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Abstract. We present a formal model of asynchronous communication between
two digital hardware devices. The model takes the form of a function in the
Boyer-Moore logic. The function transforms the signal stream generated by one
processor into that consumed by an independently clocked processor, given the
phases and rates of the two clocks and the communications delay. The model
can be used quantitatively to derive concrete performance bounds on communi-
cations at ISO protocol level 1 (physical level). We use the model to show that
an 18-bit/cell biphase mark protocol reliably sends messages of arbitrary length
between two processors provided the ratio of the clock rates is within 5% of
unity.
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1. Introduction

In this paper we will (a) formalize the lowest-level communication between two
independently clocked digital devices, (b) formalize the statement that, under
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certain conditions on the clock rates of the two processors, a biphase mark pro-
tocol permits the communication of arbitrarily long messages under our model
of asynchronony, and (¢) sketch a mechanically checked formal proof that the
statement is a theorem. Put less pedantically, we will exhibit a formal model of
asynchronous communication and use it to prove that a commonly used proto-
col works. The proof was checked with the Boyer-Moore theorem prover, Nqthm
[BM8S].

The biphase mark protocol—variously known as “Bi-¢-M,” “FM” or “single
density” and sometimes called a “format” rather than a “protocol”—is a con-
vention for representing both a string of bits and clock edges in a square wave.
Biphase mark 1s widely used in applications where data written by one device is
read by another. For example, 1t is an industry standard for single density mag-
netic floppy disk recording. It is one of several protocols implemented by such
commercially available microcontrollers as the Intel 82530 Serial Communica-
tions Controller[Int91]. A version of biphase mark, called “Manchester,” is used
in the Ethernet[Rod88] and is implemented in the Intel 82C501AD Ethernet Se-
rial Interface[Int91]. Biphase mark is also used in some optical communications
and satellite telemetry applications[SkI88]. There is no doubt that it works. But,
as far as we have been able to determine, a rigorous analysis of its tolerance of
asynchrony has not been done. This i1s a grey area because it is at the boundary
between continuous physical phenonmenon (e.g., waves and interference) and
discrete logical phenomenon (e.g., counting and algorithms).

Nevertheless, despite the apparent novelty of a rigorous analysis of a funda-
mental protocol, this paper 1s not really about the protocol. It 1s about a formal,
logical model of asynchrony. We look at biphase mark only to illustrate how the
model can be used.

Whether the assumptions in our model are valid is an engineering problem:;
indeed, accurately modeling the environment in which a device is expected to
work may be the hardest problem the engineer faces. We offer no solution to
that problem. In some sense there s no solution to that problem. It is up to the
engineer to decide if a given model is accurate enough.

By expressing the model formally, one is forced to characterize precisely the
requirements and assumptions. This done, one is then free to analyze them rig-
orously. In fact, we use mechanical aids that make the analysis both easier and
less error prone.

In Figure 1 we illustrate the difficulty of interfacing two independently clocked
devices. The figure shows what might happen if one device sends the signal
stream “tffftt”! to an asynchronous receiver whose clock is half-again slower
and initially almost one full cycle out of phase.

Observe that in the ideal timing diagram, the signal falls from t to f on the
writer’s second cycle. This is an idealization in two senses. First, the edge is not
vertical or square, the signal changes continuously and may “ring” before stabi-
lizing at its new level. Second, it does not happen immediately upon the clock
tick that starts the second cycle. In fact, all that is promised by the ideal diagram
is that the signal is stable and low by the end of the cycle. The funny looking
“multivalued ramps” in the conservative model depicted in Figure 1 are intended

1 In this paper we use t and f to denote the Boolean values of “truth” and “falsity.” These
are also the values we use for “bits” (instead of 1 and 0) and “signals” (instead of “high” and
“low”). Because timing diagrams are helpful in explaining our model, we adopt the convention
that t is pictured “high” and f is pictured “low.”
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Fig. 1. How Asynchrony Mangles Signals

to convey nothing more than that the signal is considered nondeterministically
defined throughout the indicated cycles.

We then impose upon that conservative diagram the receiver’s clock ticks.
Consider the receiver’s first full cycle, that cycle spanning the first ramp. If the
receiver samples the signal stream during this cycle the logical result obtained
depends upon exactly when during the cycle the signal enters into the combi-
national logic of the receiver. It may happen early in the cycle (in which case
the receiver may get a t because the signal is high) or late in the cycle (pro-
ducing f) or in the middle (in which case the signal may be interpreted either
way or may even induce a “metastable” state in which the whole notion of its
“logical value” is ill-defined and the receive ceases, perhaps temporarily, to act
as a digital device). Furthermore, the exact time at which the signal is sensed
during a cycle may vary from cycle to cycle in a data dependent way. At this
stage in our model, therefore, we simply say the signal received during this cycle
is undetermined.

Things are simpler during the receiver’s second full cycle; the signal 1s con-
stant at f for the duration of the cycle and hence we are assured that it reads an
f no matter when during the cycle the line is sensed.

The problem of metastability caused by “reading on an edge” cannot be
solved perfectly by digital logic alone. We do not attempt to model it. Our
model assumes that “reading on an edge” nondeterministically produces a t or
an f.2 It is up to the engineer to arrange that some well-defined signal is read on
each cycle.

2 It is possible to model indeterminate signals logically. Three- and even four-valued logics
are common in hardware description languages. We have mechanically proved that in one such
logic it is impossible to build even a simple asynchronous edge detector with perfect reliability.
The Ngthm transcript is available upon request.
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Fig. 2. One Edge Can Influence Several Read Cycles

This however does not solve the communications problem. Nondeterministi-
cally replacing the question marks in Figure 1 by ts and fs does not enable the
recovery of the original signal stream. Even an accurate analysis of which read
cycles produce nondeterministic signals or how many such cycles there are re-
quires careful consideration of the two clock rates and their phase displacement.
For example, as illustrated in Figure 2, if the rates are nearly identical (the usual
case) and the receiver’s cycle is the shorter, then, depending on the initial phase
displacement (which can be arbitrary for two physically independent clocks), an
edge in the arriving signals can affect two or sometimes three successive read
cycles. Nondeterministically replacing the question marks by ts and fs has the
effect of blurring or shifting the edges in the signal. Differences in the clock rates
of the two processors may stretch or shrink the apparent duration of the signal.

Communications protocols have been developed to deal with these problems.
To avoid the first problem, the asynchronous sender generally encodes its message
as a waveform with a relatively long wavelength compared to the cycle time of
the receiver, giving the receiver plenty of time to sample the signal away from
the edges. To overcome the second problem, the biphase mark protocol encodes
the message with “frequency modulation” of the long wavelength “carrier.” This
allows the receiver to “phase lock” onto the artificially slower clock of the sender.

In the biphase mark protocol (see Figure 3), each bit of message is encoded
in a “cell” which is logically divided into what we call a “mark subcell”® and a
“code subcell.” During the mark subcell, the signal is held at the negation of its
value at the end of the previous cell, providing an edge in the signal train which
marks the beginning of the new cell. During the code subcell, the signal either
returns to its previous value or does not, depending on whether the cell encodes
a t or an f. The receiver is generally waiting for the edge that marks the arrival of
a cell. Upon detecting the edge, the receiver counts off a fixed number of cycles,

3 The word “mark” in “biphase mark” comes from the “Automatic Recorder” of 1g9th century
telegraphy where the line idle state produced a mark on a rotating drum and the arrival of a
pulse lifted the stylus to produce a space[Cam88]. The names MARK and SPACE were adopted
for logical 1 and logical O respectively. However, except in the name “biphase mark,” our use
of the word “mark” is intended in its nontechnical sense, i.e., “a conspicuous object serving
as a guide for travelers”[Mis87]. Thus we speak of the “mark subcell,” so named because it
indicates the beginning of the cell, and of “detecting the mark.”
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Fig. 3. Biphase Mark Terminology

here called the “sampling distance,” and samples the signal there. The sampling
distance is determined so as to make the receiver sample in the middle of the
code subcell. If the sample is the same as the mark, an f was sent; otherwise
a t was sent. The receiver then resumes waiting for the next edge, thus “phase
locking” onto the sender’s clock.

Of course, asynchrony may blur or shift the edges of the code subcell, but if
the code subcell is sufficiently long, some region of it (away from the edges) will
be well-defined. We call this region the “sweet spot.” The receiver should always
sample from the sweet spot. What might prevent this? A plausible scenario is
that the receiver 1s late detecting the mark because of nondeterminism and then
waits too long before sampling because its clock is slower than the sender’s.

This scenario should make it clear that the extent to which the protocol
relies upon the near agreement of the two clock rates 1s dependent upon how
far the sweet spot is from the mark. It is while measuring out this time interval
(while creating the cell in the sender or waiting to sample in the receiver) that
the protocol implicitly assumes the two processors cycle at the same rate. If
two clocks are used to measure out some absolute time interval, and the two
clock’s rates are fixed but slighly different, their discrepancy in the measurement
is linearly proportional to the length of the interval measured. Thus, the closer
the sweet spot is to the mark, the more tolerant the protocol is to different clock
rates.

To analyze the behavior of the protocol in the face of asynchrony we must
specify the cell size, subcell sizes, and sampling distance. We study a conven-
tional choice and an unconventional one. The conventional choice is cell size 32,
equally divided into two 16-cycle subcells, sampled on the 93rd cycle after mark
detection. The unconventional choice is cell size 18, divided into a b-cycle mark

and a 13-cycle code subcell, sampled on the 1oth cycle after mark detection. The
unconventional choice permits a faster bit rate (since fewer cycles are spent on
each bit) and tolerates more divergent clock rates (since the time during which
the clocks must “stay together” is smaller). Do they work?

In this paper we formally define a model of asynchrony and we formally
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state the theorem that, under the model, the 18-cycle/bit biphase mark protocol
properly recovers the message sent, provided the ratio of the two clock rates is
between 0.95 and 1.05. According to [RvH89)] typical clocks are incorrect by less

than 15x10°0 seconds per second and the ratio of the rates of two such clocks
are well within our bounds. We have proved that the conventional choice of cell
size also works, provided the ratio of the clock rates is within 3% of unity, and
we briefly indicate how the proof differs from the proof of the 18-cycle version.

This article is a shortened version of [Moo92a], where we present the proof
in full as well as develop a “reusable theory” that allows the application of our
model to other protocols.

2. Logical Foundations

We use the Ngthm “computational logic” described in [BM88].

Truth values, bits, and signals will all be represented by the objects t and f
which are distinct constants. We call these two objects “Booleans.” Because the
logic’s language is untyped, we define a predicate, boolp, which recognizes just
them.

DEFINITION: boolp
boolp ()

(=) V(x=1)

As can be seen by an inspection of the definition, boolp (z) is t if and only if =
istorzist.

The Nqgthm logic imposes restrictions on equations purporting to be “defi-
nitions.” These restrictions insure that one and only one mathematical function
satisfies the equation. Because of this assurance, we can add such admissible def-
initions to the logic without rendering the logic inconsistent. The reader should
see[BM79, BM88] for details. In this presentation we do not further concern
ourselves with the admissibility of our definitions.

We define the operations of “negation” and “exclusive-or” as follows.

DEFINITION: b-not
b-not ()

(—z)
DEFINITION: b-zor
b-xor (z, y)

if z
then — ¢
elseif y
then t
else f

endif

Thus, b-not (t) is f and b-xor (t,f) is t.
Fundamental to our formalization is the notion of a “bit vector” or a “finite
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sequence of Booleans.” We use lists to represent such objects. The following
function recognizes bit vectors.

DEFINITION: bvp
bvp ()

if © ~ nil
then z = nil
else boolp (car (z))
A
bvp (cdr (z))
endif

That is, bvp () is defined by cases. If z is an atom® then z is a bit-vector precisely
when z is mnil. On the other hand, if z is a listp object, then its first element,
car (z), must be Boolean and the rest of its elements, cdr (z), must recursively
satisfy bvp. An example bit vector is list (¢, t, f, f). That is, bvp (list (¢, t, f, 1))
evaluates to t.

We shall use len () to denote the length of the list z, app (z, ) to concatenate

the lists « and y, nth (n, z) to fetch the ath element of the list z (where car ()

is the oth element), cdrn (n, z) to cdr the list z n times, and listn (n, z) to make
a list of n repetitions of the object z. We omit the definitions of these simple
functions.

We will use lists of Booleans (bit vectors) to represent streams of signals or
“timing diagrams.” For example,

— —

| | | | |
-— W >

1cycle

will be represented by list (¢, f, £, £, ¢, t) together with the fact that the
length of a cycle is w. An alternative way of writing the same list is cons (t,

app (listn (3, £), listn (2, t))).

3. The Model of Asynchrony

Consider two independently clocked processors, which we call the “writer” and
the “reader.” The output pin of the former is connected by a wire to the input
pin of the latter and this constitutes the only communication between them.
Imagine that on successive cycles the writer is specified to set its output pin
to the successive signals in some bit vector called the “writer’s view.” We wish
to define a function, async, which will map the writer’s view into the sequence
actually read by the reader, which we call the “reader’s view.”

More precisely, we map the writer’s view into any one of the possible reader’s
views, since there is an element of nondeterminancy here. One parameter of the
model, called the “oracle,” specifies how each nondeterministic choice is to be

4 In the Ngthm logic, z=~nil actually means ¢ is not a listp object. Any such “atom” may be
used to end a list, but nil is the most common.



8 J Strother Moore

writer'sview: | t t f f f o t t t
1
passl( [
— =
pass2 ts‘+ w ! | | [ | | \ \
e 7 | { | | | | |
—_—
tr
pa$3<
| [ [ [
one possible
reader’ s view: t ottt t

Fig. 4. The Three Passes in the Model

made on a given application of the model; by varying this parameter one can
obtain all possible views by the reader.
Our model is based on three assumptions.

e The distortion in the signal due to the presence of an edge is limited to the
time-span of the cycle during which the edge was written. For example, we
ignore intersymbol interference[Rod88].

e The clocks of both processors are linear functions of real time, e.g., the ticks
of a given clock are equally spaced events in real time. We ignore clock jitter.

e Reading on an edge produces nondeterministically defined signal values, not
indeterminate values.

Our model of asynchronous communication has three passes, one implement-
ing each of the assumptions above. In Figure 4 we illustrate the passes. In pass 1,
we 1dentify those cycles in which the signal is undetermined due to the non-zero
switching times on the writer. This is indicated in the graph in Figure 4 by the
multivalued ramps on two of the write cycles. Pass 2 combines the pass 1 output
with certain timing information (the cycle times, w and r, of the two processors
and (roughly) their phase displacement, tr — ts) to produce the signal on the pin
during each read cycle (up to nondeterminacy). Pass 2 is the key to the model
and operates by reconciling all the signals on the pin during each read cycle.
Pass 2 generally smears the nondeterminacy over any read cycles which overlap
with it. Pass 2 may lengthen or shorten the signal stream. Pass 3 eliminates the
nondeterminacy by using the oracle to choose arbitrary values for undetermined
signals.

It should be noted that our model puts no constraints on the relationship
between the writer’s cycle time and the reader’s. That is, one can apply this
model to communication between two processors whose clocks run at wildly
different rates. For example, if the reader runs ten times as fast as the writer,
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it will see roughly ten times more signals. The model is somewhat pathological
if either processor runs infinitely fast (i.e., has a cycle time of 0). We do not
constrain the relationship between the clocks until we begin to apply the model
to prove that a certain protocol works.

We now back up and give a more detailed physical and formal explanation.

3.1. Pass 1

Consider the writer. On every cycle the writer sets the output pin to some value.
If that value is the same as the previous value of the pin, then the signal on
the pin remains stable at that value for the entire cycle. On the other hand, if
the new value is different, then we assume the value on the pin is undetermined
for the duration of that cycle. This accounts for our lack of knowledge about
exactly when during the cycle the voltage on the pin begins to change, how the
voltage varies, and how long it takes it to become stable. Pass 1 in the model thus
introduces “multivalued ramps” for the duration of every cycle during which the
signal changes. The ramps in our diagrams are formally represented by the object
’q. A ’q at a given cycle in the stream signifies that the voltage on the line is
indeterminate during that cycle. It is misleading to think of ’>q either as a signal
that can be recognized by the receiver or as a wildcard that nondeterministically
denotes a t or £. It is an artifact of the model signifying “here the signal is
unknown.” The model can recognize the presence of indeterminacy and even
propagate it. Ultimately, the model replaces ’q’s nondeterministically by the
Booleans sensed by the receiver. There is no need to distinguish “downward”
ramps from “upward” ones since they both mean the signal is indeterminate for
the entire cycle.

The function formalizing pass 1 is called smooth and it takes the previous
signal seen, z, and a sequence of signals, Ist.

DEFINITION: smooth
smooth (z, Ist)
if Ist ~ nil

then nil
elseif b-xor (z, car (Ist))

then cons (’q,

smooth (car (Ist), cdr (Ist)))
else cons (car (Ist),
smooth (car (Ist), cdr (Ist)))

endif

Observe that smooth copies Ist, changing to ’q any signal that is different from
the previous one, z. In Figure 4, pass 1 is computed by smooth (¢, list (¢, t, f, f|
f, t, t, t)), which replaces the underscored signals by ’gs.

3.2. Pass 2

Now, let Ist be the output of pass 1. In pass 2 we simulate the arrival of these
signals at the input pin of the reader, consider the reader’s cycles, and compute
the signals read (up to nondeterminacy). Suppose the first signal, car (Ist), arrives
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at the input pin at time ¢s.5 All successive signals arrive at intervals of w, where
w 1s the cycle time of the writer. Let #r be the time at which the reader’s clock
first ticks at or after ¢s. Without loss of generality we assume {s < tr < ts+w
because if tr > ts+w then the first signal of Ist is simply irrelevant since it does
not persist into the reader’s first cycle. Finally, suppose the reader’s cycle time
is 7. Given these parameters we can compute the entire list of signals read (up
to nondeterminancy). We call the function formalizing pass 2 warp and define it
below.

DEFINITION: warp
warp (Ist, ts, tr, w, r)

if (r ~0)
V
endp (Ist, ts, tr + r, w)
then nil
else cons (sig (Ist, ts, tr + r, w),
warp (Ist’ (Ist, ts, tr + r, w),
ts’ (Ist, ts, tr + 7, w),
ir 4+ r,

r))
endif

Observe that {r+r is the time at which the reader’s clock next ticks. The
definition may be read as follows: If 7 is zero® or else if 1st does not have
enough elements in it to determine the next signal read, return the empty list
nil. The second condition is checked by endp which we discuss below. If r is
nonzero and there are enough elements in Ist to determine the next signal read,
we use sig (described below) to compute the signal read during the current cycle,
we use warp recursively to obtain the list of signals read on successive cycles and
then we cons together the two results to produce the list of all the signals read.

We explain further by referring to Figure 5. Configuration A of the figure
depicts the formal parameters of warp upon entry to warp (Ist, ts, tr, w, r).
Note that Ist contains six signals, sg, ..., s5 and that sj arrives at time s and
persists for time w. The first tick of the reader’s clock 1s at time #r and starts a
cycle that persists for time r. By observing the diagram in Configuration A we
see that the signals s, sy and sp impinge upon the pin during this read cycle.
If they are all equal, say, to s, then sy will be the signal read on this cycle. But
if any two are different, the signal read is nondeterministic (i.e., *q). This is the
computation made by sig (Ist, ts, tr + r, w).

Configuration B of Figure 5 shows the parameters passed to the recursive
call of warp from Configuration A. The call in question is

warp (Ist’ (Ist, ts, tr + r, w),
ts’ (Ist, ts, tr + 7, w),

5 More precisely, consider that tick of the writer's clock that began the write cycle during
which the first signal was written. Let w be the time at which that tick occurred. Let § be the
delay along the wire connecting the writer to the reader. Then ts is w 4+ §. We assume § is
constant.

6 Actually, 7 ~ 0 here is t if and only if r is either not a natural number or is 0. Omitting this
test produces an inadmissible definition because the recursion described does not terminate.
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Configuration A

Ist: s S S S s s

ts

Configuration B

Ist’: - S, S S

The easiest argument term to understand is ¢r—+r, passed as the new value
of tr. That 1s the time of the next tick of the reader’s clock and is shown as ¢r’
in Configuration B. The faint dotted line is meant to indicate that {r” is {r+r
from Configuration A. Lst’ is the new value of Ist. Note that (in this case) the
first two signals have been removed from [lst. That is because they were used in
the sig computation for the current cycle and do not affect the sig computation
at the next cycle. Note that s, which was used by the sig computation, is still
in [st’ because it persists into the next cycle. Lst’, which is always some cdr of
lst, 1s computed by the function Ist’ in the recursive call of warp. The time at
which the new first signal arrives, ¢s’; is computed by the function ts’.

The four functions endp, sig, Ist’, and ts’ are all very similar in that they
scan [st, knowing that the first signal arrives at time s and that subsequent
ones arrive at intervals of w, and look for the first signal that persists into the
next cycle, 1.e., the one that starts at {r+r. The function endp returns t if /st
is exhausted before the desired signal is reached. Sig reconciles all the signals
it reaches, using the auxiliary function reconcile-signals. Lst’ returns the cdr of
lst starting with the desired signal. Ts’ returns the arrival time of the desired
signal. The definitions are shown below.

DEFINITION: endp
endp (Ist, ts, tr, w)

if [st ~ nil
then t
elseif (is + w) < tr
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then endp (cdr (Ist), ts + w, tr, w)

else f
endif

DEFINITION: reconcile-signals
reconcile-signals (a, b)
ifa=1%

then a
else 'q
endif

DEFINITION: stg
sig (Ist, s, tr, w)
if Ist ~ nil
then ’q
elseif (is + w) < tr
then reconcile-signals (car (Ist),

sig (cdr (Ist), ts + w, tr, w))

else car (Ist)
endif

DEFINITION: Ist’.

Ist’ (Ist, ts, natr, w)

if [st ~ nil
then Ist

elseif natr < (ts + w)
then Ist

else lst’ (cdr (Ist), ts + w, nztr, w)

endif

DEFINITION: ts’

ts’ (Ist, s, natr, w)

if [st ~ nil
then s

elseif natr < (ts + w)
then s

else ts’ (cdr (Ist), ts + w, natr, w)

endif

J Strother Moore

The arithmetic primitives used in warp treat their arguments as natural num-

bers. That is, ts, tr, w, and r in this model are nonnegative integers. Since time
appears continuous, the reals or the rationals seem more appealing domains for
these parameters. However, the Nqthm logic does not support the reals. The
rationals have been defined within the logic and they were used when the model
was first being formalized. However, the proof we will describe is primarily con-
cerned with counting cycles. We found that the proof was complicated by the
mix of (formal) natural arithmetic and (formal) rational arithmetic. We decided
to simplify matters by adopting natural arithmetic entirely. It should be stressed
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that this is primarily a technical problem with the Ngthm mechanization and its
heuristics.

Inspection of the model will reveal that our use of natural arithmetic does not
limit the applicability of the model. In particular, if ¢s, ¢r, w, and r are given
as rational numbers, one could convert them to four naturals over a common
denominator and then do all the arithmetic on the numerators only, using natural
arithmetic. This observation relies on the fact that the model only iteratively
sums and compares these quantities. But & + % = adib where the first “+7 1s
that for rational arithmetic and the second is that for natural arithmetic. A
similar theorem holds for the “less than” relationships in the two systems.

An illustration of warp was presented in pass 2 of Figure 4. In that example,
the input list was the output of pass 1, list (t, t, ’q, f, f, ’q, t, t), ts was 0, tr
was 75, w was 100, and r was 87. The output of warp was list (t, ’q, ’q, f, ’q,
’q, ’q, t). We used grossly mismatched w and r merely so that it was easy to
see that read cycle 5 (counting from 0) fell entirely within write cycle 5. Exactly
identical signal output can be obtained with more realistically matched clocks.

For example, let us measure time in tenths of picoseconds, e.g., units of 10-13
seconds. If the writer has a perfect 20MHz clock then w is 500,000. Suppose
the reader is nominally 20MHz but ticks faster so that in twenty million ticks
it counts off .999996 seconds. That is, r is 499,998 and the clock is gaining

roughly 4 x 1076 seconds per second, which is consistent with the clocks reported
in[RvH89]. Then if the first signal in the output of pass 1 reaches the reader

11x10°13 seconds before the reader’s clock ticks, the output is as described in
pass 2 of Figure 4. T.e., warp (list (¢, t, ’q, f, £, ’q, t, t), 0, 11, 500000, 499998)
is list (t, °q, *q, f, °q, ’q, ’q, t).

3.3. Pass 3

It is the job of pass 3 to eliminate the nondeterministic signals using the oracle.
The function formalizing this pass is called det (for “determine”).

DEFINITION: det
det (Ist, oracle)

if Ist ~ nil
then Ist
elseif car (Ist) = ’q
then cons (if car (oracle)
then t
else f
endif,
det (cdr (Ist), cdr (oracle)))
else cons (car (Ist),
det (cdr (Ist), oracle))
endif

The oracle parameter to our model 1s just an arbitrary list. The successive
elements of the oracle are matched with the successive ’gs in the list of signals
to be processed, Ist. Each oracle element specifies whether the corresponding ’q
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Fig. 6. Our Modified Biphase Mark Protocol

should be replaced by t or by .7 Det merely copies the list of signals, replacing
each ’q as directed by the oracle.

3.4. Combining the Passes

Finally, to define async we compose the three passes.

DEFINITION: async
asyne (Ist, ts, tr, w, r, oracle)

det (warp (smooth (t, Ist), ts, tr, w, r),
oracle)

Observe that we smooth the writer’s view using t as the initial signal on the pin.
This is an arbitrary choice.

4. The Biphase Mark Protocol

One use of a formal model of asynchrony 1s to investigate the circumstances
under which communication protocols work properly. We illustrate such a use
of our model by considering a biphase mark protocol. Recall Figure 3 where the
protocol is informally described.

We will use an unbalanced configuration in which the mark subcell is just
long enough to guarantee that it will be detected and the code subcell is just
long enough to guarantee that the sweet spot is always sampled. See Figure 6.

In order to state a theorem about the protocol we must formalize i1t. In
our formalization, the sizes of the two subcells and the sampling distance are
parameters that are not fixed until we state the correctness theorem.

7 The axioms of the Nqthm logic define car and cdr to be non-f constants on non-listps. The
effect here is that if oracle is too short it is implicitly extended with as many ts as required.
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4.1. Sending

We will formalize the send side of the protocol by defining a function that maps
from messages to signal streams, both of which are formally represented by bit
vectors.

The fundamental notion in the protocol is that of the “cell.” Each cell is a list
of n+k signals. Each cell encodes one bit, b, of the message, but the encoding
depends upon the signal, z, output immediately before the cell. Let csig be z if
b is t and b-not (z) otherwise. Then a cell is defined as the concatenation of a
“mark” subcell containing n repetitions of b-not (z), followed by a “code” subcell
containing k repetitions of csig.

DEFINITION: cell
cell (z, n, k, bit)

ap; (listn (n, b-not (z)),
listn (k, csig(z, bit)))

where

DEFINITION: cstg
esig (z, b)
if b

then z
else b-not ()
endif

Observe that the last signal in the cell is csig (z, b).

To encode a bit vector, msg, with cell size n+£, assuming that the previously
output signal is z we merely concatenate successive cells, being careful to pass
the correct value for the “previous signal.”

DEFINITION: cells
cells (z, n, k, msg)

if msg ~ nil
then nil

else app (cell (z, n, k, car (msg)),

cells (csig (z, car (msg)),

n

k,
cdr (msg)))

bl

endif

We adopt the convention that the sender holds the line high before and after
the message is sent. Thus, on either side of the encoded cells we include “pads”
of t, of arbitrary lengths p! and p2. The formal definition of send is

DEFINITION: send
send (msyg, pI, n, k, p2)

app (listn (p1, t),
app (cells (t, n, k, msg), listn (p2, t)))
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send(list(t ,f,t ,t),3,1,2,5)
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Fig. 7. Sending list (t, f, t, t) with Cells of Size 142

To send the message list (¢, f, t, t) with cells of size 142, padding the message
at the front with three ts and at the back with five ts, we use send (list (¢, £, t,
t), 3, 1, 2, 5). Tts value is shown in Figure 7.

4.2. Receiving

The receive side of the protocol will be formalized as a function from signal
streams to messages. We need two auxiliary functions.

Scan takes a signal, z, and a list of signals, lst, and scans Ist until it finds
the first signal different from z. If [st happens to begin with a string of zs, scan
finds the first edge.

DEFINITION: scan
scan (z, Ist)

if Ist ~ nil
then nil

elseif b-xor (z, car (Ist))
then Ist

else scan (z, cdr (Ist))

endif

For example, scan (¢, list (¢, t, t, £, f, £, t)) is list (f, £, f, t).

Recv-bit is the function that recovers the bit encoded in a cell. Tt takes two
arguments. The first is the 0-based sampling distance, j, at which it 1s supposed
to sample (e.g., if the cell length is 5413, then j is 10). The second argument is
the list of signals, starting with the first signal in the mark subcell of the cell.

DEFINITION: recv-bit
recv-bit (k, Ist)

if b-xor (car (Ist), nth (£, Ist))
then t
else f

endif

The bit received is t if the first signal of the mark is different from the signal
sampled in the code subcell; otherwise, the bit received is f.

We can use scan and recv-bit to define the receive protocol. In our formaliza-
tion, the receiver must know how many bits, ¢, to recover. In an actual application
this might be a constant or it might have been transmitted earlier in a message
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Fig. 8. The Composition of send, async and recv

of constant length. The list of signals on which recv operates should be thought
of as starting with the signal, z, sampled in the code subcell of previous cell. If
¢ 1s 0, the empty message is recovered. Otherwise, recv scans to the next edge
(i.e., it scans past the initial zs to get past the code subcell of the previous cell
and to the mark of the next cell). Recv then uses recv-bit to recover the bit in
that cell and conses it to the result of recursively recovering ¢ — 1 more bits.

DEFINITION: recv
recv (i, z, k, Ist)
if : ~0
then nil
else cons (recv-bit (k, scan (z, Ist)),
recv (i — 1,
nth (k, scan (z, Ist)),
k,
cdrn (k, scan (z, Ist))))
endif

Observe that in its recursive call, the new list of signals is the tail of [st that
begins with the signal sampled by recv-bit. The new z is that signal.

To illustrate recv, let Ist be the list produced by the send expression in Figure
7. Then recv (4, t, 2, Ist) is the original message, list (t, f, t, t).

The phase locking is essentially implemented by scan. Observe that in all uses
of Ist, recv uses scan to find the first edge. Thus, no matter how many trailing
signals there are in a cell (due to the different rates at which the two processors
count), recv phase locks onto the beginning of the new cell. The clock rates are
crucially important only from the time the cell is detected to the time the code
subcell is sampled.

5. The Theorem

Do send and recv cope with the problems introduced by asynchrony? We can
address this question formally now.

The diagram in Figure 8 suggests something we would like to prove about
send, async, and recv: their composition is an identity. Of course, this is true
only under certain assumptions, which we must make explicit. The composition
we will study is
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recv (len (msg),
t,
10,
async (send (msg, pl, 5, 13, p2), ts, tr, w, r, oracle))
We discuss this term from the inside out, making our assumptions clear.

e send (msg, pl, 5, 13, p2): We send some message msyg in cells of size 5+13
with a leading pad of p! ts and a trailing pad of p2 ts. We will require that
msg be a bit vector but it can have arbitrary length. P! and p2 are arbitrary
(though, for technical reasons, we will require that the first one, at least, is a
natural number).

e async (send (...), s, tr, w, r, oracle): The signal stream generated by send
is fed, in turn, to our model of asynchrony, which has the four clock parame-
ters and the oracle as additional arguments. The model itself imposes certain
constraints on the clock parameters: all are nonnegative integers and ts < #r <
ts+w. Those conditions put no limitation on the applicability of our result; it
would still address arbitrarily clocked processors, arbitrary delay between them,
and arbitrary phase displacement. However, some restrictions must be imposed
to make the composition an identity. First, we must assume that the cycle times,
w and r, are nonzero in order to avoid obvious pathological failures. Second,
we must assume that the cycle times are “in close proximity,” which we will
make precise by defining rate-proximity (w, r). The condition we wish to im-
pose is 17/18 < w/r < 19/18. But since we have limited ourselves to natural
arithmetic, we define rate-proximity equivalently via

DEFINITION: rate-prorimity
rate-proximity (w, r)

(((18A* w) £ (17 % 7))
(19 % r) £ (18 * w)))

We put no restrictions on oracle, thus addressing ourselves to all possible non-
deterministic behaviors.

e recv (len (msg), t, 10, async (...)): Finally, the output of our model is fed
to the receiver. We impose no additional restrictions due to this term. But note
that the first three arguments to recv limit the applicability of the theorem to
cases in which we are trying to recover the correct number of bits of message,
the line 1s initially high, and each cell is sampled 10 cycles after mark detection.

The theorem we prove is

THEOREM: BPM18
((bvp (msg)
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A
(tr < (1s + w))
A
rate-proximity (w, r)
A
(01 €w))
—
(recv (len (msyg),
t,
10,
async (send (msg, pl, 5, 13, p2), ts, tr, w, r, oracle))

msg))

“BPM18” stands for “Biphase Mark, 18-cycles/bit.” The theorem would ap-
pear simpler had we built in the constants 10, 5 and 13 as well as the pad lengths,
pl and p2, and the initial line value, t. We stated the theorem this way so it
was convenient to experiment with different values.

The definition of rate-proximity forces w/r to be within 1/18 of unity. For
what it is worth, 1/18 is 0.05, or somewhat more than 5%.

6. Formal Experiments

Before attempting to prove anything about send and recv we simply execute them
to illustrate how they cope with async. Suppose we want to send the message
list (¢, £, t, t), using our 5413 cycle protocol. To be concrete, we will precede
the transmission with seven high cycles and follow it with eleven high cycles.
The appropriate send expression is send (list (t, f, t, t), 7, 5, 13, 11). A total
of 90 write cycles are modeled in the output of this expression. The output is
displayed graphically in Figure 9.

Now suppose the writer has a cycle time of 100, suppose the reader has a cycle
time of 96, and suppose the first signal in the output arrives at the reader 30 time
units before the reader’s clock next ticks. Figure 9 shows (one of) the received
waveforms. The oracle argument to async determines which of the waveforms
is actually received. Recv must be able to cope with all of them. Observe that
in this example, a total of 93 read cycles are modeled. The cells parsed by recv
consume varying numbers of cycles. This variance is in part due to the slightly
faster cycle time of the reader and in part to the nondeterministic choices on
where the edges are located.

Recv correctly recovers the message list (¢, f, t, t) in this example.

7. Proofs

BPM18 can be proved by transforming it into a slightly different form and then
appealing to a more general theorem which is proved by induction.
Our proof strategy is roughly as follows.

e We derive the shape of the send waveform after it has been processed by
the first two passes of async, that 1s, we produce the ramped version of the
received waveform. To do this we develop a body of lemmas about async and
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Fig. 9. An Experiment with send, async, and recv

its subfunctions. We call this the “reusable theory” of async because it is
independent of our particular application.

We establish bounds on the lengths of each of the regions in the ramped
waveform. This i1s basically a continuation of the reusable theory.

We move into recv and show that scanning across a ramp nondeterministically
defines a point in a region whose length is one larger than the ramp.

Finally, this point is translated down the ramped waveform a fixed distance
by cdrn, where it becomes the sampling point, and is shown to fall in the
“sweet spot”—that portion of the code subcell unaffected by ramps. This
final step requires proving two key inequalities that establish that the sweet
spot entirely contains the nondeterministically defined sampling point. These
inequalities are proved by appealing to the bounds on the lengths of the
various regions.

Because the message is of arbitrary length, all four of these steps are wrapped

in an induction on the length of the message and are applied in turn to that
portion of the wave generated in response to a single bit of the message.

7.1. The Reusable Theory

While some steps in the proof are concerned with the peculiar properties of send
and recv, most of the work is in establishing general properties of async and its
interaction with the waveform primitives, app and listn.

In what sense are app and listn the “waveform primitives?” Informally, ideal

signals are square waves; in our formalism, these square waves are generated
by combinations of listn and app expressions—we use listns to generate either
“high” or “low” horizontal lines and then use apps to stick them together to form
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the vertical edges. As the signals get smoothed and warped in our model, the
square corners become multivalued ramps; these ramps are formally generated
by more listn expressions, only this time the signal repeated is ’q. Thus, from
the formal or algebraic point of view, the signal generators are app and listn.
Because timing is crucial, we are also interested in the length, i.e., len, of such
waveforms.

Given some input waveform, described formally, we would like to have enough
symbolic machinery to allow us to derive the waveform produced by async. We
would like both the input and the output waveforms to be described in terms of
app and listn. Therefore, we seek a collection of theorems about app, listn, len and
the three passes of async. Most of the theorems express distributivity laws, e.g.,
how to express the smooth of an app as the app of two smooths. These theorems
are independent of the particular signals generated by the biphase mark protocol.
They are a first step toward what we call a “reusable formal theory” or “rule
book” for async. They are only the first step because we stopped when we had
enough rules to prove biphase mark correct. See [Moo92a] for the presentation
of the reusable theory.

7.2. A Sketch of the Proof of BPM18

THEOREM: BPM18
((bvp (msg)
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(recv (len (msyg),
t,
10,
async (send (msg, pl, 5, 13, p2), ts, tr, w, r, oracle))

msg))

We do not give the proof of BPM18 but merely sketch it to illustrate how
the model is manipulated in the reusable theory. Complete details are given in
[Moo92a].

We transform the left-hand side of the conclusion above into a slightly dif-
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ferent form and then appeal to a lemma (discussed below). First, observe that
the theorem is trivial if msg is empty: len (msg) is 0 and hence recv returns nil,

which is equal to msg. Thus, we may assume msg is a listp. Now consider the
left-hand side above

recv (len (msg),
t,
10,
async (send (msg, pl, 5, 13, p2), ts, tr, w, r, oracle))
By expanding the definitions of send and async we get

recv (len (msg),
10,
det (warp (smooth (t,

app (listn (p1, t),

app (cells (t, b, 13, msg), listn (p2, t)))),
is,

ir,

),

oracle)).

Consider the second app term. We know its first argument is a listp whose car
is f (because cells is passed the flag t and a non-nil msg). So we can expand app
to get
recv (len (msg),

t,

10,

det (warp (smooth (t,

app (listn (p1, t),
cons (f,
app (cdr (cells (t, 5, 13, msg)),
listn (p2, t))))),

oracle)).

Using the reusable theory, we distribute the smooth, warp, and det down the
waveform to obtain:

recv (len (msg),

t,

10,

app (listn (n* (p1, ts, tr, w, ), t),

app (det (listn (nq (p1, ts, tr, w, r), ’q),
oracle),
det (warp (cdrn (dw (p1, ts, tr, w, r),
smooth (f,
app (cdr (cells (t, 5, 13, msg)),
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listn (p2, t)))),
ts(pl, ts, tr, w, r),
tr(pl, ts, tr, w, r),
w
),
oracle* (listn (nq (p?, ts, tr, w, r), ’q),

oracle))))).

Observe that the reusable theory introduces some new function symbols,
e.g., n* nq, and dw. These functions define the lengths of various portions of
the transformed waveform. For example, the list of pI ts output by send 1is
transformed into a region of n* (p1, ts, tr, w, r) ts by our model. The reusable
theory tells us the length of this received region, expressed algebraically in terms
of p1 and the clock parameters.

Consider the first listn term above. It denotes a string of ts in the maw of
a receiver scanning past t. So the above is equal to the result of removing that
listn,

bl

recv (len (msg),

t,
10,
app (det (listn (nq (p1, ts, tr, w, r), ’q),
oracle),
det (warp (cdrn (dw (p1, ts, tr, w, r),

smooth (f,
app (cdr (cells (¢, 5, 13, msg)),
listn (p2, t)))),
ts(pl, ts, tr, w, r),
tr(pl, ts, tr, w, r),
w
),
oracle® (listn (nq (p?, ts, tr, w, r), ’q),

oracle)))).

Inspection will show that the recv expression above is an instance of the more
general one in our key BPM18-Lemma below. That lemma establishes that the
recv returns msg. Q.E.D.

The above manipulations are typical of those used in our proof. However,
the proof was actually constructed with the assistance of a mechanical theorem
prover. The user’s role was “merely” to state the lemmas that drive the simpli-
fication above. The system proved the lemmas and then used them to carry out
the manipulations. Put another way, the user’s role was the extremely creative
one of formalizing the reusable theory of async in such a way that it could be
used to drive Nqthm to this proof. The system’s role was the tedious application
of this body of rules.

The form of our general lemma may be obtained by replacing certain terms
above by variables. The t in the second argument of recv and the f in the first
argument of smooth are replaced by arbitrary Boolean flags of opposite parity.
The nq, dw, ts and tr terms are replaced by variables, constraining the nq re-
placement to be between 1 and 3, the dw replacement to be 0 or 1, and the ts and
tr replacements to be clock-params. Finally, the oracle* expression is replaced
by an arbitrary second oracle. The general lemma is shown below.

bl
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THEOREM: BPM18-Lemma
((bvp (msg)

boolp (fig1)
A

boolp (fig2)
A
b-xor (flg1, flg2))
—
(recv (len (msyg),
gl
10,
app (det (listn (ng, ’q),
oraclel),
det (warp (cdrn (dw,
smooth (flg2,
app (cdr (cells (flg!, 5, 13, msg)),
listn (p2, t)))),
is,
ir,
w’
),
oracle?)))

msg))

BPM18-Lemma describes the receiver in its general configuration rather than
in its 1nitial configuration. Two points bear noting. First, the unusual initial pad
is gone: the receiver is processing a warped sequence of cells and is standing
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fig1 rest

\ b-not (flg1) /
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Fig. 10. Waveform if flg1 is “High”

immediately in front of a blurred edge spread over ng cycles. Second, the receiver
is scanning for an arbitrary edge as specified by flgl rather than just a falling one
as required in the top-level application. This is particularly important because
we will need to use our inductive hypothesis to process cells of parity opposite
that of the first cell ®

The proof of BPM18-Lemma is by induction on the length of msg. See
[Moo092a] for the details.

We separate two base cases, one for the empty msg and one for msgs of
length 1. Thus, in the induction case the message is of length 2 or more and we
therefore know the first cell 1s followed by another cell and, hence, by an edge.
(The last cell is not necessarily followed by an edge.) That trailing edge in the
induction conclusion will become the leading edge in the induction hypothesis.

There are two crucial points in the proof. (1) Does the receiver recover the
bit in the first cell correctly? And (2), when it scans past the remains of that
first cell, is the receiver back in the general situation described by our lemma,
i.e., can we use our induction hypothesis? The answers to both questions hinge
on certain arithmetic inequalities that tell us that the receiver is in the sweet
spot of the waveform 10 cycles after detecting the mark.

The reusable theory can be used to derive the general shape of the wave
reaching the receiver. If the first bit of the message 1s t and flg! is depicted as
“high” then the waveform has the shape shown in Figure 10.

The reusable theory also informs us as to upper and lower bounds on the
lengths of each region of the received waveform. The bounds are shown in Figure
11. The constraints on the relative rates of the two clocks determine these bounds.
It should be noted that the bounds are all independently derived, i.e., it is not
the case that all four quantities can simultaneously attain their extreme values,
though we do not use this unproved observation. We return to this point later.

The crucial step in proving BPM18-Lemma is showing that the sampling
point (which is 10 reader cycles after the detection of the mark) is in the “sweet
spot.” This comes down to the following inequalities:

8 We do not have time to expound upon the subtleties of the BPM18-Lemma formula, but the
most creative part of the proof was finding a statement of this lemma that could be proved by
induction—a statement with the property that an inductive instance could be used to prove
the inductive conclusion. The difficulty here was not due to the limitations of the mechanical
theorem prover we used but rather to the mathematical complexity of the situation. The trick
was to find a general description of the input waveform at the receiver so that if that waveform
is lengthened by one appropriately transformed cell and then the receiver processes the leading
cell, the remaining signal stream to be processed is again in the general form specified.
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1 <ngl <3
1<s1<4
1 <ng2<3
9<s2<12

Fig. 11. Bounds on the Lengths of Waveform Regions

no+si+ng2 < 10 < no+sl+nqg2+s2,

where 0<no<3 is the number of cycles in the first ramp of the wave after the
first cycle at which the nondeterministic read is low. By considering the known
bounds on each of the terms (Figure 11), we see that 10<10<11, and thus the
sampling point is within the sweet spot.

The proof sketched here is essentially that checked by Nqthm. The complete
transcript of the session in which Nqthm is led from its GROUND-ZERO theory
to BPM18 is available on request from the author. The transcript contains 53
definitions and 208 theorems stated by the user so as to lead Ngthm to the proof.
Roughly half of those theorems are elementary properties of natural number
arithmetic and list processing functions such as app and len. The total time
required by Nqgthm to process all of the definitions and theorems is about twelve
minutes on a Sun Microsystems SparcStation 2 GX-Plus, running Nqgthm in
AKCL. However, about a man-month was spent developing the reusable theory.

8. Other Configurations of Biphase Mark

Most of the proof above concerned straightforward applications of our theory of
async to the biphase mark output. The crucial step was the derivation of the
inequalities

no+si+ng2 < 10 < no+sl+nqg2+s2

in base case 1. It should be clear that the numbers 5, 13, and 10 for the subcell
sizes and sampling distance were chosen precisely to satisfy these two inequal-
ities while reducing the cell size and the sampling distance. If we implemented
send and recv with microprocessors nominally clocked at 20MHz each, then at
18 cycles per bit, the protocol would permit messages to be communicated at
the burst rate of 1.1M bps. But note that we achieved 18 cycles per bit by an
asymmetric division of the bit cell; our mark subcell is only 5 cycles long and
hence our protocol demands a higher frequency response from the wire than is
evident from the fact that our cell size is 18. By reducing the sampling distance
we increase the protocol’s tolerance for clock rate disparity.

An analogous proof can be constructed for other values of these parameters,
provided the basic inequalities hold. In particular, if cell size 32 is chosen, with
mark and code subcells of equal length and sampling distance 23, and we modify
rate-proximity to give us 31/32 < w/r < 33/32, the analogous inequalities are
341543 < 23 < 0+12+1+12. Because these inequalities hold, we see that the 32-
cycle symmetric biphase mark protocol always recovers the bit correctly, provided
the ratio of the clock rates are within 1/32 (or 3.125%) of unity. From this remark
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it should be clear that we could undertake the proof of a more general theorem
in which variables replace the particular subcell sizes and sampling distance and
the clocks are constrained in relation to those variables. We have not undertaken
the proof of that more general theorem because our main interest here was
demonstrating that one particular version of the protocol works.

An interesting configuration to consider is cell size 16, split symmetrically into
mark and code subcells, with sampling distance 11. The analogous inequalities
are 3+74+3 < 12 < 0444144, which are invalid. That is, the proof breaks down
for the 16-cycle symmetric biphase mark protocol. This is not to say that the
16-cycle version does not work! Such a configuration is used in the Intel 82530
Serial Communications Controller[Int91] (where it presumably works) and we
have found no example of reasonably close clock rates for which it fails in our
model. But we cannot prove that it works using the attack shown here. Our
attack bounds a sum by summing the bounds, which gives sound but crude
results. The 16-cycle version, if indeed it works under our model, will require a
more careful analysis of the bounds. It is also possible that the 16-cycle version
1s not correct under our model but that it works in practice. If this is the case,
it 1t just illustrates the conservative nature of our model.

While the theorem establishes that the 18-cycle protocol works provided the
clocks are within about 5%, experiments with the formal model suggest that the
clock rate restriction can be considerably relaxed. We conjecture the 18-cycle
protocol works for clock rate ratios that vary almost 30% from unity. Experiments
show that the first place that the protocol fails to recover the first bit as the
receiver’s clock slows down in steps of 1 from the writer’s clock of 100 is when
the receiver’s clock is 143. In particular,

recv (4,

t,

10,

async (send (list (t, £, t, ), 10, 5, 13, 10),
0,
84,
100,
143,

list (¢, ¢, £, )))

is list (f, ¢, ¢, t).

Thus, we believe the theorem we have proved about the 18-cycle protocol
is very weak compared to what is true in the model. The culprit is our casual
treatment of the bounds.

Our primary interest in this paper is not establishing the performance bounds
of biphase mark. It is in explicating our model, demonstrating that it can be used
to derive performance bound, and appealing to the engineering community to
criticize its accuracy. Only after the model has survived the initial scrutiny of
the engineering community do we feel it worthwhile to use it in a detailed formal
study of communications.
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9. Concluding Remarks on our Model

We have formalized a model of asynchrony that permits quantitative formal anal-
ysis of performance. We have taken a step toward developing a body of theorems
about the model to permit its economical application to diverse problems.

We used the model to show that two different versions of the biphase mark
procotol “work.” In the first protocol we send each bit in a cell lasting 18 cycles,
the first 5 of which constitute the marking edge of the cell. We prove that the
protocol permits the correct transmission of messages of arbitrary length pro-
vided the ratio of the clock rates of the two processors is within about 5% (1/18)
of unity. The 18-cycle protocol gives a burst bit rate of about 1.1M bps if the
processors have 20MHz clocks—though pin limitations on the actual implemen-
tation of the communication modules would require quantizing long messages
and would degrade sustained performance. Furthermore, our 18-cycle protocol
demands higher frequency response of the wire than is evident because the mark
subcell is only 5 cycles long. We offer the 18-cycle protocol primarily as a catalyst
for thought: The model says it will work. Will it?

We also used the model to show that the conventional 32-cycle biphase
mark protocol allows correct transmission provided the clock rate ratio is within
3.125% of unity.

All of the proofs described here were checked with Nqthm. Inevitably, the
reader of this paper will wonder if there are mistakes in our presentation of the
proof. Indeed, so does the author. Does each formula follow from the previous
one? While these doubts inevitably arise in the context of a proof presented on
paper, they do not arise during the machine-assisted act of creating the proof
in the first place. Furthermore, the user of Nqthm is concerned primarily with
inventing the lemmas that enable the rewrite steps and not with the construction
or even the derivation of the terms that thereby arise. One of the main advan-
tages to having a formal model in a mechanized logic 1s that it 1s possible to
have machine assistance while exploring the ramifications of various decisions. It
should be noted that it was not necessary to invent a specialized logic to reason
effectively; indeed, facility in arithmetic is paramount here.

Returning to our model per se, it is presented as a recursively defined function
on waveforms. To use it to investigate the communication from one processor to
another it is (only) necessary to formalize the input/output behavior of the two
processors. The implementation details of each processor are not relevant.

Recall that our model does not specify when during a cycle the voltage on the
pin is changed or sensed. This contributes to the pessimism of our models, since,
for example, a read cycle that starts before an edge arrives can be “contaminated”
by the edge because the model allows the possibility that the pin is sensed late in
the cycle. The model further allows the pin to be read late in one cycle and early
in another. The good effect of this permissivity is that to apply the model we do
not have to delve into exactly what logic is used to sense the pin. Indeed, any two
designs that implement the same function on the signal stream are equivalent.

Furthermore, each processor may be specified independently of the other.

Because of this decomposition, it is possible to verify an implementation
of each processor independently of the other and of the model of asynchrony.
Consider send. It is the formal specification of the kernel of the send side of a
microprocessor’s communications module. Indeed, its definition was developed
with that use in mind. See[Mo092b]. Using the Formal HDL described in[BH90],
1t 18 possible to design a circuit that implementssend. The formal semantics of the
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HDL is cast as an Nqthm interpreter (or simulator) that determines the signals
on all the pins and the state produced by a described design, given the initial
signals and state. Thus one can easily define the sequence of signals produced by
a circuit. Suppose we had a circuit alleged to implement send. That means the
sequence of signals on a given pin over some number of cycles starting from a
given initial state is equal to the sequence of signals produced by send. Proving
such a correctness result would be straightforward (given the reusable theory
developed for the Formal HDL by Brock and Hunt) for some hardware designs.
See[Mo092b] for an example of the use of the Formal HDL in the specification
and design of a simple verified microprocessor.

In an exactly analogous fashion, one could design a “digital phase locked
loop” alleged to implement recv and prove that it was correct. (Phase locking is
the idea of adjusting the clocks of two or more processes so that all the clocks tick
“simultaneously.” A common technique is for the sender to encode its clock in the
signal stream and for the receiver to adjust its timing accordingly. Phase locking
is often done with special devices that change the rate at which crystals vibrate.
But by adopting an artificially slow “virtual” clock, e.g., where one virtual tick
occurs every n physical ticks, it 1s possible to implement phase locking in software
or firmware. That is called “digital phase locking” and is increasingly popular.
Biphase mark protocols are often used in such implementations.)

Our point about decomposition is that the proofs of correctness of these
two hardware modules are independent, both of each other and of our model
of asynchrony. The Formal HDL provides the ability to verify synchronous de-
signs (designs in which there is only one clock) and that is all we need to design
and verify implementations of send and recv. Given two verified processors one
can then establish that they communicate properly by applying our model and
reasoning about their specifications rather than their implementations. That is
what we have done in this paper: we proved that send and recv —the specifi-
cations of two independently clocked synchronous processors— provide reliable
communication.

A limitation of our model is that it only addresses one-way communication.
There is no way to use it to verify two-way communication if timing or ordering
on the signals is relevant (as it is in true two-way communication). This is a
general problem that has nothing to do with asynchrony but rather with message
passing formalized at the level of independently specified input/output streams.
Perhaps the general problem can be solved in a way that delays consideration of
the effects of asynchrony and transforms the dialog into two monologues (having
certain oracular properties that permit their interpretation as a dialog) that can
then be investigated by the techniques developed here. In any case, we see this
as a fruitful area of further research.

Another limitation of our model is that we have assumed that clocks are
linear functions of time. We do not know how inaccurate this assumption is. A
more general model is that clocks are nearly linear in the sense that every cycle
1s within some epsilon of the nominal length. This could be formalized in the
style given here. There is no doubt that it would complicate the reusable theory
of async. Determining the lengths of the various regions of the warped signal
would be more tedious. We speculate that the accumulating clock error would
tend to be washed out by our conservative treatment of edges and would not be
fatal to the proof of the biphase mark protocol.

Finally, our model ignores various engineering realities such as metastability,
reflections, noise, and distortion. It was our intention to ignore these on the
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grounds that we wanted to address the problems of asynchrony rather than of
signal processing. This attempt to separate concerns may be misguided: some
protocols are designed to overcome noise, say, and the entire raison d’etre of such
designs is lost in our analysis.

In the end we must come back to our introductory remarks on engineering.
We have formalized a model of asynchrony. With the model it is possible to prove
that certain protocols work. It is up to the engineer to decide whether the model
is accurate enough for the purposes at hand.

10. Relation to Other Work

This work began as part of a NASA-sponsored investigation at Computational
Logic, Inc. (CLI) into the formalization of fault tolerance. W. Bevier and W.
Young of CLI formalized with Ngthm the Oral Messages (or “Byzantine Agree-
ment”) algorithm of Pease, Shostak, and Lamport[PSL80]. In [BY91] they de-
scribe the formalization and correctness proof of that algorithm and carried it
all the way down to the Nqthm specification of four microprocessors that use
the algorithm to reach agreement in the presence of faults. Young[You91] then
used Nqthm to prove the correctness of the interactive convergence clock syn-
chronization algorithm, essentially following in the footsteps of Rushby and von
Henke[RvH89]. Meanwhile, the present author used the hardware description
language formalized in Nqthm by B. Brock and W. Hunt[BH90] of CLI to imple-
ment the processor specified by Bevier and Young and to prove that the described
design meets their specification[Moo92b]. The clear but unstated direction of the
CLI work on fault-tolerance was to enable the eventual fabrication of a device
implementing the Byzantine agreement algorithm—a device whose design had
been mechanically verified from the journal article describing the algorithm all
the way down to the netlist. (See[BHMY89] for a description of the similarly ver-
ified “CLI short stack” that goes from a verified compiler for a simple high-level
language, through a verified assembler and linker, to a microprocessor verfied at
the gate level.) However, a major stumbling block in this program was the fact
that the four microprocessors specified by Bevier and Young were unrealistically
assumed to execute in lockstep synchrony, i.e., to share a common clock. This is
unacceptable since it introduces a potential single-point failure into the system.
This assumption was made primarily to enable the convenient exchange of data
between the four processors during the voting that leads to agreement. It was
therefore natural to study the question of verified communication between asyn-
chronous processors. It should be noted that even with all the present pieces in
place, the goal of a verified network of asychronous Byzantine processors is still
a significant challenge.

Our model of asynchronous communication i1s expressed as a function that
transforms the signal stream produced by one processor into the signal stream
consumed by an asynchronous processor. To apply the model, one must charac-
terize the signals produced and consumed by the two communicating processes.
This input/output model of concurrent processes is a familiar one used in Mil-
ner’s CCS[Mil80] and Hoare’s CSP[Hoa85]. Unlike that work, we consider only
the simple case of one way communication. However, our focus is entirely on
the physical problems introduced by asynchrony, namely how clock rates, delay,
and phase shift affect the received signal. The quantitative modeling of time
makes our work very different in character and focus from the cited work. The
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reader interested in the general problems of verifying distributed and/or concur-
rent systems should see, in addition to [Mil80] and [Hoa85], the seminal work by
Manna and Pnueli{]MP84], Barringer’s survey[Bar85], and the Unity model by
Chandy and Misra[CM88]. In[Gol90], D. Goldschlag describes an Nqthm-based
mechanized proof system Unity.

Our work finds its closest relatives in the very active field of hardware veri-
fication. See [Yoe90] for a tutorial introduction to and overview of the field. In
common with our work, many formal models of microprocessors, e.g., [Hun85],
[Pyg85], and [Joy90], quantitatively measure time in cycles. A particularly in-
triguing title, given the title of this work, is J. Joyce’s “Formal Specification
and Verification of Asynchronous Processes in Higher-Order Logic” [Joy88]. The
report deals with the same problem confronted in [Hun85], namely how to formal-
ize the interaction between a synchronous microprocessor and an asynchronous
memory via a four-phase handshaking protocol. The report offers an attractive
alternative to the formalization presented in [Hun85]. But it does not address
general asynchronous communication in the sense that we do.

Because we verify a protocol in this paper, it is necessary to comment upon
the relation of our work to the very old and very active research area of proto-
col verification. An important survey of the field was published as long ago as
1979[Sun79] and the field has an annual conference (Protocol Testing, Specifica-
tion, and Verification) with proceedings published by North-Holland[Ae88].

The International Standards Organization has defined seven levels of pro-
tocol. Level 1, the “physical level,” deals with pin connections, voltage levels,
and physical signal formats. Level 2, the “data link level,” concerns itself with
data formats, synchronization, error control, and flow control. Above those are,
successively, the “network level,” the “transport level,” the “session level,” the
“presentation level” and the “application level.”

Perhaps the most easily distinguished feature of our work is that it 1s essen-
tially at level 1 while, to the best of our knowledge, all other formal verification
work on protocols addresses higher levels.

The best studied protocol is probably the alternating bit protocol, which is
at level 2. Of special concern in that protocol is detection of message loss to an
unreliable lower level. The protocol provides for acknowledgement of reception
(which may itself get lost) and retransmission (which may lead to duplicate re-
ceptions). In the late 70s mechanical protocol verification was based on the then-
standard program verification technology: a procedural encoding of the protocol
was annotated with inductive assertions, from which verification conditions were
mechanically generated and then interactively proved. In [DiV81] this method
is applied to the alternating bit protocol. See[DiV82] for examples of method
applied to still-higher transport level protocols. But in the 80s the combination
of finite-state machine models, propositional temporal logic, and fast mechanical
decision procedures came to dominate mechanized protocol verification because
of the speed and automation this combination offered. For a description how this
approach is applied to the alternating bit protocol see[CES86] by E. Clarke, E.
Emerson and A. Sistla. Clarke and O. Grumberg have written an excellent review
of the use of finite state machines and temporal logic in automatic verification
of concurrent systems[CG87].

However, both the finite state machine approach and the related Petri net
approach[Pet81] suffer from the inability to discuss time quantitatively. Much
research in the protocol verification community is now aimed at adding some
notion of time to the finite state approach, without exacerbating the already
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vexing state explosion problem or taking the entire problem out of the proposi-
tional domain. This is in stark contrast to our work, where explicit, quantitatively
measured time forms the foundation of the model.

Finally, while not at level 1 and not supported by mechanically checked
proofs, the closest work on protocol verification i1s perhaps that by P. Jain and
S. Lam[JL91] where time is modeled quantitatively and discretely and signal
propagation down a bus is also modeled (assuming constant propagation speed).
They specify a modified Expressnet protocol which they prove to be collison-free
and they derive bounds for its access delay.
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