
ACL2 Theorems about CommercialMicroprocessorsBishop Brock, Matt Kaufmann? and J Strother MooreComputational Logic, Inc., 1717 West Sixth Street, Austin, TX 78703-4776, USA??Abstract. ACL2 is a mechanized mathematical logic intended for usein specifying and proving properties of computing machines. In two inde-pendent projects, industrial engineers have collaborated with researchersat Computational Logic, Inc. (CLI), to use ACL2 to model and proveproperties of state-of-the-art commercial microprocessors prior to fabri-cation. In the �rst project, Motorola, Inc., and CLI collaborated to spec-ify Motorola's complex arithmetic processor (CAP), a single-chip, digitalsignal processor (DSP) optimized for communications signal processing.Using the speci�cation, we proved the correctness of several CAP mi-crocode programs. The second industrial collaboration involving ACL2was between Advanced Micro Devices, Inc. (AMD) and CLI. In this workwe proved the correctness of the kernel of the oating-point division op-eration on AMD's �rst Pentium-class microprocessor, the AMD5K86.In this paper, we discuss ACL2 and these industrial applications, withparticular attention to the microcode veri�cation work.1 ACL2ACL2 stands for \A Computational Logic for Applicative Common Lisp." ACL2is both a mathematical logic and system of mechanical tools which can be usedto construct proofs in the logic. The logic, which formalizes a subset of CommonLisp, is a high level programming language which can be executed e�ciently onmany host platforms. Thus, programmers can de�ne models of computationalsystems and these models can be executed (\simulated") to test them on concretedata. But because the language is also a formal mathematical logic it is possibleto reason about the models symbolically. Indeed, it is possible to prove theoremsestablishing properties of the models and to check these proofs with mechanical? Matt Kaufmann's address is now Motorola @ Lakewood, P.O. Box 6000, MD F52,Austin, TX 78762?? The theorem prover used in this work was supported in part at Computational Logic,Inc., by the Defense Advanced Research Projects Agency, ARPA Order 7406, andthe O�ce of Naval Research, Contract N00014-94-C-0193. The views and conclusionscontained in this document are those of the author(s) and should not be interpretedas representing the o�cial policies, either expressed or implied, of Advanced Mi-cro Devices, Inc., Motorola, Inc., Computational Logic, Inc., the Defense AdvancedResearch Projects Agency, the O�ce of Naval Research, or the U.S. Government.

tools that are part of the ACL2 system. The ACL2 system is essentially a re-implemented extension, for applicative Common Lisp, of the so-called \Boyer-Moore theorem prover" Nqthm [2, 3].1.1 The LogicThe ACL2 logic is a �rst-order, essentially quanti�er-free logic of total recursivefunctions providing mathematical induction and two extension principles: onefor recursive de�nition and one for \encapsulation."The syntax of ACL2 is a subset of that of Common Lisp. Formally, an ACL2term is either a variable symbol, a quoted constant, or the application of ann-ary function symbol or lambda expression, f , to n terms, written (f t1 ::: tn).This formal syntax is extended by Common Lisp's facility for de�ning constantsymbols and macros.The rules of inference are those of Nqthm, namely propositional calculus withequality together with instantiation and mathematical induction on the ordinalsup to �0 = !!!::: .The axioms of ACL2 describe �ve primitive data types: the complex rationals,characters, strings, symbols, and ordered pairs or lists. The complex rationalsare complex numbers with rational components and hence include the rationals,the integers and the naturals. Symbols are logical constants denoting words, suchas DIV and STEP. Symbols are in \packages" which provide a convenient way tohave disjoint name spaces. SMITH::DIV is a di�erent symbol than JONES::DIV;but if the user has selected "SMITH" as the \current package" then the formersymbol can be written more succinctly as DIV.Essentially all of the Common Lisp functions on the above data types areaxiomatized or de�ned as functions or macros in ACL2. By \Common Lisp func-tions" here we mean the programs speci�ed in [36] or [37] that are (i) applicative,(ii) not dependent on state, implicit parameters, or data types other than thosein ACL2, and (iii) completely speci�ed, unambiguously, in a host-independentmanner. Approximately 170 such functions are axiomatized or de�ned. In addi-tion, we add de�nitions of new function symbols to provide fast multiply-valuedfunctions, an explicit notion of state with appropriate applicative input/outputprimitives, fast applicative arrays, and fast applicative property lists.Common Lisp functions are partial; they are not de�ned for all possible in-puts. In ACL2 we complete the domains of the Common Lisp functions, makingevery function total by adding \natural" values on arguments outside the \in-tended domain" of the Common Lisp function. For example, if ACL2 is used toevaluate (car 7) no exception is raised and the result is nil; if a Common Lispwere used to evaluate that expression the behavior is unpredictable, depends onwhich Common Lisp implementation is used, and could include memory viola-tions and system crashes.ACL2 and Common Lisp agree on the result of a computation provided thefunctions involved are exercised only on their intended domain. We formalizethe notion of the intended domain of each function in our notion of guard. Aguard is a predicate that recognizes arguments in the intended domain. The

guards of the Common Lisp primitives are provided by the system; the user mayprovide guards for de�ned functions. The system then provides a mechanism,called guard veri�cation, that insures that a function is Common Lisp compliant.Guard veri�cation simply generates and attempts to prove a set of conjecturessu�cient to imply that the evaluation of the function on its intended domainexercises its subroutines on their intended domains.Some comments about guards and guard veri�cation are in order. First,guards and guard veri�cation are optional: ACL2 is a syntactically untypedlogic of total functions. Theorems may be proved without considering guards;any ground term can be evaluated to a constant (provided no unde�ned functionsare involved) using the axioms. But such theorems and computations may notbe consistent with Common Lisp. If you want assurance that an ACL2 functionwill run in Common Lisp as predicted by an ACL2 theorem, you must verify theguards on the function and check that the arguments satisfy the guard. Second,guard veri�cation is akin to type checking in that users may provide guards thatexpress arbitrarily strong restrictions. Guard veri�cation then insures that func-tions are \well-typed." Since guards are arbitrary predicates, guard checking istechnically undecidable; but for commonly used primitive guards, guard check-ing is fast and silent. Finally, ACL2's implementation takes advantage of the factthat ACL2's axioms and Common Lisp agree when guards have been veri�ed.If called upon to evaluate a function on constants, ACL2 can \short-circuit" itsinterpreter and execute compiled Common Lisp provided the function's guardshave been veri�ed and the arguments are in the intended domain. The user wish-ing to improve the execution speed of an ACL2 model is therefore encouragedto do guard veri�cation. We discuss guards in more detail in [24].Finally, ACL2 has two extension principles: de�nition and encapsulation.Both preserve the consistency of the extended logic. See [22]. The de�nitionalprinciple insures consistency by requiring a proof that each de�ned functionterminates. This is done, as in Nqthm, by the identi�cation of some ordinalmeasure of the formals that decreases in recursion.The encapsulation principle allows the introduction of new function symbolsaxiomatized to have certain properties. It preserves consistency by requiring theexhibition of witness functions that can be proved to have the alleged properties.To encapsulate a sequence of logical events | de�nitions and theorems | oneembeds the sequence in an encapsulate form and marks certain of the eventsas local. Such an encapsulation is admissible to the logic if all the events areadmissible; hence the de�nitions all satisfy the de�nitional principle and thetheorems can be proved in the resulting extension of the logic. But the axiomatice�ect of an encapsulation is to add to the logic the axioms corresponding tothe non-local events. Thus, for example, to introduce an unde�ned function fconstrained to be rational, it su�ces to de�ne f to be the rational 23, say, provethe theorem that f returns a rationalp, and then encapsulate those two eventsmarking the de�nition as local. E�ectively the de�nition serves as a witness forthe satis�ability of the axiom added.

1.2 The SystemLike Nqthm, ACL2's theorem prover orchestrates a variety of proof techniques.As suggested by Figure 1, the user puts the formula to be proved into a pool.The simpli�er, the most important proof technique, draws a formula from thepool and either \simpli�es" it | replacing it in the pool by the several new casessu�cient to prove it | or passes it to the next proof technique. The simpli�eremploys many di�erent proof techniques, including conditional (back chaining)rewrite rules, congruence-based rewriting, e�cient ground term evaluation, for-ward chaining, type-inference, the OBDD propositional decision procedure, arational linear arithmetic decision procedure, and user-de�ned, machine-veri�edmeta-theoretic simpli�ers.
Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of IrrelevanceFig. 1. The Orchestration of Proof TechniquesRoughly speaking, as the formulamoves clockwise around the ring in Figure 1it becomes more general. Eventually, if all else fails, the induction mechanism isapplied.The proof techniques are extensions of those used by Nqthm; see [2]. Mostof the techniques are rule-driven. The rules are derived from previously provedtheorems. For example, if the user has instructed ACL2 to prove that append isassociative(equal (append (append x y) z)(append x (append y z)))and to use that fact as a :rewrite rule (from left to right), then | after theassociative law is proved | the simpli�er will right-associate all append-nests.Because of the conservative nature of the extensions created by encapsula-tion, that logical mechanism is also very useful as a proof management tool. A

complicated theorem can be derived in an encapsulation in which the uninter-esting but necessary details are developed locally. See [22] for a detailed logicaljusti�cation of encapsulation.
and
advice

definitions,
theorems

generator
rule

User

rules

rules

proofs

database

M
em

ory
G

ates
A

rith
V

ectors

theorem
prover

proposed definitions
conjectures and
advice

forms and
 values

 environment
execution Fig. 2. System ArchitectureBy the proper choice of theorems to prove, the user can inform the systemthat a certain type-inference is possible, that a given relation is an equivalencerelation to be used in congruence-based rewriting, that a certain function is acorrect meta-theoretic simpli�er, etc. Via this mechanism the informed user ofACL2 can essentially program it so that it constructs proofs following a certainstrategy. By only using rules derived from previously proved theorems we insurethat the user's advice cannot lead to logical unsoundness. See Figure 2.With each proposed de�nition and theorem the user can supply hints toguide the theorem prover during the admission of the de�nition or proof of thetheorem. A very common hint speci�es which rules in the database are to beconsidered available during a proof or proof step. Other hints allow the user tosuggest the use of a particular instance of a given theorem or to skip some stepin the ring illustrated in Figure 1. Hints can be computed by ACL2 expressionsso the user can codify strategies such as \if the goal contains these functionsymbols then the following rules should be used."It is possible to collect together a body of de�nitions, theorems and adviceinto a �le, here called a book. If ACL2 certi�es the book then it can be loaded intoany compatibleACL2 session to extend the logic and rule database appropriately.Books are incremental; multiple books can be loaded provided they compatiblyde�ne shared names. Packages allow the authors of books to have disjoint namespaces. Encapsulation can be used to hide unwanted aspects of a book or toextract desirable theorems. Events used in development of books may be markedlocal in order to prevent them from being exported.

The ACL2 system is written in ACL2, except for a relatively small amountof \boot-strapping" code, and is in essence a collection of ACL2 books. CodingACL2 in its own logic forced many features into the language and insured thatthe resulting language is e�cient and powerful enough for large projects de-manding great computational resources. At the moment only one of the ACL2source books, representing about 15% of the system, has been certi�ed by ACL2;however, all the source books have been checked syntactically by ACL2.2 Motorola CAPThe CAP is a single-chip, DSP co-processor optimized for communications signalprocessing, currently under development by Motorola Government and SystemsTechnology Group, Scottsdale, Arizona [16]. During the �rst seven months of theproject one of us (Brock) relocated from Austin, Texas, to Scottsdale to workin close collaboration with the CAP design team. For the succeeding 18 monthsa member of the design team (Calvin Harrison) relocated to Austin to work atCLI. The CAP design was evolving throughout this period.2.1 CAP ArchitectureThe CAP design follows the `Harvard architecture', i.e., there are separate pro-gram and data memories. The design includes 252 programmer-visible data andcontrol registers. There are six independently addressable data and parametermemories. The data memories are logically partitioned into `source' and `desti-nation' memories; the sense of the memories may be switched under programcontrol. The arithmetic unit includes four multiplier-accumulators and a 6-adderarray. The CAP executes a 64-bit instruction word, which in the arithmetic unitsis further decoded into a 317-bit, low-level control word. The instruction set in-cludes no-overhead looping constructs and automatic data scaling. As many as 10di�erent registers are involved in the determination of the next program counter.A single instruction can simultaneously modify well over 100 registers. In prac-tice, instructions found in typical applications simultaneously modify severaldozen registers. Finally, the CAP has a three-stage instruction pipeline whichcontains many programmer-visible pipeline hazards.The motivationbehind this complexity and unusual design is to allow the Mo-torola engineers to code DSP applications programs on the CAP and have thoseprograms execute with stunning e�ciency. The CAP was designed to execute a1024-point complex FFT in 131 microseconds. There is no compiler targeting theCAP, perhaps because only a relatively few applications programs are required.For the time being at least, all CAP programs are coded by hand in CAP assem-bly language (CASM) and then assembled into binary and loaded into ROM. Butprogramming the CAP e�ciently and e�ectively requires a tremendous amountof knowledge and skill. One motivation for our involvement was to demonstratethat it was possible to create and then use a formal model of a state-of-the-artprocessor to verify applications programs.

2.2 The ModelWe began by creating a formal, executable, ACL2 speci�cation of the CAP [5].This speci�cation closely followed the style of earlier Nqthm work on modelingmicroprocessors, e.g., [19, 20, 28, 4]. Readers unfamiliar with that style needmerely imagine de�ning, as a Lisp function, an interpreter for the intended ma-chine language. We owe a special debt of gratitude to Yuan Yu, whose techniquesin [39] we followed closely.Our behavioral-level speci�cation describes every well-de�ned behavior of theCAP including all legal instructions, I/O [21], traps, and interrupts. Only a fewhardware and software initiated reset sequences are not modeled by our speci-�cation; these sequences were unnecessary to our intended veri�cation work. Inan e�ort to validate the speci�cation we compared its execution with the resultsfrom executing Motorola's SPW engineering model of the processor [1].3 For ex-ample, we compared the results of executing an end-to-end application (a QPSKmodem) on both the SPW model and the ACL2 model; we found the �nal statesbit-exact for all programmer visible registers. Other tests exposed discrepanciesbetween the two models, most | but not all | of which were speci�cation er-rors; some bugs were found in the CAP design. The ACL2 model runs severaltimes faster than the compiled SPW model and hence is a potentially valuabledebugging tool in its own right. A small part of the hardware implementationof the processor, the XY memory address generation unit, has been formallyveri�ed to agree with with the corresponding part of the ACL2 model [18]; thisinvolved the hand-translation into ACL2 (in a very mechanical fashion) of theSPW description of the hardware.We believe that CAP is the most complex processor for which a completeformal speci�cation has been produced. The MC68020 modeled in [39], the �rstcommercial processor for which a substantially complete formal model was pro-duced, has only sixteen general purpose registers and a simple instruction set,albeit one with 18 addressing modes. Until the CAP work, the most compli-cated commercial processor subjected to formal modeling at the functional levelwas probably the Rockwell-Collins AAMP5, a special purpose avionics proces-sor. The functionality of the AAMP5 was partially speci�ed with PVS [15],as described in [26]: 108 of 209 instructions were speci�ed and the two-stagepipelined microcode for eleven was veri�ed. The state of the AAMP5 is muchsimpler than that of the CAP, involving only two memories, two ags, and sixregisters; nevertheless, the AAMP5 is far from simple: its 209 variable lengthCISC-like instructions closely resemble the intermediate output of compilers,and include some real-time executive capabilities such as interrupt handling,task state saving and context switching.Before turning to the veri�cation of CAP applications programs we undertookthe logical elimination of the CAP pipeline. The CAP implementation includes athree-stage instruction pipeline with many visible pipeline hazards. Using ACL2we demonstrated that under \normal" conditions, which we rigorously de�ned,3 As of this writing no CAP chips have been fabricated.

the behavior of CAP programs can be understood without reference to the in-struction pipeline. We did this by proving an appropriate correspondence be-tween the pipelined CAP model and a simpler pipeline-free model of the CAP[6]. Aside from making subsequent code proofs easier, this work had the impor-tant bene�t of identifying (with both precision and assurance) an equivalencecondition su�cient to avoid hazards yet weak enough to admit CAP applica-tion programs. Most of the requirements, in some suitably informal sense, werealready part of the evolving \folklore" in the small community of CAP pro-grammers, who generally take great pains to avoid pipeline hazards in theirDSP application code. But the equivalence condition is su�ciently complicatedthat, short of a rigorous proof such as the one we constructed, con�dence in itssu�ciency is di�cult to obtain. Our condition is weak enough to accept everyROM-resident DSP application on the CAP.Our equivalence proof follows the approach suggested by Burch and Dill [11].We found their method for stating equivalence, involving the idea of ushing thepipeline, intuitive for writing speci�cations. Applying it to the full CAP speci-�cation was somewhat challenging. The proof requires the symbolic expansionof the both the pipelined and non-pipelined models for three clock-cycles andthen the comparison of the resulting symbolic states. Because of the controlcomplexity of the CAP speci�cation and the (necessary) weakness in the equiv-alence condition, a naive expansion took ACL2 about 10 minutes and produceda term whose printed representation was about 300,000 lines long (about 20megabytes). After a couple of days' work by the user developing the proper the-ories, ACL2 can do a three step expansion on arbitrary (hazard-free) code in afew seconds and produce a term of about 3000 lines. Once the libraries neededto show the equivalence of these two models are in place (non-trivial), the prooftakes about 4 minutes. ACL2's ability to handle large terms is one of its pri-mary advantages over our earlier theorem prover, Nqthm, when dealing withindustrial-sized problems.The CAP instruction pipeline is certainly not the most complex instructionpipeline that has been formally speci�ed and analyzed. However, although othershave considered a few instructions on a pipelined commercial processor design(such as the AAMP5 work, [26]), or all instructions on a simple academic example[34, 35], our results cover every instruction sequence in a complete, bit-accuratemodel of a commercially designed processor. This work is also the only case thatwe are aware of where the problem of the equivalence of pipelined and non-pipelined models is so dependent on the program being executed, rather thanpredominately an intrinsic property of the hardware implementation.Finally, we used the pipeline-free model as a basis for the mechanized veri�-cation of CAP application code. We briey describe two CAP assembly languageprograms for which we constructed mechanically checked correctness proofs.The �rst is a �nite impulse response (FIR) �lter. The FIR �lter is an archetyp-ical DSP application, a discrete-time convolution of an input signal with a setof �lter coe�cients. This FIR code is one that we developed speci�cally as anexample, although it is based on a FIR algorithm for the CAP originally coded

by a Motorola engineer. We prove that the code computes an appropriate �xed-precision result, but do not address any of the numerical analysis or DSP contentof the algorithm.The second program is a high-speed searching application. Thisapplication uses specialized data paths in the CAP adder array to locate the 5maxima of an input data vector in just over one clock cycle per input vectorelement. The 5-peak search is a fascinating example of an application with astraightforward speci�cation, implemented by a clever combination of hardwareand software, whose correctness is far from obvious. In this case the code weveri�ed was obtained directly from the CAP program ROM, exactly as writtenby a Motorola engineer.2.3 FIRThe �nite impulse response (FIR) �lter is a commonly used DSP algorithm; fordetails on its development and utility see for example [30]. Boiled down to itsessentials, the FIR �lter maps a discrete input signal x[i] to a discrete outputsignal y[i] by a discrete-time convolution of x[i] with a set of �lter coe�cientshk. The equation de�ning a non-adaptive FIR �lter is often shown as somethingsimilar to y[n] = n�1Xk=0 hk � x[n� k]:Given that the above equation de�nes a FIR �lter, our goal is simply to provethat certain CAP microcode computes something suitably equivalent. The im-plementation uses the �xed-precision arithmetic of the CAP; the sense in whichit implements the above equation involves the assumption that no overows, forexample, occur. There is no guarantee that every set of coe�cients will producea meaningful result, since the choice of coe�cients together with input scalingparameters may lead to catastrophic overows in the CAP accumulators thatcompute the sums of products.The FIR code we veri�ed consists of 30 64-bit microcode instructions. Theprogram simultaneously �lters X and Y source memories with a single set ofcoe�cients, writing the results to X and Y destination memories. This can ei-ther be interpreted as two real FIR �lters on two real signals, or a single realFIR �lter on a complex signal. The small size of the FIR program belies itscomplexity because the CAP instruction set is so complicated. The e�ects ofthe single instruction in the inner loop depends upon 9 memories, 3 stacks and31 registers; 17 registers are simultaneously modi�ed by the instruction. Thereader is reminded that we are not considering some idealized algorithm but anactual program written in a new and arcane programming language designed byindustrial DSP experts for DSP applications.The code has been mechanically proved to implement the speci�cation equa-tion. Because the CAP assembly code has no formal semantics, we actuallyaddressed ourselves to the binary object code produced by Motorola's CAP as-sembler. Our theorem establishes that when (our formal model of) the CAP isrun a certain number of steps on a suitably con�gured initial state the resultingdestination memories are con�gured as required by the equation.

2.4 5PEAKIt is often necessary to perform statistical �ltering and peak location in digitalspectra for communications signal processing. The so-called \5PEAK" programuses the CAP's array of adder/subtracters with their dedicated registers as a sys-tolic comparator array as shown in Figure 3. The program streams data throughthe comparator array and �nds the �ve largest data points and the �ve corre-sponding memory addresses. In this discussion we largely ignore the fact that
min

max

min

max

min

max

min

max

min

maxP

C

P

C

PP

CC1

P1

2

2

3

3

4

4

5

5

C▲ ▲ ▲ ▲ ▲Fig. 3. Abstract View of Comparator Arraythe comparator array also maintains the memory address of each data point.Data points enter the array by way of register C1 and move through thearray, towards the right in the diagram. Maximum values remain in the array inthe Pn registers, and the minima are eventually discarded when they pass out ofthe last comparator. On each cycle the comparator array updates the registersas follows: C1 = next data point;Cn = min(Cn�1; Pn�1); n > 1;Pn = max(Cn; Pn):Informally, the peak registers, Pi, maintain the maximum value that has passedby that point in the comparator array.Suppose we initialize the array with the smallest possible data values (called\negative in�nity" but actually just the most negative CAP integer). Then, aswe stream an arbitrary amount of data through the array, the peaks accumulatein the peak registers. Immediately after the last data point has entered thearray, we know that P1 is the maximal data point. But P2 may not be thesecond highest peak because it will not have been compared to C2. To causethe necessary comparisons to occur, we must stream more data in. Note that byfeeding one \positive in�nity" (the most positive CAP integer) into the arraywe can cause the comparison of C2 with P2, along with other comparisons. Thisalso displaces the actual maximal value from P1 into C2 and ushes one minimalvalue from the right end of the array. Thus by feeding �ve positive in�nities inwe can accumulate at the right end of the array the �ve maximal values.We veri�ed the 5PEAK object code obtained from the CAP program ROM.We proved that when the abstract CAP machine (as de�ned in ACL2) exe-cutes that binary code, on an appropriate initial state and for the appropriate

number of cycles, the �ve highest peaks and their addresses are deposited intocertain locations. We de�ned the \highest peaks and their addresses" by de�n-ing, for speci�cation purposes only, a sort function in ACL2 which sorts suchaddress/data pairs into descending order; in our 5PEAK speci�cation we referto the �rst �ve pairs in the ordering.The argument that 5PEAK is correct is quite subtle, in part because anarbitrary amount of data is streamed through and in part because the positiveand negative in�nities involved in the algorithm can be legitimate data valuesbut are accompanied by bogus addresses; correctness depends on a certain \anti-stability" property of the comparator array. A wonderfully subtle generalizationof a key lemmawas necessary in order to produce a theorem that could be provedby mathematical induction, [7]. In addition, as in the FIR example, correctnessalso depends on the invariance of many low-level properties of the initial CAPstate.2.5 Manpower BreakdownOur involvement with the CAP project lasted 31 months. Only one formal meth-ods expert (Brock) worked on the project continuously during that time. He wasresponsible for modeling the CAP in ACL2, producing the non-pipelined ab-straction of the CAP, inventing the equivalence condition, mechanically provingthe conditional equivalence of the two models, and mechanically proving the twomicrocode programs reported here. He also developed a library of ACL2 booksfor use in this work. Except where noted below, he worked on these tasks alone,although in the early months of the project he talked frequently with the CAPdesign team. Several other researchers and engineers contributed to the formalmethods part of the project (e.g., the validation testing of the ACL2 against theSPW, a mechanically checked correctness proof for the address generation unit,an ACL2 macro to help formulate lemmas for expanding function de�nitions, aCAP assembler, a pin-level speci�cation of the CAP IO interface) but their workhas not been the focus of this paper and is not further discussed here. Brock'se�orts can be broken down as follows:{ The CAP Speci�cation: 15 months. Brock produced the �rst executable ver-sion of the speci�cation in about 6 months, while resident in Scottsdale andinteracting with the design team. During that time he was also learningACL24. The �rst model was simple and incomplete. As the project pro-gressed, a 4-valued logic was introduced, and the pipeline, full ALU and IOmodules were included. In addition, the CAP design evolved more or lesscontinuously during this interval and the formal model tracked the design.Finally, ACL2 evolved also and Brock had to convert his work from Ver-sion 1.7 to Version 1.8, which dramatically changed the treatment of guards,making proofs much easier.4 He was already an accomplished Nqthm user.

{ Reusable Books: 6 months. To do proofs about the CAP speci�cation Brockhad to develop many ACL2 books about modular arithmetic, logical opera-tions on integers, hardware arithmetic and bit vectors, arrays, record struc-tures, and list processing. These books are not CAP speci�c and are hencereusable.{ Equivalence to Non-Pipelined Model: 5 months. Not surprisingly, the non-pipelined model of the CAP shares perhaps 90% of its de�nition with the(pipelined) CAP speci�cation. It was relatively easy to produce; however itrequired the reorganization of the CAP speci�cation so that such sharing waspossible. The �rst conditional equivalence proof was carried out on a simpli-�ed model of the CAP and then repeated when the IO module was added.A serendipitous visit by David Dill occurred just as Brock was beginningthe �rst proof; Dill explained the methods in [11], which proved very useful.The details of the equivalence condition were derived from failed proofs. Thecondition was later weakened to so that it would accept the ROM-residentDSP application codes and the (now largely automatic) proof was repeated athird time to con�rm the new condition. Brock then incorporated the pred-icate into an (unveri�ed) automated tool that analyzes CAP programs forpipeline visibility conditions. The tool requires no formal methods expertiseto use or to interpret its output.{ FIR: 1 month. Some of the work on reusable books was done in responseto di�culties encountered during this task. In addition, CAP-speci�c bookswere developed for controlling the unwinding of the CAP model during suchproofs. Both the FIR and 5PEAK work bene�t from the fact that the non-pipelined model is simpler to reason about.{ 5PEAK: 1 month. About half of the time here was devoted to the develop-ment of the speci�cation of the 5PEAK code. After several false starts, iteventually involved the idea of sorting an arbitrary amount of data with ageneralization of the 5PEAK algorithm and then collecting the �rst 5 values.Moore spent one week proving the fundamental properties of the generalizedsort algorithm.{ Reporting: 3 months. This includes time to write regular progress reports,travel to meetings, and write the �nal reports documenting the e�ort.The times above are essentially the time it took the user to create the mate-rial, discover the proofs and lead the theorem prover to them the �rst time. Thetheorem prover can actually carry out the proofs relatively quickly. All of theCAP proofs can be reproduced in 2:30 (2 hours and 30 minutes) on a Sun Mi-crosystems Sparcstation-20/712 with dual 75 MHz SuperSparc-II CPU's (eachwith 1 megabyte of cache), 256 megabytes of memory and 2 gigabytes of localdisk. Many books are shared between the three main proofs (equivalence, FIR,and 5PEAK). A book need be certi�ed only once and thereafter can simplybe referenced without proof. The equivalence proof takes 1:45 (1:29 of which isspent certifying books that are re-used in the two applications proofs). FIR canthen be done in 33 minutes (17 minutes of which is spent certifying books usedalso in 5PEAK). 5PEAK then takes 13 minutes.

3 AMD5K86In the Spring of 1995, the Intel Pentium oating-point division bug was in theheadlines. At that time, Advanced Micro Devices, Inc., was working on their�rst Pentium-class microprocessor, the AMD5K86. Because the AMD5K86 wasnot yet fabricated, there was time to reassess its division algorithm for bugsand perhaps �x any that might be found. But the algorithm was proprietary soit could not be reviewed by the numerical analysis community; nor was theretime for the \social process" of mathematics to review any pro�ered proof ofcorrectness.In May, 1995 AMD hired CLI to construct and mechanically check a proof ofthe correctness of the kernel of the AMD5K86's oating-point division algorithm.The principals of this collaboration were Tom Lynch of AMD, the designer of thedivision algorithm, and authors Kaufmann and Moore. All three were located inAustin, Texas, which facilitated collaboration. Work commenced in June, 1995and the proof was completed by mid-August, 1995. Moore was the only personworking full-time on the project. No bugs were found; the AMD algorithm wascorrect. We sketch the algorithm and theorem proved below. See [29] for details.The AMD5K86 algorithm is supposed to divide p by d, where both areoating-point numbers and d 6= 0, and round the result according to a spec-i�ed rounding mode, m.There has been much interest in the mechanical analysis of division algo-rithms since the Pentium bug. Almost all of the work focuses on SRT division[8, 32, 12]. The easiest way to contrast that work with ours is to point out thatthe results established in the above-mentioned papers do not formalize or discussthe notions of \oating-point number" or \rounding modes." Those conceptshave been formalized elsewhere, for example [27], but no signi�cant mechani-cally checked theorems about them are reported. Our work, on the other hand,focuses almost entirely on the concepts of oating-point number and directedrounding and the properties of the elementary oating-point operations. It isthe �rst substantial body of mechanically checked formal mathematics aboutoating-point arithmetic.By an n; ;m oating-point number we mean a rational that can be representedin the form � � s � 2e where � 2 f+1;�1g, s is a rational, either s = 0 or1 � s < 2 and the binary representation of s �ts in n bits, and e is an integerwhose (biased) binary representation �ts in m bits. A rounding mode speci�esa rounding procedure and a precision n by which one is to round a rationalto an n; ; 17 oating-point number. Common procedures include truncation ofexcessive bits (rounding toward 0), rounding away from 0, and \sticky" roundingin which the least signi�cant bit of the rounded signi�cand is 1 if precision islost.The AMD5K86 algorithm uses a lookup table to obtain an 8,,17 oating-point approximation of 1=d, twice applies a oating-point implementation of avariant of Newton-Raphson iteration to re�ne this into a 28,,17 approximationof 1=d, uses the approximation to compute four 24,,17 quotient digits in analgorithm similar to long-division, and then sums the digits using sticky rounding

for the �rst two oating-point additions and the user-speci�ed mode m for thelast (and most signi�cant).Using ACL2 we proved that if p and d are 64; ; 15 (possibly denormal)oating-point numbers, d 6= 0, and m is a rounding mode specifying a posi-tive precision n � 64, then the answer described above is the n; ; 17 oating-point number obtained by rounding the in�nitely precise p=d according to m.In addition, and of particular interest to the design team, we proved that all in-termediate results computed by the algorithm �t in the oating-point registersallocated to them.Over 1600 de�nitions and lemmas were involved in this proof. While ACL2(unlike Nqthm) has built-in support for the rationals, this was the �rst time thatoating-point numbers and directed rounding had been formalized in ACL2. Asubstantial body of numerical analysis had to be formalized and mechanicallychecked in order to follow a fairly subtle mathematical argument constructed bythe three collaborators. The proof complexity management tools, in particularbooks, encapsulation and macros, were crucial to the timely completion of thisproject. Note that only 9 weeks elapsed from the time CLI �rst saw the microcodeto the time the �nal \Q.E.D." was printed. The �nal proof script can be replayedby ACL2 in two hours on the Sparcstation-20/712 described above.4 ConclusionWe have described several theorems proved about commercial microprocessors.Make no mistake, these were \heavy duty proofs" requiring many skills, includ-ing great familiarity and insight into the applications areas, engineering issues,mathematics, formal logic, and the workings of the ACL2 proof tool. Further-more, a fair amount of dedication and persistence were also required. See forexample [25] for a case study describing practical problems in the use of a gen-eral purpose theorem prover. Simply put, it is hard work producing proofs ofconjectures like these, a fact which stands in stark contrast to the impressiveresults obtained by \lightweight" analysis tools requiring so much less of theuser [10, 14, 17, 38].So why should people use general purpose theorem provers? If correctness isimportant and the problem cannot be solved by special-purpose \lightweight"tools, then a \heavyweight" tool is not only appropriate but is the only alterna-tive. But is microcode veri�cation within reach of today's model checking tools?If one assumes one has a bit-accurate model of a microcode engine, that therelevant microcode is in ROM (and so does not change during execution) andthat all loops are controlled by counting down registers (and so are boundedby the word size), then microcode veri�cation is a �nite problem that can, inprinciple, be done by model checking. The question is simply one of practicality.It is, of course, di�cult to say with certainty that an untried problem is be-yond the capabilities of a given model checker. The reason is partly that suchtools can often handle designs with surprisingly large state spaces (e.g., sev-eral hundred boolean variables). Many techniques exist for reducing the \naive"

state-space (e.g., \scaling", the removal of all bits of state that do not supportany property being checked); model checkers at higher levels of abstraction arealso being developed [13, 9]. But the reason an unequivocal rejection of modelchecking is so di�cult here is that with creative insight (i.e., \heavyweight think-ing?") the user of a \lightweight" tool can often abstract the problem into onethat is manageable.An easier question to answer, then, is whether today's model checkers havebeen used to do microcode veri�cation for machines of industrial interest. Theanswer seems to be no. While today's model checkers can often succeed at thiskind of veri�cation for small values of the input parameters, they rarely do forthe full range of values. We believe that the CAP and AMD programs discussedhere are beyond the range of today's model checkers. We return to this pointshortly.Assuming that these problems \cannot" be done by \lightweight" tools, theo-rem proving is the only alternative.5 We have demonstrated that such problems,in their full complexity, are not beyond the range of ACL2. The manpower re-quirements of these ACL2 projects are not extreme, considering the amount ofmanpower industry currently throws at testing.The manpower requirements in projects focused on code proofs for a givenmachine (the FM9001 assembly language [28], the MC68020 machine code proofs[4], the CAP work here, and the AAMP5 work [26]) all reect a common theme:we are repeatedly measuring the startup costs. Building the formal model of the\new" machine or language and getting the appropriate library of rules in placedominates the costs. Yu's work, [4], demonstrated that if one simply focuseson proving one program after another, it begins to get routine. Until automatedtheorem provers surpass humans in their creative ability to �nd proofs | today'stheorem provers must be regarded primarily as \proof checkers" that �ll in thethousands of missing steps in what is commonly called a \proof" by students ofmathematics | the mechanical veri�cation of a program will remain essentiallya two step process: the user discovers the \intuitive proof" and then gives themachine enough advice to check it. Once the startup costs have been paid fora given machine, the step of intuiting the informal proof becomes much moredominant.Our CAP and AMD5K86 projects, as well as the AAMP5 work [26], alsosupport the conclusion that theorem-prover based formalmethods can \keep up"with an evolving hardware design and make important contributions. Why thenis industry apparently so reluctant to adopt these techniques? Part of the answeris that the skills required to use our tools are di�erent than those ordinarily foundin a hardware design team. Oddly enough, people with these skills, namely peopletrained in discrete mathematics, are readily available but their skills are notappreciated by industry. However, another major reason our tools are not more5 Testing the CAP code, while useful, is probably less likely to �nd all errors thantesting would on a more conventional processor simply because of the sensitivity ofthe instruction sequencing to large portions of the state. Testing is also unconvincingin the case of sophisticated oating-point algorithms.

widely used is that they are not integrated into the design process. The ACL2speci�cation of the CAP, while e�ciently executable and uniquely enabling ofmechanically checked proofs, cannot at present be processed by conventionalCAD tools. We had intended to build a translator from SPW to ACL2 but, fornon-technical reasons beyond our control, could not pursue the task.Such discouragement not withstanding, the fact remains that general purposetools, such as ACL2, are truly general purpose. A powerful speci�cation languageis provided. As a user one rarely feels unable to express the key ideas. Arbitrarycomplexity can be modeled. The user carries the responsibility of managing thiscomplexity but the system provides a wealth of ways to help, ranging fromsuch traditional mathematical devices as functional composition and lemmas,to system features such as macros, encapsulation, books, symbol packages, andcomputed hints. The development of these features is the biggest improvementof ACL2 over Nqthm and is the reason that the CAP project could be carriedout with ACL2 much more expeditiously, we believe, than with Nqthm. As witha good programming language or other universal tool, one rarely feels that aproblem is too big or too complicated to address. Rather, the question is simplyhow to proceed. In that sense, the system feels open-ended and empowering,especially given that the system carries the burden of logical correctness andleaves the user entirely focused on the larger issues.Finally, and most importantly, we believe there is value in demonstratingthat certain things are merely possible. At least one respected numerical analysttold us several years ago that oating-point error analysis was too complicatedto imagine checking mechanically.We now know otherwise. After our checking ofthe division microcode, David Russino�, a former CLI employee now working atAMD, used ACL2 to analyze the AMD5K86 oating-point square root code; hisproof attempt exposed a bug in the original code which had escaped testing.[33]In collaboration with Tom Lynch, the code's designer, the code was changedand proved correct with ACL2. This work would not have been done had wepersisted in believing that it was impossible. Similarly, perhaps microcode forsuch complex processors as the CAP will someday be veri�ed automatically by\lightweight" tools; after all, we know that with general methods it is not onlypossible but practical and we are now merely talking about the cost.In summary, general purpose theorem proving tools such as ACL2 are up tothe demands of state-of-the-art industrial microprocessor design. In the shortrun, the contribution of such \heavy duty" tools is merely that they provideanswers that can be obtained no other way. Mechanically checked proofs areessentially the only technology allowing the reliable exploration of arbitrarilydeep problems. On the frontier of what is thought possible, there will alwaysbe a need for such tools and they will likely be in hands of people skilled inboth the application area and mathematics. But in the long run, perhaps themain contribution of such \heavy duty" tools is that they allow us to enlargethe realm of what is thought possible.

References1. K. Albin. Validating the ACL2 CAP Model. CAP Technical Report 9, Com-putational Logic, Inc., 1717 W. 6th, Austin, TX 78703 March, 1995.2. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press: NewYork, 1979.3. R. S. Boyer and J S. Moore. A Computational Logic Handbook, AcademicPress: New York, 1988.4. R. S. Boyer and Y. Yu. Automated Proofs of Object Code for a Widely UsedMicroprocessor, JACM, 43(1) January, 1996, pp. 166{192.5. B. Brock. The CAP 94 Speci�cation, CAP Technical Report 8, Computa-tional Logic, Inc., 1717 W. 6th, Austin, TX 78703, July, 1995.6. B. Brock. Formal Analysis of the CAP Instruction Pipeline, CAP TechnicalReport 10, Computational Logic, Inc., 1717 W. 6th, Austin, TX 78703, June,1996.7. B. Brock. Formal Veri�cation of CAP Applications, CAP Technical Report15, Computational Logic, Inc., 1717 W. 6th, Austin, TX 78703, June, 1996.8. R. E. Bryant. Bit-Level Analysis of an SRT Divider Circuit, CMU-CS-95-140,School of Computer Science, Carnegie Mellon University, Pittsburg, PA 15213.9. R. E. Bryant and Y. A. Chen. Veri�cation of arithmetic functions with binarymoment diagrams. In Proceedings of the 32nd ACM/IEEE Design AutomationConference IEEE Computer Society Press, June 1995.10. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan and D. L. Dill. Sym-bolic Model Checking for Sequential Circuit Veri�cation, IEEE Trans. onComputer-Aided Design of Integrated Circuits and Systems 13(4) April, 1994,pp. 401{424.11. J. R. Burch and D. L. Dill. Automatic veri�cation of pipelined microprocessorcontrol. in David Dill, editor, Computer-Aided Veri�cation, CAV '94, Stan-ford, CA, Springer-Verlag Lecture Notes in Computer Science Volume 818,June, 1994, pp. 68{80.12. E. M. Clarke, S. M. German and X. Zhao. Verifying the SRT Division Al-gorithm using Theorem Proving Techniques, Proceedings of Conference onComputer-Aided Veri�cation, CAV '96, July, 1996.13. E. M. Clarke, M. Fujita, and X. Zhao. Hybrid Decision Diagrams, ICCAD95,1995, pp. 159-163.14. E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillanand L. A. Ness. Veri�cation of the Futurebus+ Cache Coherence Protocol,Proc. CHDL, 1993.15. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A TutorialIntroduction to PVS, presented at Workshop on Industrial-StrengthFormal Speci�cation Techniques, Boca Raton, FL, April 1995 (seehttp://www.csl.sri.com/pvs.html).16. S. Gilfeather, J. Gehman, and C. Harrison. Architecture of a Complex Arith-metic Processor for Communication Signal Processsing in SPIE Proceedings,International Symposium on Optics, Imaging, and Instrumentation,2296 Ad-vanced Signal Processing: Algorithms, Architectures, and Implementations V,July, 1994, pp. 624{625.17. Z. Har'El and R. P. Kurshan. Software for Analytical Development of Com-munications Protocols, AT&T Bell Laboratories Technical Journal, 69(1) Jan-Feb, 1990, pp. 45{59.

18. C. Harrison. Hardware Veri�cation of the Complex Arithmetic Processor XYAddress Generator. CAP Technical Report 16, Computational Logic, Inc.,1717 W. 6th, Austin, TX 78703, August, 1995.19. W. A. Hunt, Jr. Microprocessor Design Veri�cation. Journal of AutomatedReasoning, 5(4), pp. 429{460, 1989.20. W. A. Hunt, Jr. and B. Brock. A Formal HDL and its use in the FM9001Veri�cation. Proceedings of the Royal Society, 1992.21. W. A. Hunt, Jr. CAP Pin-level Speci�cations, CAP Technical Report 12,Computational Logic, Inc., 1717 W. 6th, Austin, TX 78703, April, 1996.22. M. Kaufmann and J S. Moore. High-Level Correctness of ACL2: AStory, URL ftp://ftp.cli.com/pub/acl2/v1-8/acl2-sources/reports/story.txt,September, 1995.23. M. Kaufmann and J S. Moore. ACL2 Version 1.8, URL ftp://ftp.cli.-com/pub/acl2/v1-8/acl2-sources/doc/HTML/acl2-doc.html, 1995.24. M. Kaufmann and J S. Moore. ACL2: An Industrial Strength Version ofNqthm. In Proceedings of the Eleventh Annual Conference on Computer As-surance (COMPASS-96), IEEE Computer Society Press, June, 1996, pp. 23{34.25. M. Kaufmann and P. Pecchiari. Interaction with the Boyer-Moore and The-orem Prover: A Tutorial Study Using the Arithmetic-Geometric Mean Theo-rem. Journal of Automated Reasoning 16(1{2) March, 1996, pp. 181{222.26. S. P. Miller and M. Srivas. Formal Veri�cation of the AAMP5 Microprocessor:A Case Study in the Industrial Use of Formal Methods, in Proceedings ofWIFT '95: Workshop on Industrial-Strength Formal Speci�cation Techniques,IEEECS, April, 1995, pp. 2{16.27. P. M. Miner. De�ning the IEEE-854 Floating-Point Standard in PVS, NASATechnical Memorandum 110167, NASA Langely Research Center, Hampton,VA 23681, 1995.28. J S. Moore. Piton: A Mechanically Veri�ed Assembly-Level Language, Auto-mated Reasoning Series, Kluwer Academic Publishers, 1996.29. J S. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked Proof ofthe Correctness of the Kernel of the AMD5K86 Floating-Point Division Al-gorithm, March, 1996, URL http://devil.ece.utexas.edu:80/�lynch/divide/-divide.html.30. A. V. Oppenheim and R. W. Scahfer. Discrete-Time Signal Processing.Prentice Hall, Englewood Cli�s, New Jersey, 1989.31. K. M. Pitman et al. draft proposed American National Standard for Informa-tion Systems | Programming Language | Common Lisp; X3J13/93-102.Global Engineering Documents, Inc., 1994.32. H. Rue�, M. K. Srivas, and N. Shankar. Modular Veri�cation of SRT Divi-sion, Computer Science Laboratory, SRI International, Menlo Park, CA 49025,1996.33. D. Russino�, \A Mechanically Checked Proof of Correctness of the AMD-5K86 Floating-Point Square Root Microcode," http://www.onr.com/user/-russ/david/fsqrt.html, February, 1997.34. M. Srivas and M. Bickford. Formal Veri�cation of a Pipelined Microprocessor,IEEE Software, September, 1990, pp. 52{64.35. V. Stavridou. Gordon's Computer: A Hardware Veri�cation Case Study inOBJ3, Formal Methods in System Design, 4(3), 1994, pp. 265{310.

36. G. L. Steele, Jr. Common LISP: The Language, Digital Press: Bedford, MA,1984.37. G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press,30 North Avenue, Burlington, MA 01803, 1990.38. U. Stern and D. L. Dill. Automatic Veri�cation of the SCI Cache CoherenceProtocol, in Proceedings of IFIP WG 10.5 Advanced Research Working Con-ference on Correct Hardware Design and Veri�cation Methods, 1995, pp. 21{34.39. Y. Yu. Automated Proofs of Object Code for a Widely used Microprocessor,Technical Report 92, Computational Logic, Inc., 1717 W. 6th, Austin, TX78703, May, 1993. URL http://www.cli.com/reports/�les/92.ps.

This article was processed using the LATEX macro package with LLNCS style

