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Abstract. We briefly describe a mechanically checked proof of Dijk-
stra’s shortest path algorithm for finite directed graphs with nonnegative
edge lengths. The algorithm and proof are formalized in ACL2.

1 Introduction and Related Work

Dijkstra’s shortest path algorithm [3, 4] finds the shortest paths between vertices
of a finite directed graph with nonnegative edge lengths. This paper formalizes
that claim in ACL2 [8] and briefly describes a mechanically checked proof of it.

ACL2 is a Boyer-Moore style theorem prover by Kaufmann and Moore that
supports a first-order logic based on recursively defined functions and inductively
constructed objects. The syntax is that of Lisp, which we use (and paraphrase)
in this paper — contrary to the TPHOLS tradition — since “proof pearls” are
meant to show how certain theorems are proved in certain systems. The ACL2
syntax does not include quantifiers, but the logic provides a means of introducing
“Skolem functions” providing full first-order power at the expense of executabil-
ity. This facility is crucial to the proof described here.

We represent graphs in ACL2 with a list data structure called an associa-
tion list, explained below. We define the function dijkstra-shortest-path to
implement the algorithm. It takes two vertices, a and b, and a graph as input
and it returns a value, say p. We prove that p, is either nil or a path in the
graph from a to b, and that no path in the graph from a to b is shorter than p.
In our formalization, the non-path nil has “infinite” length and all finite paths
are shorter. Hence, our theorem ensures that if p is nil, there is no path from a
to b.

Despite the age and classic nature of the algorithm, there is relatively little
work on the correctness of Dijkstra’s algorithm in the mechanical theorem prov-
ing literature. As far as we are aware, the first mechanically checked proof of the
correctness of the algorithm was done in Mizar by Jing-Chao Chen [2] in a paper
submitted March 17, 2003. For the record, the first ACL2 proof was completed
in September, 2003. Our proof requires significant user guidance, but our script



is about one third the size (in character count, token count and line count).? In
addition, the Mizar article draws upon notation and results in 22 other Mizar
articles concerning properties of sets, functions, arithmetic, chains, and graphs.
The ACL2 proof uses no external definitions or theorems — everything is done
from ACL2’s basic “bootstrap theory.” The Mizar model of the algorithm is
quite similar to ours. In fact, the article states that it was “extremely difficult”
to use existing Mizar models of computing machines to formalize the algorithm
and instead “we adopt functions in the Mizar library, which seem to be pseudo-
codes, and are similar to those in the functional programming, e.g., Lisp.” The
invariant maintained by the Mizar algorithm is essentially the same as ours, but
is expressed in terms of the subgraph “induced” on a larger graph by a subset of
the nodes, while our invariant is phrased in terms of paths through the original
graph that are “confined” to that subset of nodes.

Joe Hurd [6] formalized and proved the reachability property of Dijkstra’s al-
gorithm in HOL. A similar algorithm, Floyd’s all-pairs shortest path algorithm,
was formalized and proved correct in Coq by Eric Fleury in July, 1990 [5] (un-
published manuscript). In February, 1998, Christine Paulin and Jean-Christophe
Fillidtre proved Floyd’s algorithm in Coq [10].

In ACL2, Moore did the first proof of Dijkstra’s algorithm in September,
2003. He then challenged Zhang, then a relatively new ACL2 user, to do it
as an exercise, without seeing Moore’s proof. Zhang completed his first proof
in December, 2003, with some guidance from Moore. Then Zhang cleaned up
his proof, removing many user-supplied proof hints in the process. The proof
described here is Zhang’s second proof.

The rest of this paper is organized as follows. In the next section we describe
the formalization of the algorithm in ACL2. In the subsequent sections we give
our specification, the main invariant, a sketch of the proof, and a typical user-
supplied hint. In Section 7 we give some statistics about it. The complete script
of our work is available online at http://www.cs.utexas.edu/users/qzhang/
shortest-path/index.html.

2 Formalization

The ACL2 language is a subset of Common Lisp. We use Lisp syntax. Suppose
neighbors is a function of two arguments. Then we write (neighbors u g) to
denote the application of that function to u and g. That is, we write (neighbors
u g) where neighbors(u, g) would be written in traditional notation. Lisp con-
ventions make the capitalization of symbols irrelevant (for the particular symbols
used in this paper). Thus neighbors, Neighbors, and NEIGHBORS all denote the
same symbol. We use lowercase consistently, but capitalize symbols when they
occur as the first word of a sentence.

® The Mizar article, not counting the articles it references, contains about 132,000
characters, about 30,000 lexical tokens, and about 3,480 lines. The ACL2 script
contains about 35,500 characters, about 8,400 lexical tokens, and about 1,200 lines.
Comments are not counted.



In ACL2, ordered pairs are called conses and are constructed by the function
cons. The left component of a cons is accessed with the function car and the
right component is accessed with cdr. Conses are used to represent lists. The car
of such a cons is the first element in the list and the cdr is the list containing the
remaining elements. A list is said to be a true-list if its cdr-chain is terminated
with nil rather than some other atom.

An association list (or alist) is a true-list in which the elements are pairs in
which the car is said to be associated with or bound to the cdr. It is easy to write
the function that looks up the value of a key in an alist, by recurring down the
cdr-chain to the first pair that binds the key in question. It is also easy to write
the function that copies an alist inserting a new binding for given key. Alists are
used to represent finite function objects. Thus, if we say “v is bound to w in alist
£” then one may think “f(v) = w.”

We use alists extensively in this work. A directed graph is an alist associating
vertices with edge lists. An edge list is an association list associating vertices
to nonnegative rationals called edge lengths. Thus, a directed graph is a finite
function from vertices to finite functions from vertices to nonnegative rationals.

The function graphp checks that an object is of the shape just described. If
the edge list associated with some vertex u in a graph g binds v to w, then it
means there is an edge in g from u to v with edge length w, i.e., (edge-len u v
g) is w. The function all-nodes collects a duplication-free true-list (“set”) of all
vertices mentioned in a graph. (Neighbors u g) returns the set of all vertices
reachable from vertex u via one edge in g.

Of course, there are other representations of graphs. The particular one cho-
sen here is unimportant once we have defined and proved the basic properties
of graphp, all-nodes, neighbors, edge-1len, etc. Graphs are accessed entirely
via these generic concepts (and no graph is constructed by the algorithm). We
thus could have merely constrained these functions to be in the appropriate rela-
tionships and conducted our proof without a concrete representation of graphs.
We prefer defining such concepts on a concrete representation to establish that
functions satisfying all those constraints indeed exist. In fact, ACL2 forces us
to so witness any such collection of constraints to establish consistency. In ad-
dition, having an executable model of the algorithm enables testing, which is
particularly helpful when one is trying to formulate lemmas and invariants.

A path p in a graph g is a non-empty list of vertices with the property that
successive elements of p are linked by an edge in the graph g. Path-1len returns
the sum of the edge lengths of the edges in a path.

In ACL2 it is common to use the atom nil for a variety of extended meanings.
It is used both as the terminal marker in true-lists and as the “false” truth-value.
We also use it as “infinity” in our system of lengths. That is, we define a strict
ordering 1t (“less than”) and its weaker counterpart 1te (“less than or equal”)
so that nil dominates all rational lengths. We also use nil to denote a non-
existent path; that is, if asked to find a path between two vertices where no such
path exists, we will return nil. We define path-1len to return nil (infinity) on
the non-path nil. In an abuse of the strictness implied by the word “shorter,”



we define (shorterp pl p2 g) to be (1te (path-len pl g) (path-len p2
g).!

The core of Dijkstra’s shortest path algorithm is an iterative procedure, here
called dsp (for Dijkstra’s shortest path), that computes a path table. In our work,
path tables are association lists (finite functions) from vertices to paths. All the
paths start at the same source vertex. Suppose the source vertex is a. Then if
u is paired with path p in the path table, then p is a path from a to u. Other
important invariants on the path table are discussed later. We use the variable
symbol pt to denote the path table. We define (path u pt) to return the path
associated with u in pt (or nil if no path is associated with u) and we define (d
u pt g) to return its length, (path-len (path u pt) g).

The dsp function is defined recursively as shown below.

(defun dsp (ts pt g)
(cond ((endp ts) pt)
(t (let ((u (choose-next ts pt g)))
(dsp (del u ts)
(reassign u (neighbors u g) pt g)
g)))))

Here, dsp is the name of the function and it takes three arguments: ts (the
“temporary set” of nodes not yet visited, pt (the path table), and g (the graph
to be explored). We can interpret this recursive function definition operationally
as follows. To compute (dsp ts pt g), ask whether ts is empty. If so, return
pt. Otherwise, let u be the value of the choose-next expression and call dsp
recursively on (del u ts), the reassign expression, and g.

From the traditional description of the iterative core of the algorithm the
reader should be able to infer the definitions of the functions used above.

Repeat until ts is empty:

Choose u in ts such that (d u pt g) is minimal.

For each edge from u to some neighbor v with edge length w, if (4 v pt
g) > (d u pt g) + w, then modify pt so that the path associated
with v is the current path to u in pt, extended onward to v, (append
(path u pt) (1list v)).

Delete u from ts.

We then define Dijkstra’s algorithm as

(defun dijkstra-shortest-path (a b g)
(let ((pt (dsp (all-nodes g) (list (comns a (list a))) g)))
(path b pt)))

which may be described as:

Let pt be the final path table computed by dsp starting from an initial ts
containing all the nodes of the graph and an initial path table pairing the
source vertex a, with the singleton path that starts and ends at a.

* Some authors write “(weakly) shorter.”



Return the path associated with b in the final path table.

Given that ACL2 is a functional programming language, this algorithm may
be executed on concrete input, though as coded here it is not very efficient.
Much more efficient implementations are possible in ACL2, e.g., using ACL2’s
single-threaded objects [1] (which are data structures that may be modified
destructively but under syntactic restrictions that ensure conformance to the
applicative semantics) and the MBE feature (which permits the replacement of
one ACL2 code fragment by another provided they are provably equivalent in
the given context). These features could be used to implement the array-based
binary trees commonly employed to represent the path table efficiently; the key
step would be a commuting diagram relating the “accessor” function, path,
which recovers the path associated with a given vertex in the path table, to the
“updater” function, reassign, for the two different concrete representations of
path tables.

To our knowledge, no ACL2 proof of such an implementation has been carried
out. But correctness proofs by Sumners and Ray for an in situ ACL2 quicksort
[12], Sumners for an ACL2 BDD package that operates a 60% of the speed of
CUDD [11], and Greve and Wilding for an ACL2 graph path finding algorithm
that executes at speeds near those of a C implementation [7] are evidence that
moving from this implementation to an efficient one in ACL2 is a well-trodden
path. The main obstacle is proving the correctness of some ACL2 function im-
plementing the algorithm in question.

3 Specification

Our specification of the algorithm is

(defthm main-theorem
(implies (and (nodep a g)
(nodep b g)
(graphp g))
(let ((rho (dijkstra-shortest-path a b g)))
(and (or (null rho)
(pathp-from-to rho a b g))
(shortest-pathp a b rho g)))))

That is, suppose a and b are nodes in graph g. Let p be the output of Dijkstra’s
algorithm on a, b, and g. Then p is either nil or a path in g from a to b, and
p is a (weakly) shortest path from a to b in g. Note that if p is nil the claim
that it is nevertheless the shortest path from a to b is equivalent to the claim
that there is no such path, since any true path from a to b is shorter than the
infinite path-len of nil.

To formalize the notion that a path is a (weakly) shortest path we define
(shortest-pathp a b p g) so that it is true if and only if for every path,
path, from a to b in g, p is (weakly) shorter than path. We could “fake” this
quantification with a recursive function that checks all possible paths, if there



were a finite number of them. But in general there may be an infinite number of
(non-simple) paths to a given node. ACL2 does not provide quantifiers per se.
But it does provide a facility, defchoose [9], like Hilbert’s €, by which one can
introduce a function to return an object satisfying a given formula, if such an
object exists.

Therefore, to define shortest-pathp we first use defchoose to introduce
a witness, (shortest-pathp-witness a b p g) with the property that it is a
path in g from a to b and is shorter than p, if such an object exists. Then we
define shortest-pathp so that it is true of p precisely if the witness fails to be
a path from a to b that is shorter than p. In ACL2, this entire development is
wrapped up in a macro called defun-sk (for “define Skolemized function”).

(defun-sk shortest-pathp (a b p g)
(forall path
(implies (pathp-from-to path a b g)
(shorterp p path g))))

The macro expands to an appropriate use of defchoose for the witness ex-
pression (shortest-pathp-witness a b p g) followed by an appropriately en-
capsulated definition of shortest-path. This method of introducing quantified
concepts in ACL2 differs from the method in Nqthm, where Skolemization was
supported directly.

Such Skolem functions are not executable: even when the arguments are
known constants, ACL2 cannot reduce a call of shortest-pathp-witness to
a constant. This does not trouble us because these functions are used in the
specification and proof, but not in the path-finding algorithm itself.

The witness function is used extensively in a series of hand-written hints used
to carry out the most delicate arguments in the correctness proof. In particular,
to show that a just-constructed path is a shortest one, we suppose it is not, use
the witness to obtain an allegedly shorter one, and then derive a contradiction.
But while the various case splits and constructions used to conduct these argu-
ments are the messiest part of the proof, the real crux of the proof is identifying
and formalizing the invariant mentioned above.

4 The Invariant

The mechanical proof is mainly concerned with establishing an invariant on the
temporary set, ts and the path table, pt, of dsp. The invariant also takes the
starting vertex, a, and the graph, g.

Several concepts are used repeatedly in defining the invariant. One is the
notion of the “final set,” usually represented here by the variable fs and equal
to (comp-set ts (all-nodes g)), the complement of the temporary set (with
respect to the set of all nodes of the graph). Another is the idea of a path p being
confined to £s, which means that every node in p except the last is a member of
fs. We define the concept recursively.

(defun confinedp (p fs)



(if (endp p) t
(if (endp (cdr p)) t
(and (memp (car p) fs)
(confinedp (cdr p) £s)))))

A third important concept is that of p being a shortest confined path, meaning
it is shorter than any path from a to b that is confined to £s. We need universal
quantification (defun-sk) to formalize this.

(defun-sk shortest-confined-pathp (a b p fs g)
(forall path (implies (and (pathp-from-to path a b g)
(confinedp path fs))
(shorterp p path g))))

We define the invariant as follows:

(defun invp (ts pt g a)
(let ((fs (comp-set ts (all-nodes g))))
(and (ts-propertyp a ts fs pt g)
(fs-propertyp a fs fs pt g)
(pt-propertyp a pt g))))

The invariant has three conjuncts, one each about the temporary set, the
final set, and the path table, although this partitioning is somewhat artificial
since all involve fs and pt to some extent.

We define ts-propertyp recursively to check that for every node in the
temporary set, the path to that node in the path table is a shortest confined
path to that node and the path is itself confined.

(defun ts-propertyp (a ts fs pt g)
(if (endp ts) t
(and (shortest-confined-pathp a (car ts)
(path (car ts) pt)
fs g)
(confinedp (path (car ts) pt) fs)
(ts-propertyp a (cdr ts) fs pt g))))

We define fs-propertyp recursively in a very similar fashion, except it checks
that for every node in the final set, the path assigned to that node in the path
table is a shortest path to that node and is confined.

(defun fs-propertyp (a fs fsO pt g)
(if (endp fs) t
(and (shortest-pathp a (car fs) (path (car fs) pt) g)
(confinedp (path (car fs) pt) £s0)
(fs-propertyp a (cdr fs) £sO pt g))))



Finally, we define pt-propertyp to check that for every entry in the path
table is either nil or a path from a to the node with which it is associated in
the table.

(defun pt-propertyp (a pt g)
(if (endp pt) t
(and (or (null (cdar pt))
(pathp-from-to (cdar pt) a (caar pt) g))
(pt-propertyp a (cdr pt) g))))

5 Mechanical Proof

The proof breaks down into two main lemmas. The first is that the invariant
holds initially.

(defthm invp-0
(implies (nodep a g)
(invp (all-nodes g) (list (coms a (list a))) g a)))

The second is that the invariant holds as dsp recurs.

(defthm invp-choose-next
(implies (and (invp ts pt g a)
(my-subsetp ts (all-nodes g))
(graphp g)
(consp ts)
(setp ts)
(nodep a g)
(equal (path a pt) (list a)))
(let ((u (choose-next ts pt g)))
(invp (del u ts)
(reassign u (neighbors u g) pt g)
g a)))
:hints ...)

From these two, it is straightforward to prove

(defthm invp-last
(implies (and (nodep a g)
(graphp g))
(invp nil

(dsp (all-nodes g)
(1list (cons a (list a)))
g)

g a)))

and main-theorem follows without much more work.



6 Hints

The hardest part of the proof is, of course, the proof of invp-choose-next. We
present only one of the major cases. Dsp uses choose-next to choose a vertex,
u, in ts whose associated path in pt is of minimal length. Why is this path the
shortest path to that vertex? Here is the lemma that states that it is.

(defthm choose-next-shortest
(implies (and (graphp g)
(consp ts)
(my-subsetp ts (all-nodes g))
(invp ts pt g a))
(shortest-pathp a
(choose-next ts pt g)
(path (choose-next ts pt g) pt)
g))
thints ...)

ACL2 cannot prove this without help. Help is given by the user in the form of
hints. We first describe the proof and then show the actual hints.

Let the choose-next term above be u and let its associated path in pt be 4.
Let fs be the “final set,” (comp-set ts (all-nodes g)). We know, from the
invp hypothesis, that § is the shortest path to u that is confined to fs. We wish
to show it is the shortest path (confined or not). Suppose it is not. Then there is
a shorter path, say o, to u that is not confined to fs, i.e., ¢ contains a vertex v
in ts. Let ¢’ be the initial portion of o up to and including v. Then ¢’ is shorter
than o, terminates on a node in ts, and is confined to fs. But the path in pt
associated with v is, by invp, shorter than ¢’. And § is shorter than that path
by the selection criteria in choose-next. Hence, ¢ is shorter than o.

The actual term for o above is (shortest-pathp-witness a u § g). And
the actual term for ¢’ is (find-partial-path o fs). Find-partial-pathis a
user-defined recursive function that finds the subpath of a path that terminates
in the first node outside of fs.

Hints in ACL2 are generally coded by listing a series of instantiations of
previously proved lemmas. These instances are conjoined to the hypotheses of
the goal theorem and then used freely by ACL2. To code the above hint we tell
ACL2 not to expand the definitions of shorterp, path and pathp and we provide
two instances. The ellipsis in the display above for choose-next-shortest is
filled in by:

(("Goal" :in-theory (disable shorterp path pathp)
:use ((:instance pathp-partial-path (p o) (s fs))
(:instance shorterp-by-partial-and-choose-next
(u u) (path ¢') (v (car (last ¢')))))))

The expression following the symbol :use specifies that the theorem prover is
to add two lemma instances to the hypotheses of the goal. The first lemma,
pathp-partial-path, instantiated above says that find-partial-path con-
structs a confined path to its last node. The given substitution replaces the
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variable symbol p in the lemma by o and the variable s by fs. The second
lemma says that if the path to u in pt is shorter than the path to v in pt, and
ts-propertyp holds, and path is a confined path to v, then the path to u is
shorter than path.

7 Some Details and Statistics

The entire proof script contains 39 defuns and 125 defthms. The defthms can
be broken into to two broad categories: elementary lemmas about the basic
ideas and “custom” lemmas for this particular proof. We classified as “custom”
any lemma mentioning choose-next, reassign, ts-propertyp, fs-propertyp,
pt-propertyp, invp, dsp, or dijkstra-shortest-path.

There are 68 elementary lemmas about finite set theory, the notions of shorter
and shortest path, elementary path properties (including that of being confined)
and manipulation (including the notion of finding a confined subpath), and struc-
tural properties of association lists, paths, tables, and graphs. Here are a few.

(defthm comp-set-id
(equal (comp-set s s) nil))
(defthm neighbor-implies-nodep
(implies (memp v (neighbors u g))
(memp v (all-nodes g))))
(defthm shortest-pathp-corollary
(implies (and (shortest-pathp a b p g)
(pathp-from-to path a b g))
(shorterp p path g)))
(defthm confinedp-append
(implies (and (confinedp p s)
(memp (car (last p)) s))
(confinedp (append p (list v)) s)))
(defthm path-len-append
(implies (pathp p g)
(equal (path-len (append p (list v)) g)
(plus (path-len p g)
(edge-len (car (last p)) v g)))))

All are used by ACL2 as conditional rewrite rules. For example, the last theorem
is used to rewrite (path-len (append ...)) to the plus expression, provided
(pathp p g) can be established. (P1lus is just addition extended to handle nil
as“infinity.”)

There are 57 custom lemmas, including four shown in this paper: invp-0,
invp-choose-next, invp-last, and choose-next-shortest. Some are easy to
prove lemmas that “explain” the fact that functions like ts-propertyp are re-
cursively defined quantifiers:

(defthm ts-propertyp-prop-lemmal
(implies (and (ts-propertyp a ts fs pt g)
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(memp v ts))
(and (shortest-confined-pathp a v (path v pt) fs g)
(confinedp (path v pt) fs))))

In all, we had to give 51 hints. About 30 of these were hints only to disable

(i.e., avoid using) certain definitions or theorems. Twenty-three times we had to
instruct the theorem prover to :use instances of certain theorems, as illustrated
above, and a total of 31 instances were mentioned in the script. The vast majority
of the hints were used in the custom theorems: 37 of the 51 hints, 19 of the 23
:use hints for 28 of the 31 instances.

The proof takes about 67 seconds on a 2.4 GHz Intel Xeon”™ running ACL2

Version 2.9 compiled under GNU Common Lisp.
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