
Proof Pearl: Dijkstra's Shortest Path AlgorithmVeri�ed with ACL2J Strother Moore1 and Qiang Zhang21 Department of Computer Sienes, University of Texas at Austin, Austin, Texas78712, USA moore�s.utexas.edu,WWW home page: http://s.utexas.edu/users/moore2 Department of Computer Sienes, University of Texas at Austin, Austin, Texas78712, USA qzhang�s.utexas.edu,WWW home page: http://s.utexas.edu/users/qzhangAbstrat. We briey desribe a mehanially heked proof of Dijk-stra's shortest path algorithm for �nite direted graphs with nonnegativeedge lengths. The algorithm and proof are formalized in ACL2.1 Introdution and Related WorkDijkstra's shortest path algorithm [3, 4℄ �nds the shortest paths between vertiesof a �nite direted graph with nonnegative edge lengths. This paper formalizesthat laim in ACL2 [8℄ and briey desribes a mehanially heked proof of it.ACL2 is a Boyer-Moore style theorem prover by Kaufmann and Moore thatsupports a �rst-order logi based on reursively de�ned funtions and indutivelyonstruted objets. The syntax is that of Lisp, whih we use (and paraphrase)in this paper { ontrary to the TPHOLS tradition { sine \proof pearls" aremeant to show how ertain theorems are proved in ertain systems. The ACL2syntax does not inlude quanti�ers, but the logi provides a means of introduing\Skolem funtions" providing full �rst-order power at the expense of exeutabil-ity. This faility is ruial to the proof desribed here.We represent graphs in ACL2 with a list data struture alled an assoia-tion list, explained below. We de�ne the funtion dijkstra-shortest-path toimplement the algorithm. It takes two verties, a and b, and a graph as inputand it returns a value, say �. We prove that �, is either nil or a path in thegraph from a to b, and that no path in the graph from a to b is shorter than �.In our formalization, the non-path nil has \in�nite" length and all �nite pathsare shorter. Hene, our theorem ensures that if � is nil, there is no path from ato b.Despite the age and lassi nature of the algorithm, there is relatively littlework on the orretness of Dijkstra's algorithm in the mehanial theorem prov-ing literature. As far as we are aware, the �rst mehanially heked proof of theorretness of the algorithm was done in Mizar by Jing-Chao Chen [2℄ in a papersubmitted Marh 17, 2003. For the reord, the �rst ACL2 proof was ompletedin September, 2003. Our proof requires signi�ant user guidane, but our sript



2is about one third the size (in harater ount, token ount and line ount).3 Inaddition, the Mizar artile draws upon notation and results in 22 other Mizarartiles onerning properties of sets, funtions, arithmeti, hains, and graphs.The ACL2 proof uses no external de�nitions or theorems { everything is donefrom ACL2's basi \bootstrap theory." The Mizar model of the algorithm isquite similar to ours. In fat, the artile states that it was \extremely diÆult"to use existing Mizar models of omputing mahines to formalize the algorithmand instead \we adopt funtions in the Mizar library, whih seem to be pseudo-odes, and are similar to those in the funtional programming, e.g., Lisp." Theinvariant maintained by the Mizar algorithm is essentially the same as ours, butis expressed in terms of the subgraph \indued" on a larger graph by a subset ofthe nodes, while our invariant is phrased in terms of paths through the originalgraph that are \on�ned" to that subset of nodes.Joe Hurd [6℄ formalized and proved the reahability property of Dijkstra's al-gorithm in HOL. A similar algorithm, Floyd's all-pairs shortest path algorithm,was formalized and proved orret in Coq by Eri Fleury in July, 1990 [5℄ (un-published manusript). In February, 1998, Christine Paulin and Jean-ChristopheFilliâtre proved Floyd's algorithm in Coq [10℄.In ACL2, Moore did the �rst proof of Dijkstra's algorithm in September,2003. He then hallenged Zhang, then a relatively new ACL2 user, to do itas an exerise, without seeing Moore's proof. Zhang ompleted his �rst proofin Deember, 2003, with some guidane from Moore. Then Zhang leaned uphis proof, removing many user-supplied proof hints in the proess. The proofdesribed here is Zhang's seond proof.The rest of this paper is organized as follows. In the next setion we desribethe formalization of the algorithm in ACL2. In the subsequent setions we giveour spei�ation, the main invariant, a sketh of the proof, and a typial user-supplied hint. In Setion 7 we give some statistis about it. The omplete sriptof our work is available online at http://www.s.utexas.edu/users/qzhang/shortest-path/index.html.2 FormalizationThe ACL2 language is a subset of Common Lisp. We use Lisp syntax. Supposeneighbors is a funtion of two arguments. Then we write (neighbors u g) todenote the appliation of that funtion to u and g. That is, we write (neighborsu g) where neighbors(u; g) would be written in traditional notation. Lisp on-ventions make the apitalization of symbols irrelevant (for the partiular symbolsused in this paper). Thus neighbors, Neighbors, and NEIGHBORS all denote thesame symbol. We use lowerase onsistently, but apitalize symbols when theyour as the �rst word of a sentene.3 The Mizar artile, not ounting the artiles it referenes, ontains about 132,000haraters, about 30,000 lexial tokens, and about 3,480 lines. The ACL2 sriptontains about 35,500 haraters, about 8,400 lexial tokens, and about 1,200 lines.Comments are not ounted.



3In ACL2, ordered pairs are alled onses and are onstruted by the funtionons. The left omponent of a ons is aessed with the funtion ar and theright omponent is aessed with dr. Conses are used to represent lists. The arof suh a ons is the �rst element in the list and the dr is the list ontaining theremaining elements. A list is said to be a true-list if its dr-hain is terminatedwith nil rather than some other atom.An assoiation list (or alist) is a true-list in whih the elements are pairs inwhih the ar is said to be assoiated with or bound to the dr. It is easy to writethe funtion that looks up the value of a key in an alist, by reurring down thedr-hain to the �rst pair that binds the key in question. It is also easy to writethe funtion that opies an alist inserting a new binding for given key. Alists areused to represent �nite funtion objets. Thus, if we say \v is bound to w in alistf" then one may think \f(v) = w."We use alists extensively in this work. A direted graph is an alist assoiatingverties with edge lists. An edge list is an assoiation list assoiating vertiesto nonnegative rationals alled edge lengths. Thus, a direted graph is a �nitefuntion from verties to �nite funtions from verties to nonnegative rationals.The funtion graphp heks that an objet is of the shape just desribed. Ifthe edge list assoiated with some vertex u in a graph g binds v to w, then itmeans there is an edge in g from u to v with edge length w, i.e., (edge-len u vg) is w. The funtion all-nodes ollets a dupliation-free true-list (\set") of allverties mentioned in a graph. (Neighbors u g) returns the set of all vertiesreahable from vertex u via one edge in g.Of ourse, there are other representations of graphs. The partiular one ho-sen here is unimportant one we have de�ned and proved the basi propertiesof graphp, all-nodes, neighbors, edge-len, et. Graphs are aessed entirelyvia these generi onepts (and no graph is onstruted by the algorithm). Wethus ould have merely onstrained these funtions to be in the appropriate rela-tionships and onduted our proof without a onrete representation of graphs.We prefer de�ning suh onepts on a onrete representation to establish thatfuntions satisfying all those onstraints indeed exist. In fat, ACL2 fores usto so witness any suh olletion of onstraints to establish onsisteny. In ad-dition, having an exeutable model of the algorithm enables testing, whih ispartiularly helpful when one is trying to formulate lemmas and invariants.A path p in a graph g is a non-empty list of verties with the property thatsuessive elements of p are linked by an edge in the graph g. Path-len returnsthe sum of the edge lengths of the edges in a path.In ACL2 it is ommon to use the atom nil for a variety of extended meanings.It is used both as the terminal marker in true-lists and as the \false" truth-value.We also use it as \in�nity" in our system of lengths. That is, we de�ne a stritordering lt (\less than") and its weaker ounterpart lte (\less than or equal")so that nil dominates all rational lengths. We also use nil to denote a non-existent path; that is, if asked to �nd a path between two verties where no suhpath exists, we will return nil. We de�ne path-len to return nil (in�nity) onthe non-path nil. In an abuse of the stritness implied by the word \shorter,"



4we de�ne (shorterp p1 p2 g) to be (lte (path-len p1 g) (path-len p2g)).4The ore of Dijkstra's shortest path algorithm is an iterative proedure, herealled dsp (for Dijkstra's shortest path), that omputes a path table. In our work,path tables are assoiation lists (�nite funtions) from verties to paths. All thepaths start at the same soure vertex. Suppose the soure vertex is a. Then ifu is paired with path p in the path table, then p is a path from a to u. Otherimportant invariants on the path table are disussed later. We use the variablesymbol pt to denote the path table. We de�ne (path u pt) to return the pathassoiated with u in pt (or nil if no path is assoiated with u) and we de�ne (du pt g) to return its length, (path-len (path u pt) g).The dsp funtion is de�ned reursively as shown below.(defun dsp (ts pt g)(ond ((endp ts) pt)(t (let ((u (hoose-next ts pt g)))(dsp (del u ts)(reassign u (neighbors u g) pt g)g)))))Here, dsp is the name of the funtion and it takes three arguments: ts (the\temporary set" of nodes not yet visited, pt (the path table), and g (the graphto be explored). We an interpret this reursive funtion de�nition operationallyas follows. To ompute (dsp ts pt g), ask whether ts is empty. If so, returnpt. Otherwise, let u be the value of the hoose-next expression and all dspreursively on (del u ts), the reassign expression, and g.From the traditional desription of the iterative ore of the algorithm thereader should be able to infer the de�nitions of the funtions used above.Repeat until ts is empty:Choose u in ts suh that (d u pt g) is minimal.For eah edge from u to some neighbor v with edge length w, if (d v ptg) > (d u pt g) + w, then modify pt so that the path assoiatedwith v is the urrent path to u in pt, extended onward to v, (append(path u pt) (list v)).Delete u from ts.We then de�ne Dijkstra's algorithm as(defun dijkstra-shortest-path (a b g)(let ((pt (dsp (all-nodes g) (list (ons a (list a))) g)))(path b pt)))whih may be desribed as:Let pt be the �nal path table omputed by dsp starting from an initial tsontaining all the nodes of the graph and an initial path table pairing thesoure vertex a, with the singleton path that starts and ends at a.4 Some authors write \(weakly) shorter."



5Return the path assoiated with b in the �nal path table.Given that ACL2 is a funtional programming language, this algorithm maybe exeuted on onrete input, though as oded here it is not very eÆient.Muh more eÆient implementations are possible in ACL2, e.g., using ACL2'ssingle-threaded objets [1℄ (whih are data strutures that may be modi�eddestrutively but under syntati restritions that ensure onformane to theappliative semantis) and the MBE feature (whih permits the replaement ofone ACL2 ode fragment by another provided they are provably equivalent inthe given ontext). These features ould be used to implement the array-basedbinary trees ommonly employed to represent the path table eÆiently; the keystep would be a ommuting diagram relating the \aessor" funtion, path,whih reovers the path assoiated with a given vertex in the path table, to the\updater" funtion, reassign, for the two di�erent onrete representations ofpath tables.To our knowledge, no ACL2 proof of suh an implementation has been arriedout. But orretness proofs by Sumners and Ray for an in situ ACL2 quiksort[12℄, Sumners for an ACL2 BDD pakage that operates a 60% of the speed ofCUDD [11℄, and Greve and Wilding for an ACL2 graph path �nding algorithmthat exeutes at speeds near those of a C implementation [7℄ are evidene thatmoving from this implementation to an eÆient one in ACL2 is a well-troddenpath. The main obstale is proving the orretness of some ACL2 funtion im-plementing the algorithm in question.3 Spei�ationOur spei�ation of the algorithm is(defthm main-theorem(implies (and (nodep a g)(nodep b g)(graphp g))(let ((rho (dijkstra-shortest-path a b g)))(and (or (null rho)(pathp-from-to rho a b g))(shortest-pathp a b rho g)))))That is, suppose a and b are nodes in graph g. Let � be the output of Dijkstra'salgorithm on a, b, and g. Then � is either nil or a path in g from a to b, and� is a (weakly) shortest path from a to b in g. Note that if � is nil the laimthat it is nevertheless the shortest path from a to b is equivalent to the laimthat there is no suh path, sine any true path from a to b is shorter than thein�nite path-len of nil.To formalize the notion that a path is a (weakly) shortest path we de�ne(shortest-pathp a b p g) so that it is true if and only if for every path,path, from a to b in g, p is (weakly) shorter than path. We ould \fake" thisquanti�ation with a reursive funtion that heks all possible paths, if there



6were a �nite number of them. But in general there may be an in�nite number of(non-simple) paths to a given node. ACL2 does not provide quanti�ers per se.But it does provide a faility, defhoose [9℄, like Hilbert's �, by whih one anintrodue a funtion to return an objet satisfying a given formula, if suh anobjet exists.Therefore, to de�ne shortest-pathp we �rst use defhoose to introduea witness, (shortest-pathp-witness a b p g) with the property that it is apath in g from a to b and is shorter than p, if suh an objet exists. Then wede�ne shortest-pathp so that it is true of p preisely if the witness fails to bea path from a to b that is shorter than p. In ACL2, this entire development iswrapped up in a maro alled defun-sk (for \de�ne Skolemized funtion").(defun-sk shortest-pathp (a b p g)(forall path(implies (pathp-from-to path a b g)(shorterp p path g))))The maro expands to an appropriate use of defhoose for the witness ex-pression (shortest-pathp-witness a b p g) followed by an appropriately en-apsulated de�nition of shortest-path. This method of introduing quanti�edonepts in ACL2 di�ers from the method in Nqthm, where Skolemization wassupported diretly.Suh Skolem funtions are not exeutable: even when the arguments areknown onstants, ACL2 annot redue a all of shortest-pathp-witness toa onstant. This does not trouble us beause these funtions are used in thespei�ation and proof, but not in the path-�nding algorithm itself.The witness funtion is used extensively in a series of hand-written hints usedto arry out the most deliate arguments in the orretness proof. In partiular,to show that a just-onstruted path is a shortest one, we suppose it is not, usethe witness to obtain an allegedly shorter one, and then derive a ontradition.But while the various ase splits and onstrutions used to ondut these argu-ments are the messiest part of the proof, the real rux of the proof is identifyingand formalizing the invariant mentioned above.4 The InvariantThe mehanial proof is mainly onerned with establishing an invariant on thetemporary set, ts and the path table, pt, of dsp. The invariant also takes thestarting vertex, a, and the graph, g.Several onepts are used repeatedly in de�ning the invariant. One is thenotion of the \�nal set," usually represented here by the variable fs and equalto (omp-set ts (all-nodes g)), the omplement of the temporary set (withrespet to the set of all nodes of the graph). Another is the idea of a path p beingon�ned to fs, whih means that every node in p exept the last is a member offs. We de�ne the onept reursively.(defun onfinedp (p fs)



7(if (endp p) t(if (endp (dr p)) t(and (memp (ar p) fs)(onfinedp (dr p) fs)))))A third important onept is that of p being a shortest on�ned path, meaningit is shorter than any path from a to b that is on�ned to fs. We need universalquanti�ation (defun-sk) to formalize this.(defun-sk shortest-onfined-pathp (a b p fs g)(forall path (implies (and (pathp-from-to path a b g)(onfinedp path fs))(shorterp p path g))))We de�ne the invariant as follows:(defun invp (ts pt g a)(let ((fs (omp-set ts (all-nodes g))))(and (ts-propertyp a ts fs pt g)(fs-propertyp a fs fs pt g)(pt-propertyp a pt g))))The invariant has three onjunts, one eah about the temporary set, the�nal set, and the path table, although this partitioning is somewhat arti�ialsine all involve fs and pt to some extent.We de�ne ts-propertyp reursively to hek that for every node in thetemporary set, the path to that node in the path table is a shortest on�nedpath to that node and the path is itself on�ned.(defun ts-propertyp (a ts fs pt g)(if (endp ts) t(and (shortest-onfined-pathp a (ar ts)(path (ar ts) pt)fs g)(onfinedp (path (ar ts) pt) fs)(ts-propertyp a (dr ts) fs pt g))))We de�ne fs-propertyp reursively in a very similar fashion, exept it heksthat for every node in the �nal set, the path assigned to that node in the pathtable is a shortest path to that node and is on�ned.(defun fs-propertyp (a fs fs0 pt g)(if (endp fs) t(and (shortest-pathp a (ar fs) (path (ar fs) pt) g)(onfinedp (path (ar fs) pt) fs0)(fs-propertyp a (dr fs) fs0 pt g))))



8 Finally, we de�ne pt-propertyp to hek that for every entry in the pathtable is either nil or a path from a to the node with whih it is assoiated inthe table.(defun pt-propertyp (a pt g)(if (endp pt) t(and (or (null (dar pt))(pathp-from-to (dar pt) a (aar pt) g))(pt-propertyp a (dr pt) g))))5 Mehanial ProofThe proof breaks down into two main lemmas. The �rst is that the invariantholds initially.(defthm invp-0(implies (nodep a g)(invp (all-nodes g) (list (ons a (list a))) g a)))The seond is that the invariant holds as dsp reurs.(defthm invp-hoose-next(implies (and (invp ts pt g a)(my-subsetp ts (all-nodes g))(graphp g)(onsp ts)(setp ts)(nodep a g)(equal (path a pt) (list a)))(let ((u (hoose-next ts pt g)))(invp (del u ts)(reassign u (neighbors u g) pt g)g a))):hints : : :)From these two, it is straightforward to prove(defthm invp-last(implies (and (nodep a g)(graphp g))(invp nil(dsp (all-nodes g)(list (ons a (list a)))g)g a)))and main-theorem follows without muh more work.



96 HintsThe hardest part of the proof is, of ourse, the proof of invp-hoose-next. Wepresent only one of the major ases. Dsp uses hoose-next to hoose a vertex,u, in ts whose assoiated path in pt is of minimal length. Why is this path theshortest path to that vertex? Here is the lemma that states that it is.(defthm hoose-next-shortest(implies (and (graphp g)(onsp ts)(my-subsetp ts (all-nodes g))(invp ts pt g a))(shortest-pathp a(hoose-next ts pt g)(path (hoose-next ts pt g) pt)g)):hints : : :)ACL2 annot prove this without help. Help is given by the user in the form ofhints. We �rst desribe the proof and then show the atual hints.Let the hoose-next term above be u and let its assoiated path in pt be Æ.Let fs be the \�nal set," (omp-set ts (all-nodes g)). We know, from theinvp hypothesis, that Æ is the shortest path to u that is on�ned to fs. We wishto show it is the shortest path (on�ned or not). Suppose it is not. Then there isa shorter path, say �, to u that is not on�ned to fs, i.e., � ontains a vertex vin ts. Let �0 be the initial portion of � up to and inluding v. Then �0 is shorterthan �, terminates on a node in ts, and is on�ned to fs. But the path in ptassoiated with v is, by invp, shorter than �0. And Æ is shorter than that pathby the seletion riteria in hoose-next. Hene, Æ is shorter than �.The atual term for � above is (shortest-pathp-witness a u Æ g). Andthe atual term for �0 is (find-partial-path � fs). Find-partial-path is auser-de�ned reursive funtion that �nds the subpath of a path that terminatesin the �rst node outside of fs.Hints in ACL2 are generally oded by listing a series of instantiations ofpreviously proved lemmas. These instanes are onjoined to the hypotheses ofthe goal theorem and then used freely by ACL2. To ode the above hint we tellACL2 not to expand the de�nitions of shorterp, path and pathp and we providetwo instanes. The ellipsis in the display above for hoose-next-shortest is�lled in by:(("Goal" :in-theory (disable shorterp path pathp):use ((:instane pathp-partial-path (p �) (s fs))(:instane shorterp-by-partial-and-hoose-next(u u) (path �0) (v (ar (last �0)))))))The expression following the symbol :use spei�es that the theorem prover isto add two lemma instanes to the hypotheses of the goal. The �rst lemma,pathp-partial-path, instantiated above says that find-partial-path on-struts a on�ned path to its last node. The given substitution replaes the



10variable symbol p in the lemma by � and the variable s by fs. The seondlemma says that if the path to u in pt is shorter than the path to v in pt, andts-propertyp holds, and path is a on�ned path to v, then the path to u isshorter than path.7 Some Details and StatistisThe entire proof sript ontains 39 defuns and 125 defthms. The defthms anbe broken into to two broad ategories: elementary lemmas about the basiideas and \ustom" lemmas for this partiular proof. We lassi�ed as \ustom"any lemma mentioning hoose-next, reassign, ts-propertyp, fs-propertyp,pt-propertyp, invp, dsp, or dijkstra-shortest-path.There are 68 elementary lemmas about �nite set theory, the notions of shorterand shortest path, elementary path properties (inluding that of being on�ned)and manipulation (inluding the notion of �nding a on�ned subpath), and stru-tural properties of assoiation lists, paths, tables, and graphs. Here are a few.(defthm omp-set-id(equal (omp-set s s) nil))(defthm neighbor-implies-nodep(implies (memp v (neighbors u g))(memp v (all-nodes g))))(defthm shortest-pathp-orollary(implies (and (shortest-pathp a b p g)(pathp-from-to path a b g))(shorterp p path g)))(defthm onfinedp-append(implies (and (onfinedp p s)(memp (ar (last p)) s))(onfinedp (append p (list v)) s)))(defthm path-len-append(implies (pathp p g)(equal (path-len (append p (list v)) g)(plus (path-len p g)(edge-len (ar (last p)) v g)))))All are used by ACL2 as onditional rewrite rules. For example, the last theoremis used to rewrite (path-len (append : : :)) to the plus expression, provided(pathp p g) an be established. (Plus is just addition extended to handle nilas\in�nity.")There are 57 ustom lemmas, inluding four shown in this paper: invp-0,invp-hoose-next, invp-last, and hoose-next-shortest. Some are easy toprove lemmas that \explain" the fat that funtions like ts-propertyp are re-ursively de�ned quanti�ers:(defthm ts-propertyp-prop-lemma1(implies (and (ts-propertyp a ts fs pt g)



11(memp v ts))(and (shortest-onfined-pathp a v (path v pt) fs g)(onfinedp (path v pt) fs))))In all, we had to give 51 hints. About 30 of these were hints only to disable(i.e., avoid using) ertain de�nitions or theorems. Twenty-three times we had toinstrut the theorem prover to :use instanes of ertain theorems, as illustratedabove, and a total of 31 instanes were mentioned in the sript. The vast majorityof the hints were used in the ustom theorems: 37 of the 51 hints, 19 of the 23:use hints for 28 of the 31 instanes.The proof takes about 67 seonds on a 2.4 GHz Intel XeonTM running ACL2Version 2.9 ompiled under GNU Common Lisp.Referenes1. R. S. Boyer and J S. Moore. Single-threaded objets in ACL2. In PADL 2002, pages9{27, Heidelberg, 2002. Springer-Verlag LNCS 2257. http://www.s.utexas.edu/users/moore/publiations/stobj/main.ps.gz.2. Jing-Chao Chen. Dijkstra's shortest path algorithm. Journal of Formalized Math-ematis, vol. 15, 2003.3. E. W. Dijkstra. A note on two problems in onnetion with graphs. Numer. Math.1, pages 269{271, 1959.4. Shimon Even. Graph Algorithms, hapter 1. Computer Siene Press, In., 1979.5. Eri Fleury. Implantation des algorithmes de Floyd et de Dijkstra dans le Caluldes Construtions. Rapport de Stage, July 1990.6. M. Gordon, J. Hurd, and K. Slind. Exeuting the formal semantis of the Aelleraproperty spei�ation language by mehanized theorem proving. In D. Geist, ed-itor, Proeedings of CHARME 2003, volume 2860 of Leture Notes in ComputerSiene, pages 200{215. Springer Verlag, 2003.7. D. Greve and M. Wilding. Using mbe to speed a veri�ed graph path�nder. InACL2 Workshop 2003, Boulder, Colorado, July 2003. http://www.s.utexas.edu/users/moore/al2/workshop-2003/.8. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: AnApproah. Kluwer Aademi Press, Boston, MA., 2000.9. M. Kaufmann and J S. Moore. Strutured theory development for a mehanizedlogi. Journal of Automated Reasoning, 26(2):161{203, 2001.10. C. Paulin and J. C. Filliâtre. http://pauilla.inria.fr/drom/www/oq/ontribs/floyd.html.11. R. Sumners. Corretness proof of a BDD manager in the ontext of satis�abilityheking. In Proeedings of ACL2 Workshop 2000. Department of Computer Si-enes, Tehnial Report TR-00-29, November 2000. http://www.s.utexas.edu/users/moore/al2/workshop-2000/final/sumners2/paper.ps.12. R. Sumners and S. Ray. Veri�ation of an in-plae quiksort in ACL2. In Pro-eedings of the ACL2 Workshop, 2002. http://www.s.utexas.edu/~moore/al2/workshop-2002, Grenoble, April 2002.


