -> NIL;
Z -> U;
END;

COND2: (COND X Y Z) -> U
WHERE
X -> V;
(IDENT V NIL) -> NIL;
Y -> U;
END;

EQUAL: (EQUAL X Y) -> U
WHERE

ADD1:

X -> Vj
Y -> Wj
(IDENT V W) -> Uj
ENDj

(ADD1 X) -> U
WHERE
X -> Vj
(ADD V 1) -> Uj
END· ,

One can then define LENGTH and MEMBER as follows:

LENGTH: (LENGTH X) -> U
WHERE
(COND X

ENDj

(ADD1 (LENGTH (CDR X)))
0) -> Uj

MEMBER: (MEMBER X y) -> U
WHERE
(COND Y

END;

(COND (EQUAL X (CAR y))
T
(MEMBER X (CDR y)))

NIL) -> Uj

75

Arguments are evaluated as required and functions can be nested to

any depth. It should be Loted that the unusual features of BAROQUE

are inherited by this language. For example,

(LENGTH X) -> 2;

will still generate the general list of LENGTH 2, even with the

above definition of LENGTH.

The use of BAROQUE as a programming language, interpreted by an

5L-resolution theorem prover and running under a structure sharing

implementation which closely models conventional programming language

implementations, demonstrates the essential equivalence of computation

and deduction in practical terms.

76

END OF PART I

77

INTRODUCTION TO PART II

This paper describes an automatic theorem prover which is capable

of producing inductive proofs of a large number of interesting theorems

about functions written in a subset of pure LISP. The program was

designed to prove theorems in the way a good programmer might intuit

them. It has several features which make it distinct from other systems

ooncerned with proof of program properties: It is fully automatic,

requiring no information from the user except the LISP definitions of

the functions involved and the theorem to be proved. It automatically

uses structural induction when necessary, and automatically generates

its own induction formulas. It will occasionally generalize the theorem

to be proved, and in so doing, often "discovers" interesting lemmas.

Finally, it is capable of writing new, recursive LISP functions to help

properly generalize a theorem.

The primitives in the LISP subset are: NIL, CAR, CDR, CONS, EQUAL,

and COND. The user can define and use any number of recursive functions.

Theorems take the form of universally quantified boolean valued LISP

expressions, and the theorem prover tries to establish that the expression

will evaluate to T whenever the quantified variables are replaced by

arbitrary lists.

Not only may defined functions call other defined functions, but the

statement of the theorem to be proved may contain as many new functions

as necessary to capture the concepts needed. The system has no built-in

information about non-primitive functions except their definitions. It

relies entirely upon these definitions to discover and prove properties

needed. No lemmas are used.

78

The functions AND, OR, NOT, and IMPLIES may be defined in terms

of COND, and provide the necessary logical facilities. The system

only knows the definitions of these functions; its logical behaviour

1_ based on its knowledge of COND. The fact that no predicates or

relations (other than EQUAL) are built-in has two impiications:

The system must be (and is) powerful enough to derive and prove facts

about many non-primitives in the course of proving a single theorem,

since it must derive the necessary properties of the predicates and

auxil~ functions involved. Secondly, the system is very extendable.

In particular, the language in which theorems are stated can be expanded

at will by the user (with recursive functions), rather than being

limited to a collection of built-in predicates and relations.

Functions about which theorems have been automatically proved

include most of the elementary LISP functions: APPEND, ASSOC, FLATTEN,

LENGTH, MEMBER, NUMBERP, OCCUR, PAIRLIST, PLUS, REVERSE, SUBST, TIMES,

UNION, and many others. The functions and their definitions are listed

in Appendix A. Theorems automatically proved are listed in Appendix B.

Except for the definitions in Appendix A, no other information about

the functions involved is known to the system.

As an example of the complexity of some of the theorems, consider

the program's proof that a list sorting function is correct. There

are two theorems involved, one which states that the output of the sorting

function is ordered, and another which states that the sorted list has

exactly the same elements in it as the unsorted one. There are five

function definitions involved: a function which determines if one list

is less than or equal to another (in length), LTE; a function which

returns T if and only if its argument is an ordered list, ORDERED;

• function which adds a new element to an ordered list, so that the

result is ordered, ADDTOLIST; a function which uses ADDTOLIST to

.ort a list, SORT; and a function which counts the number of occur

rences of an element in a list, COUNT.

The two theorems which establish the correctness of the SORT

function are:

(ORDERED (SORT A)),

and

(EQUAL (COUNT A B) (COUNT A (SORT B))),

where A and B represent universally quantified variables (skolem

constants). The theorem prover uses induction to prove that both

of these expressions evaluate to T, regardless of the values of A

and B.

79

The proofs are very intuitive. For example, in the first theorem

above, the program does an induction on A and after some rewriting and

generalization, reduces the theorem to:

(IMPLIES (ORDERED C) (ORDERED (ADDTOLIST DC))),

which is one of the basic properties of ADDTOLIST (although that fact

is certainly not known to the system). It then proves this by induction

on C, using a very interesting induction formula. Again, after much

simplification, it produces the following theorem which must be proved:

(OR (LTE D E) (LTE ED)).

This of course is an elementary fact about LTE, but it must be proved

since LTE is a user-defined function. To prove this, the program

inducts simultaneously on D and E. As an indication of the performance

80

level of the program, the entire process of showing that the output of

SORT is ORDERED requires 41 seconds.

The basic idea behind the automatic generation of the induction

formula is that there is a duality between recursion and induction.

When the program must resort to induction, it passes the theorem to

be proved to a modified LISP interpreter which attempts to evaluate

the expression. The evaluation halts when a function tries to recurse

into the structure of an argument whose structure is not well enough

defined to allow the computation of the requisite substructure. For

example, the evaluation of (APPEND A B) halts because APPEND attempts to

CDR into A in the recursive call, and the structure of A is such that

the CDR of A is not available explicitly. The interpreter communicates

this information to the induction routine, which attempts to generate

an induction formula which will have as its hypothesis the statement

that the theorem holds for the requisite substructures, and as its

conclusion, that it holds for the structure being decomposed in the

recursion. Care is taken that the necessary bases are included so that

this is indeed a valid induction formula.

Thus, the induction formula generated depends upon the type of

recursion used by the functions concerned. The ~heorem prover is therefore

very flexible in its selection of the induction argument to use. For

example, it will induct upon n variables'simultaneously, or upon tree

structures, as the occasion demands.

Since the program was designed to be able to prove simple theorems

in the same way a good progr~er might, its methods are easily under

stood by readers not familiar with other work in the theory of computation~

81

Largely because of its straightforward methods, the program is surprisingly

rut by theorem proving standards. The "typical" theorem requires about

10 seconds to prove. Harder ones, such as the COUNT theorem mentioned

above, require more time (150 seconds for the COUNT theorem).

The organization of this presentation is as follows: Chapter 1 lays

the formal foundations. Here we present a set of axioms defining a first

order theory with a syntax modeled on LISP. The primary difference

between the language used here. and the LISP subset with the same set of

primitives is the conditional statement. The COND used in this paper

has three arguments; the first is the condition tested, and the other

two are the "branches" of the tree. Thus, the statement:

(COND p q (COND r s u»,

in the language used here, represents the LISP statement:

(COND (p q) (r s) (T u».

Section 1.1 may be skipped by those with a knowledge of LISP who are

not interested in the formal details.

Chapter 2 discusses the relation between evaluation and induction

which is used to produce induction formulas. This chapter contains two

examples, in English, of proofs produced by the program.

Chapter 3 is a detailed description of the program. It is broken

into sections according to subroutines in the system. Section 3.1

presents a good overview of the system. Section 3.2 describes the

evaluation machinery. Section 3.7 discusses the generalization heuristic

and the automatic programming feature. Section 3.8 presents the induction

mechanism.

82

Chapter 4 exhibits four proofs produced by the program. Among the

,roofs shown is that of the theorem:

(ORDERED (SORT A)),

••• cribed earlier.

Chapter 5 discusses two desirable extensions of the current program.

One of these is the automation of termination proofs, and the other is

.xtending the LISP subset to include PROG, SETQ, GO, and RETURN.

Chapter 6 concludes the presentation with a discussion of the

kinds of information built into the program, the program's ability to

generate natural lemmas, and the design philosophy of the system.

Appendices A and B contain the definitions of the LISP functions

about which theorems have been proved, and some of the theorems proved

by the program. Appendix C presents the theory of lists (in which the

~eorems are proved) as an extension of number theory (to establish

its con~istency). Appendix D is a survey of other work in the field.

Readers interested in obtaining a quick overview of the system

are advised to read Chapters 2 and 6, Section 3.1, and Appendix B.

The notational conventions used in this document should be

explained before proceeding.

When presenting terms in theorems or formulas~ both formally

and informally, the upper case letters X, Y, Z, U, and V will be used

to denote variables. Occasionally integers will be concatenated with

these letters to expand the class of variables. Thus, X and Y2 are

variables which range over the set of individuals.

83

Function names will always be words in upper case. The letters

A, B, C, D, and E will denote universally quantified variables in the

theorem to be proved (skolem constants). Traditional LISP notation

will be used to represent function application. Thus,

(Faa NIL (BAR A»

represents the application of the function Faa to two arguments: NIL

and BAR applied to A.

The infix equality predicate, =, will be used. The infix symbols

&, v, ~, ->, and <->, will denote the usual logical connectives. A

negative equality will be abbreviated to~. An example formula is:

~ (MEMBERP A B) -> (B = NIL v A ~ (CAR B»,

provided MEMBERP is a defined predicate symbol.

In order for us to talk about terms and formulas we will need

'syntactic variables'. These are not part of the theory but are addi

tions to English, and take as values expressions in the theory. Lower

case letters (possibly subscripted) will be used as such variables.

Syntactic variables will generally be used to describe classes of

expressions. Thus, we will say that

(CONS (CAR A) NIL),

and

(CONS (CONS A B) NIL),

are both of the form (CONS x NIL).

The syntactic variables f, g, and h (possibly subscripted) will

range only over function names.

If we say that p(x,y) is some expression q in which x and y appear

(possibly no times), then p(A,B) is q with all occurrences of x replaced

84

by A, and all occurrences of y replaced by B. Thus, if p(x) is

(CONS x NIL), then

(CONS peA) p(B»

is

(CONS (CONS A NIL) (CONS B NIL».

Finally, the procedures which make up the theorem prover will be

called routines. Whenever the name of a routine or of an identifier in

a routine is used, it will be in lower case and underlined. As part of

a theorem prover, these routines often take expressions in the theory

as arguments, and return new expressions as results. The notation

eval(x) will be used to denote the result of applying the routine ~

to the expression represented by x.

If eval is some routine with input (f x1 ••• x), the phrase
- n

"the input expression with its arguments ~'ed" refers to the new

expre ssion:

(f eval(x1) ••• ~(xn».

In particular, it does not refer to the actual list structure representing

the input expression after its argument positions have been destructively

altered.

CHAPTER 1 FOUNDATIONS

1.1 The Theory of Lists

If we wish to formally prove theorems, we must define the theory

in which our "theorems" are theorems. The theory with which we are

dealing is the first order theory of lists. This theory is very

similar to LISP. Readers familiar with LISP and uninterested in formal

details may skip this section.

The non-logical symbols of our theory are the constant NIL, the

unary function symbols CAR and CDR, the binary function symbols CONS

and EQUAL, and the ternary function symbol COND. We will call these

symbols the 'primitives'. Except for the fact that COND has three

arguments here, these functions behave in the same spirit as do their

counterparts in LISP.

The non-logical axioms of the theory are given below. All variables

are universally quantified.

NIL # (CONS X y).

(CONS X y) = (CONS U V) <-> X = U & Y = V.

(CAR NIL) = NIL.

(CDR NIL) = NIL.

(CAR (CONS X y)) = X.

(CDR (CONS X y)) = y.

(EQUAL X Y) = (CONS NIL NIL) v (EQUAL X y) = NIL.

(EQUAL X y) = (CONS NIL NIL) <-> X = Y.

(COND (CONS X y) U V) = U.

(COND NIL U V) = V.

86

In addition, we include the induction axiom for each formula p(x):

p(NIL) & VX,Y(p(X) & p(Y) -> p«CONS X y))) -> VX(p(X).

For notational simplicity we will use the symbol T as an abbre

viation for the term (CONS NIL NIL). Thus, the axioms for EQUAL can

be abbreviated to:

(EQUAL X y) = T v (EQUAL X y) = NIL.

(EQUAL X y) = T <-> X = Y.

We will refer to T and NIL as 'truthvalues', not to be confused with

logical truth and falsity. An expression will be said to be 'boolean'

if it is always equal to a truthvalue. For example, any expression

with function symbol EQUAL is boolean, by the first equality axiom

above.

We will say that a term 'is a CONS' if it is of the form (CONS x y).

Analogous phrases will be used for the other primitive function

symbols. A term of the form (COND x u v) will be called a 'conditional

expression'. The first argument, x, is called the 'test'. The second,

u, is called the 'true-branch', and the third, v, is called the 'false

branch'. By the two COND axioms, (COND x u v) is always equal to u or v,

depending upon x. The name 'true-branch' is perhaps a misnomer, since

(COND x u v) is equal to u if x is any CONS whatsoever, not just T.

We say that an expression is an 'explicit list' if it is NIL or

a CONS. One immediate consequence of the induction axiom is the

theorem:

X = NIL v X = (CONS (CAR X) (CDR X».

That is, in this theory, everything is equal to some explicit list.

87

We will say that a term is a 'specific list' if it is an explicit

list and every subterm of it is an explicit list. Thus, a term is a

specific list if it is composed only of NIL and CONS expressions.

It is desirable to have a representation of the natural numbers

among our terms. We will therefore agree that 0 shall be represented

by NIL, and that if some natural number, n, is represented by x, then

the successor of n is represented by (CONS NIL x). Furthermore, we

will agree to abbreviate the terms representing the natural numbers

by the numbers they represent. Thus, 3 is our abbreviation for the

(specific) list:

(CONS NIL (CONS NIL (CONS NIL NIL))).

We will call such terms 'numbers'.

List theory can easily be seen to be consistent. (Its consistency

iB'd~monstrated' in AppendixC, where it is exhibited as an extension

of number theory.)

We now wish to extend the theory with the addition of defined

functions. Such functions will be called 'non-primitives'. Consider

the defining axiom for the function AND:

(AND X Y) = (COND X (COND Y T NIL) NIL).

Since the existence and uniqueness conditions for AND are met, namely:

~Z(COND X (COND Y T NIL) NIL) = Z,

and

(COND X (COND Y T NIL) NIL) = Z1 &
(COND X (COND Y T NIL) NIL) = Z2 -> Z1 = Z2,

we can add the defining axiom to the theory and preserve consistency.

In fact, the resulting extension of the theory is conservative. (An

extension is conservative if no new theorem is provable in the extension

except ones involving the new function symbol.)

It is possible to prove in the extended theory the theorems:

(AND X Y) = T <-> (X -# NIL & Y -# NIL),

and

(AND X y) = NIL <-> (X = NIL v Y = NIl).

Thus, if we have a formula of the form:

p = T & q = T,

where p and q are boolean, it can be replaced by:

(AND P q) = T,

justifying the choice of the name "AND". The definition of AND is

such that any term with function symbol AND is boolean, regardless

of the values of the arguments.

We can introduce the definitions of OR, NOT, and IMPLIES in a

similar fashion, and prove the theorems justifying their names.

The reader is referred to Appendix A for their definitions.

However, we also want to add such definitions as:

(APPEND X y) = (COND X
(CONS (CAR X) (APPEND (CDR X) y))
y) •

88

That is, we wish to be able to extend the theory with the introduction

of recursive functions. The problem, of course, is preserving consist-

ency. If we allow the addition of arbitrary axioms purporting to

define "functions", we immediately open the door to inconsistency.

Consider the "function" defined by:

(RUSSELL X) = (COND (RUSSELL X) NIL T).

If we add this, we can prove:

(RUSSELL X) = NIL <-> (RUSSELL X) = T,

which implies NIL = T. Since our stated aim was to prove valid theorems,

and to do so meaningfully one must have a consistent theory, such defi-

nitions cannot be allowed.

However, as demonstrated in Appendix C, we can be sure that the

resulting extension is consistent (in fact, conservative) if the

defining axiom for the new function symbol is one of several forms.

One such form, describing many common function definitions, is:

(f X Y) = (COND X
(h (f (CAR X) y) (f (CDR X) Y) X y)
(g y»,

where h and g are either primitive functions, or have already been

introduced in this way. This is just one version of the primitive

recursive schema for list theory.

We are not limited to primitive recursive functions however.

As made clear in Appendix C, we can add any total recursive function

and be guaranteed that the resulting extension is conservative. In

general, we merely want to keep the extension consistent. Totality

guarantees it. This is discussed further in Section 5.1.

Most of the functions in this paper are in fact primitive recur-

sive. For example, the definition of APPEND, exhibited above, is in

this schema.

Intuitively it is clear that functions in the schema above are

total functions, provided h and g are total functions. Assume that

whenever their arguments are well-defined, h and g are well-defined.

Then f is well-defined by the following inductive argument: (f NIL y)

is well-defined, for any such Y, since it is equal to (g Y). Inductively

assuming that (f A y) and (f B y) are well-defined, we must show that

(f (CONS A B) Y) is well-defined. But this is just:

(h (f A y) (f B Y) (CONS A B) Y),

by the axioms of the theory. Since our induction hypothesis tells

us the arguments to h, above, are well-defined, and we know that h

is well-defined when its arguments are, we conclude that

(f (CONS A B) y) is well defined. Thus, f is well-defined.

We allow a new predicate, p, to be introduced only by an axiom

of the form:

(p X1 ••• Xn) <-> (f X1 ••• Xn) = T,

90

where f is a previously introduced, boolean valued, total function.

This allows the introduction of a great many predicates, namely, any

predicate whose characteristic function is a total, recursive function.

It should be noted that EQUAL can be recursively defined in terms

of the other primitives and recursion (see the definition of EQUALP

in Appendix A). Hence, EQUAL is primitive only in the sense that it is

built into the definition of the basic theory, and into the theorem

prover. This is reasonable since it is the characteristic function of

the only predicate in the theory, equality. The senses in which EQUAL

is built-in are discussed in Section 6.1.

Henceforth we will consider the theory being discussed to be that

of lists, extended by the forty or so function definitions listed in

Appendix A. These functions include the standard arithmetic and list

processing functions.

There are a large number of interesting theorems in this theory.

For example:

(APPEND X (APPEND Y Z» = (APPEND (APPEND X Y) Z).

(REVERSE (REVERSE X» = X.

91

«MEMBERP X Y) v (MEMBERP X Z» -> (MEMBERP X (UNION Y Z».

(ORDERED (SORT X» = T.

Except for the fact that the functions introduced are very common,

there is nothing special about the extension of list theory with which

we are dealing. The theorem prover embodies the non-logical axioms

of the theory and several theorems derivable from these axioms. However,

no information about non-primitive functions is available except the

defining axioms.

To exhibit the definition of a new function, f, we will write:

where the x. represent variables. This will be equivalent to adding
l.

the defining axiom:

(f x1 ••• xn) = defn.

It is assumed that no other axiom defining f has been introduced.

The notation above was adopted because it is consistent with LISP.

(The routine define takes as its argument a list expression in the

form above, and stores the definition of f on the property list of

the word f. This effectively extends the theory with which the theorem

prover is dealing.)

The definition of APPEND is thus:

(APPEND (LAMBDA (X y)
(COND X

(CONS (CAR X) (APPEND (CDR X) y»
Y»).

The theorem prover is capable of inspecting and applying these

axioms when necessary. The particular extension of the theory in

92

which the theorem prover operates is determined by the user of the

program, who supplies the defining axioms for the non-primitive functions.

The only theorems we will prove with the program are those of

the form:

'lfX1, ••• Xn(p) ,

where p has no quantifiers and contains only the variables X1, ••• Xn.

That is, we will not automatically prove theorems which cannot be expressed

as universally quantified statements. This excludes a large number of

interesting theorems.

If the theorem to be proved is of the form given above, we can

rewrite it as:

q = T,

where q is obtained from p by replacing the variables X1, ••• Xn by skolem

constants, = by EQUAL, the predicates by their characteristic functions,

and any logical connectives by the defined functions AND, OR, NOT, and

IMPLIES. This is always possible since the characteristic functions have

always been introduced, and the functions replacing the connectives

have the desired properties.

The input to the theorem prover is then simply q. The program

tries to establish that the expression is equivalent to T, and if it

does so, the theorem is proved.

For example, to prove the theorem:

((MEMBERP X y) v (MEMBERP X Z» -> (MEMBERP X (UNION Y Z»,

we present the program with:

(IMPLIES (OR (MEMBER A B) (MEMBER A C))
(MEMBER A (UNION B C))),

93

where MEMBER is the characteristic function for the predicate MEMBERP.

This approach to formalizing a theory is the traditional

first order predicate calculus one. It is clearly explained by

Shoenfield (1967). There are many alternative approaches. Goodstein

(1957) describes a very elegant technique based upon recursive functions.

The approach taken here was chosen because it was consistent with the

developmental history of the project, and because it is the most widely

known. A theory is necessary at all for the following three reasons:

It allows the methods used by the program to be explained, justified,

and understood. It makes it clear that the techniques used by the

program, especially the induction mechanism, are just as applicable to

many other theories (in particular, number theory). Finally, it

convinces the reader that the program is indeed a theorem prover for

a first order mathematical theory, rather than simply a program which

manipulates expressions without regard for logical validity.

1.2 LISP an~ the Theory of Lists

In Appendix C a number theoretic version of list theory is exhibited.

This is done to establish the consistency of the theory and extensions

of it by total, recursive functions.

However, from the non-logical axioms it is obvious that the primi-

tives in the theory are a first order formalization of a subset of pure

LISP. In particular, the theory models the subset composed of the single

atom NIL, the functions CAR, CDR, CONS, and EQUAL, and the conditional

statement COND.

The fact that only one atom is available does not weaken the

language. We still have a countably infinite number of distict

94

objects. As we have seen, the natural numbers are available. Suitable

conventions can make other "atoms" available. Other programming languages

are quite convincing in their illusion that structures other than

binary digits are available.

Terms in the theory represent well-formed LISP S-expressions on the

above alphabet in the obvious way. For simplicity, the COND function

has a fixed number of arguments. Thus, the LISP statement:

(COND (p q) (r s) (T u))

is represented by:

(COND p q (COND r s u)),

in the theory.

The user is allowed to define new functions. As in many languages,

the mechanisms for defining a new function are not provided in the

language itself (unlike real LISP). When we say that total functions

may be introduced consistently, we are saying that the theory consistentl~

models those LISP functions which always terrranate without error when

evaluated on arbitrary arguments. The user must satisfy himself as to

the consistency of any extension produced by adding a partial function.

If two S-expressions evaluate to identicalS-expressions under the

LISP interpreter for this subset, then the terms representing those two

expressions in the theory are equal. For example,

(APPEND (CONS (CONS NIL NIL) NIL) (CONS NIL NIL))

and

(CONS (CONS NIL NIL) (CONS NIL NIL))

both evaluate to the S-expression:

«NIL. NIL) • (NIL. NIL)).

We therefore expect that

(APPEND (CONS (CONS NIL NIL) NIL) (CONS NIL NIL)) =
(CONS (CONS NIL NIL) (CONS NIL NIL))

is a theorem. This is indeed the case.

95

Furthermore, if two terms in a consistent extension of the theory

are equivalent, then uniformly replacing the universally quantified

variables by specific lists and evaluating the corresponding S-

expressions gives identical results whenever both evaluations terminate.

The only exception to this rule is that, in the theory, CAR and CDR are

defined at NIL, while in LISP they are not. This addition to the theory

is made to guarantee that the primitives are total functions.

Since we can prove the associativity of APPEND in the theory:

(APPEND X (APPEND Y Z)) = (APPEND (APPEND X y) Z),

we expect that

(APPEND X (APPEND Y Z))

and

(APPEND (APPEND X Y) Z)

always evaluate to identical S~expressions under a LISP interpreter,

regardless of the values of X, Y, and Z. This of course is also the

case.

The observations of this section are far from profound. The point

is merely that in addition to proving theorems in a first order theory,

we are proving theorems about a non-trivial collection of LISP programs.

96

CHAPTER 2 PROVING THEOREMS IN THE THEORY

2.1 Evaluation, Recursion, and Induction

Central to this thesis is the concept of evaluation. This concept

usually resides in the semantics of.a theory. One can talk about

computing the value of a_function applied to some arguments by using

the recursive definition of the function. There is, of course, a

perfectly parallel version of evaluation in the syntax. There, one

talks about deriving the expression representing the value of an

expression representing a function applied to its arguments.

Not surprisingly, the process by which this is done is exactly

the same: Use the non-logical axioms to derive the values of primitive

expressions, and evaluate a non-primitive function application by

replacing the variables in the definition of the function by the

values of the corresponding arguments, and then evaluating the result.

Evaluation will be discussed at length later, but here it is

important to get an intuitive grasp of what is meant by it. As indi

cated above, the best model for it is simply an interpreter for terms

in the theory. We thus evaluate (CAR (CONS A B)) to get A. Evaluating

the expression:

(APPEND (CONS A NIL) (CDR (GONS B C)))

yields (CONS A C). We obtain this result as follows.

We first evaluate the two arguments to the APPEND. We consider the

value of the first to be (CONS A NIL), but the second argument evaluates

to simply C. We then substitute these two values for the variables in

the definition of APPEND and obtain:

97

(COND (CONS A NIL)
(CONS (CAR (CONS A NIL» (APPEND (CDR (CONS A NIL» C»
C) •

Evaluating this, we use the first COND axiom to observe that it is

equivalent to the value of its second argument:

(CONS (CAR (CONS A NIL» (APPEND (CDR tCONS A NIL» C».

We therefore evaluate both arguments to this CONS. The first is simply

A. The second is another non-primitive expression, so its arguments

are evaluated, and then substituted into the definition of APPEND.

This gives us:

(COND NIL
(CONS (CAR NIL) (APPEND (CDR NIL) C»
C) •

This time the second COND axiom is used to reduce this to C. Thus,

the value of the second argument to the CONS above is simply C.

At this point we stop (rather than construct a list cell with A

in the first half and C in the second) since we are staying in the

syntax of the theory. Therefore, the result of evaluating the original

APPEND term is (CONS A C).

It should be clear that we are simply interpreting terms in the

theory exactly as we would the LISP expressions they represent. Since

we are always replacing terms by equivalent ones, we observe that since

(APPEND (CONS A NIL) (CDR (CONS B C»)

evaluates to (CONS A C), the two expressions are equal in the theory.

Thus, if some expression, p, evaluates to T, then p = T is a theorem.

Evaluation is sufficient to prove. some trivial theorems. For

example:

(EQUAL (APPEND NIL A) A)

evaluates to T, so we have proved:

(APPEND NIL X) = X.

However, induction is necessary for most interesting theorems.

98

It is intuitively clear that eValuation and induction are

complementary. The paradigm for evaluating a simple recursive function,

f, is: evaluate (f (CONS x y» in terms of (f x) and (f y), and handle

the 'NIL-case', (f NIL), separately. But the paradigm for a simple

inductive proof that (f X) is T for all X is: show that (f NIL) is T,

and then assuming that (f A) and (f B) are T, show that (f (CONS A B»

is T.

In particular, evaluation of a recursive function starts with some

structure and decomposes it, while induction starts with NIL and builds

up. This duality can be used to great advantage: evaluation can be used

to reduce the induction conclusion, (f (CONS A B» = T, to a statement

involying the induction hypotheses, (f A) = T and (f B) = T, provided

the (CONS A B) is one of the structures that f decomposes in its

recursion.

Suppose that we wish to prove by induction that (f X) is T for all

X. To show that (f NIL) is T,the obvious thing to do is to evaluate. it

and see. Provided we establish the NIL-case, we then assume (f A) and

(f B) are T, and try to show that (f (CONS A B» is T. Evaluating

the conclusion should give us some expression, q«f A),(f B». But the

inductive hypotheses tell us that (f A) and (f B) are T, so we must

then just show that q(T,T) is T. This process is illustrated by the

examples in the next two sections.

Of course, if f has more than one argument one must choose which

one(s) to induct upon. But the link between evaluation and induction

99

makes the choice obvious: induct upon the structures on which f recurses,

that is, upon the structures that are being recursively decomposed in

the evaluation of f. This ensures that when the induction conclusion,

(f (CONS A B», is evaluated, f will be able to recurse at least one

step, and the problem will be transformed to one involving the induction

hypotheses.

2.2 An Example of Evaluation and Induction

To illustrate how evaluation and induction can be used together to

produce a proof, we will work through the program's proof that APPEND

is associative.

The statement of the theorem is:

(1) (EQUAL (APPEND A (APPEND B C» (APPEND (APPEND A B) C»,

where the definition of APPEND is:

(APPEND (LAMBDA (X y)
(COND X

(CONS (CAR X) (APPEND (CDR X) y»
y»).

Evaluating (1) leads nowhere, however, from trying to evaluate it

we learn which terms are being recursively decomposed: A is being

decomposed in the calls (APPEND A (APPEND B C» and (APPEND A B); B is

being decomposed in the call (APPEND B C); (APPEND A B) is being de-

composed in the call (APPEND (APPEND A B) C). Since we cannot induct

upon (APPEND A B), we do not consider it as a possible induction candi-

date. This leaves induction on either A or B. We choose A because it

is recursed upon the most often.

First, we must prove the NIL-case, which is just (1) with A replaced

by NIL:

(EXtUAL (APPEND NIL (APPEND B C» (APPEND (APPEND NIL B) C».

100

But this just evaluates to T, because both arguments to the EQUAL

evaluate to (APPEND B C), and EQUAL evaluates to T if its arguments

have identical values.

So we must now prove the induction step. We will assume:

(2) (EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C)),

as our hypothesis, and try to prove:

(3) (EQUAL (APPEND (CONS A1 A) (APPEND Be))
(APPEND (APPEND (CONS A1 A) B) C)).

Logically, we could assume the induction hypothesis for A1 as well as

A. But since the recursion in APPEND is on the CDR of its first

argument, we can predict that such a hypothesis will not be needed.

The evaluated conclusion should involve APPEND applied only to the

CDR of (CONS A1 A), not to the CAR as well. Thus, we use the simple

hypothesis, (2).

If we evaluate the arguments to the EQUAL in the conclusion, (3),

they become:

(CONS A1 (APPEND A (APPEND Be)))

and

(CONS A1 (APPEND (APPEND A B) C)).

(For the first argument, this evaluation should be obvious. For the

second, note that the inner APPEND decomposes the (CONS A1 A) in its

first argument and produces, as its result, the value:

(CONS A1 (APPEND A B)),

which is the first argument to the outer APPEND. Since it is evaluated

after its arguments have been, it now decomposes the CONS supplied in

its first argument and produces the result above.)

101

Once the two arguments to the EQUAL are evaluated, the (built-in)

definition of EQUAL is applied. Since two CONSes are EQUAL if and only

if their CARs and CDRs are EQUAL, according to the non-logical axioms,

the system compares the corresponding components. The CARs are identical

(both are A1), but the CDRs are not. Thus, the equality of the two

rests on the truth of the statement that their CDRs are equal:

(4) (EQUAL (APPEND A (APPEND B C» (APPEND (APPEND A B) C».

But (4) is just the induction hypothesis, (2), which we are

inductively assuming to be T. So we have proved that (3), the induction

conclusion, is T, using the induction hypothesis and evaluation. Hence,

the associativity of APPEND has been established.

By inducting upon the structure that was being recursed upon we

ensured that the induction conclusion could be evaluated at least one step.

This was supposed to yield a simple expression involving the induction

hypothesis. In this particular theorem, it yielded the induction hypothesis

itself.

2.3 An Example of Additional TeChniques

The previous example was very simple for two reasons: The NIL-case

was trivial (it evaluated to T), and the induction hypothesis was easy

to use (it was identical to the evaluated conclusion). The next example

illustrates several techniques that are useful in more complicated

situations. Once these techniques have been illustrated, the theorem

prover can be described.

The theorem to be proved is the following interesting relationship

between APPEND and REVERSE:

(1) (EQUAL (APPEND (REVERSE A) (REVERSE B))
(REVERSE (APPEND B A))),

where the definition of REVERSE is:

(REVERSE (LAMBDA (X)
(COND X

102

(APPEND (REVERSE (CDR X)) (CONS _(CAR X) NIL))
NIL))).

Again, evaluation of (1) leads nowhere, but it indicates that B is

being recursed upon (twice). We therefore induct on B.

The NIL-case evaluates to:

(2) (EQUAL (APPEND (REVERSE A) NIL) (REVERSE A)).

We must now prove this before proceeding to the inductive step.

However, the term (REVERSE A) occurs on both sides of the EQUAL.

This suggests that we might try generalizing the theorem and proving:

(3) (EQUAL (APPEND C NIL) C).

Formally, this corresponds to proving:

YX(APPEND (REVERSE X) NIL) = (REVERSE X),

by proving the more general theorem:

YY(APPEND Y NIL) = Y.

This generalization is particularly promising because (REVERSE A) can

be any list at all, given that A can be any list.

In fact, (3) is easy to prove by induction. Evaluation tells us

to induct upon C. The NIL-case evaluates to T, and the inductive step

\

goes through just as in the previous example. So, after a generalization

and a second induction, we have proved the NIL-case for (1).

We now proceed to the inductive step. We will assume (1) as our

induction hypothesis, and try to prove:

(4) (EQUAL (APPEND (REVERSE A) (REVERSE (CONS B1 B)))
(REVERSE (APPEND (CONS B1 B) A))).

103

Evaluation of (4) yields:

(5) (EQUAL (APPEND (REVERSE A) (APPEND (REVERSE B) (CONS B1 NIL»)
(APPEND (REVERSE (APPEND B A» (CONS B1 NIL»).

We must now use our induction hypothesis, (1).

The hypothesis tells us that

(APPEND (REVERSE A) (REVERSE B»

is equal to:

(REVERSE (APPEND B A».

Although that equality does not occur in the evaluated conclusion,

the second of the two terms equated does occur. This is because the

term to which it gave rise in the conclusion managed to recurse back to

an expression involving the hypothesis term. We can thus "use" the

hypothesis by substituting the left-hand side of it for the right-hand

side of it in the conclusion. This is called 'cross-fertilization' and

produces:

(6) (EQUAL (APPEND (REVERSE A) (APPEND (REVERSE B) (CONS B1 NIL»)
(APPEND (APPEND (REVERSE A) (REVERSE B) (CONS B1 NIL»).

As we did with the NIL-case, we now notice that (6) has (three)

common subterms "across" the EQUAL. These are the terms (REVERSE A),

(REVERSE B), and (CONS B1 NIL). If we generalize as before, replacing

these three terms by new skolem constants, C, D, and E, we get:

(7) (EQUAL (APPEND C (APPEND D E» (APPEND (APPEND C D) E».

But this is just the associativity of APPEND, which was our first

example. Thus, we know that a final induction, this time on C,

completes the proof.

104

CHAPTER 3 DESCRIPTION OF THE THEOREM PROVER

3.1 Overview and Control Structure

Several facts are clear from the preceding examples. Evaluation

should be tried on the theorem first, since some theorems -- especially

the NIL-cases of induction arguments -- will yield to evaluation. As it

turns out, it is often helpful to apply normalization and simplification

rules to the theorem as well. If these routines do not prove the theorem,

cross-fertilization and generalization should be tried. Finally,

induction should be resorted to.

In the course of proving a theorem, it may be necessary to use

induction several times to establish lemmas (as in the example in

Section 2.3). In addition, quite complicated conjunctions and implica

tions often arise (as a result of induction) and must be established.

While these requirements could be met by a hierarchical control structure

and a data base of the relevant hypotheses, a much more elegant solution

is availab1ehere. This is explained below.

There are several major routines in the theorem prover, including

the evaluation routine, ~, which has already been informally discussed.

The other routines will be described briefly below. The control structure

is then presented, and then each of the major routines is described

in detail in the succeeding sections.

normalize is a theorem prover which applies about a dozen rewrite

rules to put LISP expressions in a normal form. For example,

(COND (COND A B C) D E)

becomes

(COND A (COND B D E) (COND C DE»,

.105

and (COND A A NIL) becomes simply A, as a result of normalization.

reduce is a theorem prover which attempts to propagate the results

of the tests in conditional statements down the branches of the COND

"tree". Thus, if some expression occurs as the first argument to a

COND, it is assumed to be non-NIL on the true-branch and NIL on the

false-branch. For example,

(COND A (COND A B C) (FOO A»

reduces to:

(COND A B (FOO NIL».

The three routines !!!h, normalize, and reduce are often used

in sequence until the theorem oan no longer be rewritten by any of

them. This process is called 'normalation'.

fertilize is responsible for cross-fertilization and using the

induction hypothesis when it is an equality.

generalize is responsible for generalizing the theorem to be

proved by replacing some common subexpressions by new skolem constants.

However, generalization is dangerous (because the generalized version

may not be a theorem) and generalize attempts to discover whether the

value of the expression being replaced is of a highly constrained type.

It does this by automatically writing a new recursive LISP function

which is designed to recognize lists in the range of the replaced term.

This is done bya routine called typeexpr. This is a good example of

using automatic programming to help construct a proof.

Finally, induct is responsible for generating induction formulas.

This is done by using !!!h to determine likely candidates to induct

upon, and to determine the precise form of the induction formula.

106

The control structure of the program is embedded in the syntax of

the theorem being proved, and in the routines eval, normalize, and reduce.

For example, if p and q are both boolean expressions and both must

be proved, then the theorem becomes (COND p q NIL). This represents

the conjunction of p and q in LISP. The two conjuncts are worked on

simultaneously by the various rewrite rules.

If p is eventually rewritten to T, the theorem is (COND T q NIL),

which ~ transforms to q. If q is shown to be T first, the theorem

is (COND p T NIL), which normalize rewrites to p. If q is shown to be

the same as p, the theorem is (COND p p NIL), which normalize rewrites

to simply p.

If it must be shown that p implies q, where p and q are again

boolean, the theorem becomes (COND p q T). Again various rewrite

rules apply.

All of the logical connectives have COND representations (see the

definitions of AND, OR, NOT, and IMPLIES in Appendix A). The theorem

prover's logical behaviour is entirely determined by the form of the

theorem, and in particular, the kinds of conditional statements present.

There is no special logical language. The routines that manipulate

LISP expressions serve the double role of manipulating logical ones as

well.

As an example, suppose the theorem to be proved is p(A,B), and it

is necessary to try induction on A, with induction hypotheses about

the CAR and CDR of the term inducted upon. Then induct constructs the

expression:

(AND p(NIL,B) (IMPLIES (AND p(A1,B) p(A,B» p«CONS A1 A),B»),

which becomes the theorem to be proved. This just normalates to:

(COND p(NIL,B)
(COND p(A1,B)

NIL).

(COND p(A,B) p«CONS A1 A),B) T)
T)

(In fact, induct uses the non-primitives AND and IMPLIES only to

make its output more readable for the user. ~ immediately

replaces the non-recursive AND and IMPLIES function calls by their

107

definitions, and normalize cleans the result up, so that the theorem

is put into the form above.)

Should p(NIL,B) become T, then the next time the expression

is evaluated, it is rewritten to:

(COND p(A1,B)
(COND p(A,B) p«CONS A1 A),B) T)
T).

~ has effectively shifted the attention of the entire system to the

induction step.

An outline of the program is given below. The identifier ~ is

the expression representing the theorem and must be shown to be T.

loop: set oldthm to thm.

set thm to reduce(normalize(~(~))).

if thm is T, exit.

if thm is not identical to oldthm, go to loop.

if fertilization is possible,
set ~ to fertilize(thm)

otherwise, if thm is of the form (COND p q NIL),
set!h! ~(COND induct(generalize(p)) q NIL)

otherwise, set ~ to induct(generalize(!h!)).

go to loop.

108

The check for theorems of the form (COND p q NIL) (and also of the

form (COND p NIL q» is so that if a conjunction must be proved by

induction, the first conjunct, p, is worked on first. Should that

succeed, the theorem will be rewritten by the COND eValuation rules

and become just the second conjunct.

Thus, the system contains no special logical language or control

structure exclusively for implementing the logical connectives. These

connectives are all simulated by COND (and the user can use the

non-primitives AND, OR, NOT, and IMPLIES which expand into the

the proper conditionals). The system has a lot of built-in information

about CONDo 'Logical operations' are performed by the same routines

that simplify LISP expressions. LISP is thus the only knowledge domain

involved. The result is that the program is concise, simple, and

powerful.

Routines designed for one purpose, say evaluating expressions, can

apply their knowledge to other purposes, such as recognizing solved sub

goals and shifting the attention of the system. There are no communications

or interface problems preventing unforseen applications of knowledge or

serendipity. Finally, such a control structure means that any program-

ming effort devoted to expanding the program's knowledge of the LISP

primitives equally benefits the program's logical behaviour and vice

versa.

The major routines in the above scheme and the normalation process

will now be described in detail.

109

3.2 Evaluation

There are two useful ways to look at the eval routine. One is as

a theorem prover which applies logically sound rewrite rules to its

input to produce its output. The other is as a symbolic interpreter

for this LISP subset.

We will discuss the theorem prover view first, and for simplicity

we will initially ignore non-primitive functions. The view of eval

as an interpreter will emerge from this discussion.

eval accepts as input a term in the theory and yields as output an

equivalent term. The output is obtained from the input by exhaustively

applying the rewrite rules suggested by the following theorems:

(CAR NIL) = NIL.

(CDR NIL) = NIL.

(CAR (CONS X Y)) = X.

(CDR (CONS X y)) = Y.

X = Y -> (EQUAL X y) = T.

X I Y -> (EQUAL X y) = NIL.

(EQUAL (CONS X y) (CONS U V)) = (COND (EQUAL X U)
(EQUAL Y V)
NIL).

(COND (CONS X Y) U V) = U.

(COND NIL U V) = V.

That the above formulas are theorems is clear from the non-logical

axioms.

For those theorems above which are simple equalities, the corre-

sponding rewrite rule simply replaces any instance of the left-hand term

occurring in the input by the appropriate instance of the right-hand term.

In the case of the two theorems:

X = Y -> (EQUAL X y) = T.

X ~ Y -> (EQUAL X y) = NIL.

any instance, (EQUAL x y), of (EQUAL X y) is replaced by T if x is

known to be equal to y, and is replaced by NIL if x is known to be

not equal to y.

110

The routine used to detect whether x and y are equal or not is

called ident. This routine returns one of three results: "equal",

"unequal", or "unknown", based only on the syntax of x and y. It

can be viewed as a (very incomplete) theorem prover for theorems of

the form x = y. It returns "equal" if it proves the theorem, "unequal"

if it proves the negation of the theorem, and "unknown" if it fails to

do either. The routine knows the abbreviation conventions used, and

returns "equal" only when x and y are syntactically identical (modulo

the abbreviations). The theorem it uses to determine that x and yare

unequal is: no explicit list is equal to any of its sublists. This

theorem has a trivial inductive proof. The most obvious instance of

the theorem is that NIL is never equal to any CONS. Below are some

examples of ident's behaviour.

x y ident(x,y)

(CONS A B) (CONS A B) equal

(CONS 0 NIL) T equal

(CONS A B) NIL unequal

(CONS A B) A unequal

(CONS A B) C unknown

(CONS A B) (CONS A C) unknown

111

The rewrite rules applied by eval are given below. Any term of the

form of one of those on the left-hand side of an arrow is replaced by

the corresponding term on the right-hand side. Any condition on the

use of a rule is stated. The rules are applied to all subexpressions

until no further rules apply. The rules are justified by the theorems

listed above.

(CAR NIL) ~ NIL.

(CDR NIL) ~ NIL.

(CAR (CONS x y» ~ x.

(CDR (CONS x y» ~ y.

(EQUAL x y) ~ T, if ident(x,y) = "equal".

(EQUAL x y) ~ NIL, if ident(x,y) = "unequal".

(EQUAL (CONS x y) (CONS u v» ~ (COND (EQUAL x u)
(EQUAL Y v)
NIL).

(COND (CONS x y) u v) ~ u.

(COND NIL u v) ~ v.

A few examples of evaluation may clarify the definition.

x

(CONS A B)

(CAR (CONS A B»

(CONS (CAR (COOS A B» NIL)

(EQUAL 3 (CONS NIL 2»

(COND (EQUAL (CDR (CONS A B» B)
(CAR (CONS A B»
NIL)

(EQUAL (CONS A B) (CONS C B»

(COND A (CDR (CONS A B» C)

~(x)

(CONS A B)

A

(CONS A NIL)

T

A

(COND (EQUAL A C)
T
NIL)

(COND A B C)

If evaluation yields x as the output for the input term y, we Cit 1.1

x the 'value' of y, or say that y 'evaluates to' x. We say that a term

is 'unchanged by evaluation' if none of the rules apply.

We are assured that a term and its value are always equal, since

the rules applied always replace terms by equal terms. We are also

assured that if x is the value of y, then x itself is unchanged by

evaluation. This is because to be the output of ~, no further rewrite

rules are applicable to x.

We should observe an important feature of evaluation. If the

expression evaluated contains no skolem constants, its value will be

a specific list, that is, a term composed only of CONS and NIL expressions.

The inductive proof of this is straightforward:
•

If the term has no arguments it is NIL and its value is NIL. If

the term has arguments, assume they have been completely evaluated and

that they are specific lists. Then the statement holds if the function

symbol of the term is CAR or CDR since the output is just a sUbexpression

of the argument. It holds if the function symbol is CONS since no rules

apply and the output will be just CONS applied to the two arguments.

However, CONS applied to two specific lists is a specific list. The

statement holds if the function symbol is EQUAL because we can easily

decide if two specific lists are identical, so the output is T or NIL.

Finally, it holds if the function symbol is COND because the first

argument is either NIL or an explicit CONS, so the value is one of the

other arguments (and both are specific lists).

In all of these cases no further evaluation is possible since the

output has either been previously evaluated, or is T or NIL. We thus

113

see that this procedure will transform any totally primitive expression

(containing no skolem constants) into a specific list. In particular,

eval will decide the truth or falsity of any boolean statement involving

no skolem constants.

From the form of this inductive argument we derive the basic form

of the recursive implementation of~: eValuate the arguments of any

expression and then apply one of the rewrite rules to the top-level

expression. The theorem just proved and this implementation suggest

the other view of eval, that is, that it is an interpreter for this

LISP subset.

The examples exhibited above show that if skolem constants are

involved it is possible for the output of eval to be other than a

specific list. In fact, it need not even be an explicit list.

We will now consider non-primitive functions and the way eValuation

treats them. The obvious rewrite rule is:

(f x1 ••• x) ~ defn(x1 , ••• , x), where the
n defining axiom iBr f is:

(f X1 ••• Xn) = defn(X1, ••• , Xn).

This rule is adequate as long as the x. are specific lists.
~

However, consider what such a rule would allow us to do with (APPEND A B).

Applying the rule the first time gives:

(COND A
(CONS (CAR A) (APPEND (CDR A) B»
B).

We can now apply the rule again (to the APPEND inside) and get:

(COND A
(CONS (CAR A)

B).

(COND (CDR A)
(CONS (CAR (CDR A» (APPEND (CDR (CDR A» B»
B»

114

We could expand it again, but clearly we are losing.

We want to halt such an expansion when it is pointless to continue.

(In the above example, it was pointless to even start.) This is impos-

sible for arbitrary recursive functions. However, for a large class of

functions, including most of those in elementary list processing, a

relatively simple restatement of the rule suffices:

defn(x1 , ••• , x) where the
defining axiom r&r f is:
(f X1 ••• Xn) = defn(X1, , Xn),
and no new explicit CAR or CDR terms
appear in the value of any argument
to any recursive call of f in
defn(x1 , ••• , xn)·

Inspecting the first expansion of (APPEND A B) above we see that

(CDR A) appears as the value of an argument to a recursive call of

APPEND, and hence, the expansion is not allowed.

Intuitively, this restriction is reasonable. If we are recursing

on an argument we usually obtain the value of the argument for the

next recursive call by applying some combination of CARs and CDRs to

the current value. If we cannot fully evaluate the new arguments,

the recursive calls within the definition are, in some sense, more

complicated than the original expression.

Formally, the restriction does not affect the validity of the rule.

The expanded definition is always equivalent to (f x1 ••• xn), so it

is certainly sound to apply the rule. The restriction merely prevents

some applications.

It is easy to see that the following evaluations are permitted

under the restriction:

x

(APPEND (CONS A1 A) B)

(REVERSE (CONS A1 A))

(MEMBER A (CONS B1 B))

(COpy (CONS A1 A))

(ORDERED (CONS A1 A))

115

(CONS A1 (APPEND A B))

(APPEND (REVERSE A)
(CONS A1 NIL))

(COND (EQUAL A B1)
T
(MEMBER A B))

(CONS (COPY A1)
(COpy A))

(COND (LTE A1 (CAR A))
(ORDERED A)
NIL)

It should be noted that this rewrite rule, even with its restriction,

allows evaluation to transform any expression, (f x1 ••• xn), where f is

any total, recursive function, into a specific list, provided the x. are
J.

specific lists. The proof of this, for say, primitive recursive f, is

an inductive proof similar to the one that f will always terminate.

The proof relies on the fact that once the non-primitive function calls

in the definition have been evaluated to specific lists (by the induction

hypothesis) the previous theorem applies. The rule may always be applied

in these cases (that is, the restriction does not prevent its use)

since CAR and CDR of specific lists always evaluate to specific lists

(rather than terms with explicit CAR or CDR terms in them).

We thus observe that ~ is a symbolic interpreter for this LISP

subset in the following sense. Let x be an expression in the theory

such that a traditional LISP interpreter (respecting the conventions

of this subset) yields some S-expression, s, given x. Then eval(x)

is a specific list, 1, with the same structure as s. By "the same

structure" is meant: 1 is NIL if and only s is NIL, and 1 is

(CONS Y z) if and only if s is (u • v), where y has the same structure

as u, and z has the same structure as v.

116

However, this interpreter is somewhat more flexible than traditional

ones in being able to handle skolem constants and expressions containing

them.

Evaluation can be used to generate a case analysis for the theorem

being proved. For example, consider the expression:

(MEMBER A (CONS B1 B)).

Evaluation of this expression yields:

(COND (EQUAL A B1) T (MEMBER A B)).

This just says that the input expression is T if A is equal to B1, or

if A is a MEMBER of B. Thus, evaluation has broken up the original

expression into two cases.

Notice also that we can discover the kinds of structures a recursive

function needs in its recursive arguments, by analyzing the way evaluation

halts the expansion of the expression. This provides us with the

information necessary to generate induction formulas.

For example, in evaluating (APPEND A B) we noticed that the only

"culprit" preventing application of the recursive function rewrite rule

was (CDR A). Hence, if the first argument had been a single CONS,

evaluation would have proceeded one full step (one application of

the recursive function rule). Furthermore, the resulting value would

involve APPEND applied only to the CDR of the supplied CONS, so that

an induction hypothesis about the CAR would not be used.

In evaluating (COPY A), we find (CAR A) and (CDR A) as culprits.

Thus, a single CONS is again sufficient, but one full recursive step

leaves an expression containing COPY applied to both the CAR and the

CDR. Thus, induction hypotheses about both may be necessary.

117

We will discuss the details later. Here it is sufficient merely to

point out that in order to set up the induction formula it is essential

to know why evaluation was halted. In the implementation of ~ we

will provide mechanisms for communicating this information.

By now the implementation of ~ should be obvious. The routine

uses an association list to bind the variables in function definitions

to their values.

The atoms NIL, skolem constants, T, and the integers evaluate to

themselves. All other atoms are evaluated by looking up their values

on the association list.

CAR and CDR expressions are handled by evaluating the argument and

returning the appropriate component (or NIL) if it is an explicit list.

However, if it is not, the input expression with the argument evaluated

is returned. In this case there is the possibility that the CAR or CDR

expression occurred as an argument to a non-primitive function currently

being expanded by the function application mechanism. If this is so,

the "failure" of the CAR or CDR indicates that the expansion cannot

be allowed. To communicate this information the term is added to a

list which is used by the function application mechanism to construct a

description of why the function failed to properly expand. This will

be explained shortly.

CONS expressions are handled by simply returning the input expres

sion with the two arguments evaluated.

EQUAL expressions cause their two arguments to be recursively

evaluated and then compared using ident. If they are identical, eval

returns T, if they are definitely unequal, ~ returns NIL. If they

118

are both explicit CONS expressions (and neither of the above conditions

hold), ~ constructs the COND expression indicated by the third EQUAL

evaluation rule, and passes that expression to the COND section of eval.

If none of the conditions hold, the expression with its arguments

evaluated is returned.

COND statements are evaluated by initially evaluating only the first

argument. If its value is identical to NIL, the third argument is

evaluated and returned. If the value of the first argument is an ex

plicit CONS, the second argument (of the input COND expression) is

evaluated and returned. Otherwise, the input expression with all of its

arguments evaluated is returned.

Finally, if the function symbol is a non-primitive, the expression

is (very carefully) evaluated as follows: The arguments are evaluated

recursively. Should any of them have CAR or CDR failures as described

above, and should the input expression represent a recursive call of a

function whose definition is being evaluated, then the evaluation halts.

~ returns the input expression with its arguments evaluated, rather

than applying the definition again. If the arguments evaluate without

such failures, the definition is retrieved (from the property list

of the function symbol) and the variables in it are bound on the associa

tion list to the evaluated arguments. Then the definition is evaluated.

When completed, the routine determines whether any recursive calls were

halted as above. If so, the application of the definition cannot be

permitted, and the input expression with its arguments evaluated is

returned. In this case, eval constructs and stores a 'fault description'

from information collected during the evaluation of the definition.

119

This is described below. Lastly, if the definition was evaluated without

any recursive calls being halted by failed CAR or CDR terms, the evaluated

definition is returned.

Except for the allowance for skolem constants, which make certain

expressions "unevaluatable", it should be clear that this routine is

just a LISP interpreter for this subset.

The fault descriptions constructed and stored by the function

entry mechanism are collected at each level in such a way that when

the process is completed, the variable analysis contains a list of the

fault descriptions constructed for the expressions appearing in the

input. There is thus a description for each non-primitive expression

which failed to take at least one recursive step.

Each fault description explains why a particular expression (now

unknown) failed to recurse. These descriptions are composed of two

lists: a bomb list, and a failures list.

A bomb list is a list of pockets, which are lists of failed CAR

and CDR terms associated with some recursive call of the function

concerned. All of the terms in a pocket were simultaneously recursed

upon by the function in that call. There is a pocket on the bomb list

for each halted recursive call of the function. To ensure that the

function properly recurses one step, the arguments must allow each

CAR and CDR in each pocket to evaluate without failure.

A failures list is a list of failed CAR and CDR terms which occurred

in the definition evaluated, but not in argument positions of recursive

calls of the function concerned. These failures would have appeared

in the evaluated definition had recursion been permitted. An examination

1.0(,

of the function ORDERED, for example, illustrates that it is poenihln

for a function to have sufficient information to recurse once, without

having sufficient information to properly CAR and CDR its arguments in

the non-recursive positions of the definition. Although these failures

will not prevent recursion, they are used by the induction machinery

to provide as much structure as necessary in the induction conclusion.

Several examples of evaluation and the resulting analysis should

help the reader to decode (or code)' this description.

The input term (APPEND A B) evaluates to (APPEND A B). The

analysis list has only one fault description on it. This description

contains a bomb list containing only one pocket. The pocket contains

(CDR A). The failures list has the term (CAR A) on it. The configu

ration of analysis is:

««(CDR A») «CAR A»».

The input term (EQUAL (COPY A) A) is unchanged by evaluation.

Again, analysis contains only one fault description. The bomb list

has two pockets in it (one for each recursive call of COPY in the defi

nition). The pockets contain (CDR A) and (CAR A) respectively. No

non-recursive failures occurred, so the failures list is empty.

analysis is:

««(CDR A»«CAR A») NIL».

The input term (OR (LTE A B) (LTE B A» evaluates to:

(COND (LTE A B) T (COND (LTE B A) T NIL».

There are two fault descriptions on analysis, one for each LTE call.

The bomb list of each description contains only one pocket, but there

are two terms in it, since LTE recurses simultaneously on its two

121

arguments. No non-recursive failures occurred. analysis is:

««(CDR A) (CDR B») NIL) ««CDR B)(CDR A») NIL).

Finally, (ORDERED (SORT A» is unchanged by evaluation. The

analysis list contains two descriptions on it, one for ORDERED and

one for SORT. The ORDERED description describes attempted recursion

on (CDR (SORT A», and numerous non-recursive failures (because

ORDERED compares the CAR of its argument to the CAR of the CDR, using

LTE). The SORT term attempted recursion on A and non-recursively

accessed the CAR of A. Note that the second level recursive calls

of LTE by ORDERED and ADDTOLIST by SORT are not reported in analysis

since they do not even enter the picture unless the top-level functions

properly recurse. The fault description corresponding to the ORDERED

term is:

««CDR (SORT A»»
«CAR (CDR (SORT A»)(CDR (SORT A»(CAR (SORT A»(CDR (SORT A»»,

and the description for the SORT term is:

««CDR A») «CAR A»).

It should be clear from these examples that the information in

analysis is a collection of straightforward descriptions of "what went

wrong" in the evaluation of the expression. The information arises

naturally in the course of evaluation of an expression with CAR and CDR

failures. eval differs from other interpreters in that it collects this

information as it arises and then carries on with its symbolic evaluation.

The importance of ~ cannot be overstated. It is an efficient

and very natural algorithm that always simplifies its input. (As observed,

if no skolem constants are involved, it will decide the truth or falsity

of a statement.) It can be used to generate a case analysis for the

122

problem at hand, its descriptions of why it failed provide essential

information to the routine which generates induction formulas, and

it is primarily responsible for converting the induction conclusion

into a statement involving the induction hypothesis.

3.3 Normalization

The normalize routine puts its argument expression into a normal

form by applying about a dozen rewrite rules. Before the rules are

presented, it is convenient to discuss the notion of a boolean expression.

As introduced in Section 1.1, this is an expression whose value

is always either NIL or T. Examples of boolean expressions include

(EQUAL A B) and (COND A NIL T). Ifx is a skolemized expression, then

x is boolean if and only if (BOOLEAN x) = T is a theorem, where the

definition of BOOLEAN is:

(BOOLEAN (LAMBDA (X) (COND X (EQUAL X T) T))).

The reason this concept is important is that some of the rewrite

rules used by normalize come from theorems such as:

(BOOLEAN X) = T -> (COND X T NIL) = X.

Thus, if some expression, x, is known to be boolean, then (COND x T NIL)

can be rewritten to simply x.

To effectively implement such rules it is necessary to know when

an arbitrary expression is boolean. Ideally, we need a routine which

is total and which returns true for input x if and only if (BOOLEAN x) = T

is a theorem. But any theorem can be put into this form, because q is a

theorem if and only if (COND q T 2) is boolean. Thus, we cannot expect

to find the ideal routine above, since it would be a decision procedure

for the theory. Instead, we will settle for a routine, called boolean,

1?~

which is total and which returns true only if its input is boolean.

boolean is a theorem prover in its own right, and in order to handle

recursive functions, must be capable of inductive arguments.

We say an expression 'is boolean' if boolean returns true for that

expression. To determine whether x is boolean, the following procedure

is used. If x is an atom, then it is boolean if and only if it is

identical to NIL or T. If x is not an atom, consider the possibilities.

If the function symbol is CAR or CDR, x is not boolean (since, in

general, these are not boolean valued functions). If the function

symbol is CONS, x is boolean if and only if it is identical to

(CONS NIL NIL). If the function symbol is EQUAL, it is boolean.

If the function symbol is COND, x is boolean if and only if both the

second and third arguments of the conditional are boolean. Finally,

if the function symbol is a non-primitive, x is boolean if and only

if the definition of the function is boolean, provided any recursive

calls of the function within the definition are (inductively) assumed

to be boolean.

Once a non-primitive function has been discovered to be boolean

or non-boolean, its property list is so marked. The inductive argument

for recursive functions is handled by checking the property list of the

function symbol. If known (either way) whether it is boolean, the

stored answer is returned. If not known, it is assumed to be boolean

by marking the property_ list. Then the definition of the function

is fetched and explored. Any recursive calls are thus automatically

assumed to be boolean when the property list is checked. Should the

exploration of the definition discover a non-boolean output, the property

list entry is reset to non-boolean.

124

As an example, consider the expression (MEMBER A B). To determine

if it is boolean the definition is inspected (since MEMBER is non-

primitive). Before doing so however, the boolean property of MEMBER

is set to true.

The definition of MEMBER is:

(MEMBER (LAMBDA (X y)
(COND Y

(COND (EQUAL X (CAR y))
T
(MEMBER X (CDR Y)))

NIL))).

Since the top-level function symbol is COND, the second and third

arguments are checked. The third is certainly boolean. The second

is a COND, so its second and third arguments are checked. Its second

argument is T, and thus boolean. The boolean property is set for the

function symbol of its third argument, so it is (inductively) boolean.

Hence, (MEMBER A B) is boolean.

The procedure also successfully determines that NUMBERP, and

ORDERED (for example) are boolean, and that UNION, LENGTH, and SORT

are not.

The procedure will never classify (or 'type') something as boolean

when it is not boolean. However, as pointed out earlier, it is possible

to contrive examples which are boolean but not boolean.

One such example is of the sort previously mentioned:

(COND (EQUAL (TIMES A B) (TIMES B A)) T 2).

This is boolean (in fact, it is T), but is typed as non-boolean because

2 is not boolean. The routine makes the assumption that either branch

of a COND can be the value of the expression. This is equivalent to

125

assuming (reasonably) that the test is not a theorem. Another sort of

example is:

(CAR (LENGTH A»,

which is always NIL, and hence, boolean. It is typed as non-boolean

because CAR is not, in general, a boolean valued function. Since the

routine ignores the values of the arguments to functions other than

COND, such subtleties are lost.

These shortcomings are not really serious. In the context in

which boolean is used, they can never introduce unsoundness, and

experience has shown that such counterexamples seldom arise in

real theorems.

Actually, boolean is a specialization of a much more general

routine, called typeexpr. This routine writes a LISP function which

attempts to recognize the range of the input expression to typeexpr.

Given (MEMBER A B) typeexpr could generate the function MEMBTYPE:

(MEMBTYPE (LAMBDA (X) (COND X (EQUAL X T) T»),

which is just BOOLEAN. More generally, typeexpr can generate recursive

'type functions'. The routine is explained in Section 3.7.

We now return to the normalization routine itself. The rewrite

rules it applies are justified by the following theorems.

(BOOLEAN X) = T -> (EQUAL X T) = X.

(EQUAL (EQUAL X Y) Z) -> (COND (EQUAL X y)
(EQUAL Z T)
(cOND Z NIL T».

(BOOLEAN X) = T -> (COND X T NIL) = X.

(COND X Y y) = y.

(COND X x NIL) = X.

(COND (COND X Y Z) U V) = (COND X
(COND Y U V)
(COND Z U V)).

The last theorem is':just an instance of the schema:

(f X1 ••• (COND Y U V) ••• Xn) = (COND Y

126

(f X1 ••• U
(f X1 V

Xn)
Xn)).

As usual, the proofs of these theorems are completely trivial.

For example, in the first theorem, X is boolean if it is T or NIL.

Assuming that it is T, we must show that (EQUAL T T) = T, which is

true. Assuming it is NIL, we must show that (EQUAL NIL T) = NIL,

which is true.

The fourth theorem,

(COND X Y y) = Y,

is interesting. In the theory, X must be NIL or some CONS. In

both cases, the COND expression is equivalent to Y. In real LISP,

X may fail to terminate, so that the left-hand side never terminates

when evaluated, while the right-hand side might. Of course, if the

left-hand side does terminate, it is equal to Y.

The general distribution schema is also interesting. Its proof

is not, since it is a straightforward case analysis: Y = NIL, or

Y = (CONS (CAR y) (CDR Y)).

In addition, normalization relies on four theorems used by !!!h.

These are the theorems that evaluate EQUAL if the two arguments are of

known relationship, and the theorems that evaluate COND when the first

argument is an explicit list. This redundancy is commented on in

Section 6.3,

127

The rewrite rules themselves are given below. Their correspondence

with the theorems above should be obvious. Any rule involving EQUAL

has a symmetric version not presented -- that is, the order of the

arguments in an EQUAL is not critical. Since some expressions may be

rewritten by two or more rules, the order in which they are listed is

the order in which they are preferred. Finally, normalize recursively

normalizes the argument expressions to any input expression before·

any of these rules are applied to the top-level expression.

(EQUAL x y) => T, if ident(x,y) = "equal".

(EQUAL x y) => NIL, if ident(x,y) = "unequal".

(EQUAL x T) => x, if x is boolean.

(EQUAL (EQUAL x y) z) => (COND (EQUAL x y)
(EQUAL z T)
(COND z NIL T».

(COND (CONS x y) u v) => u.

(COND NIL u v) => v.

(COND x T NIL) => x, if x is boolean.

(COND x y y) => y.

(COND x x NIL) => x.

(COND (COND x y z) u v) => (COND x

(f x1 ••• (COND Y u v) •••

(COND y u v)
(COND z u v», where either

y or z is NIL, or u and v are
not NIL.

x) => (COND y
n (f x1 ••• u •••

(f x 1 ••• v •••
where f is not CONDo

The rather complicated restriction on rewriting

(COND (COND x y z) u v)

causes conjunctions to be treated delicately. For example, I r v In

NIL, then the expression represents the conjunction of (COND x y z)

and u. In this case, the first conjunct is not to be distributed over

the second (since it is preferable to work on conjuncts separately).

However, if z is NIL, then the first conjunct is itself a conjunction.

The rule is then allowed to rewrite the expression; thus

(x & y) & u

is rewritten to:

x & (y & u).

The basic philosophy of normalize is to eliminate EQUAL and COND

when possible. Compound EQUAL statements are broken into conditionals

so that the cases can be handled separately. COND statements are

distributed over each other and other function symbols, provided

conjunctions are left intact.

Note that the fact that some boolean expressions are not boolean

does not introduce unsoundness. It merely means that two rules cannot

be applied.

Since the rules always replace terms by equivalent ones, the

output of normalize is equivalent to its input.

Below is an example of normalization. The function GT is boolean

(as can be confirmed by inspecting its definition in Appendix A).

The expression:

(COND (COND (COND A B A) (COND B T NIL) T)

normalizes to:

(COND (EQUAL A (COND (GT B B) A (CONS A1 A») NIL T)
(COND A1 NIL NIL»

(COND (COND A

3.4 Reduction

(COND B (COND B T NIL) T)
(COND A (COND B T NIL) T»

(COND (GT B B) NIL T)
NIL).

129

The reduce routine is responsible for propagating the results of

the tests in conditional statements down the branches of the conditional

tree. For example, in an expression of the form:

(COND x p(x) q(x»,

we can assume that any x occurring in p(x) is non-NIL, and any x in

q(x) is NIL.

This is important because normalization often produces expressions

in which p(x) and q(x) involve further conditional statements with x as

the test. These redundant conditionals can be pared away, and this is

what reduce does.

The preceding example of normalization illustrates this. The

output of normalize is at the top of the page. Note that both A and

B occur as tests in conditionals in the branches of conditionals with

A and B as tests. Using reduce ,the normalized expression from the

last section can be transformed to:

(COND (COND A (COND B T T) T)
(COND (GT B B) NIL T)
NIL).

(This expression can be normalized again now, yielding:

(COND (GT B B) NIL T).)

Now that the need for reduction is clear, the details will be

presented.

1'0

reduce relies on three equality schemas. The first is:

(COND X p(X) q(X» = (COND X p((CONS (CAR X) (CDR X») q(NIL».

This is seen to be an equality by considering the cases: X = NIL, or

X = (CONS (CAR X) (CDR X».

The second equality is derived from the first, with the additional

hypothesis that X is boolean. In this case, when X = (CONS (CAR X) (CDR X»

then X = T. Thus:

(BOOLEAN X) = T -> (COND X p(X) q(X» = (COND X peT) q(NIL».

Finally, the third equality is based on the fact that if X is

an equality statement, then when it is non-NIL the two terms equated

can be assumed to be equal, and one can be substituted for the other:

(COND (EQUAL X y) p(X)q«EQUAL X y») =
(COND (EQUAL X y) p(y) q(NIL».

In essence, reduce selectively applies these three equality schemas

to all subexpressions of its input and then uses the COND evaluation

rules to eliminate any redundant tests. That is, if x is tested in

p(x) as above, then when p(x) is replaced by p«CONS (CAR x) (CDR x»)

or peT), then the COND eValuation rules remove all tests on x, since it

is now an explicit list. The reason the adverb "selectively" is used

above is that reduce chooses to replace by (CONS (CAR x) (CDR x» only

those x which occur as the first argument of conditionals in p(x), rather

than all occurrences of x in p(x). In addition, the third equality

can be used indefinitely, since the right-hand side is still of the

form of the left-hand side. Thus, this rule is used carefully.

It is probably best to describe the algorithm for reducing an

expression. The routine uses substitution to replace x by T or NIL

131

when possible. When x is not boolean, it uses an "assumption list" to

remember that x is being assumed non-NIL on the true-branch (rather

than actually r~placing x by (CONS (CAR x) (CDR x))).

To reduce an expression, z, with assumption list, ~, the following

procedure is used:

If z is an atom, return z. If z is of the form (f z1 ••• zn)'

where f is not COND, reduce each of the arguments independently.

That is, return:

(f reduce(z1'~) ••• reduce(zn,a)).

Otherwise, z is of the form (COND x p(x) q(x)). Consider the possible

forms of x.

If x is a conditional statement, first reduce each of the arguments

independently, then rematch the COND pattern shown above and continue

as below.

If x is an explicit CONS or is a member of the assumption list, ~,

return:

reduce(p(x) ,~).

If X is NIL, return:

reduce(q(x) ,~).

If x is non-boolean, reduce the true-branch after assuming x is

non-NIL by adding it to ~, and reduce the false-branch after replacing

x by NIL. That is, return:

(COND x reduce(p(x),~(x,~)) reduce(q(NIL),~)).

If x is an equality of the form (EQUAL u v), where v is a specific

list, let r be p(x) with all occurrences of u replaced by v, and return:

(COND (EQUAL u v) reduce(r,a) reduce(q(NIL),~)).

132

Finally, if x is a boolean expression other than an equality as

above, return:

(COND x reduce(p(T) ,a) reduce(q(NIL),a». - -
Henceforth, the abbreviation 'reduce(x), will mean reduce(x,NIL).

The 'reduction' of x is the output of reduce(x).

This algorithm conservatively applies the three reduction

equalities noted earlier and evaluates any COND statement with an

explicit list as its first argument. Thus, the reduction of x

is equivalent to x.

In applying the third reduction equality, the algorithm requires

that the v in (EQUAL u v) be a specific list. Of course, the symmetric

rule is included as well. At most one of the two terms, u or v, will

be a specific list, since if both were specific, the EQUAL expression

could have been evaluated or normalized to T or NIL. The requirement

that one be specific is to prevent the indefinite application of the

rule to its own output. Substituting v for u in p(x) completely

eliminates u from the true-branch without losing any information

about it. The fertilization routine is responsible for more sophisticated

equality substitutions.

As an example of reduction, the expression:

(COND A
(COND (MEMBER A B)

(COND (MEMBER A C) (MEMBER A B) (COND A T NIL»
(COND A T (MEMBER A C»)

(COND (EQUAL B1 A)
(COND B1

(COND A T NIL)
(COND (EQUAL B1 A) T (EQUAL B1 C»)

(COND (EQUAL A C)
(COND A NIL T)
(COND (EQUAL B1 A) NIL T»»,

reduces to:

(COND A
(COND (MEMBER A B)

(COND (MEMBER A C) T T)
T)

(COND (EQUAL B1 NIL)
(COND (EQUAL NIL NIL) T (EQUAL NIL C))
(COND (EQUAL NIL C) T T))).

(The expression above normalizes to T.)

3.5 Normalation

133

The process of applying ~, normalize, and reduce to an expression

until it can no longer be rewritten by these routines is called

'normalation'. Normalation preserves equality, since each of the

basic routines yields output equivalent to the input. Experience

shows that normalation is an efficient and fairly complete theorem

prover for list theory without induction. If a skolemized expression

normalates to T then the formula represented by the expression is a

theorem.

In order for the theorem prover to prove a theorem, the theorem

must normalate to T, or else fertilization, generalization, or induction

must produce a new expression which implies the original one and which

normalates to T. This process is thus the "central processor" of the

theorem prover.

An example of normalation is given below. Consider the expression:

(AND (EQUAL (APPEND NIL (APPEND B C)) (APPEND (APPEND NIL B) C))
(IMPLIES (EQUAL (APPEND A (APPEND B C))

(APPEND (APPEND A B) C))
(EQUAL (APPEND (CONS A1 A) (APPEND B C))

(APPEND (APPEND (CONS A1 A) B) C)))).

This is just the induction formula produced for the theorem:

(EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C)).

Evaluation of this formula yields:

(COND (COND (EQUAL (APPEND A (APPEND B C))
(APPEND (APPEND A B) C))

T
NIL) ,

which normalizes to:

(COND (EQUAL (APPEND A (APPEND B C))
(APPEND (APPEND A B) C))

T)

T
NIL)

134

(COND (EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C))
(EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C))
T) ,

and reduces to:

(COND (EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C))
T
T) •

This normalizes to T, proving the associativity of APPEND.

In addition to ultimately transforming the theorem into T (when

the program wins), normalation simplifies expressions so that additional

appeals to induction, or to the routines fertilize and generalize, can

produce expressions which do normalate to T.

For example, the theorem:

(IMPLIES (AND (GT A B) (GT Be)) (GT A C)),

which expresses the transitivity of the function GT (greater than),

normalates to:

(COND (GT A B) (COND (GT B C) (GT A C) T) T).

The induction formula for this theorem is fairly complicated because

the program (correctly) inducts upon A, B, and C simultaneously:

135

(AND (AND (COND (GT A NIL) (COND (GT NIL C) (GT A C) T) T)
(AND (COND (GT NIL B) (COND (GT B C) (GT NIL C) T) T)

(COND (GT A B) (COND (GT B NIL) (GT A NIL) T) T)))
(IMPLIES (COND (GT A B) (COND (GT B C) (GT A C) T) T)

(COND (GT (CONS A1 A) (CONS B1 B))
(COND (GT (CONS B1 B) (CONS C1 C))

(GT (CONS A1 A) (CONS C1 C))
T)

T))).

However, this formula normalates to:

(COND (GT A B) (COND B (COND A T NIL) T) T).

Normalation transforms the induction formula for the transitivity of

GT into the simpler expression that if A is greater than B, then if

B is non-NIL, A is non-NIL. This is then proved by induction --

which is to say, induction generates an equivalent formula which

normalation can transform into T.

The ability to transform complex expressions, such as the one above,

into equivalent ones, makes normalation very useful in the automatic

programming feature of the theorem prover. After one routine has

generated a recursive function definition to fit a particular need,

normalation is used to optimize the function body. Since the output

is equivalent to the input, the new, more efficient definition has the

same properties of the less efficient but easier to write definition.

Section 3.7 discusses this in detail.

Chapter 4, which contains sample output from the program during

four proofs, contains many examples of evaluation, normalization, and

reduction.

3.6 Fertilization

As indicated in the example in Section 2.3, fertilization is

the process of making equality substitutions.

The basic idea behind fertilization is that if x = y is being

assumed, then p(y) is equivalent to p(x). If involved in a proof,

p(x) may be easier to work with than p(y) because of properties of

x, y, or p.

136

The general theorem schema upon which fertilization relies is:

«BOOLEAN p(Y)) = T & (BOOLEAN Z) = T)
->

(COND (EQUAL X Y) p(Y) Z) = (COND (COND p(X)
T
(COND (EQUAL X Y) NIL T»

(COND Z T (EQUAL X y»)
NIL).

This means that if an expression of the form:

(COND (EQUAL x y) p(y) z),

where p(y) and z are boolean, occurs in the theorem, it can be replaced

by the equivalent expression:

(COND (COND p(x) T (COND (EQUAL x y) NIL T»
(COND z T (EQUAL x y)
NIL).

Notice that x has been substituted for y in p(y).

In the special case where z is T (that is, the original expression

is an implication) the schema simplifies considerably. If p(y) is

boolean, then

(COND (EQUAL x y) p(y) T)

can be rewritten to:

(COND p(x) T (COND (EQUAL x y) NIL T)).

This is just the tlisjunction of p(x) and the inequality x ~ y. The idea

is that the statement 'x = y implies p(y)' is equivalent to 'p(x) or

x ~ y'. The case where z is not T is just a generalization of this.

137

Let us consider an example. In proving that TIMES (multiplication

defined in terms of addition) is commutative, the induction step is:

(IMPLIES (EQUAL (TIMES A B) (TIMES B A»
(EQUAL (TIMES A (CONS B1 B» (TIMES (CONS B1 B) A»).

This normalates to:

(COND (EQUAL (TIMES A B) (TIMES B A»
(EQUAL (TIMES A (CONS B1 B» (PLUS A (TIMES B A»)
T) •

This is of the form:

(COND (EQUAL x y) p(y) T),

so fertilization applies, and substitutes x for y in p(y), producing:

(COND (EQUAL (TIMES A (CONS B1 B» (PLUS A (TIMES A B»)
T
(*1»,

where (*1) is a term known to be equal to:

(COND (EQUAL (TIMES A B) (TIMES B A» NIL T).

Shifting to algebraic notation, the original theorem was:

A x B = B x A.

Induction on B and normalation produced the inductive step:

A x B = B x A -> A x (1 + B) = A + (B x A).

This was rewritten by fertilize to:

A x (1 + B) = A + (A x B) v A x B ~ B x A.

However, the negative equality is "hidden" in (*1). This is done

on the grounds that it has been "used". This has a consequence which

is not immediately obvious. The (*1) term is never expanded into the

above inequality, but remains simply (*1) throughout the rest of the

proof. As a result, if a second induction is performed, none of the

variables appearing in the term to which (*1) is equal are affected.

138

In particular, if

A x (1 + B) = A + (A x B) v (*1)

is proved by induction on A, then the term (*1) is not altered by the

induction since no A (explicitly) occurs in it. It is as if the A in

the (*1) term were standardized apart (i.e., renamed), and then the more

general theorem:

A x (1 + B) = A + (A x B) v AI x B pBx AI,

proved by induction on A.

By hiding the inequality it is protected from further inductions

(thereby protecting further inductions from it). The (*1) expression

is introduced to keep the rewritten expression formally equivalent to

th~ original one (until induction is used). This allows fertilization

to freely replace any such expression in the theorem.

The program is "betting" that p(x) will be T, and has "thrown away"

the equality. The heuristic grounds on which this is done is that the

equality was "used" in rewriting p(y) to p(x), and its contribution to

the proof is now complete.

Often, formulas of the form:

(COND (EQUAL x y) p(y) z)

arise out of induction, where (EQUAL x y) is from the induction hypothesis,

and p(y) is the normalated conclusion. Usually z is T, but it can be a

more complex expression "pushed back" into that position by normalation.

The reason it is reasonable to "bet" on p(x) rather than p(y) in

these circumstances is that if indeed p(y) is the normalated conclusion,

then part of it, namely, y, has been converted into that part of the

hypothesis from which it came. The rest of it came from x, which failed

to properly recurse.

139

But if x and y are known to be equal, then by substituting x for

y in the conclusion we eliminate y from the theorem (provided we also

throwaway the used equality) and obtain a new theorem which is

entirely of the "genre" of x. Then perhaps something can be done

which allows x to properly recurse in induction.

Intuitively, fertilization works because x and y require different

inductive approaches in order to properly reappear in the normalated

conclusion. The most common difference is that they simply require

induction on different terms. The first induction done, for example,

on B in the TIMES example above, allows y to recurse. In the example,

the (TIMES B A) term reappeared in the conclusion because it recursed

on B. However, the (TIMES A B) term did not. Because y properly

recursed, it could be eliminated from the theorem. This produced a

new theorem involving x and its descendant, (TIMES A (CONS B1 B)),

provided the equality was thrown away. A second induction, this time

on A, allows the x-like terms to recurse.

If the used equality were not thrown away, the y term would

"compete" with the x term in the selection of what to induct upon.

In this example, even if the x term "won" and A was inducted upon,

the y term would not properly recurse, even though it does contain A.

Since it does contain A it would be changed by the induction, and

it would therefore fail to match in the conclusion.

The point is that if one is proving a disjunction, peA) v q(A),

by induction, but there is reason to believe that peA) is a theorem

(it is just the conclusion of a previous induction argument, after

the induction hypothesis has been used), then proving peA) might be

easier. Furthermore, if there is reason to believe that p and q

recurse on different terms (and p recurses on A), then proving

the induction step:

peA) v q(A) -> p«CONS A1 A)) v q«CONS A1 A)),

may be very difficult. In particular, since peA) recurses upon A,

the p term in the conclusion should become r(p(A)), while the q

term does not recurse. Thus, one must show:

peA) v q(A) -> r(p(A)) v q«CONS A1 A)).

140

In particular, one must deal with the case where the peA) in the

hypothesis is false, and q(A) is true, and show that the conclusion

is true. If, on the other hand, we had decided to prove the

much stronger theorem:

peA) -> p«CONS A1 A)),

by ignoring the second disjunct (which is the used equality), the

situation is much clearer, because this reduces to:

peA) -> r(p(A)).

Since there is reason to believe that peA) is a theorem, and

since there is also reason to believe that it is "incompatible" with

q(A), it is very useful to ignore q(A) in the induction. This is

precisely why the used equality, x = y, is hidden in the (*1) term

and the entire effort of the theorem prover devoted to proving the

fertilized conclusion.

In the example above, the incompatibility of x and y was due to

their recursing on different terms. Another frequent use of fertilization

is that it allows a theorem to be generalized (by introducing a common

subterm on both sides of an equality, for instance) which in turn allows

a second induction to succeed.

141

Let us return to the example in Section 2.3 in which fertilization

was introduced. The theorem to be proved was:

(EQUAL (APPEND (REVERSE A) (REVERSE B»
(REVERSE (APPEND B A»).

Induction on B was used, and the NIL-case was dismissed after a second

induction. This left the induction step for the original theorem:

(COND (EQUAL (APPEND (REVERSE A) (REVERSE B»
(REVERSE (APPEND B A»)

(EQUAL (APPEND (REVERSE A)

T) •

(APPEND (REVERSE B) (CONS B1 NIL»)
(APPEND (REVERSE (APPEND B A» (CONS B1 NIL»)

(The formula above is the induction step after it has been normalated.)

Note that this formula is of the form:

(COND (EQUAL x y) p(y) T).

Thus, fertilization applies, and rewrites it to:

(COND (EQUAL (APPEND (REVERSE A)

T
(*1»,

(APPEND (REVERSE B) (CONS B1 NIL»)
(APPEND (APPEND (REVERSE A) (REVERSE B»

(CONS B1 NIL»)

where (*1) is known to be equal to:

(COND (EQUAL (APPEND (REVERSE A) (REVERSE B»
(REVERSE (APPEND B A»)

NIL
T) •

As noted earlier, if the common subterms in the output of fertilization

are replaced by skolem constants, the result is the statement that

APPEND is associative (provided the (*1) term is ignored). This

theorem has a trivial inductive proof, but it was necessary to

generalize the theorem, and the generalization was not possible until

the equality hypothesis had been used to introduce the common subterms.

142

Two of the proofs in Chapter 4 illustrate fertilization. The two

theorems are:

(EQUAL (REVERSE (REVERSE A)) A).

(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A))).

In both of the specific examples given in this section the

normalated conclusion, p(y), was an equality. This is not always the

case, but we will consider it to be so for the moment.

It is possible that y occurs on both sides of the equality

in the conclusion. The expression to be fertilized is then of the

form:

where z is boolean. In this case, x is substituted for y only on the

right-hand side of (EQUAL P1(Y) P2(y)). The result is thus:

(COND (COND (EQUAL P1(Y) P2(x)) T (*n))
(COND z T (EQUAL x y,)
NIL).

The term which properly recursed is replaced. When two equalities are

involved and the fertilization was right-side into left-side or left-

side into right-side, it is called 'cross-fertilization'.

Occasionally both x and y occur in the conclusion. Fertilization

is used to produce a new term of uniform "genre". Cross-fertilization

is preferred, but if both allow cross-fertilization, the smaller of

x and y is substituted for the larger.

Finally, it is possible that the evaluated conclusion, p(y), is

no longer an equality. If one or both of the two expressions, x, or y,

occur in it, fertilization replaces all occurrences of one by the other.

Size is used to decide which is replaced if a choice is possible.

143

It should be obvious that fertilization allows x to be replaced by

y under conditions exactly symmetric to those described as allowing y

to be replaced by x. The term p(x) is said to have been 'fertilized

by (EQUAL x y)'. In all cases, a term such as (*n) is produced and

the negated equality is stored on the property list of the atom. In

addition, the term is known to be boolean (so that various rewrite rules

can still be applied), and it acts like NIL with regard to the COND

distribution rule in normalize. (That is, a term such as:

(COND (COND x y z) u (*n)),

is not rewritten to:

(COND x (COND Y u (*n)) (COND z u (*n))).

Instead, it is treated as a conjunct.)

The details of the fertilize routine can now be filled in. It

operates on an expression and returns an equivalent one (modulo terms

such as (*n)). The routine searches the expression (depth-first) for

the first expression of the form:

(COND (EQUAL x y) p(y) z),

where y actually occurs in p(y), and p(y) and z are boolean. If such

an expression is found, we say 'fertilization applies', and fertilize

replaces the COND expression (above) by the equivalent one:

(COND (COND p(x) T (*n)) (COND z T (EQUAL x y)) NIL),

where p(x) has been fertilized as described above, and (*n) is a new

term known to be boolean, with (COND (EQUAL x y) NIL T) on its property

list.

It should be noted that if z is T, fertilize replaces the original

COND by the simpler expression:

144

(COND p(x) T (*n)),

thereby saving normalize a few steps.

The output of fertilize is a copy of the input expression with

the COND expression replaced as described.

Historically, fertilization was performed by the reduction routine.

A vestige of it still remains, in the rule that allows substitution of

a specific list for a term. Fertilization was removed from reduce to

eliminate it from the normalation cycle. Thus, it is performed only

after all of the more obvious rewrite rules have been applied.

3.7 Generalization and Type Functions

Often a theorem must be generalized before it can be proved by

induction. This is usually expressed by saying that the theorem "is

not strong enough to carry itself through induction". The routine

generalize is responsible for generalizing the theorem to be proved.

An example of a theorem requiring generalization was given in

Section 2.3, and discussed again above. In proving:

(EQUAL (APPEND (REVERSE A) (REVERSE B))
(REVERSE (APPEND B A))),

the induction step led to the theorem:

(COND (EQUAL (APPEND (REVERSE A)

T
(*1)).

(APPEND (REVERSE B) : (CONS B1 NIL)))
(APPEND (APPEND (REVERSE A) (REVERSE B))

(CONS B1 NIL)))

This must be generalized in order to prove it. If (REVERSE A),

(REVERSE B), and (CONS B1 NIL) are replaced by the new skolem constants

C, D, and E, the result is:

145

(COND (EQUAL (APPEND C (APPEND D E» (APPEND (APPEND C D) E»
T
(*1»,

which is just the statement that APPEND is associative.

A theorem is generalized if it has been normalated and fertilized

until these routines no longer apply. generalize finds all of the

non-atomic subterms which occur in the theorem on opposite sides of

., an EQUAL term or in the hypothesis and conclusion of a conditional

statement representing an implication. Subject to certain constraints

defined below,it replaces these common subterms by new skolem constants.

For example, in proving the theorem that the output of SORT is

ORDERED:

(ORDERED (SORT A»,

the induction step normalates to:

(COND (ORDERED (SORT A» (ORDERED (ADDTOLIST A1 (SORT A») T).

generalize detects that this conditional represents an implication

and replaces the common subterm, (SORT A), by the new skolem constant

GENRL1. The result is:

(COND (ORDERED GENRL1) (ORDERED (ADDTOLIST A1 GENRL1» T),

which is one of the primary properties of ADDTOLIST.

This is a generalization because the original theorem is

equivalent to:

. "
"

y X, Y « ORDERED (SORT X» = T ->
(ORDERED (ADDTOLIST Y (SORT X») = T) •

The output of generalize is equivalent to the more general:

\fZ, Y«ORDERED Z) = T -> (ORDERED (ADDTOLIST Y Z» = T).

146

This kind of generalization is reasonable on the heuristic grounds

that it simplifies the theorem but retains a large degree of the original

structure of the theorem. The hope is that the role played by the

replaced term(s) is not critical in the proof except insofar as the

term occurs on both sides of the EQUAL or implication.

Generalization is dangerous however. The role played by the common

subterms may be important and the generalized formula may not be a

theorem.

For example, the function CDRN takes two arguments, X and Y, and

returns the Xth CDR of Y if Y has X elements, and NIL otherwise. The

following is a theorem:

(COND (CDRN A B) (MEMBER (CAR (CDRN A B» B) T).

This states that if the Ath ~DR of B is non-NIL, then its CAR is an

element of B. We might be tempted to generalize this to:

(COND GENRL1 (MEMBER (CAR GENRL1) B) T),

which states that if GENRL1 is non-NIL, its CAR is an element of

(the random list) B. This is not a theorem.

One might imagine that the problem can be avoided if terms which

share variables with the ungeneralized part of the expression are not

replaced. This is quite reasonable, but has numerous counter-examples,

such as:

(EQUAL (PLUS (TIMES B C) (TIMES (TIMES A B) C»
(TIMES (PLUS B (TIMES A B» C».

Before this can be proved by induction, (TIMES A B) must be replaced,

generalizing the theorem to:

(EQUAL (PLUS (TIMES B C) (TIMES GENRL1 C»
(TIMES (PLUS B GENRL1) C» •

.- .r:.~

(This is taken from the program's proof thlti~TIMES is associative.

The example is discussed further in Section 6.2.)

147

No clear solution has been found for this problem. However, to

avoid the problem as much as possible, the program refuses to generalize

an expression if it represents the entire hypothesis of an implication.

This works well for terms such as the CDRN one, which are tested

(against NIL) to determine if their values are relevant before using

them.

Another example of a false generalization is in the theorem:

(~UAL (LENGTH (LENGTH A)) (LENGTH A)).

This is a theorem since the LENGTH of a list is a number -- that is,

a list of NILs as long as the argument list. The theorem can be very

neatly generalized to the non-theorem:

(EQUAL (LENGTH GENRL1) GENRL1).

An elegant solution to this type of problem has been found.

The "proper" generalization of the theorem is:

(IMPLIES (NUMBERP GENRL1) (EQUAL (LENGTH GENRL1) GENRL1)),

where the definition of NUMBERP is:

(NUMBERP (LAMBDA (X)
(COND X

(COND (CAR X)
NIL
(NUMBERP (CDR X)))

T))) •

NUMBERP recognizes numbers. The generalized theorem is that the LENGTH

of any number is itself.

The general schema being used here is that if per) = T is to be

proved, it is sufficient to prove:

rtype(X) = T -> p(X) = T,

and

rtype(r) = T.

148

The question then arises: if r is to be generalized, is it possible

to automatically generate the expression rtype(X)? In the above example,

is it possible to generate NUMBERP, given (LENGTH A)? In a number of

cases the program can generate such expressions and functions.

The routine which generates these 'type expressions', rtype(X), is

called typeexpr. Given an expression, r, possibly involving recursive

functions, typeexpr will return a new expression, rtype(X), which is

supposed to be equivalent to T only for X in the range of r. Usually

in doing so, typeexpr will write and define new, recursive LISP

functions. These functions, written by typeexpr to recognize the output

of other functions, are called 'type functions'.

The generalize routine may be described as follows. It takes as

its argument some expression representing a theorem. It finds any

subterm, r, that is non-atomic and which occurs in both arguments of

an EQUAL or in the hypothesis and conclusion of an implicational condi

tional statement, but not occurring as the hypothesis of any such

conditional, and not occurring within any larger such common subterm.

If no such r is found, generalize returns the original expression.

If such an r is found, let the input expression be per). The

routine uses typeexpr to generate the type expression, rtype(X), for

r. If rtype(X) is just T (that is, the range of r is the entire

universe), generalize returns the result of generalizing p(x), where

x is a new skolem constant. That is, generalize replaces r by a new

skolem constant and then generalizes the remaining r's.

If rtype(X) is not T, generalize returns:

(IMPLIES rtype(x) g.eneralize(p(x))),

where x is a new skolem constant.

149

Thus, generalize replaces every such r by a new constant and uses

type expressions and type functions to restrict the constants to

certain ranges. The output of the routine becomes the new theorem to

be proved.

The fact that rtype(r) = T, which must be true if the new theorem

is to imply the old, is true by the method used to construct rtype(X).

This will now be described.

Let us return to the particular problem of generating NUMBERP

given (LENGTH A). The definition of LENGTH is:

(LENGTH (LAMBDA (X)
(COND .x

where ADD1 is just:

(ADD1 (LENGTH (CDR X)))
0))),

(ADD1 (LAMBDA (X) (CONS NIL X))).

When the definition of LENGTH is introduced into the system (by define)

it is normalated to simplify it. This expands it to:

(LENGTH (LAMBDA (X)
(COND X

(CONS NIL (LENGTH (CDR X)))
0))),

since ADD1 is non-recursive.

We want to generate a function, LENGTYPE, which takes one argument,

X, and returns T or NIL according to whether X could be a value of

LENGTH applied to anything. If X is to satisfy LENGTYPE, it must be

the value of one of the two branches of the COND expression in the

(normalated) definition of LENGTH. Thus, X must either be 0, or X

must be the value of (CONS NIL (LENGTH (CDR A))). But to be the

value of the CONS term, it must be non-NIL, its CAR must be NIL,

150

and its CDR must be the value of some LENGTH expression. But this

last condition means (inductively) that (CDR X) must satisfy

LENGTYFE.

Thus, we have determined that for X to satisfy LENGTYPE, the

following must hold:

X = 0 v (X # NIL & (CAR X) = NIL & (LENGTYPE (CDR X)) = T).

Expressing this in LISP gives:

(COND (EQUAL X 0)
T
(COND X

(COND (EQUAL (CAR X) NIL)
(LENGTYFE (CDR X))
NIL)

NIL)) •

By construction, this is the definition of LENGTYPE. However, if we

normalate this expression, we find that it is equivalent to:

(COND X
(COND (CAR X) NIL (LENGTYPE (CDR X)))
T) •

But this is just the definition of NUMBERP (modulo the name). Thus,

we have managed to construct,by a completely general procedure, a

recursive function which returns T if and only if its argument is a

number. Furthermore, the definition is very efficient within the

constraints of the language. The procedure just employed is implemented

in the routine typeexpr.

This routine recursively explores an expression, r, and possibly

several function definitions, and generates a new expression, rtype(X),

and possibly several new LISP functions. This new expression will

have X free in it. Ideally, when some new term, x, is substituted for

X in rtype(X), the result will be equivalent to T if and only if x is

151

within the range of r. Since, as we saw in the case of boolean, this is

in general not possible, certain heuristics will be used which make

rtype(X) err on the liberal side. For some x, not within the range

of r, rtype(x) will be T. However, for all x within the range of r,

rtype(x) will be T. Thus, rtype(r) is T. Since such type expressions

will be used to restrict generalizations, this error does not intro

duce unsoundness; it may however allow the program to make too

general a generalization.

We will now describe the routine. In considering expressions

with non-primitive top-level function symbols, we will initially

ignore the arguments and merely type the function as if its arguments

were unrestricted. Let r be the expression being explored, and X be

the free variable.

If r is a skolem constant or a variable in a function definition,

it can have any value whatsoever, so the output of typeexpr is T.

If r is a specific list, in particular, NIL, T, or a number,

return (EQUAL X r).

If r is any other CONS expression, obtain p(X) by recursively

finding the type expression for the first argument of the CONS,

and obtain q(X) by finding the type expression for the second argument

of the CONS. Return the expression:

(COND X (COND p«CAR X)) q«CDR X)) NIL) NIL).

If r is a CAR or CDR expression, assume the output can be anything

and return T.

If r is an EQUAL expression, the output is T or NIL, so return:

(COND X (EQUAL X T) T).

11)il

If r is a COND expression, assume either branch can be the vuluf)

of the expression. Ignore the condition tested. Obtain p(X) by

finding the type expression for the second argument, and q(X) by

finding the type expression for the third argument, and return:

(COND q(X) ~ p(X)).

Otherwise, r is of the form (f x1 ••• xn), where f is a non

primitive. If the type function for f is already known to be ftype,

return (ftype X). (A function's type function, when known, is stored

on its property list.) If its type function is not known, generate

a new function name, ftype, and store it on the property list of f

as the type function of f. Recursively find the type expression

of the definition of f, and call this p(X). If (ftype X) occurs in

p(X), replace it by NIL. Define the new type function by:

(ftype (LAMBDA (X) normalate(p(X)))),

and return (ftype X).

Several points should be made about this definition. If r is

an application of a non-primitive function, f, then a new recursive

function, ftype, is written and defined. This is done by creating

the type expression for the definition of f. Any expression of the

form (ftype X) in this type expression is replaced by NIL. If this

were not done, ftype would not be a total function. The reason

(ftype X) is replaced by NIL {rather than something else) is as

follows: (ftype X) can only be introduced if a recursive call of f

appears as one of the branches in a COND statement in the definition

of f. If X was the output of this recursive call of f, then it was

also the output of some other exit of f. Hence, it must satisfy

some other exit of ftype as well.

153

The type funotion generated for any total funotion is total. This,;

is obvious since every recursive call of ftype in the definition decomposes

X with at least one CAR or CDR (after checking that X is non-NIL).

As defined here, the output of typeexpr is not normalated (although

function bodies created by it are). For efficiency, a top-level version

of the routine normalates the output of the procedure described here.

Thus, the type expression of:

(COND A (CONS B C) NIL)

is actually T, rather than:

(COND (EQUAL X NIL) T (COND X (COND T T NIL) NIL)),

as would be generated by the basic routine. (The reader is invited to

verify that the conditional above "optimizes" to T by normalation.)

Because boolean and numerically valued functions are common,

typeexpr actually checks for these explicitly with boolean and numeric

(an inductive verifier for numerically valued expressions just like

boolean). For such expressions, it specifically uses BOOLEAN and

NUMBERP as the type functions. These two checks could be discarded

at the expense of generating many different function names with

definitions equivalent to BOOLEAN and NUMBERP (such as LENGTYPE derived

earlier). It is important to realize that without these built-in

checks, typeexpr is still capable of recognizing these two types of

expressions and generating precisely the right definitions.

Let us now consider some examples. From the previous discussion,

it should be clear that typeexpr generates the correct definition of

LENGTYFE given (LENGTH A) (even if the boolean and numeric checks

are not present).

154

Given (REVERSE A), typeexpr (correctly) generates the function

(REVETYPE (LAMBDA (X) T)).

The function REVERSE ranges over the entire universe of lists. However,

this is precisely correct only by coincidence. Upon encountering

the call of APPEND in the definition of REVERSE, typeexpr recursively

determines that APPEND ranges over the entire universe (if its arguments

are unrestricted). It then decides that REVERSE must also range over

the entire universe without ever inspecting the particular restrictions

upon the arguments in the call to APPEND in REVERSE. Proving that

REVERSE ranges over the entire universe is a non-trivial theorem.

The function COUNT counts the number of occurrences of an element

in a list:

(COUNT (LAMBDA (X y)
(COND Y

(COND (EQUAL X (CAR y))

0))).

(ADD1 (COUNT X (CDR y)))
(COUNT X (CDR y)))

(Recall that the ADD1 term is normalated to (CONS NIL (COUNT X (CDR Y))).)

Given (COUNT A B), typeexpr first finds the type expression

of the definition above:

(COND (EQUAL X 0)
T
(COND (COUNTYPE X)

T
(COND X

(COND (EQUAL (CAR X) NIL)
(COUNTYPE (CDR X))
NIL)

NIL))).

Notice the recursive call of COUNTYPE which does not decompose X. This

corresponds to the recursive call of COUNT which does not alter the

output of the call before returning it. This means that the output

of this recursive call was produced .by some other exi t () r (:()IINT.

and must therefore satisfy some other exit of COUNTYPE. 'l'hun,

(COUNTYPE X) is replaced, above, by NIL, and the expression is

normalated to form the definition of COUNTYPE:

(COUNTYPE (LAMBDA (X)
(COND X

(COND (CAR X) NIL (COUNTYPE (CDR X»)
T») •

This is just NUMBERP again. As pointed out above, this type would

be caught by the explicit numeric check in the actual typeexpr

routine. The above description of its generation makes it clear

that it is easy enough to write automatically.

Let PAIRLIST be defined by:

(PAIRLIST (LAMBDA (X y)
(COND X

(COND Y
(CONS (CONS (CAR X) (CAR y»

(PAIRLIST (CDR X) (CDR y»)
(CONS (CONS (CAR X) NIL)

(PAIRLIST (CDR X) NIL»)
NIL»).

(PAIRLIST A B) generates an (association) list of pairs as long as

A with the elements of A paired with those of B (or with NIL if

B is short).

Given (PAIRLIST A B), typeexpr generates PAIRTYFE:

(PAIRTYPE (LAMBDA (X)
(COND X

(COND (CAR X) (PAIRTYPE (CDR X» NIL)
T»),

which correctly recognizes association lists.

As a final example, let BINTREE be a function which generates

a full binary tree of NILs with a number representing the depth of the

subtree at each node:

(BINTREE (LAMBDA (X)
(COND X

(CONS (LENGTH X)

156

(CONS (BINTREE (CDR X» (BINTREE (CDR X»»
NIL»).

Then for (BINTREE A), typeexpr generates BINTTYPE:

(BINTTYPE (LAMBDA (X)
(COND X

(COND (LENGTYPE (CAR X»
(COND (CDR X)

NIL)
T») •

(COND (BINTTYPE (CAR (CDR X»)
(BINTTYPE (CDR (CDR X»)
NIL)

NIL)

This function recognizes only binary trees with a number at each

node. The information that the tree is balanced, and the relationship

between the number and the subtree at each node is lost. Note that

in this example, typeexpr had to recursively write LENGTYPE for

LENGTH before it could finish writing BINTTYPE.

We observe that typeexpr can generate reasonably efficient and

often quite restrictive type functions. From the definition of

typeexpr it is clear that an expression always satisfies its type

expression. As in the case of BINTTREE, we see that the type expression

generated may recognize other structures as well. A good (and

devastating) example of this is obtained by finding the type expression

for (SORT A). The result is:

(SORTTYPE (LAMBDA (X) T».

But SORT does not range over the entire universe. This is "almost

true" however. Inspecting the definition, we see that NIL is a possible

157

output, and so is anything output by ADDTOLIST (ignoring the arguments

to the ADDTOLIST call in SORT). But one of the possible outputs of

ADDTOLIST is (CONS X Y), where X and Y are the arguments. Thus, at

first glance, the output of SORT can be anything.

Of course, the problem is that the call of ADDTOLIST in SORT

restricts the arguments, so that while X can be anything, Y is a

sorted list. Furthermore, (CONS X y) is an output of ADDTOLIST only

when X is LTE (less than or equal to) the CAR of Y. Since typeexpr

does not consider the arguments to non-primitive functions, and does

not take advantage of the information available from the conditions

tested, it misses this information.

As a result, in trying to prove:

(EQUAL (SORT (SORT A» (SORT A»,

the program generalizes it to:

(EQUAL (SORT GENRL1) GENRL1) ,

where GENRL1 is completely unrestricted. While this is very reasonable,

it is not a theorem. If typeexpr could generate ORDERED as the (proper)

type function for SORT, the theorem would correctly generalize to:

(IMPLIES (ORDERED GENRL1) (EQUAL (SORT GENRL1) GENRL1»,

which the theorem prover can prove.

The problem of generating ORDERED given SORT is still open, but

appears to yield to a very similar approach, which takes into account

the two kinds of information discussed above.

It is quite easy to take into account the types of the arguments

to non-primitive functions. Before finding the type expression of a

function application, one recursively finds the type expressions for

158

each of the arguments. An association list is used to bind the variables

in the function definition to their type expressions, and then the

type expression for the definition is found.

Upon encountering a variable, its type expression is looked-up

on the association list and returned (rather than assuming it could

be bound to anythingcand returning T). Also, steps have to be taken

to determine the type of a CAR or CDR expression, given the type of

the argument. Several obvious heuristics work well.

Such a function has been implemented, but it is not used in the

current theorem prover. This is because it produces more complicated

function definitions and still does not solve the SORT problem mentioned

above. However, the routine is capable of producing a type functioL

which recognizes the type of:

(APPEND (LENGTH A) (LENGTH B))

to be a number.

Besides providing some protection against faulty generalizations,

typeexpr is interesting for two reasons. First, it very effectively

uses the ~, normalize, and reduce routines to optimize LISP code.

This use of normalation was not originally forseen, but corresponds very

strongly with the traditional way of writing programs: first write an

inefficient but obvious algorithm and then use knowledge of the program

ming language to make it more efficient. The second reason typeexpr

is interesting is that it is an effective way to use automatic

programming to aid the process of proving program correctness.

3.8 Induction

The induct routine is concerned with producing an induction

formula which implies the theorem to be proved. This routine ie

appealed to only after normalation and fertilization have failed to

rewrite the theorem and after generalization has replaced any common

subterms as described. Two basic problems must be solved by induct.

What term or terms should be inducted upon? What should be the exact

form of the induction formula?

Both of these problems are solved by inspecting the fault descrip

tions generated by~. Once the two problems are solved, induct

creates the new expression which represents the induction formula,

and this becomes the theorem to be proved.

The problem of choosing the terms to induct upon is discussed

first. The routine that does this is a subroutine to induct, called

pickindvars. The heuristic used, as explained in Chapter 2, is to

induct upon the terms most likely to let the theorem "recurse back

down" when those terms are made explicit CONSes. The hope is that

the link between eValuation and induction will let a properly chosen

induction conclusion evaluate into a properly chosen induction

hypothesis. With the evaluation machinery at our disposal, this choice

is usually easy.

If the theorem, p, is evaluated, it will not change, since normal

ationhas already exhaustively rewritten the theorem. However, analysis

will contain a set of fault descriptions, describing why the eValuation

of the recursive expressions in p halted. The reader should recall the

structure of analysis as presented in Section 3.2.

Briefly, each fault description corresponds to some recursive

function application appearing in p. A description consists of a

1~

pair, composed of a bomb list and a failures list. The bomb list is

a list of pockets indicating those terms simultaneously decomposed in

a recursive call of the function. There is a pocket for each recursive

call (which was halted) in the function's definition. The failures

list is a list of all of the non-recursive CAR and CDR failures

occurring in the evaluation of the definition.

pickindvars is concerned only with the terms in the bomb lists in

analysis. The terms in the pockets are a series of CARs and CDRs applied

to some term, which will be called the 'argument' (since it is an

argument to the non-primitive function expression corresponding to the

fault description). Call the set of (distinct) arguments occuring in

the pockets of the bomb list of a fault description, the 'argument list'

of that description.

Any argument in any argument list of analysis might be considered

as a term to induct upon (an 'induction candidate'). To a certain

extent, if any such argument were replaced by an explicit CONS in the

conclusion, the resulting expression would have a better chance of

evaluating than it would have should some term not in an .argument list

be chosen. However, if an argument is not a skolem constant, it cannot

be inducted upon without being generalized. Since it was not generalized,

it cannot be considered as an induction candidate.

It is advisable to induct simultaneously upon all of the arguments

associated with some fault description. If only a (proper) subset of

the arguments were inducted upon, then only those arguments would be

161

explici t CONSes in the conclusion. Since there would nt. i 11. bt, uq.r;ument.B

in the fault description which were not inducted upon, the expreuuion in

the conclusion would again fail to recurse, because the remaining argu

ments in the description would again fail in recursion.

Therefore, any fault description with argument list containing a

non-skolem constant is eliminated from consideration.

If any two argument lists share a term, then two recursive expres

sions depend upon that term being an explicit CONS. If the arguments

in one of the lists are inducted upon (and thus made CONSes in the

conclusion), then a CONS would be introduced into the expression

corresponding to the fault description associated with the other argu

ment list. This expression would not evaluate, because the other argu-

ments in the argument list were not explicit CONSes. However, neither

would it match the expression in the hypothesis from which it came,

because of the "spurious" CONS introduced. Thus, the induction

hypothesis would be prevented from matching (parts of) the evaluated

conclusion. It is therefore a reasonable heuristic to merge any argu

ment lists which share a skolem constant. (The bomb lists and failures

lists associated with their fault descriptions are also merged. The

result is still treated as a fault description with associated argument

list, even though it now describes several faults.)

Often, after all possible merges, there is only one fault description

left. If so, its associated argument list is chosen as the set of terms

to be inducted upon (simultaneously). However, if there are mUltiple

sets to choose from, the following heuristics are used.

Each list of arguments is !'rated" by replacing, in p, each of the

arguments in the list by an explicit CONS and then evaluating the result.

162

The number of rewrite rules successfully applied by ~ is counted.

This count gives an indication of how far evaluation was able to

proceed under the particular list of arguments. Since induction on

multiple terms simultaneously is bound to allow more (CAR and CDR)

evaluation than induction on a single term, the count is divided by

the number of arguments in the list. The list with the highest

such rating is chosen as the set of induction terms.

For example, the theorem:

(EQUAL (APPEND A (APPEND B C» (APPEND (APPEND A B) C»,

generates four fault descriptions. One of these is eliminated be

cause it reports recursion on (APPEND A B), which cannot be inducted

upon. Two of the others, reporting induction on A, are merged. This

leaves two sets to choose from, one containing only A, the other only

B. The above heuristic chooses A because it allows more evaluation.

In particular, A allows the APPEND definition to be applied three

times, while B allows its application only once.

Should several lists be tied for the highest rating, the one

containing the greatest number of terms not previously inducted upon,

in the current theorem, is chosen. This is merely to enable a new set

of expressions to recurse.

Should this produce a tie, a random list is chosen from the

"winners".

The terms in the argument list chosen are inducted upon simultaneously.

The bomb and failures lists associated with this argument list are used

by induct to set up the induction formula.

There must clearly be a NIL-case for each term inducted upon. The

precise form of the induction step -- for example, whether there is a

hypothesis about the CAR or the CDR or both -- is determined by inspection

of the bomb and failures lists associated with the argument list of

induction terms. A few examples of correct induction formulas and

how they are generated using these lists may be helpful.

In proving the theorem:

(EQUAL (COpy A) A),

induct gets the above expression as its input (since normalation,

fertilization, and generalization do not rewrite the theorem).

Evaluation sets analysis to:

««(CDR A»«CAR A») NIL»,

which contains a single fault description, containing a bomb list

with two pockets. pickindvars chooses A. Since only one term is

being inducted upon, there need be only one NIL-case. Since the

bomb list contains both (CAR A) and (CDR A), induction hypotheses

about both components of the CONS supplied in the conclusion will

be needed. Since A is never decomposed with more than one CAR or

CDR (either recursively or non-recursively), a single explicit

CONS in the conclusion is sufficient to guarantee that there will

be no CAR or CDR failures in the evaluated definition. Thus, the

induction hypothesis generated is:

(AND (EQUAL (COpy NIL) NIL)
(IMPLIES (AND (EQUAL (COPY A1) A1)

(EQUAL (COpy A) A»
(EQUAL (COpy (CONS A1 A» (CONS A1 A»».

The reader can verify that this formula normalates to T.

164

The next example is:

(IMPLIES (ELEMENT A B) (MEMBER (ELEMENT A B) B)),

where (ELEMENT A B) returns the Ath element of B (or NIL if B does not

have A elements). This theorem normalates to:

(COND (ELEMENT A B) (MEMBER (ELEMENT A B) B) T),

and does not fertilize or generalize (because the hypothesis of an

implicational conditional is protected). Call this expression p(A,B).

After evaluation, analysis has three fault descriptions on it. They are:

««CDR B))) «CAR B))),

from the MEMBER expression; and two copies of:

««CDR B) (CDR A))) «CAR B))),

from the two (identical) ELEMENT expressions.

Since the three bomb lists are all linked by the common argument B,

they are merged and pickindvars chooses simultaneous induction on A and

B. This means that there must be two NIL-cases, one for each term inducted

upon. The fact that only CDRs of the arguments are recursed upon (i.e.,

appear in the bomb list) implies a single induction hypothesis about them

is sufficient. Again, no argument is decomposed by more than a single

CAR or CDR, so a single explicit CONS in the conclusion is sufficient.

The resulting formula is:

(AND (AND p(NIL,B) p(A,NIL))
(IMPLIES p(A,B) p«CONS A1 A) ,(CONS B1 B)))).

Again, this formula normalates to T.

A final example is provided by the program's proof that the output

of SORT is ORDERED. The original theorem is:

(ORDERED (SORT A)).

165

An initial induction on A, no rmalat i on , and generalization cOflvor't. thie

to:

(COND (ORDERED GENRL1) (ORDERED (ADDTOLIST A 1 GENRL 1 » 'r).

Call this p(GENRL1,A1).

Evaluation of this expression sets analysis to a list containing

three fault descriptions; however, one of them is eliminated because

it would require induction on (ADDTOLIST A1 GENRL1). The remaining

two are:

««CDR GENRL1») «CAR GENRL1)(CAR GENRL1»),

from the ADDTOLIST term, and:

««CDR GENRL1») «CAR (CDR GENRL1»(CDR GENRL1)
(CAR GENRL1)(CDR GENRL1»),

from the ORDERED term in the hypothesis of the theorem.

pickindvars chooses GENRL1, so there is one NIL-case. The fact

that recursion occurs only on the CDR of GENRL1 indicates that an

induction hypothesis about only the CDR of the supplied CONS in the

conclusion will be sufficient. However, the presence of the term

(CAR (CDR GENRL1» on the failures list indicates that there should be

two explicit CONSes in the conclusion to allow it to evaluate without

(non-recursive) failure. This means the hypothesis will be about the

inner CONS of the conclusion, and that, for soundness, a special case

(the general list of length 1) must be considered. The output of

induct is:

(AND p(NIL,A1)
(AND p«CONS GENRL11 NIL),A1)

(IMPLIES p«CONS GENRL12 GENRL1),A1)
p«CONS GENRL11 (CONS GENRL12 GENRL1»,A1»».

166

This is just the representation for:

p(NIL,A1) & VX(p«CONS X NIL),A1) &
VY,Z(p«CONS Y Z),A1) -> p«CONS X (CONS Y Z)),A1)),

This is called 'special induction' because of the provision of a second

basis (the case for the list of length 1).

Although far from obvious, the induction formula above normalates ,to:

(COND (LTE A1 GENRL11) T (LTEGENRL11 A1)),

which is the theorem that either A1 is less than or equal to GENRL11 ,

or vice versa. This is proved by simultaneous induction on A1 and

GENRL11 , which can be very easily verified. The program's output for

the (ORDERED (SORT A)) theorem is given in Chapter 4.

This sample of induction formulas illustrates some of the basic

induction schemes the induct routine can generate. It can mix two

schemes when necessary. For example, it can do simultdneous induction

on two variables with induction hypotheses about the CARs and CDRs of

both. It can also do induction on n variables, or generate required

but unusual combinations of induction hypotheses. With the exception

of special induction, the induction formula is generated by a general

mechanism which maps the structure of the bomb list into the required

formula. While this mechanism could be generalized for some cases of

special induction, the occasions requiring it are so rare that it is

handled separately. induct will now be described.

Given a theorem, induct first uses pickindvars to select a list of

skolem constants to be inducted upon simultaneously. For each term in

that list it generates a NIL-case by replacing the term by NIL in the

theorem. These NIL-cases are then conjoined with ANDs.

167

If the bomb or failures lists contain a "deep" term, such as:

(CAR (CDR A)),

where A is being inducted upon, this indicates that more than one CONS

is required in the conclusion, and that a second basis is needed. As

a result, the program enters a special mode, described below.

If only one CONS per term is sufficient, the program generates the

skolem constants to be used as the CARs of the CONSes replacing each

induction term in the conclusion. These are called the 'CAR-constants:'

of their respective induction terms. (The analogous 'CDR-constants' are

the induction terms themselves. This merely reduces the number of new

symbols the user is confronted with.) If arg1 , ••• , argn are the terms

being inducted upon, let cararg1 , ••• , carargn , be their respective

CAR-constants.

In general the induction hypothesis is a conjunction of hypotheses.

These involve the CARs and CDRs of the CONSes which are introduced into

the conclusion. The precise combinations of CARs and CDRs used are

dictated by the pockets on the bomb list.

If A is being inducted upon, and (CAR A) (or (CDR A)) does not

occur on the bomb list, then no hypothesis need involve the CAR-constant

(or, :;the CDR-constant) for A. If both (CAR A) and (CDR A) occur, then

the hypothesis should be the conjunction of one for the CAR-constant

and one for the CDR-constant.

The above guidelines completely specify the hypothesis generated

for the case of induction on a single term. The hypothesis is either

p(arg1), or p(cararg1), or (AND p(cararg1) p(arg1)), according to whether

(CDR arg1),(CAR arg1), or both occur on the bomb {where p(arg1) is the

original theorem input to induct).

t I:

16li

The case for n term induction is much more compl i ell t."d. laflll I"

not handled in its full generality by the program. HuWeVtH". \.til'

behaviour of the program is quite acceptable on theorems about t.tI"

functions in Appendix A.

If more than one term is being inducted upon, induct merges all

those pockets on the bomb list which contain only CDR failures. It

also merges all those which contain only CAR failures. This produces

two 'super-pockets'. It is usually the case that no other pockets are

left. Such pockets would be mixed CARs and CDRs, and very few functions

recurse on the CAR of one argument, while recursing (in the same call)

on the CDR of another. Certainly no function in Appendix A, which

includes many common list processing functions, exhibits this kind of

recursion.

For this reason, the program uses these two super-pockets to deter

mine the hypothesis. Two hypotheses will be generated and then conjoined.

The first is generated from the CAR super-pocket, by replacing every

argument in that pocket by its CAR-constant, in the theorem, p. Any

term inducted upon not occurring in the CAR super-pocket is left alone

in this hypothesis. Such a term must occur in the CDR super-pocket,

and since the CDR-constant of a term is just itself, the hypothesis

generated for the CAR super-pocket concerns the CAR-constants of those

terms in that super-pocket, and the CDR-constants of those terms not

in that super-pocket.

An analogous procedure is used to form a hypothesis from the CDR

super-pocket. Any argument occurring in it is left as it is; any

induction term not occurring in it (and thus, occurring in the CAR

super-pocket) is replaced by its CAR-constant.

169

These two hypotheses are conjoined with AND and constitute the

induction hypothesis generated by induct.

Finally, the conclusion is formed by substituting (CONS cararg. arg.)
~ l.

for argi in p.

The hypothesis and conclusion are then put into an IMPLIES expression,

and then this is conjoined with the NIL-case(s) with AND. The resulting

expression is returned as the new theorem to be proved.

The need for special induction arises so seldomly that it was not

felt necessary to write the general routine for generating such induction

formulas, for say, single term induction. As a result, only two special

induction forms can be generated. Both of these allow induction on a

single term only. As usual, the configuration of the bomb list and

failures list suggests which form to use.

The form exhibited in the third example above is used for induction

on a single term, when the bomb list contains only (CDR arg), but

non-recursive failures of the form (CAR (CDR arg» or (CDR (CDR arg»

occurred, where arg is the term being inducted upon. The induction

formula generated is:

(AND p(NIL)
(AND p«CONS cararg NIL»

(IMPLIES p«CONS cararg2 arg»
p«CONS cararg1 (CONS cararg2 arg»»»,

where cararg1 and cararg2 are new skolem constants, and p(arg) was the

input to induct. The relationship between such a formula and the fault

description is clear.

A second special form is generated for functions which CDR their

arguments twice in recursion. See the definitions of HALF, EVEN2, or

SWAPTREE for example. This condition is recognized by the occurrence

170

on the bomb list of terms such as (CAR (CDR arg)) or (CDR (CDR arg)).

The induction formula generated is:

(AND p(NIL)
(AND p«CONS cararg NIL))

(IMPLIES hyp pC(CONS cararg1 (CONS cararg2 arg)))))),

where the hypothesis, hyp, is a conjunction (in general) of at most

three expressions:

and

p(cararg1), if (CAR arg) occurs on the bomb list,

p(cararg2), if (CAR (CDR arg)) occurs on the bomb list,

p(arg) , if (CDR (CDR arg)) occurs on the bomb list.

Again, the relationship between this formula and the structure of the

bomb list should be clear. For an example of this type of induction,

see the program's proof of:

(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A))),

in Chapter 4.

It should be emphasized that the program does not recognize theorems

or function names in order to generate these induction formulas. It

recognizes configurations of the bomb and failures lists. Furthermore,

it should be clear that the generation can be generalized for single

inductions involving deeper nestings of CARs or CDRs. As remarked,

such a routine is not justified by its usefulness.

These two special forms handle a wide variety of cases. The first

is used when functions involved in the theorem recurse "one step" at a

time, but inspect adjacent elements of their recursive argument. The

second is used for functions which recurse down their argument "two

steps" per call.

1'11

Only 10% of the theorems listed in Appendix B require special induction

formulas. The remaining 90% use formulas generated by the more general

t.nduction mechanism.

3.9 Technical Information

The program is written in the programming language POP-2, developed

by Rod Burstall and Robin Popplestone, of the Department of Machine

Intelligence, cSchool of Artificial Intelligence, University of Edinburgh.

It runs on the ICL 4130 belonging to the School.

The compiled code occupies about 15K of 24-bit words. The various

routines are written in a fairly elegant POP-2 style. Except for assignment

to property lists, there is no destructive assignment, and side effects

are avoided (the main exception is analysis). The program has a highly

modular, structured design, and the more natural quick and dirty tech

niques were consciously avoided to keep the program easily modifiable.

(See Dahl, Dijkstra, and Hoare 1972, for a discussion of this type of

programming.)

The majority of theorem prover's time (well over 75%) is spent in

normalation. Since these routines are composed entirely of recursive,

constructive list processing, and apply the rewrite rules in the straight

forward manner described, they effectively copy large formulas many

times during the course of normalation. Since an expression is completely

normalized before it is reduced, this process often creates quite large

intermediate expressions.

Despite these inefficiencies, the "typical" theorem proved requires

only 8 to 10 seconds of CPU time. For comparison purposes, it should be

noted that the time for cons in 4130 POP-2 is 400 microseconds, and

172

.£!£. and cdr are about 50 microseconds each. The "hardest" theorems

proved, such as those involving SORT, require 40 to 150 seconds each.

The design of the program, especially the straightforward approach

of "hitting" the theorem over and over again with rewrite rules until

it can no longer be changed, is largely due to the influence of

Woody Bledsoe.

173
CHAPTER 4 DETAILED EXAMPLES OF PROGRAM OUTPU'l'

4.1 Introduction to the Examples

The following four Sections present sample output from the theorom

prover. The theorems proved are:

and

(IMPLIES (OR (MEMBER A B) (MEMBER A C» (MEMBER A (APPEND Be») t

(EQUAL (REVERSE (REVERSE A» A),

(ORDERED (SORT A»,

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»).

Complete proofs are given for the first three theorems; the proof of the

fourth is terminated after a familiar lemma is produced as the theorem to

be proved.

The formula representing the theorem is pretty-printed each time it is

transformed by one of the basic routines. A heading above the formula ex

plains which routine was responsible for the transformation. The pretty

print routine is explained in Boyer 1973. Dots are printed within the

formulas to help the reader follow the indentations. Printing of formulas

requiring more than 60 lines has been surpressed in these examples. The

message (TOO BIG) is printed in the place of such a formula.

The reader is referred to Appendix A for the definitions of the LISP

functions involved in these examples.

Notes have been added to the proof by the author. These are typed in

lower-case and point out interesting lemmas generated during the proof or

explain certain steps. Except for these notes, all of the following is

produced automatically by the theorem prover.

174
4.2 Sample Output 1

This theorem states an obvious relationship between MEMBER and

APPEND. The proof illustrates how evaluation eliminates non-recursive

functions (such as IMPLIES and OR), and how it ieneratea a ca8e-

analysis which normalates to T.

THEOREM TO BE PROVED:

(IMPLIES (OR (MEMBER A B) (MEMBER A C» (MEMBER A (APPEND B C»)

EVALUATION YIELDS:

(CONn (COND (MEMBER A B) T (COND (MEMBER A C) T NIL»
(CONn (MEMBER A (APPEND B C» T NIL)
T)

WHICH NORMALIZES TO:

(COND (MEMBER A B)
(MEMBER A (APPEND B C»
(COND (MEMBER A C) (MEMBER A (APPEND B C» T»

MUST TRY INDUCTION.

INDUCT ON B.

THE THEOREM TO BE PROVED IS NOW:

(AND
(COND (MEMBER A NIL)

(MEMBER A (APPEND NIL C»
(COND (MEMBER A C) (MEMBER A (APPEND NIL C» T»

(IMPLIES
(COND (MEMBER A B)

(MEMBER A (APPEND B C»
(CONn (MEMBER A C) (MEMBER A (APPEND B C» T»

(COND (MEMBER A (CONS B1 B»
(MEMBER A (APPEND (CONS B1 B) C»
(CONn (MEMBER A C) (MEMBER A (APPEND (CONS B1 B) C» T»»

EVALUATION YIELDS:

(COND
(COND (MEMBER A C) (MEMBER A C) T)
(CONn
• (COND
• (COND (MEMBER A B)

• • (MEMBER A (APPEND B C»

175

• (COND (MEMBER A C) (MEMBER A (APPEND B C» T»
(COND (COND (COND (EQUAL A Bl) T (MEMBER A B»

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)

• (COND (MEMBER A C)

•
(COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)

T»

•
• •

T)
.T
.NIL)
NIL)

T
NIL)

WHICH NORMALIZES TO:

(COND
(COND (MEMBER A C) (MEMBER A C) T)
(COND

• (MEMBER A B)
• (COND

• (MEMBER A (APPEND B C»
(COND (EQUAL A Bl)

... (COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)

• (COND (MEMBER A B)

•
•
•

• T)
.(COND

• (MEMBER A C)

• (COND

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)
(COND (MEMBER A C)

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)
T) »

• • (MEMBER A (APPEND B C»
• • (COND (EQUAL A Bl)
• • • (COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)
•• • (COND (MEMBER A B)
• • • (COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)

• • • (COND (MEMBER A C)
• • • (COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)

• • • T»)

• • T)
• (COND (EQUAL A Bl)

NIL)

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)
(COND (MEMBER A B)

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)
(COND (MEMBER A C)

(COND (EQUAL A Bl) T (MEMBER A (APPEND B C»)

T»»)

AND REDUCES TO:

(COND
(COND (MEMBER A C) T T)
(COND

NIL}

(MEMBER A B)
(COND (MEMBER A (APPEND B C)} (COND (EQUAL A Bl) T T) T)
(COND (MEMBER A C)

176

(COND (MEMBER A (APPEND B C}) (COND (EQUAL A Bl) T T} T)
(COND (EQUAL A Bl) T T}})

WHICH NORMALIZES TO:

T

4.3 Sample Output 2

This theorem states that REVERSE is idempoten~. Th., pruur

involves fertilization and generalization.

THEOREM TO BE PROVED:

(EQUAL (REVERSE (REVERSE A» A)

MUST TRY INDUCTION.

INDUCT ON A.

THE THEOREM TO BE PROVED IS NOW:

(AND (EQUAL (REVERSE (REVERSE NIL» NIL)
(IMPLIES (EQUAL (REVERSE (REVERSE A» A)

(EQUAL (REVERSE (REVERSE (CONS A1 A») (CONS A1 A»»

EVALUATION YIELDS:

(COND
(COND
.(EQUAL (REVERSE (REVERSE A» A)
• (COND
• (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL») (CONS A1 A»

T

• NIL)
.T)
T
NIL)

WHICH NORMALIZES TO:

(COND
(EQUAL (REVERSE (REVERSE A» A)
(EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL») (CONS A1 A»
T)

FERTILIZE WITH (EQUAL (REVERSE (REVERSE A» A).

THE THEOREM TO BE PROVED IS NOW:

(COND (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL»)
(CONS A1 (REVERSE (REVERSE A»»

T
(* 1»

GENERALIZE COMMON SUBTERMS BY REPLACING (REVERSE A) BY GENRL1.

THE GENERALIZED TERM IS:

(COND (EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL»)
(CONS Al (REVERSE GENRLl»)

T
(* 1»

Note: After fertilizing with the induction hypothesis and
generalizing; a lemma must be proved. This lemma links APPEND
and REVERSE in an interesting way. When this link has been
proved; the original theorem will have been proved. Induction
on GENRLI is used;.

MUST TRY INDUCTION.

INDUCT ON GENRL1.

THE THEOREM TO BE PROVED IS NOW:

(AND

(COND (EQUAL (REVERSE (APPEND NIL (CONS Al NIL»)
(CONS Al (REVERSE NIL»)

T

• (* 1»
(IMPLIES

(COND (EQUAL (REVERSE (APPEND GENRL1 (CONS Al NIL»)
(CONS Al (REVERSE GENRLl»)

T
(* 1»

(COND

178

(EQUAL (REVERSE (APPEND (CONS GENRLII GENRLl) (CONS Al NIL»)
(CONS Al (REVERSE (CONS GENRLII GENRLl»»

T
(* 1»»

EVALUATION YIELDS:

(COND
(COND
.(COND (EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL»)

(CONS Al (REVERSE GENRLl»)
•
•
• (COND
• (COND

T
(* 1»

•• (EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL»)

· · • (CONS GENRLII NIL»
• · • (CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»»

· · T
• • (* 1»

· T
• NIL)
.T)
T
NIL)

WHICH NORMALIZES TO:

(COND

(EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL»)
(CONS Al (REVERSE GENRLl»)

(COND
• (EQUAL (APPEND (REVERSE (APPEND GENRL 1 (CONS Al NIL»)

• (CONS GENRLII NIL»

179

(CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLll NIL»»
T
(* 1»

(COND
(* 1)
(COND

(EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL»)
(CONS GENRLII NIL»

(CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»»
T

· (* 1»
T»

AND REDUCES TO:

(COND
(EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL»)

(CONS Al (REVERSE GENRLl»)
(COND

(EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL»)
(CONS GENRLII NIL»

• (CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»»
T
(* 1»

(COND
(* 1)
(COND
• (EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL»)

(CONS GENRLII NIL»

•
T»

•

T
T)

(CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»»

WHICH NORMALIZES TO:

(COND
(EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL»)

(CONS Al (REVERSE GENRLl»)
(COND
• (EQUAL (APPEND (REVERSE (APPEND GENRLI (CONS Al NIL»)

• (CONS GENRLII NIL»
• (CONS Al (APPEND (REVERSE GENRLl) (CONS GENRLII NIL»»
T

· (* 1)
T)

FERTILIZE WITH (EQUAL (REVERSE (APPEND GENRLI (CONS Al NIL»)
(CONS A1 (REVERSE GENRLI»).

THE THEOREM TO BE PROVED IS NOW:

(COND
(COND
• (EQUAL (APPEND (CONS A1 (REVERSE GENRL1» (CONS GENRLll NIL»

180

• (CONS A1 (APPEND (REVERSE GENRL1) (CONS GENRLII NIL»»
T

• (* 1»
T
(* 2»

EVALUATION YIELDS:

T

4.4 Sample Output 3

Below is the program's proof that the output of SORT is ORDERED.

THEOREM TO BE PROVED:

(ORDERED (SORT A»

MUST TRY INDUCTION.

INDUCT ON A.

THE THEOREM TO BE PROVED IS NOW:

(AND (ORDERED (SORT NIL»
(IMPLIES (ORDERED (SORT A» (ORDERED (SORT (CONS Al A»»)

EVALUATION YIELDS:

(COND (COND (ORDERED (SORT A»

T
NIL)

(COND (ORDERED (ADDTOLIS Al (SORT A») T NIL)
T)

WHICH NORMALIZES TO:

,COND (ORDERED (SORT A» (ORDERED (ADDTOLIS Al (SORT A») T)

GENERALIZE COMMON SUBTERMS BY REPLACING (SORT A) BY GENRLI.

THE GENERALIZED TERM IS:

(COND (ORDERED GENRLI) (ORDERED (ADDTOLIS Al GENRLI» T)

Note: This generalization captures one of the essential properties
of ADDTOLIS: its output is ORDERED if its second argument is ORDERED.
This non-trivial lemma has been produced entirely automatically. It
is proved by induction on GENRLl,Because of the way ORDERED decom
poses its argument, an unusual induction formula is generated. The
induction hypothesis is that the theorem holds for (CONS GENRL12 GENRLI),
and the conclusion is that it holds for (CONSGENRLII (CONS GENRL12 GENRL1».
A second basis is also required.

MUST TRY INDUCTION.

(SPECIAL CASE REQUIRED)

INDUCT ON GENRLI.

THE THEOREM TO BE PROVED IS NOW:

(AND
(COND (ORDERED NIL) (ORDERED (ADDTOLIS Al NIL» T)
(AND

(COND (ORDERED (CONS GENRLll NIL»
(ORDERED (ADDTOLIS Al (CONS GENRLll NIL»)
T)

(IMPLIES
{COND (ORDERED (CONS GENRL12 GENRL1»

(COND

(ORDERED (ADDTOLIS Al (CONS GENRL12 GENRL1»)
T)

(ORDERED (CONS GENRLll (CONS GENRL12 GENRL1»)

182

(ORDERED (ADDTOLIS Al (CONS GENRLll (CONS GENRL12 GENRL1»»
T»»

EVALUATION YIELDS:

(COND
(COND
.(ORDERED (COND (LTE Al GENRLll)

• (COND
• (COND
• .(COND

(CONS Al (CONS GENRLll NIL»
(CONS GENRLll (CONS Al NIL»»

•• (COND GENRLl
•• • (COND (LTE GENRL12 (CAR GENRL1» (ORDERED GENRL1) NIL)
• • T)
•• (ORDERED (COND (LTE Al GENRL12)

• • (CONS Al (CONS GENRL12 GENRL1»

· . (CONS GENRL12 (ADDTOLIS Al GENRL1»»
•• T)

• .(COND
• • (COND
• •• (COND
• •• (LTE GENRLll GENRL12)
• •• (COND GENRLl
• • • (COND (LTE GENRL12 (CAR GENRL1» (ORDERED GENRL1) NIL)
• ••• T)
• • • NIL)
• •• (ORDERED
•.• • (COND
· . . · . . · . . · . .

• · . • T)

• • T
• • NIL)
• • T)

• T
• NIL)
.NIL)

(LTE Al GENRLll)
(CONS Al (CONS GENRLll (CONS GENRL12 GENRL1»)
(CONS GENRLll

(COND (LTE Al GENRL12)
(CONS Al (CONS GENRL12 GENRL1»
(CONS GENRL12 (ADDTOLIS Al GENRL1»»»

T
NIL)

WHICH NORMALIZES TO:

(TOO BIG)

AND REDUCES TO:

(TOO BIG)

EVALUATION YIELDS:

(TOO BIG)

WHICH NORMALIZES TO:

(TOO BIG)

AND REDUCES TO:

(COND
(COND (LTE Al GENRLII) T (LTE GENRLII AI»
(COND
.GENRLI
• (COND
• (LTE GENRLI2 (CAR GENRLI»
• (COND
• .(ORDERED GENRLI)
• • (COND
• • (LTE Al GENRLI2)
• • (COND (LTE GENRLII GENRLI2)

(COND (LTE Al GENRLII) T (COND (LTE GENRLII AI) T NIL»
• •• T)
• • (COND
•• (ADDTOLIS Al GENRLI)
•.• (COND
•• .(LTE GENRLI2 (CAR (ADDTOLIS Al GENRLI»)

· .

• .T)
• T)

• (COND

.T)

(ORDERED (ADDTOLIS Al GENRLI»
(COND (LTE GENRLII GENRLI2) (COND (LTE Al GENRLII) T T) T)
T)

(COND (LTE GENRLll GENRLI2) (COND (LTE Al GENRLll) T T) T»)

• (COND
• (LTE Al GENRLI2)

(COND (LTE GENRLII GENRLI2)
• (COND (LTE Al GENRLII) T (COND (LTE GENRLII AI) T NIL»
• T)

• (COND (LTE GENRLI2 AI)

NIL)

(COND (LTE GENRLII GENRLI2) (COND (LTE Al GENRLII) T T) T)
T»)

WHICH NORMALIZES TO:

(COND
(COND (LTE Al GENRLll) T (LTE GENRLII AI»
(COND
.GENRLI
.(COND (LTE GENRL12 (CAR GENRLI»
• (COND (CIIDERED GENRLI)

(COND (LTE Al GENRL12)
•

184

(COND (LTE GENRLll GENRL12)
(COND (LTE Al GENRLll)
T)

T (LTE GENRLll AI»
•

T)
T)

T)
• (COND (LTE Al GENRL12)

•
•
•
NIL)

(COND (LTE GENRLII GENRL12)

T»

(COND (LTE Al GENRLll)
T)

AND REDUCES TO:

(COND

T (LTE GENRLII AI»

(COND (LTE Al GENRLII) T (LTE GENRLll AI»
(COND
.GENRLI
• (COND
• (LTE GENRL12 (CAR GENRLI»
• (COND (CIIDERED GENRLI)

• (COND (LTE Al GENRLI2) (COND (LTE GENRLll GENRLI2) T T) T)
•• T)

T)
.(COND (LTE Al GENRL12) (COND (LTE GENRLII GENRLI2) T T) T»
NIL)

WHICH NORMALIZES TO:

(COND (LTE Al GENRLI1) T (LTE GENRLll AI»

Note: The hideous intermediate expressions above have been normalated
to the statement that Al is less than or equal to GENRLII or vice versa.
Although this is an elementary fact about LTE, it was generated as a
necessary lemma automatically, and it must be proved by induction. Be
cause LTE recurses on both arguments simultaneously, induction on both
Al and GENRLII is used. The proof is immediate and illustrates the
value of induction on n variables in cases such as this.

MUST TRY INDUCTION.

INDUCT ON GENRLll AND Al.

THE THEOREM TO BE PROVED IS NOW:

(AND (AND (COND (LTE Al NIL) T (LTE NIL Al»
(COND (LTE NIL GENRLll) T (LTE GENRLll NIL»)

(IMPLIES (COND (LTE Al GENRLll) T (LTE GENRLll Al»
(COND (LTE (CONS All Al) (CONS GENRLlll GENRLll»

T
(LTE (CONS GENRLlll GENRLll) (CONS All Al»»)

EVALUATION YIELDS:

(COND
(COND (COND (COND Al NIL T) T T) T NIL)
(COND (COND (COND (LTE Al GENRLll) T (LTE GENRLll Al»

185

(COND (COND (LTE Al GENRLll) T (LTE GENRLll Al» T NIL)
T)

•
NIL)

T
NIL)

WHICH NORMALIZES TO:

(COND (LTE Al GENRLll)
(COND (LTE Al GENRLll) T (LTE GENRLll Al»
(COND (LTE GENRLll Al)

(COND (LTE Al GENRLll) T (LTE GENRLll Al»
T»

AND REDUCES TO:

(COND (LTE Al GENRLll) T (COND (LTE GENRLll Al) T T»

WHICH NORMALIZES TO:

T

Thus, the theorem that SORT produces an ORDERED list has been proved.

It is important to note that no auxilary information about ADDTOLIS or

LTE was used except for those lemmas generated automatically. The lemmas

required were that ADDTOLIS produces an ORDERED list when its second

argument is ORDERED, and that for all X and Y, either X is less than or

equal to Y, or vice versa. These lemmas were proved by induction, using

only the definitions of the functions involved.

In order to establish the correctness of SORT, the theorem that its

output is a permutation of its input must be proved. The program can prove

this theorem as well. It.s proof is not exhibited here however.

186
4.5 Sample Output 4

FLATTEN constructs a list of the tips of a binary tree. Nodes in

the tree are recognized by NODE and constructed by CONSNODE. SWAPTREE

interchanges the two branches of every node in a tree. The theorem

states a relationship between FLATTEN, SWAPTREE, and REVERSE. The proof

illustrates an induction formula for tree-structured terms.

THEOREM TO BE PROVED:

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)

MUST TRY INDUCTION.

(SPECIAL CASE REQUIRED)

INDUCT ON A.

THE THEOREM TO BE PROVED IS NOW:

(AND
(EQUAL (FLATTEN (SWAPTREE NIL» (REVERSE (FLATTEN NIL»)
(AND

(EQUAL (FLATTEN (SWAPTREE (CONS Al NIL»)
(REVERSE (FLATTEN (CONS Al NIL»»

(IMPLIES
(AND (EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»)

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»»
(EQUAL (FLATTEN (SWAPTREE (CONS Al (CONS A2 A»»

(REVERSE (FLATTEN (CONS Al (CONS A2 A»»»»

Note: The induction hypothesiS is a conjunction. The first conjunct
states that the theorem holds for A2. The second states that it holds
for A. The conclusion is that it holds for (CONS Al (CONS A2 A». A
second basis is also required. This formula is generated because
FLATTEN recurses on both the CAR of the CDR and the CDR of the CDR
of its argument.

EVALUATION YIELDS:

(COND
(COND
.(EQUAL (FLATTEN (COND (COND Al NIL NIL)

(CONS NIL (CONS NIL NIL»
(CONS Al NIL»)

(REVERSE (COND (COND Al NIL NIL)

• (COND
• (COND

(CONS NIL (CONS NIL NIL»
(CONS (CONS Al NIL) NIL»»

187

• .(COND

· .
• •

(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»)
(COND (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)

T

• • NIL)

• • NIL)
• • (COND
• • (EQUAL
• •• (FLATTEN · . . · . . · . . · -. . · . .
• • T
• • NIL)
• .T)

• T
• NIL)
.NIL)
T
NIL)

•
•
(REVERSE

(COND (COND Al NIL T)
(CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2»)
(CONS Al (CONS A2 A»»

(COND (COND Al NIL T)
(APPEND (FLATTEN A2) (FLATTEN A»
(CONS (CONS Al (CONS A2 A» NIL»»

WHICH NORMALIZES TO:

(COND
(EQUAL (FLATTEN (CONS Al NIL» (REVERSE (CONS (CONS Al NIL) NIL»)
(COND
.(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»)

• tOND
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)

• (COND

• .At
• .(COND Al
• • (EQUAL (FLATTEN

(REVERSE
(EQUAL (FLATTEN

• •
• • · . (REVERSE

• .(COND
•• Al

(CONS Al (CONS A2 A»)
(CONS (CONS Al (CONS A2 A» NIL»)
(CONS Al (CONS A2 A»)
(APPEND (FLATTEN A2) (FLATTEN A»»)

•• (EQUAL (FLATTEN (CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2»»
••• (REVERSE (CONS (CONS Al (CONS A2 A» NIL»)
•• (EQUAL (FLATTEN (CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2»»
• • (REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»»

• T)
.T)
NIL)

AND REDUCES TO:

(COND
(EQUAL (FLATTEN (CONS Al NIL» (REVERSE (CONS (CONS Al NIL) NIL»)

(COND
.(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»)

• (COND
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)
• (COND
•• Al
•• (EQUAL (FLATTEN (CONS Al (CONS A2 A»)
• • (REVERSE (CONS (CONS Al (CONS A2 A» NIL»)

188

•• (EQUAL (FLATTEN (CONS NIL (CONS (SWAPTREE A) (SWAPTREE A2»»
• • (REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»)

• T)
.T)
NIL)

EVALUATION YIELDS:

(COND
(EQUAL (COND (COND Al NIL NIL)

(COND

(CONS NIL (CONS NIL NIL»
(CONS (CONS Al NIL) NIL»

(CONS (CONS Al NIL) NIL»

.(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»)

• (COND
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)

• (COND
• • Al
•• (EQUAL (COND (COND Al NIL T)

· •

· • · •
•
•
•

(APPEND (FLATTEN A2) (FLATTEN A»
(CONS (CONS Al (CONS A2 A» NIL»

(CONS (CONS Al (CONS A2 A» NIL})

· • (EQUAL (APPEND (FLATTEN (SWAPTREE A» (FLATTEN (SWAPTREE A2»)

· • (REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»)

· T)
.T)
NIL)

WHICH NORMALIZES TO:

(COND
(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»)
(COND
.(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A}»

• (COND

• Al
• (COND Al

• T
• • (EQUAL (APPEND (FLATTEN A2) (FLATTEN A»

.T)
T)

• (CONS (CONS Al (CONS A2 A}) NIL»)
(EQUAL (APPEND (FLATTEN (SWAPTREE A}) (FLATTEN (SWAPTREE A2»)

(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»)

AND REDUCES TO:

(COND
(EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»)
(COND
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)

• (COND
• Al

T

189

• (EQUAL (APPEND (FLATTEN (SWAPTREE A» (FLATTEN (SWAPTREE A2»)
(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»)

.T)
T)

FERTILIZE WITH (EQUAL (FLATTEN (SWAPTREE A2» (REVERSE (FLATTEN A2»).

THE THEOREM TO BE PROVED IS NOW:

(COND
(COND
• (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)
• (COND

• Al
• T · .
·

(EQUAL (APPEND (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A2»)
(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»)

.T)
T
(* 1»

FERTILIZE WITH (EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»).

THE THEOREM TO BE PROVED IS NOW:

(COND
(COND
.(COND Al

•

.T

.(* 2»
T
(* 1»

T
(EQUAL (APPEND (REVERSE (FLATTEN A» (REVERSE (FLATTEN A2»)

(REVERSE (APPEND (FLATTEN A2) (FLATTEN A»»)

GENERALIZE COMMON SUB TERMS BY REPLACING (FLATTEN A) BY GENRLI AND
(FLATTEN A2) BY GENRL2.

THE GENERALIZED TERM IS:

(COND (CONn (COND Al
T

T
(* 1»

T
(* 2»

(EQUAL (APPEND (REVERSE GENRLl) (REVERSE GENRL2»
(REVERSE (APPEND GENRL2 GENRLl»»

190
The above formula has been produced by fertilizing with both

conjuncts of the induction hypothesis, and then generalizing. The

formula represents the familiar theorem that REVERSE can be distri

buted over APPEND (if the arguments to the APPEND are swapped).

This theorem was proved in Section 2.3. The proof generates two

nice lemmas: NIL is a right-identity for APPEND; and APPEND is

associative. Since the proof has been described in Section 2.3,

it is omitted here.

191

CHAPTER 5 EXTENSIONS

5.1 Termination

Up to now we have not discussed the notion of termination. This

section is devoted to two topics concerned with termination. The first

is characterizing the behaviour of the present program, formally and

practically, in the presence of partial functions. The second topic

is the value of the present approach to automatically proving program

termination.

Formally, to discuss the notion of termination, we must define how

the value of an expression is calculated. We have not done this in the

theory and will not do so here. Instead, we will rely upon the reader's

intuitions about LISP when discussing this question.

Since the theorem prover is sound, any instance of a formula which

is proved by it is equivalent to T, provided the theory in which the

theorem is proved is consistent. If a traditional interpreter (such

as our eval modified so that it is no longer a symbolic interpreter)

is used to decide whether the instance is T, it may not always terminate.

However, any instance which does terminate when evaluated, yields T.

For example, consider the function defined by:

(CHOP (LAMBDA (X y)
(COND (EQUAL X (CAR Y))

(CDR y)
(CHOP X (CDR y))))).

This function searches for the first occurrence of X as an element of Y.

If'f6und,'it returns the CDR of Y following X. Otherwise, evaluation

of the function recurses indefinitely.

192

The theorem prover can prove:

(IMPLIES (MEMBER A B) (LTE (CHOP A B) B».

If IMPLIES is an EXPR (as all defined functions are under our ~)

and has its arguments evaluated before the definition is entered, then

some instances of this theorem do not terminate when evaluated. (For

example, let A be 1 and B be NIL). All instances which do terminate

yield T, which is what the theorem prover establishes.

It is difficult to establish whether an extension is consistent

after the introduction of a partial function. The easiest way to decide

some cases is to find a total fixed point for the function definition.

If one is found, a model exists in which the defining axiom of the function

is satisfied, so the extension is consistent.

In practice, the theorem prover proves very few theorems about

functions which do not always terminate. This is primarily because

there are very few things one can say about all values of an expression

which may not always be defined. The situation is more interesting if

one can discuss the sequence of computations a function performs when

evaluated.

Turning to automatic proof of termination, it is important to

point out that the system described here cannot deal with such proofs.

If termination is being considered, it is necessary to allow the logic

to discuss the notion of being well-defined, or of being undefined.

Since our logical language is the programming language itself, we are

inherently unable to discuss termination of programs in the language.

From a more mundane point of view, many of the rewrite rules assume

termination for certain subexpressions. For example, the rules:

193

(COND x Y y) ~ y,

and

(EQUAL x x) ~ T,

do not preserve the termination properties of the left-hand side.

If x does not terminate, neither of the left-hand sides above terminate

when evaluated. But both right-hand sides can terminate. Thus, even

if we introduced a new logical language to allow discussion of termi-

nation, about half a dozen rewrite rules could be used only after

determining whether certain sub expressions terminated.

However, the present approach has an important contribution to

make to proof of termination. This is simply the observation that the

automatic induction heuristics apply to termination problems as well

as to the other properties of programs.

For example, to prove that LTE always terminates for well-defined

arguments, we proceed as follows. The definition of LTE is:

(LTE (LAMBDA (X y)
(COND X

(COND Y (LTE (CDR X) (CDR Y» NIL)
T»).

~ determines that induction on both arguments is required. We must

then show that if both arguments evaluate, and either is NIL, the result

is well-defined. For X = NIL, this is easy. For Y = NIL, we must do

a case analysis on X, using the fact that it is well-defined. For the

induction step we assume that LTE is well-defined when the values of the

arguments are val1 and Val2. We must show that it is well-defined when

the values are well-defined pairs, with val1 and val2 as their respective

CDRs. Since both X and Y are well~defined and non-NIL, we immediately

observe that we must show that:

194
(LTE (CDR X) (CDR Y»

is well-defined. Both arguments evaluate, since X and Y are defined.

Furthermore, their values are va11 and val2 by construction. But we

have assumed that LTE is defined for these arguments, so we are done.

In short, the eValuation mechanism is still very well suited to

choosing the terms to induct upon and for determining the form of the

induction argument needed to prove termination.

5.2 Iteration

We have not considered iterative functions up to this point. The

current program cannot deal with them. However, it is interesting to

note that the methods developed in this thesis can be extended to allow

proofs about such functions. More precisely, we first observe that

iterative functions have natural recursive counterparts -- that is,

there are recursive functions which build up or decompose their

arguments in the same way that a particular iterative function does.

It is possible to mechanically translate a function using PROG, SETQ,

GO, and RETURN into its recursive version. This is discussed and illus

trated below. We then demonstrate, by example, how it is possible to

prove theorems about such "iterative" functions by a slight extension

of the induction heuristic and fertilization rule. In particular, it

becomes clear that for some theorems at least it is possible to produce

an inductive proof by purely mechanical means, even for iterative functions.

Below we give an iterative definition of a function which reverses

a list (constructively). The traditional LISP COND is used, along with

FROG, SETQ, GO, and RETURN. We assume the reader is familiar with these

primitives in LISP:

(PROGREV (LAMBDA (X)
(PROG (y)

(SETQ Y NIL)
LOOP (COND (X (SETQ Y (CONS (CAR X) y»

(SETQ X (CDR X»
(GO LOOP»

(T (RETURN Y»»».

195

This function uses Y as a local variable. Y is initialized to NIL

and then the program cycles around a loop~ CDRingX. The CAR of X is

CONSed onto the running answer, Y, until X is empty. Y is returned.

This behaviour is simulated by the following recursive definitions.

The three-place COND used elsewhere in this paper is used below.

(PROGREV (LAMBDA (X) (REV1 X NIL»)

where the definition of REV1 is:

(REV1 (LAMBDA (X y)
(COND X

(REV1 (CDR X) (CONS (CAR X) Y»
Y»).

Here, PROGREV just calls REV 1 , initializing Y to NIL. REV1 recurses,

CDRing X. The CAR of X is CONSed onto the running answer, Y, until X

is empty. Y is returned. The relationship with the iterative definition

is obvious.

This translation can be done in a straightforward mechanical way.

In fact, the optional routine, defineprog, exists which will translate

a well-formed definition involving arbitrary PROGs, SETQs, GOs and

RETURNs into the appropriate collection of mutually defined recursive

functions. defineprog will produce the two definitions above, given

the original PROG version. It will also handle more complicated loops

and jumps.

The basic idea in defineprog is that one generates functions which

have as many variables as there are arguments and locals in the current

196

PROG. Each label indicates that a new recursive function must be

produced. This function will be called whenever a GO statement to

the associated label is encountered. SETQs are handled by accumulating

the assignments until a GO is encountered. At that point, a call to

the relevant function is planted, with the argument positions set to

the resul~of the accumulated assignments to each variable. Thus, in

the recursive call, the variables are bound as desired. RETURNs

indicate that the process is done. The reader should now be able to

construct REV1 from the PROG version of PROGREV.

We now wish to illustrate how we can prove theorems about these

recursive translations of iterative functions, without requiring user

supplied inductive assertions. We will prove the equivalence of

REVERSE (the traditional definition) and PROGREV (the recursive trans-

lation of the iterative version). The theorem to be proved is:

·(EQUAL (REVERSE A) (PROGREV A».

This just becomes:

(1) (EQUAL (REVERSE A) (REV1 A NIL»,

by normalation, since PROGREV is not recursive.

We shall approach the proof just as the current program does, and

point out the necessary extensions when they are encountered.

The evaluation routine indicates that induction on A is required.

The NIL-case evaluates to T. We assume (1) as our induction hypothesis,

and set out to prove:

(EQUAL (REVERSE (CONS A1 A» (REV1 (CONS A1 A) NIL».

This just evaluates to:

(2) (EQUAL (APPEND (REVERSE A) (CONS A1 NIL»
(REV1 A (CONS A1 NIL»).

Cross-fertilizing with the induction hypothesis, (1), by replacing

(REVERSE A) by (REV1 A NIL), we obtain:

(EQUAL (APPEND (REV1 A NIL) (CONS A1 NIL»
(REV1 A (CONS A1 NIL»).

Since (CONS A1 NIL) is common to both sides, we generalize it:

(EQUAL (APPEND (REV1 A NIL) B) (REV1 A B».

This is an interesting lemma about APPEND and REV1.

197

Up to this point we have used only techniques available in the

current program. However, in setting up the induction hypothesis to

prove the lemma above, we diverge slightly, but in a very mechanical

way.

Let us consider the induction principle. If we are trying to prove

p(X,Y) where X and Y are universally quantified, and wish to use induction

on X, a valid induction step is:

YX(YY(p(X,Y» -> YY,X1(p«CONS X1 X),Y»).

This corresponds to taking as our induction hypothesis, the expression

p(A,Y), where Y is a free variable, and trying to prove p«CONS A2 A),B).

That is, we get to assume that p is true for A and all Y, and we must

prove that it is true for (CONS A2 A) and B. Intuitively, the "opponent"

gets to choose A, A2, and B, and we know nothing about them; but we can

choose any Y we like. Indeed, we can use as many instances of p(A,Y) as

we wish.

In the past we have predicted that the only instance we will want

to use is p(A,B) and assumed it explicitly. This could be predicted be-

cause none of the functions CONSed things on to their arguments during

recursion, so that in the conclusion, B would remain unchanged. This is

not the case with REV1 and the extension desired is clear: If when

198

evaluation is determining what to induct upon, it is noted that skolem

constants are being built up in the recursion, then let those skolem

constants be free in the hypothesis (provided they are not being

inducted upon).

Returning to the REV1 theorem above, we therefore choose as our

induction hypothesis:

(3) (EQUAL (APPEND (REV1 A NIL) Y) (REV1 A Y)),

where Y is a free variable. The conclusion to be established is:

(EQUAL (ApPEND (REV1 (CONS A2 A) NIL) B) (REV 1 (CONS A2 A) B)).

Using the program's approach, we evaluate this and get:

(4) (EQUAL (APPEND (REV1 A (CONS A2 NIL)) B) (REV1 A (CONS A2 B))).

As usual, we must now use our hypothesis, (3). Since it has Y free in

it, we can use it in two places and choose to do both. The first is

done by letting Y be (CONS A2 B) and fertilizing the right-hand side

of (4) with (3). This produces:

(5) (EQUAL (APPEND (REV1 A (CONS A2 NIL)) B)
(APPEND (REV1 A NIL) (CONS A2 B))).

The second use of (3) is by letting Y be (CONS A2 NIL), and fertilizing

the left-hand side of (5) with (3):

(6) (EQUAL (APPEND (APPEND (REV1 A NIL) (CONS A2 NIL)) B)
(APPEND (REV1 A NIL) (CONS A2 B))).

Having made these two non-standard fertilizations, we now proceed as the

program would.

Noting that (REV1 A NIL) is common to both sides, we generalize

(6) to get:

(EQUAL (APPEND (APPEND C (CONS A2 NIL)) B)
(APPEND C (CONS A2 B))).

199

This is just a trivial lemma about APPEND which the current theorem

prover can establish immediately, by induction on C. We are therefore

finished, and have shown that PROGREV is equivalent to REV.

The extensions necessary to produce this proof were: (1) Induction

had to notice that the skolem constant B was being built up and leave it

free in the hypothesis. (2) Fertilization had to use two different

instances of the induction hypothesis.

The proof had exactly the same structure as those produced by the

program. In particular, fertilization and generalization produced the

necessary lemmas. This kind of extension is sufficient to allow proofs

of several other theorems involving iterative functions.

As a topic of further research, the theorem prover is being modified

to handle such functions. However, allowing free variables in the

hypothesis introduces many problems. In particular, it allows the

hypothesis to be used in many ways, not all of which are good. Note

that in the proof just described, the result of the second fertilization,

(6), can again be fertilized. In fact, because an instance of the

right-hand side of (3) occurs in the left-hand side of (3), fertilization

with this equality can continue indefinitely. Furthermore, if free

variables are introduced into induction hypotheses, then quantification

gets messy if induction must be resorted to a second time. Both problems

can be avoided if eval is used to predict exactly which instances will

be needed, and then have induct supply just those instances. This is

the direction of current research.

200

CHAPTER 6 CONCLUSIONS

6.1 Built-in Information

The program "knows" a lot about the primitives of LISP, about

how to determine whether certain expressiDns have certain properties,

about how to use an inductive argument to write recursive functions,

and about how to use its knowledge of recursive functions to produce

inductive arguments. However, no information is built-in about non-

primitive functions. This statement is discussed and amplified below.

Although EQUAL is a primitive function, it can be written in

terms of the other primitives:

(EQUALP (LAMBDA (X y)
(COND X

(COND y
(COND (EQUALP (CAR X) (CAR y))

(EQUALP (CDR X) (CDR y))
NIL)

NIL)
(COND Y NIL T)))).

In addition to being abae to prove that EQUALP is symmetric, reflexive,

and transitive, the program can prove that it is equivalent to EQUAL:

(EQUAL (EQUALP A B) (EQUAL A B)).

This is done by breaking the theorem into two conjuncts:

(COND (COND (EQUALP A A) T (·1))
(COND (EQUALP A B) (EQUAL A B) T)
NIL) ,

with normalation and fertilization, and then normalation again. The

first conjunct requires EQUALP to be reflexive, and the second requires

that it implies equality. Thereafter, fertilization is not used in

this theorem.

201

The first conjunct is proved by CAR and CDR induction on A, and the

second by CAR and CDR induction on A and B simultaneously. The theorem

requires 9 seconds.

It should be noted that many of the rewrite rules applied to

EQUAL expressions behave as though the expressions were really EQUALP

expressions. In particular, ~ expands

(EQUAL (CONS A B) (CONS C D»

in exactly the way it recursively expands

(EQUALP (CONS A B) (CONS CD».

Also, normalize rewrites (EQUAL x NIL) to (COND x NIL T), in the same

way that normalation would rewrite (EQUALP x NIL). So in many senses,

EQUAL is not as built-in as it might appear.

However, certain critical information is available about EQUAL

which is not available about EQUALP. This of course is found in

fertilization and equality substitution. The theorem prover "knows"

that if (EQUAL A B) is T, then A = B. The only sense in which it

"knows" this fact for (EQUALP A B) is in being able to prove the theorem

stating the equivalence of EQUALP and EQUAL.

Since EQUAL is the characteristic function of the only predicate

in the theory, namely, equality, it was felt that it should be primitive.

The only knowledge the program has of non-primitives is their defi

nitions. In fact, only ~ and the typing functions even know of the

existence of definitions for non-primitives.

A review of the description of the program will reveal only two

places in which non-primitives are mentioned outside of function entry

in eval. These two places are generalization and induction. Both may

202

introduce the non-primitive IMPLIES, and induct may introduce AND.

Of course, both of these routines could use the equivalent compound

COND statements into which these functions expand. Since normalation

immediately removes the IMPLIES and AND, their use by these two routines

is actually an inefficiency. It is tolerated because it makes the

output of these routines more readable to the user.

A more interesting use of non-primitives occurs elsewhere in

generalization, specifically, in tY}leexpr. As noted, this function

makes explicit, programmed checks for types BOOLEAN and NUMBERP,

before bothering to generate new type functions. It could be argued

that information about these two non-primitives is therefore

critically built-in.

But as pointed out, without these explicit checks, typeexpr will

write its own (identical) definitions of these. functions. (If NUMBERP

did not exist, typeexpr would invent it.) Since no non-definitional

properties of these two functions are known, it hardly matters that

the type functions introduced have the names BOOLEAN and NUMBERP, or

FOOTYPE and BARTYPE.

Of course, the most interesting use of non-primitives by the program

is when it automatically writes a new function to help a generalization.

This involves no built-in information about any specific functions, but

rather general knowledge of the types of the primitives and the relation

ship between recursion and induction.

Introducing the logical connectives, AND, OR, NOT, and IMPLIES, as

non-primitives to a theorem prover may appear to carry the ban on

programmed non-prin,itive information a little too far. However, since

203

all of these are naturally defined with COND, and since the relevant

properties of COND must be known to the theorem prover anyway, intro-

ducing special logical facilities would only add more code and produce

an interface problem between the logical rules and the knowledge of

LISP.

The program uses no lemmas whatsoever concerning user defined

functions. (This holds even for AND, OR, NOT, and IMPLIES.) Because

no such lemmas are used, the system frequently reproves facts. A very

common such fact is that APPEND is associative. This is proved as a

lemma for several theorems (a process requiring 3 seconds).

Lemmas are avoided for three reasons. The first is simply that a

(malicious) user could introduce FOOAPPEND in a theorem and any time

spent by the program looking for applicable lemmas would be wasted,

even though the proof of the theorem is just as obvious as before.

Secondly, the ability of the program to automatically generate nice

lemmas is accentuated by the fact that none of these lemmas are built-

in. Finally, one of the primary aims of this project has been to

demonstrate clearly that it is possible to prove program properties

entirely automatically. A total ban on all built-in information about

user defined functions thus removes any taint of user supplied information.

6.2 Automatic Generation of Natural Lemmas

One of the most striking features of proofs produced by the program

is the frequency with which natural lemmas are automatically generated.

The earliest example of this was in Section 2.3 in which the theorem:

(EQUAL (APPEND (REVERSE A) (REVERSE B))
(REVERSE (APPEND B A)))

204

was proved. During the proof the program generates the two lemmas:

(EQUAL (APPEND C NIL) C),

and

(EQUAL (APPEND C (APPEND D E)) (APPEND (APPEND CD) E)).

The first states that NIL is a right identity for APPEND, and the

second states that APPEND is associative.

Further examples are provided in Chapter 4. The proof of

(ORDERED (SORT A)),

produces the two lemmas:

(IMPLIES (ORDERED C) (ORDERED (ADDTOLIST B C)))

and

(OR (LTE B D) (LTE DB)).

Both of these are very basic properties of the functions concerned,

although that fact is certainly not known to the system. The lemmas

are generated entirely automatically by the combination of induction

and the generalization and normalation routines.

Proof of the theorem in Section 4.5:

generates:

(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A))),

(EQUAL (APPEND (REVERSE B) (REVERSE C))
(REVERSE (APPEND C B))),

as a lemma, which was the first theorem discussed in this section.

As a final example of how natural lemmas are produced, consider

the program's proof that TIMES (multiplication defined in terms of

addition) is associative:

(EQUAL (TIMES A (TIMES B C)) (TIMES (TIMES A B) C)).

An induction on A produces the induction step:

(eOND (EQUAL (TIMES A (TIMES Be»
(TIMES (TIMES A B) C»

(EQUAL (PLUS (TIMES B C) (TIMES A (TIMES Be»)
(TIMES (PLUS B (TIMES A B» C»

T),

after normalation. Cross-fertilization produces:

(eOND (EQUAL (PLUS (TIMES B C) (TIMES (TIMES A B) C»
(TIMES (PLUS B (TIMES A B» C»

T
(*1».

Ignoring the (*1) term and generalizing produces:

(EQUAL (PLUS (TIMES B C) (TIMES DC»
(TIMES (PLUS B D) C»,

which is just the theorem that TIMES distributes over PLUS.

This is proved by induction on B. The normalated induction

step is:

(eOND (EQUAL (PLUS (TIMES B C) (TIMES D C»
(TIMES (PLUS B D) C»

(EQUAL (PLUS (PLUS e (TIMES B C» (TIMES DC»
(PLUS C (TIMES (PLUS B D) C»)

T) •

Cross-fertilization and generalization produce:

(EQUAL (PLUS (PLUS e E) F) (PLUS e (PLUS E F»),

(ignoring the (*2) term). This is just the associativity of PLUS.

The ability of the system to automatically generate critical

lemmas accounts for a large degree of its success. This ability

is largely a product of the design philosophy discussed in the

next section.

6.3 Design Philosophy of the Program

205

The program was designed to behave properly on simple functions.

The overriding consideration was that it should be automatically able to

206

prove theorems about simple LISP functions in the straightforward way

we prove them. This, I believe, has been achieved. The principle is

clearly reflected in the following areas:

Evaluation is of monumental importance to the system. This routine

was designed to perform the task of "stepping through" the evaluation of

a function. It cautiously goes into recursion, and notices what struc

tures are being decomposed, what is necessary for the function to run

properly, and how the arguments are used. It returns a symbolic expres

sion describing the result of the eValuation and notes where recursive

functions halted and why. It is very natural that the backbone of a

theorem prover for LISP should be an interpreter for LISP. Furthermore,

most of the intuitions that a human programmer/theorem prover possesses

about LISP comes directly from the behaviour of the interpreter upon

given expressions.

The second area in which the desire for autonomy and a sound, simple

approach is evident is the typing function, typeexpr. The very existence

of this function (as opposed to, say, user interaction) strongly shows

the influence of the above design principle. The program has the means

to discover for itself the kind of output an expression may yield. It

is flexible enough to express this as an automatically produced descrip

tion of the output, rather than merely naming one of a predetermined

number of type classes. Finally, its orientation is such that this

description is in the form of a LISP program which returns T or NIL

according to membership in the defined class, rather than in some

other language.

In addition to the existence of typeexpr, its methods are in

accordance with the principle expressed above. It generates its

207

description by recursively exploring the expression, and it recognizes

when a recursive description is called for by using an inductive

approach. Furthermore, once its first pass has produced a rather

sloppy piece of LISP code which will do the job, it uses its extensive

knowledge of the language to optimize it. This is much like a programmer.

It allows the production of efficient code, known to work, without

the aid of outside help or search.

A third area reflecting the influence of the desire to approach

theorems as a human might is induct. Again, its existence alone is

indicative of the spirit of the program. Most programmers merely

"observe" that APPEND is associative, or that some fact about SORT

holds. They are not given hints regarding how to understand that a

particular piece of recursion has a certain property. Neither do

they require each statement in a program to be accompanied by a descrip

tion of what it does; presumably that is unambiguously clear in a

programming language. Their "observation" of a property is apparently

the result of running the function symbolically, with enough control

to know when the recursive calls are satisfied by an induction hypothesis.

This is precisely how the program works, using ~ to inform induct

how the functions are running and what inductive "patches" are needed

to handle the recursion.

The structure of the program is remarkably simple by artificial

intelligence standards. This is primarily because the control structure

is embedded in the syntax of the theorem. This means that the system

does not contain two languages, the "object language", LISP, and the

"meta-language", predicate calculus. They are identified. This mix of

208

computation and deduction was largely inspired by the view that the

two processes are actually identical. Bob Kowalski, Pat Hayes,

and the nature of LISP deserve the credit for this unified view.

One implication of its use here is that there are no communication

or interface problems between a LISP knowledge system and a logic

knowledge system. This not only helps reduce the program's size

and complexity, but increases its power. Although no analogy of

method is intended, such a complete integration of programming skills

and logical reasoning is certainly present in a good programmer.

It was noted that several of the routines used the same rewrite

rules. This is a design feature, and partially accounts for the speed

of the program. It is far more efficient to check frequently whether

the first argument of a COND is a CONS, than it is to wait and let

eval do it. This is a product of the view that the program's knowledge

should be as integrated as possible, and that fast powerful simpli~

fication routines should be used before any more sophisticated

techniques are used.

Finally, it should be pointed out that the program uses no search.

At no time does it "undo" a decision or back up. This is both the

primary reason it is a fast theorem prover, and strong evidence that

its methods allow the theorem to be proved in the way a programmer

might "observe" it. The program is designed to make the right guess

the first time, and then pursue one goal with power and perserverance.

APPENDIX A FUNCTION DEFINITIONS

(ADDl (LAMBDA (X) (CONS NIL X»)

(ADD'lULIS (LAMBDA (X y)
(COND Y

(COND (LTE X (CAR y»
(CONS X y)
(CONS (CAR y) (ADDTOLIS X (CDR y»»

(CONS X NIL»»

(AND (LAMBDA ex y) (COND X (COND Y T NIL) NIL»)

(APPEND (LAMBDA (X Y)
(COND X (CONS (CAR X) (APPEND (CDR X) Y» Y»)

(ASSOC (LAMBDA (X Y)
(COND
Y
(COND

(CAR y)

209

(COND (EQUAL X (CAR (CAR Y») (CAR Y) (ASSOC X (CDR y»)
(ASSOC X (CDR Y»)

NIL»)

(BOOLEAN (LAMBDA (X) {COND X (EQUAL X T) T»)

(CDRN (LAMBDA (X y)
(COND Y (COND X (CDRN (SUBl X) (CDR ~» y) NIL»)

{CONSNODE (LAMBDA (X y) (CONS NIL (CONS X y»»

(CONSTTRU (LAMBDA (X) T»

(COPY (LAMBDA (X)
(COND X {CONS (COPY (CAR X» (COPY (CDR X») NIL»)

(COUNT (LAMBDA (X y)
(COND Y

(COND (EQUAL X (CAR Y»

0»)

(DOUBLE (LAMBDA (X)

(ADDl (COUNT X (CDR y»)
(COUNT X (CDR y»)

(COND X (ADDl (ADDl (DOUBLE (SUBl X»» 0»)

(ELEMENT {LAMBDA (X y)
{COND Y (COND X {ELEMENT (CDR X) (CDR Y» (CAR y» NIL»)

(E~ALP (LAMBDA (X y)
(COND X

(COND Y
(COND C EQUALP (CAR X) (CAR Y»

(EQUALP (CDR X) (CDR y»
NIL)

NIL)
(CONn Y NIL T»»

(EVEN1 (LAMBDA (X)
(COND X (NOT (EVEN! (SUB! X») T»)

(EVEN2 (LAMBDA (X)
(COND X (COND (SUB! X) (EVEN2 (SUB! (SUB! X») NIL) T»)

(FLATTEN (LAMBDA (X)
(COND

(NODE X)

210

(APPEND (FLATTEN (CAR (CDR X») (FLATTEN (CDR (CDR X»»
(CONS X NIL»»

(GT (LAMBDA (X y)
(COND X (COND Y (GT (SUB! X) (SUB! y» T) NIL»)

(HALF (LAMBDA (X)
(COND X (COND (SUB! X) (ADD! (HALF (SUB! (SUB! X»» 0) 0»)

(IMPLIES (LAMBDA (X y) (COND X (COND Y T NIL) T»)

(INTERSEC (LAMBDA (X Y)
(COND X

(CONn (MEMBER (CAR X) Y)

NIL»)

(LAST (LAMBDA (X)

(CONS (CAR X) (INTERSEC (CDR X) Y»
(INTERSEC (CDR X) Y»

(COND X (COND (CDR X) (LAST (CDR X» (CAR X» NIL»)

(LENGTH (LAMBDA (X)
(COND X (ADD! (LENGTH (CDR X») 0»)

(LIT (LAMBDA (X Y Z)
(COND X (APPLY Z (CAR X) (LIT (CDR X) Y Z» Y»)

(LTE (LAMBDA (X y)
(COND X (COND Y (LTE (SUB! X) (SUB! Y» NIL) T»)

(MAPLIST (LAMBDA (X y)
(CONn X (CONS (APPLY Y (CAR X» (MAPLIST (CDR X) Y» NIL»)

(MEMBER (LAMBDA (X Y)
(COND Y (COND (EClJAL X (CAR Y» T (MEMBER X (CDR y») NIL»)

(MONOT! (LAMBDA (X)
(COND
X

(COND
(CDR X)

211

(COND (EQUAL (CAR X) (CAR (CDR X») (MCNOTl (CDR X» NIL)
T)

T»)

(ltIlNOT2 (LAMBDA (X y)
(COND Y (COND (EQUAL X (CAR y» (MDNOT2 X (CDR y» NIL) T»)

(MONOT2P (LAMBDA (X)
(COND X (MCNOT2 (CAR X) (CDR X» T»)

(NODE (LAMBDA (X)
(CONn X (COND (CAR X) NIL (COND (CDR X) T NIL» NIL»)

(NOT (LAMBDA (X) (COND X NIL T»)

(NUMBERP (LAMBDA (X)
(COND X (COND (CAR X) NIL (NUMBERP (CDR X») T»)

(OCCUR (LAMBDA (X Y)
(COND

(EQUAL X y)
T
(COND Y (COND (OCCUR X (CAR y» T (OCCUR X (CDR Y») NIL»»

(OR (LAMBDA (X Y) (COND X T (COND Y T NIL»»

(ORDERED (LAMBDA (X)
(COND
X
(COND

(CDR X)
(COND (LTE (CAR X) (CAR (CDR X») (ORDERED (CDR X» NIL)
T)

T»)

(PAIRLIST (LAMBDA (X y)
(COND
X
(COND

Y
(CONS (CONS (CAR X) (CAR y» (PAIRLIST (CDR X) (CDR y»)
(CONS (CONS (CAR X) NIL) (PAIRLIST (CDR X) NIL»)

NIL»)

(PLUS (LAMBDA (X y)
(COND X (ADDl (PLUS (SUBl X) Y» (LENGTH y»»

(REVERSE (LAMBDA (X)
. (COND X

(APPEND (REVERSE (CDR X» (CONS (CAR X) NIL»
NIL) »

(SORT (LAMBDA (X)

(COND X (ADDTOLIS (CAR X) (SORT (CDR X») NIL»)

(SUB! (LAMBDA (X) (CDR X»)

(SUBSET (LAMBDA (X y)
(COND X

(COND (MEMBER (CAR X) Y) (SUBSET (CDR X) y) NIL)
T»)

(SUBST (LAMBDA (X Y z)
(COND (EQUAL Y Z)

X
(COND Z

(CONS (SUBST X Y (CAR Z» (SUBST X Y (CDR Z»)
NIL»»

(SWAP'lREE (LAMBDA (X)
(COND (NODE X)

(CONSNODE (SWAPTREE (CDR (CDR X»)
(SWAPTREE (CAR (CDR X»»

X»)

(TIMES (LAMBDA (X y)
(COND X (PLUS Y (TIMES (SUB1 X) Y» 0»)

(TIPCOUNT (LAMBDA (X)
(COND

(NODE X)

212

(PLUS (TIPCOUNT (CAR (CDR X») (TIPCOUNT (CDR (CDR X»»
1»)

(UNION (LAMBDA (X y)
(COND X

(COND (MEMBER (CAR X) Y)
(UNION (CDR X) Y)
(CONS (CAR X) (UNION (CDR X) Y»)

Y»)

APPENDIX B SOME THEOREMS PROVED AU1UMATICALLY

Theorems about APPEND, REVERSE, and LENGTH

(EQUAL (APPEND A (APPEND B C)} (APPEND (APPEND A B) C}}

(IMPLIES (EQUAL (APPEND A B) (APPEND A C}) (EQUAL B C})

(EQUAL (LENGTH (APPEND A B» (LENGTH (APPEND B A)}}

(EQUAL (REVERSE (APPEND A B)} (APPEND (REVERSE B) (REVERSE A}»

(EQUAL (LENGTH (REVERSE D}) (LENGTH D})

(EQUAL (REVERSE (REVERSE A» A}

(IMPLIES A (EQUAL (LAST (REVERSE A)} (CAR A)}}

Theorems about membership

(IMPLIES (MEMBER A B) (MEMBER A (APPEND B C»}

(IMPLIES (MEMBER A B) (MEMBER A (APPEND C B)}}

(IMPLIES (AND (NOT (EQUAL A (CAR B)}} (MEMllER A B})
(MEMBER A (CDR B)}}

213

(IMPLIES (OR (MEMBER A B) (MEMBER A C)} (MEMBER A (APPEND B C)}}

(IMPLIES (AND (MEMBER A B) (MEMBER A C)} (MEMBER A (INTERSEC B C)}}

(IMPLIES (OR (MEMBER A B) (MEMBER A C)} (MEMBER A (UN ION B C)}}

(IMPLIES (SUBSET A B) (EQUAL (UNION A B) B}}

(IMPLIES (SUBSET A B) (EQUAL (INTERSEC A B) A}}

(EQUAL (MEMBER A B) (NOT (EQUAL (ASSOC A (PAIRLIST B C)} NIL}}}

Theorems about MAPLIST

(EQUAL (MAPLIST (APPEND A B) C}
(APPEND (MAPLIST A C) (MAPLIST B C)}}

(EQUAL (LENGTH (MAPLIST A B}) (LENGTH A})

(EQUAL (REVERSE (MAPLIST A B)} (MAPLIST (REVERSE A) B}}

Theorems about miscellaneous function.

(EQUAL (LIT (APPEND A B) C D) (LIT A (LIT BCD) D»

(IMPLIES (AND (BOOLEAN A) (BOOLEAN B»
(EQUAL (AND (IMPLIES A B) (IMPLIES B A» (EQUAL A B»)

(EQUAL (ELEMENT B A) (ELEMENT (APPEND C B) (APPEND C A»)

(IMPLIES (ELEMENT B A) (MEMBER (ELEMENT B A) A»

(EQUAL (CDRN C (APPEND A B»
(APPEND (CDRN C A) (CDRN (CDRN A C) B»)

(EQUAL (CORN (APPEND B C) A) (CDRN C (CDRN B A»)

(EQUAL (EQUAL A B) (EQUAL B A»

(IMPLIES (AND (EQUAL A B) (EQUAL B C» (EQUAL A C»

(IMPLIES (AND (BOOLEAN A) (AND (BOOLEAN B) (BOOLEAN C»)
(EQUAL (EQUAL A (EQUAL B C» (EQUAL (EQUAL A B) C»)

Theorems about arithmetic functions

(EQUAL (PLUS A B) (PLUS B A»

(EQUAL (PLUS A (PLUS B C» (PLUS (PLUS A B) C»

(EQUAL (TIMES A B) (TIMES B A»

(EQUAL (TIMES A (PLUS B C» (PLUS (TIMES A B) (TIMES A C»)

(EQUAL (TIMES A (TIMES B C» (TIMES (TIMES A B) C»

(EVENl (OOUBLE A»

(IMPLIES (NUMBERP A) (EQUAL (HALF (DOUBLE A» A»

(IMPLIES (AND (NUMBERP A) (EVENl A» (EQUAL (OOUBLE (HALF A» A»

(EQUAL (OOUBLE A) (TIMES 2 A»

(EQUAL (DOUBLE A) (TIMES A 2»

(EQUAL (EVENl A) (EVEN2 A»

Theorems about ordering relations

(OT (LENGTH (CONS A B» (LENGTH B»

(IMPLIES (AND (OT A B) (GT B C» (GT A C»

214

(IMPLIES (GT A B) (NOT (OT B A»)

(LTE A (APPEND B A»

(OR (LTE A B) (LTE B A»

(OR (GT A B) (OR (GT B A) (EQUAL (LENGTH A) (LENGTH B»»

(E~AL (MONOT2P A) (MONOTl A»

(ORDERED (SORT A»

(IMPLIES (AND (MONOTl A) (MEMBER B A» (E~AL (CAR A) B»

(LTE (CDRN A B) B)

(EQUAL (MEMBER A (SORT B» (MEMBER A B»

(EQUAL (LENGTH A) (LENGTH (SORT A»)

(EQUAL (COUNT A B) (COUNT A (SORT B»)

(IMPLIES (ORDERED A) (EQUAL A (SORT A»)

(IMPLIES (ORDERED (APPEND A B» (ORDERED A»

(IMPLIES (ORDERED (APPEND A B» (ORDERED B»

(EQUAL (EQUAL (SORT A) A) (ORDERED A»

(LTE (HALF A) A)

Theorems about functions which inspect tree-structured lists

(EQUAL (COpy A) A)

(EQUAL (EQUALP A B) (E~AL A B»

(EQUAL (SUBST A A B) B)

(IMPLIES (MEMBER A B) (OCCUR A B»

(IMPLIES (NOT (OCCUR A B» (EQUAL (SUBST C A B) B»

(EQUAL (EQUALP A B) (EQUALP B A»

(IMPLIES (AND (EQUALP A B) (EQUALP B C» (EQUALP A C»

(EQUAL (SWAPTREE (SWAPTREE A» A)

(EQUAL (FLATTEN (SWAPTREE A» (REVERSE (FLATTEN A»)

(EQUAL (LENGTH (FLATTEN A» (TIPCOUNT A»

215

216

APPENDIX C FOUNDATIONS II

We wish to demonstrate the consistency of list theory by exhibiting

it as a conservative extension of number theory. Results derived in

Shoenfield 1967 establish that any extension of number theory by

total,recursive functions is a conservative extension. Thus, by exhibiting

total, recursive definitions of the primitives in list theory, we will

have established that list theory is a conservative extension of

number theory. Furthermore, this automatically means that any extension

of the theory of lists by total, recursive functions is a conservative

extension.

In the following, LISP notation will be used to denote function

application. However, the usual number theoretic operations, such as

+ and <, will be denoted by the traditional infix notation.

All abbreviations introduced into list theory will be inoperative

below to prevent confusion. In particular, we will be discussing the

natural numbers, Nj any occurrence of an integer will denote an element

of N, not a list of NILs.

We will assign an element of N to every distinct specific list.

This is done by letting NIL be (an abbreviation for) O. CONS will be

a "pairing function", which map_s elements of N x N into the non-zero

elements of N. The definition is:

(CONS X y) = (X + y) eX + Y + 1) + X + 1.
2

This is just the traditional diagonal enumeration of pairs:

That is,

etc.

•

(CONS NIL NIL) = (CONS a 0) = 1,

(CONS NIL (CONS NIL NIL» = (CONS a 1) = 2,

(CONS (CONS NIL NIL) NIL) = (CONS 1 0) = 3,

It should be noted that:

x < (CONS X y) & Y < (CONS X y).

217

CAR and CDR are just the functions which map from N to N such that:

X ~ a -> (CONS (CAR X) (CDR X» = X.

The recursive definitions of CAR and CDR are derived in terms of the

diagram above. Call the point (x.y) the kth point if k = (CONS x y).

Let (DIAGCNT K) be the number of complete diagonals up to (and

possibly including) the one passing through the Kth point. The defi-

nition is:
N+1

(DIAGCNT K) = liN((L I) > K). r- I=O

For notational simplicity, let (POINTCNT K) be the total number

of points on complete diagonals up to (and possibly including) the one

passing through point K:
(DIAGCNT K)

(POINTCNT K) = L I.
I=O

Then consideration of the diagram above shows that CAR and CDR

depend upon whether the point in question is at the end of its diagonal,

218

upon the number of complete diagonals up to (and possibly including)

the one through the point, and upon the number of points on the

given point's diagonal before the given point. The definitions

of CAR and CDR are:

= {(DIAGCNT K) ~ 1, if K = (POINTCNT K),
(CAR K)

(K ~ (POINTCNT K» .~ 1, otherwise.

= {
o, if K = (POINTCNT K),

(CDR K)
(DIAGCNT K) ~ (K ~ (POINTCNT K» + 1, otherwise.

The definitions of EQUAL and COND are:

{
1,

(EQUAL X y) =
0,

if X = Y,

otherwise.

{
Z'

(COND X Y Z) ==
Y,

if X = 0,

otherwise.

In view of the total, recursive definitions of all of the functions

introduced, adding them to number theory produces a conservative exten-

sion. However, in this extension, it is possible to derive, as theorems,

the non-logical axioms of the theory of lists. This is straightforward.

As shown below, the induction schema is also a theorem in this extension.

Thus, this extension represents the theory of lists as a conservative

extension of number theory. Therefore, not only is it consistent, but

any extension of it by a total, recursive function is a conservative

extension.

The induction schema {of list theory) is now:

p(O) & YX,Y(p(X) & p(Y) -> p«CONS X Y») -> YX(p(X».

where X and Y are quantified over the elements of N, and CONS is the

number theoretic function defined above.

219

We wish to show that this is a theorem in the extension. Therefore,

assume that the hypothesis is true, but the conclusion (that p(X) is true

for all X) is false. Then by the least number principle of number theory,

there is a smallest K such that p(K) is false. Let this K be K • o

If K is 0 the hypothesis is violated, since p(O) is true. Therefore, o

K 1= O. o

In this case, we know that:

and that:

K = (CONS (CAR K) (CDR K »,
000

(CAR K) < K & (CDR K) < K • o 0 0 0

Since (CAR K) and (CDR K) are both strictly less than K , and o 0 0

since K is the smallest K such that p(K) is false, we know that: o

p«CAR Ko» & p«CDR Ko».

But since the hypothesis of (1) is true, we get:

p(CONS (CAR K) (CDR K »)),
o 0

or p(K). But this is a contradition. Therefore, the right-hand side o

of (1) must be tnue, and the induction schema holds in the extension.

Since the theory of lists can be represented as a oonservative

extension of number theory, we know any total, recursive function can

be added to produce a conservative extension. At this point we can

rely upon any of the well-known recursive schemas. One such schema is:

(f X Y) = (COND X
(h (f (CAR X) Y) (f (CDR X) Y) X y)
(g Y»,

where h and g are total, recursive functions. This is just a variant

of course-of-values recursion.

220

APPENDIX D COMPARATIVE SURVEY OF OTHER WORK

There are four commonly used inductive methods for proving

properties of programs. These are: computational induction (Park

1969, and deBakker and Scott 1969), structural induction (Burstall

1969), recursion induction (McCarthy 1963), and inductive assertions

(Naur 1966, Floyd 1967, and Manna 1969). The first three of these

are primarily concerned with recursive functions, while the fourth

deals with iterative processes and assignment. Floyd's method has been

generalized to handle recursive functions by Manna and Pnueli (1970).

The first and third methods are essentially induction on the depth of

function calls. The second is induction on the data structures being

altered, and the fourth is induction on the length of the computation

path. As shown in Manna, Ness, and Vuillemin 1972, these methods are

all essentially equivalent.

The paper by Manna, et ale 1972 is a very readable introduction

to the various inductive methods. The volume containing that paper

presents a good cross-section of the current work. It should be pointed

out that many of the theorems cited in the literature as illustrative

examples of a particular proof technique, have been proved automatically

by the program described here. In particular, proofs of properties

of simple functions such as APPEND and REVERSE are generated by this

program. However, it should also be said that many other theorems cited

in the literature are beyond the capabilities of the current program

particularly those dealing with termination arguments or functions

which recurse "up" rather than "down".

221

The most commonly used inductive method is that of Floyd. In this

approach, assertions are attached to key points (such as loops) in the

flow-diagram, and an assertion must be true each time control passes

through the relevant point. Verifying the correctness of the program

consists of proving that, for each path through the diagram, each asser

tion implies the next one in the path provided the effects of the inter

vening program statements are taken into account. Manna 1969 describes

a similar method used to prove termination. This method may be thought

of as attaching assertions to points such that the assertion is true

during some pass through the point, rather than all passes as in Floyd's

method.

All of the implemented systems which use Floyd's methods assume the

assertions are supplied by the user. Recent work by Wegbreit (1973) and

Katz and Manna (1973) present some heuristics for automatically generating

inductive assertions using the entry/exit conditions required and the

program text. The automatic generation of induction formulas and lemmas

by our program is equivalent to the automatic generation of assertions

for Floyd's method.

The inductive approach used by the program described here is struc

tural induction. Burstall's 1969 paper gives an excellent account of

this technique and presents several proofs similar to those automatically

generated by this program. Logicians frequently use structural induction

to establish meta-theorems, by inducting upon the structure of formulas

in the theory. This was used several times in this paper. Curry and

Feys (1958) named the method, and McCarthy and Painter (1967) used it to

establish the correctness of a compiler. Burstall points out the

222

similarity between the form of the proofs and the form of the recursive

functions involved. However he does not explicitly describe heuristics

for choosing what to induct upon, or how to generate the induction

formula.

There is, of course, no reason why one should feel restricted to

one inductive method over another. Each has its own merits and dis

advantages. For example, in the presence of assignments to data struc

tures, Floyd's methods have been shown to be applicable. But since

circular structures exist in such systems, structural induction does

not readily apply. (There are objects which cannot be constructed by

CONSing atoms together. In fact, there are structures which contain

no atoms at all. Burstall (1972) discusses the problems of destructive

assignment and the unique problems it presents.) Thus, one's approach

to the problem of proof of program properties largely depends upon the

features of the particular language discussed and the theorems at hand.

We will now review other implemented systems and make some compar

isons with the program described here. The primary points of interest

are the aims and methods of the system, and the features of the languages

used to present programs and assertions (or theorems). Several general

remarks are in order.

The only published references to an implementation of computational

induction and recursive functions are those of Milner (see references

below). The remaining systems are concerned with Floyd-like methods

for flow-diagram languages.

It should be noted that except for King and Cooper, all of the systems

were designed to provide mechanical aid to a human verifier. They

223

concentrate on the generation of the verification conditiollo given the

program and the attached assertions, algebraic and logical nimplication,

and bookkeeping services during the human's proof. Their automatic

theorem proving capabilities are purposely limited or nonexistent.

No previous system (known to this author) has automated the

"creative" parts of the proof process, namely: generalization of the

theorem to be proved, application of automatic progr'am writing to

simplify the problem, and the automatic generation of induction formulas.

Automation of these parts of the process has been the primary goal of

the project reported here.

Milner's 1972 papers describe his implementation of Scott's Logic

for Computable Functions (LCF) (Scott 1970). He shows how the syntax

and semantics of a programming language allowing assignment, conditionals,

while statements, and compound statements may be expressed in LCF. His

program is an LCF proof-checker. The basic induction rule is computa

tional induction, although a proof of the recursion induction rule is

presented as an example of a theorem proof-checked by the program. The

program accepts expressions in LCF as theorems to be proved, and then

obeys commands from the user directing the application of the rules of

inference. The program keeps track of the goals to be established and

the steps carried out in each proof.

LCF is designed for handling functions of higher type computed by

arbitrary recursive programs. The system is therefore quite capable

of handling programs which may not terminate, and, unlike any other

system currently available, programs which deal with other programs as

arguments and results. This is probably the most powerful and flexible

verification system implemented. As noted above, this power is completely

controlled and directed by the user.

224

In Milner and Weyhrauch 1972, the authors describe the use of the

LCF proof-checker to verify the correctness of a compiler. The authors

state that parts of many proofs followed patterns that appeared to be

amenable to complete automation. Those parts not so amenable were,

predictably, the selection of the induction formulas.

King 1969 and Good 1970 deal with ALGOL-like flow-diagram languages

with Floyd-like methods. They allow integer valued variables and one

dimensional arrays with integer elements. Statements include assignments

to variables and array elements, conditional statements, and jump state

ments. The usual arithmetic functions may be used in assignment state

ments, and the usual boolean arithmetic relations are allowed in the

tests in conditionals. Procedure calls are not allowed.

King's program was designed as a fully automatic system for the

Floyd method. Once the user has submitted his program text with assertions,

King's system constructs the verification conditions and then tries to

prove them. Proof is carried out by an arithmetic theorem prover

designed specifically for this task. Knowledge of the arithmetic

functions and predicates is built-in.

An assertion is just a boolean ALGOL statement, with universal

anq/or existential quantification. It is not possible to introduce a

procedure to express an assertion. Thus, assertions are restricted

to expressions compounded from the primitive boolean relations and

arithmetic functions. This severely limits the expressive power of the

assertion language. For example, functions such as summation and

greatest common divisor are not built-in, and thus, not available.

In order to make them available, new routines (in assembly code)

must be written. This means that the system will contain two very large

225

and completely independent knowledge bases, one about ALGOL procedures,

and one about mathematical functions and relations. In particular, the

extensive knowledge of ALGOL cannot be used to "understand" a mathematical

function, given an ALGOL procedure for computing it. Thus, in building

in a new function, all of the facts which may ever be needed about the

properties of the new function and its relationships with the existing

primitives must also be built-in.

King's system has automatically verified several interesting

programs, including an array sorting program and a program which raises

an integer to a power using the binary representation of the power.

Good's program generates verification conditions from the user

supplied text and assertions. However, it makes no attempt to auto

matically prove them. Because the machine was not designed to "understand"

the assertions, the assertion language is maximally flexible: it is

simply arbitrary text strings, usually expressing relations in English.

The program only recognizes occurrences of program variables in these

strings, and forms verification conditions by substituting for them,

according to the semantics of the intervening statements. It informs

the user of the conditions to be verified and will perform a bookke~ping

service as the user convinces himself of the validity of the conditions.

Cooper 1971 presents a theorem prover that deals with flow-diagram

languages like those above, without provision for arrays. Programs

are based on block structures, and blocks are allowed to contain sub

blocks. The usual integer relations and functions are again available.

The program is designed to automatically generate and prove the termina

tion conditions for flow-diagrams. It recognizes simple counting loops,

and under certain conditions of linearity, will automatically generate

226

a termination condition for such a loop. If the condition cannot be

generated, the user must supply one. These conditions are always logical

formulas compounded from the primitives. New functions cannot be

expressed. Once termination conditions have been produced, either auto

matically or manually, they are passed to an automatic arithmetic

theorem prover based on the Presburger algorithm.

Gerhart 1972 describes the use of Floyd's methods on an APL subset.

Her assertion language is APL, but again, she allows no defined procedures,

either in the program or in assertions. The only process automated is

the verification of the compatibility of argument types and APL operators.

Topor and Burstall (1973) have implemented a Floyd-like system

using symbolic evaluation. They deal with an ALGOL-like language allowing

integer arithmetic. Recursive procedures are allowed. They attach

inductive assertions to points in the program; these assertions are

expressed as alternative programs in the language, usually involving

higher-level primitives. For example, a program for raising an integer

to an integer power using repeated multiplication has inductive assertions

using the exponentiation operator of the language. They observe that

by symbolically evaluating a program around a given path to a point,'

the description of the program state upon reaching that point is generated.

As in our system, they use symbolic evaluation to produce a case analysis

of conditions to be proved. This case analysis is expressed in a sepa

rate language. Although some automatic theorem proving is currently

done, they intend to automate as much of it as possible in a separate

theorem proving stage.

The field is very active and there are many systems currently being

implemented about which very little has been published. Among these is

a Floyd-like system by Peter Deutsch.

227

From a programming language point of view, the features of the LISP

subset in the system described here are as follows: Arbitrary (non

circular) data structures constructed from list cells are allowed.

Besides the four primitives for constructing and accessing list cells,

a conditional statement and equality function are provided. The user

may introduce any number of recursive functions defined in terms of :

these primitives or other recursive functions. Theorems are boolean

LISP statements, possibly involving non-primitive functions, but

restricted to universal quantification. The program is designed to

be a fully automatic theorem prover, but does not deal with termination

problems. Any instance of a theorem proved is true, provided the functions

involved terminate for that instance. The program requires no user

supplied assertions other than the statement of the theorem to be proved.

Structural induction is the inductive method used.

The flexibility on data structures means that integers, linear

lists, and tree structures are trivially available. Functions for accessing

the nth element of a list, and for changing the nth element (by copying

the initial segment) can be added by the user; this simulates arrays.

The flexibility on the introduction of non-primitive functions means

that the tradi tional ari thmetic functions and relations are available

(since they are recursively computable), as well as many other functions.

Since new relations are added as LISP functions, their properties are

derived by the system as needed rather than being built-in.

Although the language prohibits PROG, SETQ, GO, and RETURN, an

optional routine is available which converts function definitions using

these primitives into a set of mutually defined recursive functions.

228

However, the language also prohibits the concept of an address

and assignment to it. This is basic to King and Good, and accounts

for a good deal of the complexity of their systems. In the LISP subset

allowed here, there is no way to detect the difference between two

EQUAL lists, regardless of how they were constructed. (The LISP

primitive EQ, which detects equivalence of machine addresses, is not

available.) Destructive assignments,RPLACA and RPLACD, are not avail

able either. As a particularly horrid example of the problems involved,

let REV be a LISP function which reverses a list by rearranging the

pointers in the list cells. Then

(EQUAL (REV X) (REV X))

does not, in general, evaluate to T. In evaluating the first (REV X),

the contents of X are destructively altered, so that when the second

(REV X) is evaluated, X represents a different list.

In summary, our system and Milner's are the only ones which allow

tree structured data. (Milner even allows functions as data objects.)

The arrays allowed by King, Good, and Gerhart are restricted to integer

elements. They correspond to linear lists. Of course, the integers

are rich enough to simulate trees, but without the necessary primitives

the enumeration schemes are prohibitively complicated.

Iteration and assignment to variables can be adequately simulated

by recursive function calls. Therefore, the distinquishing features

of the various programming languages are whether they allow subroutine

calls an~or destructive assignment.

Our system, Milner's, and Topor and Burstall's are the only ones

allowing an easily extended assertion or logical language. This just

reflects the degree to which this language is restricted to the built-in

primitives.

229

Our system and those of King and Cooper are the only ones encor

porating automatic theorem provers. However, ours is the only one

which attempts to solve the induction problem directly, by including

induction as an automatic rule of inference. The other two theorem

provers are restricted to arithmetic, and use algorithms which are

capable of deciding many problems in this domain. Without such

decision procedures, these problems would require induction to solve.

Bledsoe (1971) encorporated an induction rule in a set theory

theorem prover. However, its use was triggered by the occurrence in

the theorem of a statement of the form "for all natural numbers, n",

and caused induction on n. Such a trigger in our system could cause

induction on C in:

(TIMES A (TIMES B C)) = (TIMES (TIMES A B) C),

even though C is not being recursed upon.

Brotz and Floyd (1973) have implemented an automatic theorem

prover for arithmetic which is remarkably similar to ours. The user may

introduce non-primitive functions by adding the defining equations.

These equations may use successor, predecessor, and other defined

functions, and recursion. The system uses induction as a rule of inference

and generalizes common subterms as described here (although type functions

do not exist). However, no equivalent of the bomb list exists. The

term chosen for induction is always the right-most argument appearing

in the theorem (this puts a trivial syntactic constraint on the order of

the arguments to recursive functions). No attempt is made to analyze the

recursive structure of the functions involved. This heuristic will not

always choose the "right" term to induct upon. For example, if we

alter the rule to choose the left-most so that the conventions used

in the functions introduced here are respected, the system would attempt

induction on A in the theorem:

(EQUAL (APPEND (REVERSE A) (REVERSE B»
(REVERSE (APPEND B A»).

Although A is recursed upon, it is not at all clear how a proof by induc-

tion on A would proceed. The program described here would choose B,

on the grounds that it is recursed upon more often; as we have seen,

this allows a straightforward proof.

The Brotz and Floyd program does not currently handle induction on

multiple terms simultaneously, or induction requiring two or more

bases. These would be trivial additions (in the sense that they are

completely compatible with the existing heuristics). Many of the

proofs produced by their system are identical to the proofs of the

same theorems by our system.

Returning to the program verification systems discussed, I feel they

are noticeably less ambitious than we have been in their desire to auto-

mate the processes involved. This thesis has demonstrated that for a

large class of functions it is possible to fully automate the inductive

proofs of non-trivial properties, without the aid of user supplied

assertions or information.

Our work is nicely complemented by (and complements) the work of

Darlington 1972. Darlington discusses a system which accepts a recursive

function definition and translates it into an equivalent flow-diagram.

The input expressions are very similar to the recursive functions allowed

here. The output expressions are programs in which recursion has been

eliminated when possible, loops have been merged, and destructive

assignment and shared data structures used when permitted. Thus, the

231

input is usually an elegant, easily understood program, while the output

is an efficiently implemented but equivalent program. The implications

are obvious: A programmer could write a procedure in a highly struc

tured, recursive language. This would allow the methods of this

thesis to be used to establish the correctness of the procedure.

Then Darlington's methods could be used to produce an effioiently coded

version which is known to have the same properties.

BIBLIOGRARHY

de Bakker, J. W., and Scott, D. 1969. "A Theory of Programs",
Unpublished memo., Vienna.

Bledsoe, W. W. 1971. "Splitting and Reduction Heuristics in
Automatic Theorem Proving", Artificial Intelligence, Vol. 2,
pp. 55-77, North Holland Publishing Company, Amsterdam.

Boyer, R. S. 1973. "Pretty Print", Department of Computational
Logic, Memo. 64, University of Edinburgh.

232

Boyer, R. S., and Moore, J S. 1972. "The Sharing of Structure in
Theorem-Proving Programs", Machine Intelligence 7, pp. 101-116,
(eds. Meltzer, B., and Michie, D.), Edinburgh University Press,
Edinburgh.

Brotz, D., and Floyd, R. W. 1973. "Proving Theorems by Mathematical
Induction", Stanford Computer Science Department, (to appear).

Burstall, R. M., 1972. "Some Techniques for Proving Correctness
of Programs which Alter Data Structures", Machine Intelligence 7,
pp. 23-50, (eds. Meltzer, B., and Michie, D.), Edinburgh
University Press, Edinburgh.

Burstall, R. M. 1969. "Proving Properties of Programs by Structural
Induction", Computer Journal, Vol. 12, pp. 41-48.

Burstall, R. M., Collins, J. S., and Popplestone, R. J. 1971.
Programming in POP-2, Edinburgh University Press, Edinburgh.

Cooper, D. C. 1971. "Programs for Mechanical Program Verification",
Machine Intelligence 6, pp. 43-59, (eds. Meltzer, B., and
Michie, D.), Edinburgh University Press, Edinburgh.

Curry, H. B., and Feys, R. 1958. Combinatory Logic, North Holland
Publishing Company, Amsterdam.

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R. 1972. Structural
Programming, Academic Press, London.

Darlington, J. 1972. "A Semantic Approach to Automatic Program
Improvement", Ph.D. thesis, University of Edinburgh.

Floyd, R. W. 1967. "Assigning Meanings to Programs"" in Proceedings
of a S osium in A lied Mathematics Vol. 19 -- Mathematical
Aspects of Computer Science, pp. 19-32, ed. Schwartz, J. T. ,
American Mathematical Society, Providence, Rhode Island.

233

Gerhart, S. L. 1972. "Verification of APL Programs", Ph.D. thesis,
Carnegie-Mellon University.

Good, D. I. 1970. "Toward a Man-Machine System for Proving Program
Correctness", Ph.D. thesis, University of Wisconsin.

Goodstein, R. L. 1957. Recursive Number Theory, North Holland Publishing
Company, Amsterdam.

Hoffman, G. R., and Veenker, G. 1971. "The Unit-Clause Proof Procedure
with Equality", Computing, Vol. 7, pp. 91-105.

Katz, S. M., and Manna, Z. 1973. "A Heuristic Approach to Program
Verification", Proceeding of IJCAI 1973, (to appear).

King, J. C. 1969. "A Program Verifier", Ph.D. thesis, Carnegie
Mellon University.

Kowalski, R., and Kuehner, D. 1971. "Linear Resolution with Selection
Function", Artificial Intelligence, Vol. 2, pp. 227-260.

Manna, Z. 1969. "The Correctness of Programs", J. Comp. and System
Science, Vol. 3, No.2, pp. 119-127.

Manna, Z., and Pnueli, A. 1970. "Formalization of Properties of
Functional Programs", JACM, Vol. 17, No.3, pp. 555-569.

Manna, Z.,Ness, S., and Vuillemin, J. 1972. "Inductive Methods
for Proving Properties of Programs", in Proceedings of an ACM
Conference on Proving Assertions about Programs, SIGPLAN
Notices, Vol. 7, No.1, pp. 27-50.

for a Mathematical Theory of Computation",

D. , North Holland Publishing

McCarthy, J., and Painter, J. A. 1967. "Correctness of a Compiler
for Arithmetic Expressions", in Proceedings of a Symposium in
A lied Mathematics Vol. 1 -- Mathematical As ects of Com uter
Science, pp. 33- 1, ed. Schwartz, J. T. , American Mathematical
Society, Providence, Rhode Island.

McCarthy, J., et ale 1969. LISP 1.5 Programmers Manual, MIT Press,
Cambridge, Massachusetts.

Milner, R. 1972. "Logic for Computable Functions: Description of
a Machine Implementation", Artificial Intelligence Memo. 169,
Stanford University.

234

Milner, R. 1972. "Implementation and Applications of Scott's Logic
for Computable Functions", Proceedings of an ACM Conference on
Proving Assertions about Programs, SIGPLAN Notices, Vol. 7,
No.1, pp. 1-6.

Milner, R., and Weyhrauch, R. 1972. "Proving Compiler Correctness in a
Mechanized Logic", Machine Intelli ence ,pp. 51-70, (eds.
Meltzer, B., and Michie, D. , Edinburgh University Press,
Edinburgh.

Naur, P. 1966. "Proof of Algorithms by General Snapshots", BIT,
Vol. 6, pp. 310-316. ----

Park, D. 1969. "Fixpoint Induction and Proofs of Program Properties",
Machine Intelligence 5, pp. 59-78, (eds. Meltzer, B., and Michie,
D.), Edinburgh University Press, Edinburgh.

Robinson, J. A. 1971. "Computational Logic: The Unification Algorithm",
Machine Intelligence 6, pp. 63-72, (eds. Meltzer, B., and Michie,
D.), Edinburgh University Press, Edinburgh.

Scott, D. 1970. "Outline of a Mathematical Theory of Computation",
Oxford University Computing Laboratory, Programming Research
Group, Technical Monograph PRG-2 (November,1970).

Shoenfield, J. R. 1967. Mathematical Logic, Addison-Wesley Publishing
Company, Reading, Massachusetts.

Topor, R. W.,and Burstall, R. M. 1973. Private communication.

Wegbreit, B. 1973. "Heuristic Methods for Mechanically Deriving
Inductive Assertions", Proceedings of IJCAI 1973, (to appear).

