
Formal Aspects of Computing (1993) 3: 1{000c
 1993 BCS
A Formal Model of AsynchronousCommunicationandIts Use in Mechanically Verifyinga Biphase Mark ProtocolJ Strother MooreComputational Logic, Inc.1717 West Sixth Street, Suite 290Austin, Tx 78703-4776 U.S.A.Abstract.We present a formal model of asynchronous communication betweentwo digital hardware devices. The model takes the form of a function in theBoyer-Moore logic. The function transforms the signal stream generated by oneprocessor into that consumed by an independently clocked processor, given thephases and rates of the two clocks and the communications delay. The modelcan be used quantitatively to derive concrete performance bounds on communi-cations at ISO protocol level 1 (physical level). We use the model to show thatan 18-bit/cell biphase mark protocol reliably sends messages of arbitrary lengthbetween two processors provided the ratio of the clock rates is within 5% ofunity.Keywords: hardware veri�cation, fault tolerance, protocol veri�cation, clocksynchronization, Manchester format, automatic theorem proving, Boyer-Moorelogic, ISO protocol level 1, performance modeling.1. IntroductionIn this paper we will (a) formalize the lowest-level communication between twoindependently clocked digital devices, (b) formalize the statement that, underCorrespondence and o�print requests to: J Strother Moore, Computational Logic, Inc., 1717West Sixth Street, Suite 290, Austin, Texas 78703-4776, USA. Email: moore@cli.com

2 J Strother Moorecertain conditions on the clock rates of the two processors, a biphase mark pro-tocol permits the communication of arbitrarily long messages under our modelof asynchronony, and (c) sketch a mechanically checked formal proof that thestatement is a theorem. Put less pedantically, we will exhibit a formal model ofasynchronous communication and use it to prove that a commonly used proto-col works. The proof was checked with the Boyer-Moore theorem prover, Nqthm[BM88].The biphase mark protocol|variously known as \Bi-�-M," \FM" or \singledensity" and sometimes called a \format" rather than a \protocol"|is a con-vention for representing both a string of bits and clock edges in a square wave.Biphase mark is widely used in applications where data written by one device isread by another. For example, it is an industry standard for single density mag-netic
oppy disk recording. It is one of several protocols implemented by suchcommercially available microcontrollers as the Intel 82530 Serial Communica-tions Controller[Int91]. A version of biphase mark, called \Manchester," is usedin the Ethernet[Rod88] and is implemented in the Intel 82C501AD Ethernet Se-rial Interface[Int91]. Biphase mark is also used in some optical communicationsand satellite telemetry applications[Skl88]. There is no doubt that it works. But,as far as we have been able to determine, a rigorous analysis of its tolerance ofasynchrony has not been done. This is a grey area because it is at the boundarybetween continuous physical phenonmenon (e.g., waves and interference) anddiscrete logical phenomenon (e.g., counting and algorithms).Nevertheless, despite the apparent novelty of a rigorous analysis of a funda-mental protocol, this paper is not really about the protocol. It is about a formal,logical model of asynchrony. We look at biphase mark only to illustrate how themodel can be used.Whether the assumptions in our model are valid is an engineering problem;indeed, accurately modeling the environment in which a device is expected towork may be the hardest problem the engineer faces. We o�er no solution tothat problem. In some sense there is no solution to that problem. It is up to theengineer to decide if a given model is accurate enough.By expressing the model formally, one is forced to characterize precisely therequirements and assumptions. This done, one is then free to analyze them rig-orously. In fact, we use mechanical aids that make the analysis both easier andless error prone.In Figure 1 we illustrate the di�culty of interfacing two independently clockeddevices. The �gure shows what might happen if one device sends the signalstream \t�ftt"1 to an asynchronous receiver whose clock is half-again slowerand initially almost one full cycle out of phase.Observe that in the ideal timing diagram, the signal falls from t to f on thewriter's second cycle. This is an idealization in two senses. First, the edge is notvertical or square, the signal changes continuously and may \ring" before stabi-lizing at its new level. Second, it does not happen immediately upon the clocktick that starts the second cycle. In fact, all that is promised by the ideal diagramis that the signal is stable and low by the end of the cycle. The funny looking\multivalued ramps" in the conservative model depicted in Figure 1 are intended1 In this paper we use t and f to denote the Boolean values of \truth" and \falsity." Theseare also the values we use for \bits" (instead of 1 and 0) and \signals" (instead of \high" and\low"). Because timing diagrams are helpful in explaining our model, we adopt the conventionthat t is pictured \high" and f is pictured \low."

A Formal Model of Asynchronous Communication 3
receiver’s clock ticks

signals received ? ?f

t f f f t tlogical sequence sent

sender’s clock ticks

ideal signals sent

some possible
signals sent

conservative model
of signals sent Fig. 1. How Asynchrony Mangles Signalsto convey nothing more than that the signal is considered nondeterministicallyde�ned throughout the indicated cycles.We then impose upon that conservative diagram the receiver's clock ticks.Consider the receiver's �rst full cycle, that cycle spanning the �rst ramp. If thereceiver samples the signal stream during this cycle the logical result obtaineddepends upon exactly when during the cycle the signal enters into the combi-national logic of the receiver. It may happen early in the cycle (in which casethe receiver may get a t because the signal is high) or late in the cycle (pro-ducing f) or in the middle (in which case the signal may be interpreted eitherway or may even induce a \metastable" state in which the whole notion of its\logical value" is ill-de�ned and the receive ceases, perhaps temporarily, to actas a digital device). Furthermore, the exact time at which the signal is sensedduring a cycle may vary from cycle to cycle in a data dependent way. At thisstage in our model, therefore, we simply say the signal received during this cycleis undetermined.Things are simpler during the receiver's second full cycle; the signal is con-stant at f for the duration of the cycle and hence we are assured that it reads anf no matter when during the cycle the line is sensed.The problem of metastability caused by \reading on an edge" cannot besolved perfectly by digital logic alone. We do not attempt to model it. Ourmodel assumes that \reading on an edge" nondeterministically produces a t oran f.2 It is up to the engineer to arrange that some well-de�ned signal is read oneach cycle.2 It is possible to model indeterminate signals logically. Three- and even four-valued logicsare common in hardware description languages.We have mechanically proved that in one suchlogic it is impossible to build even a simple asynchronous edge detector with perfect reliability.The Nqthm transcript is available upon request.

4 J Strother Moore
logical sequence sent

conservative model
of signals sent

t t f f f t t

t ? ? ? ? ?f

t

t

sender’s clock ticks

ideal signals sent

receiver’s clock ticks

signals receivedFig. 2. One Edge Can In
uence Several Read CyclesThis however does not solve the communications problem. Nondeterministi-cally replacing the question marks in Figure 1 by ts and fs does not enable therecovery of the original signal stream. Even an accurate analysis of which readcycles produce nondeterministic signals or how many such cycles there are re-quires careful consideration of the two clock rates and their phase displacement.For example, as illustrated in Figure 2, if the rates are nearly identical (the usualcase) and the receiver's cycle is the shorter, then, depending on the initial phasedisplacement (which can be arbitrary for two physically independent clocks), anedge in the arriving signals can a�ect two or sometimes three successive readcycles. Nondeterministically replacing the question marks by ts and fs has thee�ect of blurring or shifting the edges in the signal. Di�erences in the clock ratesof the two processors may stretch or shrink the apparent duration of the signal.Communications protocols have been developed to deal with these problems.To avoid the �rst problem, the asynchronous sender generally encodes its messageas a waveform with a relatively long wavelength compared to the cycle time ofthe receiver, giving the receiver plenty of time to sample the signal away fromthe edges. To overcome the second problem, the biphase mark protocol encodesthe message with \frequency modulation" of the long wavelength \carrier." Thisallows the receiver to \phase lock" onto the arti�cially slower clock of the sender.In the biphase mark protocol (see Figure 3), each bit of message is encodedin a \cell" which is logically divided into what we call a \mark subcell"3 and a\code subcell." During the mark subcell, the signal is held at the negation of itsvalue at the end of the previous cell, providing an edge in the signal train whichmarks the beginning of the new cell. During the code subcell, the signal eitherreturns to its previous value or does not, depending on whether the cell encodesa t or an f. The receiver is generally waiting for the edge that marks the arrival ofa cell. Upon detecting the edge, the receiver counts o� a �xed number of cycles,3 The word \mark" in \biphase mark" comes from the \Automatic Recorder" of 19th centurytelegraphy where the line idle state produced a mark on a rotating drum and the arrival of apulse lifted the stylus to produce a space[Cam88]. The namesMARK and SPACE were adoptedfor logical 1 and logical 0 respectively. However, except in the name \biphase mark," our useof the word \mark" is intended in its nontechnical sense, i.e., \a conspicuous object servingas a guide for travelers"[Mis87]. Thus we speak of the \mark subcell," so named because itindicates the beginning of the cell, and of \detecting the mark."

A Formal Model of Asynchronous Communication 5
t f f f t t

message

cell

cell edges

signals sent

mark subcell

code subcell

sampling distance if these two signals are
equal, an was sent.f

if these two signals are
different, a was sent.tFig. 3. Biphase Mark Terminologyhere called the \sampling distance," and samples the signal there. The samplingdistance is determined so as to make the receiver sample in the middle of thecode subcell. If the sample is the same as the mark, an f was sent; otherwisea t was sent. The receiver then resumes waiting for the next edge, thus \phaselocking" onto the sender's clock.Of course, asynchrony may blur or shift the edges of the code subcell, but ifthe code subcell is su�ciently long, some region of it (away from the edges) willbe well-de�ned. We call this region the \sweet spot." The receiver should alwayssample from the sweet spot. What might prevent this? A plausible scenario isthat the receiver is late detecting the mark because of nondeterminism and thenwaits too long before sampling because its clock is slower than the sender's.This scenario should make it clear that the extent to which the protocolrelies upon the near agreement of the two clock rates is dependent upon howfar the sweet spot is from the mark. It is while measuring out this time interval(while creating the cell in the sender or waiting to sample in the receiver) thatthe protocol implicitly assumes the two processors cycle at the same rate. Iftwo clocks are used to measure out some absolute time interval, and the twoclock's rates are �xed but slighly di�erent, their discrepancy in the measurementis linearly proportional to the length of the interval measured. Thus, the closerthe sweet spot is to the mark, the more tolerant the protocol is to di�erent clockrates.To analyze the behavior of the protocol in the face of asynchrony we mustspecify the cell size, subcell sizes, and sampling distance. We study a conven-tional choice and an unconventional one. The conventional choice is cell size 32,equally divided into two 16-cycle subcells, sampled on the 23rd cycle after markdetection. The unconventional choice is cell size 18, divided into a 5-cycle markand a 13-cycle code subcell, sampled on the 10th cycle after mark detection. Theunconventional choice permits a faster bit rate (since fewer cycles are spent oneach bit) and tolerates more divergent clock rates (since the time during whichthe clocks must \stay together" is smaller). Do they work?In this paper we formally de�ne a model of asynchrony and we formally

6 J Strother Moorestate the theorem that, under the model, the 18-cycle/bit biphase mark protocolproperly recovers the message sent, provided the ratio of the two clock rates isbetween 0.95 and 1.05. According to [RvH89] typical clocks are incorrect by lessthan 15�10-6 seconds per second and the ratio of the rates of two such clocksare well within our bounds. We have proved that the conventional choice of cellsize also works, provided the ratio of the clock rates is within 3% of unity, andwe brie
y indicate how the proof di�ers from the proof of the 18-cycle version.This article is a shortened version of [Moo92a], where we present the proofin full as well as develop a \reusable theory" that allows the application of ourmodel to other protocols.2. Logical FoundationsWe use the Nqthm \computational logic" described in [BM88].Truth values, bits, and signals will all be represented by the objects t and fwhich are distinct constants. We call these two objects \Booleans." Because thelogic's language is untyped, we de�ne a predicate, boolp, which recognizes justthem. Definition: boolpboolp (x)=((x = t) _ (x = f))As can be seen by an inspection of the de�nition, boolp (x) is t if and only if xis t or x is f.The Nqthm logic imposes restrictions on equations purporting to be \de�-nitions." These restrictions insure that one and only one mathematical functionsatis�es the equation. Because of this assurance, we can add such admissible def-initions to the logic without rendering the logic inconsistent. The reader shouldsee[BM79, BM88] for details. In this presentation we do not further concernourselves with the admissibility of our de�nitions.We de�ne the operations of \negation" and \exclusive-or" as follows.Definition: b-notb-not (x)=(: x)Definition: b-xorb-xor (x , y)=if xthen : yelseif ythen telse fendifThus, b-not (t) is f and b-xor (t,f) is t.Fundamental to our formalization is the notion of a \bit vector" or a \�nite

A Formal Model of Asynchronous Communication 7sequence of Booleans." We use lists to represent such objects. The followingfunction recognizes bit vectors.Definition: bvpbvp (x)=if x ' nilthen x = nilelse boolp (car (x))^bvp (cdr (x))endifThat is, bvp (x) is de�ned by cases. If x is an atom4 then x is a bit-vector preciselywhen x is nil. On the other hand, if x is a listp object, then its �rst element,car (x), must be Boolean and the rest of its elements, cdr (x), must recursivelysatisfy bvp. An example bit vector is list (t, t, f, f). That is, bvp (list (t, t, f, f))evaluates to t.We shall use len (x) to denote the length of the list x , app (x , y) to concatenatethe lists x and y , nth (n, x) to fetch the nth element of the list x (where car (x)is the 0th element), cdrn (n, x) to cdr the list x n times, and listn (n, x) to makea list of n repetitions of the object x . We omit the de�nitions of these simplefunctions.We will use lists of Booleans (bit vectors) to represent streams of signals or\timing diagrams." For example,
w

=
1 cyclewill be represented by list (t, f, f, f, t, t) together with the fact that thelength of a cycle is w . An alternative way of writing the same list is cons (t,app (listn (3, f), listn (2, t))).3. The Model of AsynchronyConsider two independently clocked processors, which we call the \writer" andthe \reader." The output pin of the former is connected by a wire to the inputpin of the latter and this constitutes the only communication between them.Imagine that on successive cycles the writer is speci�ed to set its output pinto the successive signals in some bit vector called the \writer's view." We wishto de�ne a function, async, which will map the writer's view into the sequenceactually read by the reader, which we call the \reader's view."More precisely, we map the writer's view into any one of the possible reader'sviews, since there is an element of nondeterminancy here. One parameter of themodel, called the \oracle," speci�es how each nondeterministic choice is to be4 In the Nqthm logic, x'nil actually means x is not a listp object. Any such \atom" may beused to end a list, but nil is the most common.

8 J Strother Moore
w

r

t t f f f t t t

t t t f t f t t

writer’s view:

pass 1

pass 2

pass 3

one possible
reader’s view:

ts

tr Fig. 4. The Three Passes in the Modelmade on a given application of the model; by varying this parameter one canobtain all possible views by the reader.Our model is based on three assumptions.� The distortion in the signal due to the presence of an edge is limited to thetime-span of the cycle during which the edge was written. For example, weignore intersymbol interference[Rod88].� The clocks of both processors are linear functions of real time, e.g., the ticksof a given clock are equally spaced events in real time. We ignore clock jitter.� Reading on an edge produces nondeterministically de�ned signal values, notindeterminate values.Our model of asynchronous communication has three passes, one implement-ing each of the assumptions above. In Figure 4 we illustrate the passes. In pass 1,we identify those cycles in which the signal is undetermined due to the non-zeroswitching times on the writer. This is indicated in the graph in Figure 4 by themultivalued ramps on two of the write cycles. Pass 2 combines the pass 1 outputwith certain timing information (the cycle times, w and r , of the two processorsand (roughly) their phase displacement, tr� ts) to produce the signal on the pinduring each read cycle (up to nondeterminacy). Pass 2 is the key to the modeland operates by reconciling all the signals on the pin during each read cycle.Pass 2 generally smears the nondeterminacy over any read cycles which overlapwith it. Pass 2 may lengthen or shorten the signal stream. Pass 3 eliminates thenondeterminacy by using the oracle to choose arbitrary values for undeterminedsignals.It should be noted that our model puts no constraints on the relationshipbetween the writer's cycle time and the reader's. That is, one can apply thismodel to communication between two processors whose clocks run at wildlydi�erent rates. For example, if the reader runs ten times as fast as the writer,

A Formal Model of Asynchronous Communication 9it will see roughly ten times more signals. The model is somewhat pathologicalif either processor runs in�nitely fast (i.e., has a cycle time of 0). We do notconstrain the relationship between the clocks until we begin to apply the modelto prove that a certain protocol works.We now back up and give a more detailed physical and formal explanation.3.1. Pass 1Consider the writer. On every cycle the writer sets the output pin to some value.If that value is the same as the previous value of the pin, then the signal onthe pin remains stable at that value for the entire cycle. On the other hand, ifthe new value is di�erent, then we assume the value on the pin is undeterminedfor the duration of that cycle. This accounts for our lack of knowledge aboutexactly when during the cycle the voltage on the pin begins to change, how thevoltage varies, and how long it takes it to become stable. Pass 1 in the model thusintroduces \multivalued ramps" for the duration of every cycle during which thesignal changes. The ramps in our diagrams are formally represented by the object'q. A 'q at a given cycle in the stream signi�es that the voltage on the line isindeterminate during that cycle. It is misleading to think of 'q either as a signalthat can be recognized by the receiver or as a wildcard that nondeterministicallydenotes a t or f. It is an artifact of the model signifying \here the signal isunknown." The model can recognize the presence of indeterminacy and evenpropagate it. Ultimately, the model replaces 'q's nondeterministically by theBooleans sensed by the receiver. There is no need to distinguish \downward"ramps from \upward" ones since they both mean the signal is indeterminate forthe entire cycle.The function formalizing pass 1 is called smooth and it takes the previoussignal seen, x , and a sequence of signals, lst .Definition: smoothsmooth (x , lst)=if lst ' nilthen nilelseif b-xor (x , car (lst))then cons ('q,smooth (car (lst), cdr (lst)))else cons (car (lst),smooth (car (lst), cdr (lst)))endifObserve that smooth copies lst , changing to 'q any signal that is di�erent fromthe previous one, x . In Figure 4, pass 1 is computed by smooth (t, list (t, t, f, f,f, t, t, t)), which replaces the underscored signals by 'qs.3.2. Pass 2Now, let lst be the output of pass 1. In pass 2 we simulate the arrival of thesesignals at the input pin of the reader, consider the reader's cycles, and computethe signals read (up to nondeterminacy). Suppose the �rst signal, car (lst), arrives

10 J Strother Mooreat the input pin at time ts.5 All successive signals arrive at intervals of w , wherew is the cycle time of the writer. Let tr be the time at which the reader's clock�rst ticks at or after ts. Without loss of generality we assume ts � tr < ts+wbecause if tr � ts+w then the �rst signal of lst is simply irrelevant since it doesnot persist into the reader's �rst cycle. Finally, suppose the reader's cycle timeis r . Given these parameters we can compute the entire list of signals read (upto nondeterminancy). We call the function formalizing pass 2 warp and de�ne itbelow. Definition: warpwarp (lst , ts, tr , w , r)=if (r ' 0)_endp (lst , ts, tr + r , w)then nilelse cons (sig (lst , ts, tr + r , w),warp (lst' (lst , ts, tr + r , w),ts' (lst , ts, tr + r , w),tr + r ,w ,r))endifObserve that tr+r is the time at which the reader's clock next ticks. Thede�nition may be read as follows: If r is zero6 or else if lst does not haveenough elements in it to determine the next signal read, return the empty listnil. The second condition is checked by endp which we discuss below. If r isnonzero and there are enough elements in lst to determine the next signal read,we use sig (described below) to compute the signal read during the current cycle,we use warp recursively to obtain the list of signals read on successive cycles andthen we cons together the two results to produce the list of all the signals read.We explain further by referring to Figure 5. Con�guration A of the �guredepicts the formal parameters of warp upon entry to warp (lst , ts, tr , w , r).Note that lst contains six signals, s0, ..., s5 and that s0 arrives at time ts andpersists for time w . The �rst tick of the reader's clock is at time tr and starts acycle that persists for time r . By observing the diagram in Con�guration A wesee that the signals s0, s1 and s2 impinge upon the pin during this read cycle.If they are all equal, say, to s0, then s0 will be the signal read on this cycle. Butif any two are di�erent, the signal read is nondeterministic (i.e., 'q). This is thecomputation made by sig (lst , ts, tr + r , w).Con�guration B of Figure 5 shows the parameters passed to the recursivecall of warp from Con�guration A. The call in question iswarp (lst' (lst , ts, tr + r , w),ts' (lst , ts, tr + r , w),5 More precisely, consider that tick of the writer's clock that began the write cycle duringwhich the �rst signal was written. Let ! be the time at which that tick occurred. Let � be thedelay along the wire connecting the writer to the reader. Then ts is ! + �. We assume � isconstant.6 Actually, r ' 0 here is t if and only if r is either not a natural number or is 0. Omitting thistest produces an inadmissible de�nition because the recursion described does not terminate.

A Formal Model of Asynchronous Communication 11
w

r

tr

s s s s s s
0 1 2 3 4 5

lst:

Configuration A

tr’

r

w

s s s s
2 3 4 5

lst’:

Configuration B

ts’

ts

Fig. 5. The Recursion in warptr + r ,w ,r)The easiest argument term to understand is tr+r , passed as the new valueof tr . That is the time of the next tick of the reader's clock and is shown as tr'in Con�guration B. The faint dotted line is meant to indicate that tr' is tr+rfrom Con�guration A. Lst' is the new value of lst . Note that (in this case) the�rst two signals have been removed from lst . That is because they were used inthe sig computation for the current cycle and do not a�ect the sig computationat the next cycle. Note that s2, which was used by the sig computation, is stillin lst' because it persists into the next cycle. Lst' , which is always some cdr oflst , is computed by the function lst' in the recursive call of warp. The time atwhich the new �rst signal arrives, ts' , is computed by the function ts'.The four functions endp, sig, lst', and ts' are all very similar in that theyscan lst , knowing that the �rst signal arrives at time ts and that subsequentones arrive at intervals of w , and look for the �rst signal that persists into thenext cycle, i.e., the one that starts at tr+r . The function endp returns t if lstis exhausted before the desired signal is reached. Sig reconciles all the signalsit reaches, using the auxiliary function reconcile-signals. Lst' returns the cdr oflst starting with the desired signal. Ts' returns the arrival time of the desiredsignal. The de�nitions are shown below.Definition: endpendp (lst , ts, tr , w)=if lst ' nilthen telseif (ts + w) < tr

12 J Strother Moorethen endp (cdr (lst), ts + w , tr , w)else fendifDefinition: reconcile-signalsreconcile-signals (a, b)=if a = bthen aelse 'qendifDefinition: sigsig (lst , ts, tr , w)=if lst ' nilthen 'qelseif (ts + w) < trthen reconcile-signals (car (lst),sig (cdr (lst), ts + w , tr , w))else car (lst)endifDefinition: lst' .lst' (lst , ts, nxtr , w)=if lst ' nilthen lstelseif nxtr < (ts + w)then lstelse lst' (cdr (lst), ts + w , nxtr , w)endifDefinition: ts'ts' (lst , ts, nxtr , w)=if lst ' nilthen tselseif nxtr < (ts + w)then tselse ts' (cdr (lst), ts + w , nxtr , w)endifThe arithmetic primitives used in warp treat their arguments as natural num-bers. That is, ts, tr , w , and r in this model are nonnegative integers. Since timeappears continuous, the reals or the rationals seem more appealing domains forthese parameters. However, the Nqthm logic does not support the reals. Therationals have been de�ned within the logic and they were used when the modelwas �rst being formalized. However, the proof we will describe is primarily con-cerned with counting cycles. We found that the proof was complicated by themix of (formal) natural arithmetic and (formal) rational arithmetic. We decidedto simplify matters by adopting natural arithmetic entirely. It should be stressed

A Formal Model of Asynchronous Communication 13that this is primarily a technical problem with the Nqthm mechanization and itsheuristics.Inspection of the model will reveal that our use of natural arithmetic does notlimit the applicability of the model. In particular, if ts, tr , w , and r are givenas rational numbers, one could convert them to four naturals over a commondenominator and then do all the arithmetic on the numerators only, using naturalarithmetic. This observation relies on the fact that the model only iterativelysums and compares these quantities. But ad + bd = a+bd where the �rst \+" isthat for rational arithmetic and the second is that for natural arithmetic. Asimilar theorem holds for the \less than" relationships in the two systems.An illustration of warp was presented in pass 2 of Figure 4. In that example,the input list was the output of pass 1, list (t, t, 'q, f, f, 'q, t, t), ts was 0, trwas 75, w was 100, and r was 87. The output of warp was list (t, 'q, 'q, f, 'q,'q, 'q, t). We used grossly mismatched w and r merely so that it was easy tosee that read cycle 5 (counting from 0) fell entirely within write cycle 5. Exactlyidentical signal output can be obtained with more realistically matched clocks.For example, let us measure time in tenths of picoseconds, e.g., units of 10-13seconds. If the writer has a perfect 20MHz clock then w is 500,000. Supposethe reader is nominally 20MHz but ticks faster so that in twenty million ticksit counts o� .999996 seconds. That is, r is 499,998 and the clock is gainingroughly 4�10-6 seconds per second, which is consistent with the clocks reportedin[RvH89]. Then if the �rst signal in the output of pass 1 reaches the reader11�10-13 seconds before the reader's clock ticks, the output is as described inpass 2 of Figure 4. I.e., warp (list (t, t, 'q, f, f, 'q, t, t), 0, 11, 500000, 499998)is list (t, 'q, 'q, f, 'q, 'q, 'q, t).3.3. Pass 3It is the job of pass 3 to eliminate the nondeterministic signals using the oracle.The function formalizing this pass is called det (for \determine").Definition: detdet (lst , oracle)=if lst ' nilthen lstelseif car (lst) = 'qthen cons (if car (oracle)then telse fendif,det (cdr (lst), cdr (oracle)))else cons (car (lst),det (cdr (lst), oracle))endifThe oracle parameter to our model is just an arbitrary list. The successiveelements of the oracle are matched with the successive 'qs in the list of signalsto be processed, lst . Each oracle element speci�es whether the corresponding 'q

14 J Strother Moore
message

then samples
10 cycles later

(receiver’s clock).

The receiver phase
locks by waiting
for an edge, and

If these two signals
are the same, the
message bit is .

Each cell is marked
by an edge.

If these two signals
are different, the
message bit is .f t

t f f f t t
A cell consists of

5 mark cycles followed
by 13 code cyclesFig. 6. Our Modi�ed Biphase Mark Protocolshould be replaced by t or by f.7 Det merely copies the list of signals, replacingeach 'q as directed by the oracle.3.4. Combining the PassesFinally, to de�ne async we compose the three passes.Definition: asyncasync (lst , ts, tr , w , r , oracle)=det (warp (smooth (t, lst), ts, tr , w , r),oracle)Observe that we smooth the writer's view using t as the initial signal on the pin.This is an arbitrary choice.4. The Biphase Mark ProtocolOne use of a formal model of asynchrony is to investigate the circumstancesunder which communication protocols work properly. We illustrate such a useof our model by considering a biphase mark protocol. Recall Figure 3 where theprotocol is informally described.We will use an unbalanced con�guration in which the mark subcell is justlong enough to guarantee that it will be detected and the code subcell is justlong enough to guarantee that the sweet spot is always sampled. See Figure 6.In order to state a theorem about the protocol we must formalize it. Inour formalization, the sizes of the two subcells and the sampling distance areparameters that are not �xed until we state the correctness theorem.7 The axioms of the Nqthm logic de�ne car and cdr to be non-f constants on non-listps. Thee�ect here is that if oracle is too short it is implicitly extended with as many ts as required.

A Formal Model of Asynchronous Communication 154.1. SendingWe will formalize the send side of the protocol by de�ning a function that mapsfrom messages to signal streams, both of which are formally represented by bitvectors.The fundamental notion in the protocol is that of the \cell." Each cell is a listof n+k signals. Each cell encodes one bit, b, of the message, but the encodingdepends upon the signal, x , output immediately before the cell. Let csig be x ifb is t and b-not (x) otherwise. Then a cell is de�ned as the concatenation of a\mark" subcell containing n repetitions of b-not (x), followed by a \code" subcellcontaining k repetitions of csig .Definition: cellcell (x , n, k , bit)=app (listn (n, b-not (x)),listn (k , csig (x , bit)))where Definition: csigcsig (x , b)=if bthen xelse b-not (x)endifObserve that the last signal in the cell is csig (x , b).To encode a bit vector, msg , with cell size n+k , assuming that the previouslyoutput signal is x we merely concatenate successive cells, being careful to passthe correct value for the \previous signal."Definition: cellscells (x , n, k , msg)=if msg ' nilthen nilelse app (cell (x , n, k , car (msg)),cells (csig (x , car (msg)),n,k ,cdr (msg)))endifWe adopt the convention that the sender holds the line high before and afterthe message is sent. Thus, on either side of the encoded cells we include \pads"of t, of arbitrary lengths p1 and p2 . The formal de�nition of send isDefinition: sendsend (msg , p1 , n, k , p2)=app (listn (p1 , t),app (cells (t, n, k , msg), listn (p2 , t)))

16 J Strother Moore
t t t f t t f f f t f f t f f t t t t t

=

list (, , , , , , , , , , , , , , , , , , ,)

send(list(, , ,), 3, 1, 2, 5)t f t tFig. 7. Sending list (t, f, t, t) with Cells of Size 1+2To send the message list (t, f, t, t) with cells of size 1+2, padding the messageat the front with three ts and at the back with �ve ts, we use send (list (t, f, t,t), 3, 1, 2, 5). Its value is shown in Figure 7.4.2. ReceivingThe receive side of the protocol will be formalized as a function from signalstreams to messages. We need two auxiliary functions.Scan takes a signal, x , and a list of signals, lst , and scans lst until it �ndsthe �rst signal di�erent from x . If lst happens to begin with a string of x s, scan�nds the �rst edge.Definition: scanscan (x , lst)=if lst ' nilthen nilelseif b-xor (x , car (lst))then lstelse scan (x , cdr (lst))endifFor example, scan (t, list (t, t, t, f, f, f, t)) is list (f, f, f, t).Recv-bit is the function that recovers the bit encoded in a cell. It takes twoarguments. The �rst is the 0-based sampling distance, j , at which it is supposedto sample (e.g., if the cell length is 5+13, then j is 10). The second argument isthe list of signals, starting with the �rst signal in the mark subcell of the cell.Definition: recv-bitrecv-bit (k , lst)=if b-xor (car (lst), nth (k , lst))then telse fendifThe bit received is t if the �rst signal of the mark is di�erent from the signalsampled in the code subcell; otherwise, the bit received is f.We can use scan and recv-bit to de�ne the receive protocol. In our formaliza-tion, the receiver must know howmany bits, i , to recover. In an actual applicationthis might be a constant or it might have been transmitted earlier in a message

A Formal Model of Asynchronous Communication 17
msg msg

async

recvsend Fig. 8. The Composition of send, async and recvof constant length. The list of signals on which recv operates should be thoughtof as starting with the signal, x , sampled in the code subcell of previous cell. Ifi is 0, the empty message is recovered. Otherwise, recv scans to the next edge(i.e., it scans past the initial x s to get past the code subcell of the previous celland to the mark of the next cell). Recv then uses recv-bit to recover the bit inthat cell and conses it to the result of recursively recovering i � 1 more bits.Definition: recvrecv (i , x , k , lst)=if i ' 0then nilelse cons (recv-bit (k , scan (x , lst)),recv (i � 1,nth (k , scan (x , lst)),k ,cdrn (k , scan (x , lst))))endifObserve that in its recursive call, the new list of signals is the tail of lst thatbegins with the signal sampled by recv-bit. The new x is that signal.To illustrate recv, let lst be the list produced by the send expression in Figure7. Then recv (4, t, 2, lst) is the original message, list (t, f, t, t).The phase locking is essentially implemented by scan. Observe that in all usesof lst , recv uses scan to �nd the �rst edge. Thus, no matter how many trailingsignals there are in a cell (due to the di�erent rates at which the two processorscount), recv phase locks onto the beginning of the new cell. The clock rates arecrucially important only from the time the cell is detected to the time the codesubcell is sampled.5. The TheoremDo send and recv cope with the problems introduced by asynchrony? We canaddress this question formally now.The diagram in Figure 8 suggests something we would like to prove aboutsend, async, and recv: their composition is an identity. Of course, this is trueonly under certain assumptions, which we must make explicit. The compositionwe will study is

18 J Strother Moorerecv (len (msg),t,10,async (send (msg , p1 , 5, 13, p2), ts, tr , w , r , oracle))We discuss this term from the inside out, making our assumptions clear.� send (msg , p1 , 5, 13, p2): We send some message msg in cells of size 5+13with a leading pad of p1 ts and a trailing pad of p2 ts. We will require thatmsg be a bit vector but it can have arbitrary length. P1 and p2 are arbitrary(though, for technical reasons, we will require that the �rst one, at least, is anatural number).� async (send (: : :), ts, tr , w , r , oracle): The signal stream generated by sendis fed, in turn, to our model of asynchrony, which has the four clock parame-ters and the oracle as additional arguments. The model itself imposes certainconstraints on the clock parameters: all are nonnegative integers and ts � tr <ts+w . Those conditions put no limitation on the applicability of our result; itwould still address arbitrarily clocked processors, arbitrary delay between them,and arbitrary phase displacement. However, some restrictions must be imposedto make the composition an identity. First, we must assume that the cycle times,w and r , are nonzero in order to avoid obvious pathological failures. Second,we must assume that the cycle times are \in close proximity," which we willmake precise by de�ning rate-proximity(w , r). The condition we wish to im-pose is 17=18 � w=r � 19=18. But since we have limited ourselves to naturalarithmetic, we de�ne rate-proximity equivalently viaDefinition: rate-proximityrate-proximity(w , r)=(((18 � w) 6< (17 � r))^((19 � r) 6< (18 � w)))We put no restrictions on oracle, thus addressing ourselves to all possible non-deterministic behaviors.� recv (len (msg), t, 10, async (: : :)): Finally, the output of our model is fedto the receiver. We impose no additional restrictions due to this term. But notethat the �rst three arguments to recv limit the applicability of the theorem tocases in which we are trying to recover the correct number of bits of message,the line is initially high, and each cell is sampled 10 cycles after mark detection.The theorem we prove isTheorem: BPM18((bvp (msg)^(ts 2 !)^(tr 2 !)^(w 6' 0)^(r 6' 0)^(tr 6< ts)

A Formal Model of Asynchronous Communication 19^(tr < (ts + w))^rate-proximity(w , r)^(p1 2 !))!(recv (len (msg),t,10,async (send (msg , p1 , 5, 13, p2), ts, tr , w , r , oracle))=msg))\BPM18" stands for \Biphase Mark, 18-cycles/bit." The theorem would ap-pear simpler had we built in the constants 10, 5 and 13 as well as the pad lengths,p1 and p2 , and the initial line value, t. We stated the theorem this way so itwas convenient to experiment with di�erent values.The de�nition of rate-proximity forces w=r to be within 1=18 of unity. Forwhat it is worth, 1=18 is 0.05, or somewhat more than 5%.6. Formal ExperimentsBefore attempting to prove anything about send and recv we simply execute themto illustrate how they cope with async. Suppose we want to send the messagelist (t, f, t, t), using our 5+13 cycle protocol. To be concrete, we will precedethe transmission with seven high cycles and follow it with eleven high cycles.The appropriate send expression is send (list (t, f, t, t), 7, 5, 13, 11). A totalof 90 write cycles are modeled in the output of this expression. The output isdisplayed graphically in Figure 9.Now suppose the writer has a cycle time of 100, suppose the reader has a cycletime of 96, and suppose the �rst signal in the output arrives at the reader 30 timeunits before the reader's clock next ticks. Figure 9 shows (one of) the receivedwaveforms. The oracle argument to async determines which of the waveformsis actually received. Recv must be able to cope with all of them. Observe thatin this example, a total of 93 read cycles are modeled. The cells parsed by recvconsume varying numbers of cycles. This variance is in part due to the slightlyfaster cycle time of the reader and in part to the nondeterministic choices onwhere the edges are located.Recv correctly recovers the message list (t, f, t, t) in this example.7. ProofsBPM18 can be proved by transforming it into a slightly di�erent form and thenappealing to a more general theorem which is proved by induction.Our proof strategy is roughly as follows.� We derive the shape of the send waveform after it has been processed bythe �rst two passes of async, that is, we produce the ramped version of thereceived waveform. To do this we develop a body of lemmas about async and

20 J Strother Moore
async

recv 4,

send

19 cycles17 cycles21 cycles 21 cycles

93 cycles

t f t t

18 cycles 18 cycles 18 cycles 18 cycles

90 cycles
7,5,13,11

0,30,100,96, oracle

t , 10

list (, , ,)

t f t tlist (, , ,)Fig. 9. An Experiment with send, async, and recvits subfunctions. We call this the \reusable theory" of async because it isindependent of our particular application.� We establish bounds on the lengths of each of the regions in the rampedwaveform. This is basically a continuation of the reusable theory.� Wemove into recv and show that scanning across a ramp nondeterministicallyde�nes a point in a region whose length is one larger than the ramp.� Finally, this point is translated down the ramped waveform a �xed distanceby cdrn, where it becomes the sampling point, and is shown to fall in the\sweet spot"|that portion of the code subcell una�ected by ramps. This�nal step requires proving two key inequalities that establish that the sweetspot entirely contains the nondeterministically de�ned sampling point. Theseinequalities are proved by appealing to the bounds on the lengths of thevarious regions.Because the message is of arbitrary length, all four of these steps are wrappedin an induction on the length of the message and are applied in turn to thatportion of the wave generated in response to a single bit of the message.7.1. The Reusable TheoryWhile some steps in the proof are concerned with the peculiar properties of sendand recv, most of the work is in establishing general properties of async and itsinteraction with the waveform primitives, app and listn.In what sense are app and listn the \waveform primitives?" Informally, idealsignals are square waves; in our formalism, these square waves are generatedby combinations of listn and app expressions|we use listns to generate either\high" or \low" horizontal lines and then use apps to stick them together to form

A Formal Model of Asynchronous Communication 21the vertical edges. As the signals get smoothed and warped in our model, thesquare corners become multivalued ramps; these ramps are formally generatedby more listn expressions, only this time the signal repeated is 'q. Thus, fromthe formal or algebraic point of view, the signal generators are app and listn.Because timing is crucial, we are also interested in the length, i.e., len, of suchwaveforms.Given some input waveform, described formally, we would like to have enoughsymbolic machinery to allow us to derive the waveform produced by async. Wewould like both the input and the output waveforms to be described in terms ofapp and listn. Therefore, we seek a collection of theorems about app, listn, len andthe three passes of async. Most of the theorems express distributivity laws, e.g.,how to express the smooth of an app as the app of two smooths. These theoremsare independent of the particular signals generated by the biphase mark protocol.They are a �rst step toward what we call a \reusable formal theory" or \rulebook" for async. They are only the �rst step because we stopped when we hadenough rules to prove biphase mark correct. See [Moo92a] for the presentationof the reusable theory.7.2. A Sketch of the Proof of BPM18Theorem: BPM18((bvp (msg)^(ts 2 !)^(tr 2 !)^(w 6' 0)^(r 6' 0)^(tr 6< ts)^(tr < (ts + w))^rate-proximity(w , r)^(p1 2 !))!(recv (len (msg),t,10,async (send (msg , p1 , 5, 13, p2), ts, tr , w , r , oracle))=msg))We do not give the proof of BPM18 but merely sketch it to illustrate howthe model is manipulated in the reusable theory. Complete details are given in[Moo92a].We transform the left-hand side of the conclusion above into a slightly dif-

22 J Strother Mooreferent form and then appeal to a lemma (discussed below). First, observe thatthe theorem is trivial if msg is empty: len (msg) is 0 and hence recv returns nil,which is equal to msg . Thus, we may assume msg is a listp. Now consider theleft-hand side aboverecv (len (msg),t,10,async (send (msg , p1 , 5, 13, p2), ts, tr , w , r , oracle))By expanding the de�nitions of send and async we getrecv (len (msg),t,10,det (warp (smooth(t,app (listn (p1 , t),app (cells (t, 5, 13, msg), listn (p2 , t)))),ts,tr ,w ,r),oracle)).Consider the second app term. We know its �rst argument is a listp whose caris f (because cells is passed the
ag t and a non-nilmsg). So we can expand appto get recv (len (msg),t,10,det (warp (smooth(t,app (listn (p1 , t),cons (f,app (cdr (cells (t, 5, 13, msg)),listn (p2 , t))))),ts,tr ,w ,r),oracle)).Using the reusable theory, we distribute the smooth, warp, and det down thewaveform to obtain:recv (len (msg),t,10,app (listn (n* (p1 , ts, tr , w , r), t),app (det (listn (nq (p1 , ts, tr , w , r), 'q),oracle),det (warp (cdrn (dw (p1 , ts, tr , w , r),smooth (f,app (cdr (cells (t, 5, 13, msg)),

A Formal Model of Asynchronous Communication 23listn (p2 , t)))),ts (p1 , ts, tr , w , r),tr (p1 , ts, tr , w , r),w ,r),oracle* (listn (nq (p1 , ts, tr , w , r), 'q),oracle))))).Observe that the reusable theory introduces some new function symbols,e.g., n*, nq, and dw. These functions de�ne the lengths of various portions ofthe transformed waveform. For example, the list of p1 ts output by send istransformed into a region of n* (p1 , ts, tr , w , r) ts by our model. The reusabletheory tells us the length of this received region, expressed algebraically in termsof p1 and the clock parameters.Consider the �rst listn term above. It denotes a string of ts in the maw ofa receiver scanning past t. So the above is equal to the result of removing thatlistn, recv (len (msg),t,10,app (det (listn (nq (p1 , ts, tr , w , r), 'q),oracle),det (warp (cdrn (dw (p1 , ts, tr , w , r),smooth(f,app (cdr (cells (t, 5, 13, msg)),listn (p2 , t)))),ts (p1 , ts, tr , w , r),tr (p1 , ts, tr , w , r),w ,r),oracle* (listn (nq (p1 , ts, tr , w , r), 'q),oracle)))).Inspection will show that the recv expression above is an instance of the moregeneral one in our key BPM18-Lemma below. That lemma establishes that therecv returns msg . Q.E.D.The above manipulations are typical of those used in our proof. However,the proof was actually constructed with the assistance of a mechanical theoremprover. The user's role was \merely" to state the lemmas that drive the simpli-�cation above. The system proved the lemmas and then used them to carry outthe manipulations. Put another way, the user's role was the extremely creativeone of formalizing the reusable theory of async in such a way that it could beused to drive Nqthm to this proof. The system's role was the tedious applicationof this body of rules.The form of our general lemma may be obtained by replacing certain termsabove by variables. The t in the second argument of recv and the f in the �rstargument of smooth are replaced by arbitrary Boolean
ags of opposite parity.The nq, dw, ts and tr terms are replaced by variables, constraining the nq re-placement to be between 1 and 3, the dw replacement to be 0 or 1, and the ts andtr replacements to be clock-params. Finally, the oracle* expression is replacedby an arbitrary second oracle. The general lemma is shown below.

24 J Strother MooreTheorem: BPM18-Lemma((bvp (msg)^(ts 2 !)^(tr 2 !)^(w 6' 0)^(r 6' 0)^(tr 6< ts)^(tr < (ts + w))^rate-proximity(w , r)^(nq 2 !)^(3 6< nq)^(dw 2 !)^(1 6< dw)^boolp (
g1)^boolp (
g2)^b-xor (
g1 ,
g2))!(recv (len (msg),
g1 ,10,app (det (listn (nq , 'q),oracle1),det (warp (cdrn (dw ,smooth (
g2 ,app (cdr (cells (
g1 , 5, 13, msg)),listn (p2 , t)))),ts,tr ,w ,r),oracle2)))=msg))BPM18-Lemma describes the receiver in its general con�guration rather thanin its initial con�guration. Two points bear noting. First, the unusual initial padis gone: the receiver is processing a warped sequence of cells and is standing

A Formal Model of Asynchronous Communication 25
rest

nq1 nq2 s2s1

b-not ()flg1

flg1Fig. 10. Waveform if
g1 is \High"immediately in front of a blurred edge spread over nq cycles. Second, the receiveris scanning for an arbitrary edge as speci�ed by
g1 rather than just a falling oneas required in the top-level application. This is particularly important becausewe will need to use our inductive hypothesis to process cells of parity oppositethat of the �rst cell.8The proof of BPM18-Lemma is by induction on the length of msg . See[Moo92a] for the details.We separate two base cases, one for the empty msg and one for msgs oflength 1. Thus, in the induction case the message is of length 2 or more and wetherefore know the �rst cell is followed by another cell and, hence, by an edge.(The last cell is not necessarily followed by an edge.) That trailing edge in theinduction conclusion will become the leading edge in the induction hypothesis.There are two crucial points in the proof. (1) Does the receiver recover thebit in the �rst cell correctly? And (2), when it scans past the remains of that�rst cell, is the receiver back in the general situation described by our lemma,i.e., can we use our induction hypothesis? The answers to both questions hingeon certain arithmetic inequalities that tell us that the receiver is in the sweetspot of the waveform 10 cycles after detecting the mark.The reusable theory can be used to derive the general shape of the wavereaching the receiver. If the �rst bit of the message is t and
g1 is depicted as\high" then the waveform has the shape shown in Figure 10.The reusable theory also informs us as to upper and lower bounds on thelengths of each region of the received waveform. The bounds are shown in Figure11. The constraints on the relative rates of the two clocks determine these bounds.It should be noted that the bounds are all independently derived, i.e., it is notthe case that all four quantities can simultaneously attain their extreme values,though we do not use this unproved observation. We return to this point later.The crucial step in proving BPM18-Lemma is showing that the samplingpoint (which is 10 reader cycles after the detection of the mark) is in the \sweetspot." This comes down to the following inequalities:8 We do not have time to expound upon the subtleties of the BPM18-Lemma formula, but themost creative part of the proof was �nding a statement of this lemma that could be proved byinduction|a statement with the property that an inductive instance could be used to provethe inductive conclusion. The di�culty here was not due to the limitations of the mechanicaltheorem prover we used but rather to the mathematical complexity of the situation. The trickwas to �nd a general description of the input waveform at the receiver so that if that waveformis lengthened by one appropriately transformed cell and then the receiver processes the leadingcell, the remaining signal stream to be processed is again in the general form speci�ed.

26 J Strother Moore1 � nq1 � 31 � s1 � 41 � nq2 � 39 � s2 � 12Fig. 11. Bounds on the Lengths of Waveform Regionsno+s1+nq2 � 10 < no+s1+nq2+s2,where 0�no<3 is the number of cycles in the �rst ramp of the wave after the�rst cycle at which the nondeterministic read is low. By considering the knownbounds on each of the terms (Figure 11), we see that 10�10<11, and thus thesampling point is within the sweet spot.The proof sketched here is essentially that checked by Nqthm. The completetranscript of the session in which Nqthm is led from its GROUND-ZERO theoryto BPM18 is available on request from the author. The transcript contains 53de�nitions and 208 theorems stated by the user so as to lead Nqthm to the proof.Roughly half of those theorems are elementary properties of natural numberarithmetic and list processing functions such as app and len. The total timerequired by Nqthm to process all of the de�nitions and theorems is about twelveminutes on a Sun Microsystems SparcStation 2 GX-Plus, running Nqthm inAKCL. However, about a man-month was spent developing the reusable theory.8. Other Con�gurations of Biphase MarkMost of the proof above concerned straightforward applications of our theory ofasync to the biphase mark output. The crucial step was the derivation of theinequalities no+s1+nq2 � 10 < no+s1+nq2+s2in base case 1. It should be clear that the numbers 5, 13, and 10 for the subcellsizes and sampling distance were chosen precisely to satisfy these two inequal-ities while reducing the cell size and the sampling distance. If we implementedsend and recv with microprocessors nominally clocked at 20MHz each, then at18 cycles per bit, the protocol would permit messages to be communicated atthe burst rate of 1.1M bps. But note that we achieved 18 cycles per bit by anasymmetric division of the bit cell; our mark subcell is only 5 cycles long andhence our protocol demands a higher frequency response from the wire than isevident from the fact that our cell size is 18. By reducing the sampling distancewe increase the protocol's tolerance for clock rate disparity.An analogous proof can be constructed for other values of these parameters,provided the basic inequalities hold. In particular, if cell size 32 is chosen, withmark and code subcells of equal length and sampling distance 23, and we modifyrate-proximity to give us 31=32 � w=r � 33=32, the analogous inequalities are3+15+3 � 23 < 0+12+1+12. Because these inequalities hold, we see that the 32-cycle symmetric biphase mark protocol always recovers the bit correctly, providedthe ratio of the clock rates are within 1=32 (or 3.125%) of unity. From this remark

A Formal Model of Asynchronous Communication 27it should be clear that we could undertake the proof of a more general theoremin which variables replace the particular subcell sizes and sampling distance andthe clocks are constrained in relation to those variables. We have not undertakenthe proof of that more general theorem because our main interest here wasdemonstrating that one particular version of the protocol works.An interesting con�guration to consider is cell size 16, split symmetrically intomark and code subcells, with sampling distance 11. The analogous inequalitiesare 3+7+3 � 12 < 0+4+1+4, which are invalid. That is, the proof breaks downfor the 16-cycle symmetric biphase mark protocol. This is not to say that the16-cycle version does not work! Such a con�guration is used in the Intel 82530Serial Communications Controller[Int91] (where it presumably works) and wehave found no example of reasonably close clock rates for which it fails in ourmodel. But we cannot prove that it works using the attack shown here. Ourattack bounds a sum by summing the bounds, which gives sound but cruderesults. The 16-cycle version, if indeed it works under our model, will require amore careful analysis of the bounds. It is also possible that the 16-cycle versionis not correct under our model but that it works in practice. If this is the case,it it just illustrates the conservative nature of our model.While the theorem establishes that the 18-cycle protocol works provided theclocks are within about 5%, experiments with the formal model suggest that theclock rate restriction can be considerably relaxed. We conjecture the 18-cycleprotocol works for clock rate ratios that vary almost 30% fromunity. Experimentsshow that the �rst place that the protocol fails to recover the �rst bit as thereceiver's clock slows down in steps of 1 from the writer's clock of 100 is whenthe receiver's clock is 143. In particular,recv (4,t,10,async (send (list (t, f, t, t), 10, 5, 13, 10),0,84,100,143,list (t, t, f, f)))is list (f, t, t, t).Thus, we believe the theorem we have proved about the 18-cycle protocolis very weak compared to what is true in the model. The culprit is our casualtreatment of the bounds.Our primary interest in this paper is not establishing the performance boundsof biphase mark. It is in explicating our model, demonstrating that it can be usedto derive performance bound, and appealing to the engineering community tocriticize its accuracy. Only after the model has survived the initial scrutiny ofthe engineering community do we feel it worthwhile to use it in a detailed formalstudy of communications.

28 J Strother Moore9. Concluding Remarks on our ModelWe have formalized a model of asynchrony that permits quantitative formal anal-ysis of performance. We have taken a step toward developing a body of theoremsabout the model to permit its economical application to diverse problems.We used the model to show that two di�erent versions of the biphase markprocotol \work." In the �rst protocol we send each bit in a cell lasting 18 cycles,the �rst 5 of which constitute the marking edge of the cell. We prove that theprotocol permits the correct transmission of messages of arbitrary length pro-vided the ratio of the clock rates of the two processors is within about 5% (1=18)of unity. The 18-cycle protocol gives a burst bit rate of about 1.1M bps if theprocessors have 20MHz clocks|though pin limitations on the actual implemen-tation of the communication modules would require quantizing long messagesand would degrade sustained performance. Furthermore, our 18-cycle protocoldemands higher frequency response of the wire than is evident because the marksubcell is only 5 cycles long. We o�er the 18-cycle protocol primarily as a catalystfor thought: The model says it will work. Will it?We also used the model to show that the conventional 32-cycle biphasemark protocol allows correct transmission provided the clock rate ratio is within3.125% of unity.All of the proofs described here were checked with Nqthm. Inevitably, thereader of this paper will wonder if there are mistakes in our presentation of theproof. Indeed, so does the author. Does each formula follow from the previousone? While these doubts inevitably arise in the context of a proof presented onpaper, they do not arise during the machine-assisted act of creating the proofin the �rst place. Furthermore, the user of Nqthm is concerned primarily withinventing the lemmas that enable the rewrite steps and not with the constructionor even the derivation of the terms that thereby arise. One of the main advan-tages to having a formal model in a mechanized logic is that it is possible tohave machine assistance while exploring the rami�cations of various decisions. Itshould be noted that it was not necessary to invent a specialized logic to reasone�ectively; indeed, facility in arithmetic is paramount here.Returning to our model per se, it is presented as a recursively de�ned functionon waveforms. To use it to investigate the communication from one processor toanother it is (only) necessary to formalize the input/output behavior of the twoprocessors. The implementation details of each processor are not relevant.Recall that our model does not specify when during a cycle the voltage on thepin is changed or sensed. This contributes to the pessimism of our models, since,for example, a read cycle that starts before an edge arrives can be \contaminated"by the edge because the model allows the possibility that the pin is sensed late inthe cycle. The model further allows the pin to be read late in one cycle and earlyin another. The good e�ect of this permissivity is that to apply the model we donot have to delve into exactly what logic is used to sense the pin. Indeed, any twodesigns that implement the same function on the signal stream are equivalent.Furthermore, each processor may be speci�ed independently of the other.Because of this decomposition, it is possible to verify an implementationof each processor independently of the other and of the model of asynchrony.Consider send. It is the formal speci�cation of the kernel of the send side of amicroprocessor's communications module. Indeed, its de�nition was developedwith that use in mind. See[Moo92b]. Using the Formal HDL described in[BH90],it is possible to design a circuit that implements send. The formal semantics of the

A Formal Model of Asynchronous Communication 29HDL is cast as an Nqthm interpreter (or simulator) that determines the signalson all the pins and the state produced by a described design, given the initialsignals and state. Thus one can easily de�ne the sequence of signals produced bya circuit. Suppose we had a circuit alleged to implement send. That means thesequence of signals on a given pin over some number of cycles starting from agiven initial state is equal to the sequence of signals produced by send. Provingsuch a correctness result would be straightforward (given the reusable theorydeveloped for the Formal HDL by Brock and Hunt) for some hardware designs.See[Moo92b] for an example of the use of the Formal HDL in the speci�cationand design of a simple veri�ed microprocessor.In an exactly analogous fashion, one could design a \digital phase lockedloop" alleged to implement recv and prove that it was correct. (Phase locking isthe idea of adjusting the clocks of two or more processes so that all the clocks tick\simultaneously."A common technique is for the sender to encode its clock in thesignal stream and for the receiver to adjust its timing accordingly. Phase lockingis often done with special devices that change the rate at which crystals vibrate.But by adopting an arti�cially slow \virtual" clock, e.g., where one virtual tickoccurs every n physical ticks, it is possible to implement phase locking in softwareor �rmware. That is called \digital phase locking" and is increasingly popular.Biphase mark protocols are often used in such implementations.)Our point about decomposition is that the proofs of correctness of thesetwo hardware modules are independent, both of each other and of our modelof asynchrony. The Formal HDL provides the ability to verify synchronous de-signs (designs in which there is only one clock) and that is all we need to designand verify implementations of send and recv. Given two veri�ed processors onecan then establish that they communicate properly by applying our model andreasoning about their speci�cations rather than their implementations. That iswhat we have done in this paper: we proved that send and recv |the speci�-cations of two independently clocked synchronous processors| provide reliablecommunication.A limitation of our model is that it only addresses one-way communication.There is no way to use it to verify two-way communication if timing or orderingon the signals is relevant (as it is in true two-way communication). This is ageneral problem that has nothing to do with asynchrony but rather with messagepassing formalized at the level of independently speci�ed input/output streams.Perhaps the general problem can be solved in a way that delays consideration ofthe e�ects of asynchrony and transforms the dialog into two monologues (havingcertain oracular properties that permit their interpretation as a dialog) that canthen be investigated by the techniques developed here. In any case, we see thisas a fruitful area of further research.Another limitation of our model is that we have assumed that clocks arelinear functions of time. We do not know how inaccurate this assumption is. Amore general model is that clocks are nearly linear in the sense that every cycleis within some epsilon of the nominal length. This could be formalized in thestyle given here. There is no doubt that it would complicate the reusable theoryof async. Determining the lengths of the various regions of the warped signalwould be more tedious. We speculate that the accumulating clock error wouldtend to be washed out by our conservative treatment of edges and would not befatal to the proof of the biphase mark protocol.Finally, our model ignores various engineering realities such as metastability,re
ections, noise, and distortion. It was our intention to ignore these on the

30 J Strother Mooregrounds that we wanted to address the problems of asynchrony rather than ofsignal processing. This attempt to separate concerns may be misguided: someprotocols are designed to overcome noise, say, and the entire raison d'etre of suchdesigns is lost in our analysis.In the end we must come back to our introductory remarks on engineering.We have formalized a model of asynchrony. With the model it is possible to provethat certain protocols work. It is up to the engineer to decide whether the modelis accurate enough for the purposes at hand.10. Relation to Other WorkThis work began as part of a NASA-sponsored investigation at ComputationalLogic, Inc. (CLI) into the formalization of fault tolerance. W. Bevier and W.Young of CLI formalized with Nqthm the Oral Messages (or \Byzantine Agree-ment") algorithm of Pease, Shostak, and Lamport[PSL80]. In [BY91] they de-scribe the formalization and correctness proof of that algorithm and carried itall the way down to the Nqthm speci�cation of four microprocessors that usethe algorithm to reach agreement in the presence of faults. Young[You91] thenused Nqthm to prove the correctness of the interactive convergence clock syn-chronization algorithm, essentially following in the footsteps of Rushby and vonHenke[RvH89]. Meanwhile, the present author used the hardware descriptionlanguage formalized in Nqthm by B. Brock and W. Hunt[BH90] of CLI to imple-ment the processor speci�ed by Bevier and Young and to prove that the describeddesign meets their speci�cation[Moo92b]. The clear but unstated direction of theCLI work on fault-tolerance was to enable the eventual fabrication of a deviceimplementing the Byzantine agreement algorithm|a device whose design hadbeen mechanically veri�ed from the journal article describing the algorithm allthe way down to the netlist. (See[BHMY89] for a description of the similarly ver-i�ed \CLI short stack" that goes from a veri�ed compiler for a simple high-levellanguage, through a veri�ed assembler and linker, to a microprocessor ver�ed atthe gate level.) However, a major stumbling block in this program was the factthat the four microprocessors speci�ed by Bevier and Young were unrealisticallyassumed to execute in lockstep synchrony, i.e., to share a common clock. This isunacceptable since it introduces a potential single-point failure into the system.This assumption was made primarily to enable the convenient exchange of databetween the four processors during the voting that leads to agreement. It wastherefore natural to study the question of veri�ed communication between asyn-chronous processors. It should be noted that even with all the present pieces inplace, the goal of a veri�ed network of asychronous Byzantine processors is stilla signi�cant challenge.Our model of asynchronous communication is expressed as a function thattransforms the signal stream produced by one processor into the signal streamconsumed by an asynchronous processor. To apply the model, one must charac-terize the signals produced and consumed by the two communicating processes.This input/output model of concurrent processes is a familiar one used in Mil-ner's CCS[Mil80] and Hoare's CSP[Hoa85]. Unlike that work, we consider onlythe simple case of one way communication. However, our focus is entirely onthe physical problems introduced by asynchrony, namely how clock rates, delay,and phase shift a�ect the received signal. The quantitative modeling of timemakes our work very di�erent in character and focus from the cited work. The

A Formal Model of Asynchronous Communication 31reader interested in the general problems of verifying distributed and/or concur-rent systems should see, in addition to [Mil80] and [Hoa85], the seminal work byManna and Pnueli[MP84], Barringer's survey[Bar85], and the Unity model byChandy and Misra[CM88]. In[Gol90], D. Goldschlag describes an Nqthm-basedmechanized proof system Unity.Our work �nds its closest relatives in the very active �eld of hardware veri-�cation. See [Yoe90] for a tutorial introduction to and overview of the �eld. Incommon with our work, many formal models of microprocessors, e.g., [Hun85],[Pyg85], and [Joy90], quantitatively measure time in cycles. A particularly in-triguing title, given the title of this work, is J. Joyce's \Formal Speci�cationand Veri�cation of Asynchronous Processes in Higher-Order Logic"[Joy88]. Thereport deals with the same problem confronted in [Hun85], namely how to formal-ize the interaction between a synchronous microprocessor and an asynchronousmemory via a four-phase handshaking protocol. The report o�ers an attractivealternative to the formalization presented in [Hun85]. But it does not addressgeneral asynchronous communication in the sense that we do.Because we verify a protocol in this paper, it is necessary to comment uponthe relation of our work to the very old and very active research area of proto-col veri�cation. An important survey of the �eld was published as long ago as1979[Sun79] and the �eld has an annual conference (Protocol Testing, Speci�ca-tion, and Veri�cation) with proceedings published by North-Holland[Ae88].The International Standards Organization has de�ned seven levels of pro-tocol. Level 1, the \physical level," deals with pin connections, voltage levels,and physical signal formats. Level 2, the \data link level," concerns itself withdata formats, synchronization, error control, and
ow control. Above those are,successively, the \network level," the \transport level," the \session level," the\presentation level" and the \application level."Perhaps the most easily distinguished feature of our work is that it is essen-tially at level 1 while, to the best of our knowledge, all other formal veri�cationwork on protocols addresses higher levels.The best studied protocol is probably the alternating bit protocol, which isat level 2. Of special concern in that protocol is detection of message loss to anunreliable lower level. The protocol provides for acknowledgement of reception(which may itself get lost) and retransmission (which may lead to duplicate re-ceptions). In the late 70s mechanical protocol veri�cation was based on the then-standard program veri�cation technology: a procedural encoding of the protocolwas annotated with inductive assertions, from which veri�cation conditions weremechanically generated and then interactively proved. In [DiV81] this methodis applied to the alternating bit protocol. See[DiV82] for examples of methodapplied to still-higher transport level protocols. But in the 80s the combinationof �nite-state machine models, propositional temporal logic, and fast mechanicaldecision procedures came to dominate mechanized protocol veri�cation becauseof the speed and automation this combination o�ered. For a description how thisapproach is applied to the alternating bit protocol see[CES86] by E. Clarke, E.Emerson and A. Sistla. Clarke and O. Grumberg have written an excellent reviewof the use of �nite state machines and temporal logic in automatic veri�cationof concurrent systems[CG87].However, both the �nite state machine approach and the related Petri netapproach[Pet81] su�er from the inability to discuss time quantitatively. Muchresearch in the protocol veri�cation community is now aimed at adding somenotion of time to the �nite state approach, without exacerbating the already

32 J Strother Moorevexing state explosion problem or taking the entire problem out of the proposi-tional domain. This is in stark contrast to our work, where explicit, quantitativelymeasured time forms the foundation of the model.Finally, while not at level 1 and not supported by mechanically checkedproofs, the closest work on protocol veri�cation is perhaps that by P. Jain andS. Lam[JL91] where time is modeled quantitatively and discretely and signalpropagation down a bus is also modeled (assuming constant propagation speed).They specify a modi�ed Expressnet protocol which they prove to be collison-freeand they derive bounds for its access delay.11. AcknowledgementsThis work was supported in part at Computational Logic, Inc., by the NationalAeronautics and Space Administration, NASA Contract NAS1-18878. The viewsand conclusions contained in this document are those of the author and shouldnot be interpreted as representing the o�cial policies, either expressed or implied,of Computational Logic, Inc., NASA or the U.S. Government.I would like to thank my colleagues at Computational Logic, Inc., for help-ing me with this project, especially Bill Young and Bill Bevier for bringing theformalization of asynchrony to my attention, Warren Hunt for explaining micro-processors and biphase mark, Bishop Brock for explaining metastability and hisand Warren's formal HDL to me, Larry Smith for explaining how Bill and Bill'sByzantine processor speci�cation actually told him how to build it, and MattWilding for helping �nd algebraic expressions for certain of the functions in themodel. Finally, I would like to thank the anonymous referee whose careful readingof the paper and helpful suggestions clari�ed some of the issues. None of thesepeople should be held responsible for mymisconceptions regarding hardware andcommunications.

A Formal Model of Asynchronous Communication 33References[Ae88] Aggarwal, S. and Sabnani, K. (eds.): Protocol Speci�cation, Testing, and Veri�-cation VIII. Elsevier Science Publishers B.V. (North-Holland), 1988.[Bar85] Barringer, H.: A Survey of Veri�cation Techniques for Parallel Programs.Springer-Verlag Lecture Notes in Computer Science 191, Berlin, 1985.[BHMY89] Bevier, W.R., Hunt, W.A., Moore, J S. and Young, W.D.: Special issue on systemveri�cation. Journal of Automated Reasoning, 5(4), 409{530 (1989).[BY91] Bevier,W.R. and Young, W.D.: The proof of correctness of a fault-tolerant circuitdesign. In Proceedings of the Second International Working Conference on De-pendable Computing for Critical Applications, pp. 107{114. IFIP, February 1991.[BM79] Boyer, R.S. and Moore, J S.: A Computational Logic. Academic Press, New York,1979.[BM88] Boyer, R.S. and Moore, J S.: A Computational Logic Handbook. Academic Press,New York, 1988.[BH90] Brock, B.C. and Hunt, W.A.: A formal introduction to a simple hdl. InJ. Staunstrup, editor, Formal Methods for VLSI Design, pp. 285{329. ElsevierScience Publishers B.V. (North-Holland), 1990.[Cam88] Campbell, J.: C Programmer's Guide to Serial Communications. Howard W.Sams and Co., 4300 West 62 Street, Indianapolis, IN 46268, 1988.[CM88] Chandy, K.M. and Misra, J.: Parallel Program Design: A Foundation. AddisonWesley, Massachusetts, 1988.[CES86] Clarke, E.M., Emerson, E.A. and Sistla, A.P.: Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transactionson Programming Languages and Systems, 8(2), 244{263 (1986).[CG87] Clarke, E.M. and Grumberg,O.: Research on automatic veri�cation of �nite-stateconcurrent systems. Ann. Rev. Comput. Sci., 2, 269{290 (1987).[DiV81] DiVito, B.L.: A mechanical veri�cation of the alternating bit protocol. TechnicalReport ICSCA-CMP-21, Institute for Computing Science, The University of Texasat Austin, 1981.[DiV82] DiVito, B.L.: Veri�cation of communications protcols and abstract process mod-els. PhD Thesis ICSCA-CMP-25, Institute for Computing Science and ComputerApplications, University of Texas at Austin, 1982. Also available through Com-putational Logic, Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703.[Gol90] Goldschlag, D.M.: Mechanizing unity. In Programming Concepts and Methods.North Holland, Amsterdam, 1990.[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,Englewood Cli�s, NJ, 1985.[Hun85] Hunt, W.A.: Fm8501: A veri�ed microprocessor. Phd thesis, University of Texasat Austin, December 1985. Also available through Computational Logic, Inc.,Suite 290, 1717 West Sixth Street, Austin, TX 78703.[Int91] Intel Corporation: Microcommunications. Intel Literature Sales, P.O. Box 7641,Mt. Prospect, IL 60056-7641, 1991.[JL91] Jain, P. and Lam, S.S.: Speci�cation real-time protocols for broadcast networks.IEEE Transactions on Computers, 40(4), 404{422 (1991).[Joy88] Joyce, J.J.: Formal speci�cation and veri�cation of asynchronous processes inhigher-order logic. Technical Report No. 136, University of Cambridge ComputerLaboratory, June 1988.[Joy90] Joyce, J.J.: Multi-level veri�cation of microprocessor-based systems. TechnicalReport No. 195, University of Cambridge Computer Laboratory, May 1990.[MP84] Manna, Z. and Pnueli, A.: Adequate proof principles for invariance and livenessproperties of concurrent programs. Science of Computer Programming, 4, 257{289(1984).[Mil80] Milner, R.: A Calculus of Communicating Systems. Springler-Verlag, Berlin, 1980.[Mis87] Mish, F.C., editor.: Webster's Ninth New Collegiate Dictionary. Merriam-Webster, Inc, 1987.[Moo92a] Moore, J S.: A formal model of asynchronous communication and its use inmechanically verifying a biphase mark protocol. Technical Report NASA CR-4433, NASA, 1992.[Moo92b] Moore, J S.: Mechanically veri�ed hardware implementing an 8-bit parallel iobyzantineagreement processor. Technical Report NASA CR-189588,NASA, 1992.

34 J Strother Moore[PSL80] Pease, M., Shostak, R. and Lamport, L.: Reaching agreement in the presence offaults. Journal of the ACM, 27(2), 228{234 (1980).[Pet81] Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall,1981.[Pyg85] Pygott, C.H.: Formal proof of correspondence between the speci�cation of a hard-ware module and its gate level implementation. Report 85012, Royal Signalsand Radar Establishment, Malvern, Worcestershire (United Kingdom), November1985.[Rod88] Roden, M.S.: Digital Communication Systems Design. Prentice Hall, 1988.[RvH89] Rushby, J. and von Henke, F.: Formal veri�cation of the interactive convergenceclock synchronization algorithm using ehdm. Technical Report SRI CSL 89-3R,Computer Science Laboratory, SRI International,Menlo Park, CA 94025, January1989.[Skl88] Sklar, B.: Digital Communications Fundamentals and Applications. Prentice Hall,1988.[Sun79] Sunshine, C.: Formal techniques for protocol speci�cation and veri�cation. Com-puter, g12(9), 20{27 (1979).[Yoe90] Yoeli, M.: Formal Veri�cation of Hardware Design. IEEE Computer SocietyPress, Los Alamitos, California, 1990.[You91] Young, W.D.: Verifying the interactive convergence clock synchronization algo-rithm using the boyer-moore theorem prover. Internal Note 199, ComputationalLogic, Inc., 1717 W. Sixth Street, Suite 290, Austin, TX 78703, January 1991.

