
Proof Pearl: Dijkstra's Shortest Path AlgorithmVeri�ed with ACL2J Strother Moore1 and Qiang Zhang21 Department of Computer S
ien
es, University of Texas at Austin, Austin, Texas78712, USA moore�
s.utexas.edu,WWW home page: http://
s.utexas.edu/users/moore2 Department of Computer S
ien
es, University of Texas at Austin, Austin, Texas78712, USA qzhang�
s.utexas.edu,WWW home page: http://
s.utexas.edu/users/qzhangAbstra
t. We brie
y des
ribe a me
hani
ally 
he
ked proof of Dijk-stra's shortest path algorithm for �nite dire
ted graphs with nonnegativeedge lengths. The algorithm and proof are formalized in ACL2.1 Introdu
tion and Related WorkDijkstra's shortest path algorithm [3, 4℄ �nds the shortest paths between verti
esof a �nite dire
ted graph with nonnegative edge lengths. This paper formalizesthat 
laim in ACL2 [8℄ and brie
y des
ribes a me
hani
ally 
he
ked proof of it.ACL2 is a Boyer-Moore style theorem prover by Kaufmann and Moore thatsupports a �rst-order logi
 based on re
ursively de�ned fun
tions and indu
tively
onstru
ted obje
ts. The syntax is that of Lisp, whi
h we use (and paraphrase)in this paper { 
ontrary to the TPHOLS tradition { sin
e \proof pearls" aremeant to show how 
ertain theorems are proved in 
ertain systems. The ACL2syntax does not in
lude quanti�ers, but the logi
 provides a means of introdu
ing\Skolem fun
tions" providing full �rst-order power at the expense of exe
utabil-ity. This fa
ility is 
ru
ial to the proof des
ribed here.We represent graphs in ACL2 with a list data stru
ture 
alled an asso
ia-tion list, explained below. We de�ne the fun
tion dijkstra-shortest-path toimplement the algorithm. It takes two verti
es, a and b, and a graph as inputand it returns a value, say �. We prove that �, is either nil or a path in thegraph from a to b, and that no path in the graph from a to b is shorter than �.In our formalization, the non-path nil has \in�nite" length and all �nite pathsare shorter. Hen
e, our theorem ensures that if � is nil, there is no path from ato b.Despite the age and 
lassi
 nature of the algorithm, there is relatively littlework on the 
orre
tness of Dijkstra's algorithm in the me
hani
al theorem prov-ing literature. As far as we are aware, the �rst me
hani
ally 
he
ked proof of the
orre
tness of the algorithm was done in Mizar by Jing-Chao Chen [2℄ in a papersubmitted Mar
h 17, 2003. For the re
ord, the �rst ACL2 proof was 
ompletedin September, 2003. Our proof requires signi�
ant user guidan
e, but our s
ript



2is about one third the size (in 
hara
ter 
ount, token 
ount and line 
ount).3 Inaddition, the Mizar arti
le draws upon notation and results in 22 other Mizararti
les 
on
erning properties of sets, fun
tions, arithmeti
, 
hains, and graphs.The ACL2 proof uses no external de�nitions or theorems { everything is donefrom ACL2's basi
 \bootstrap theory." The Mizar model of the algorithm isquite similar to ours. In fa
t, the arti
le states that it was \extremely diÆ
ult"to use existing Mizar models of 
omputing ma
hines to formalize the algorithmand instead \we adopt fun
tions in the Mizar library, whi
h seem to be pseudo-
odes, and are similar to those in the fun
tional programming, e.g., Lisp." Theinvariant maintained by the Mizar algorithm is essentially the same as ours, butis expressed in terms of the subgraph \indu
ed" on a larger graph by a subset ofthe nodes, while our invariant is phrased in terms of paths through the originalgraph that are \
on�ned" to that subset of nodes.Joe Hurd [6℄ formalized and proved the rea
hability property of Dijkstra's al-gorithm in HOL. A similar algorithm, Floyd's all-pairs shortest path algorithm,was formalized and proved 
orre
t in Coq by Eri
 Fleury in July, 1990 [5℄ (un-published manus
ript). In February, 1998, Christine Paulin and Jean-ChristopheFilliâtre proved Floyd's algorithm in Coq [10℄.In ACL2, Moore did the �rst proof of Dijkstra's algorithm in September,2003. He then 
hallenged Zhang, then a relatively new ACL2 user, to do itas an exer
ise, without seeing Moore's proof. Zhang 
ompleted his �rst proofin De
ember, 2003, with some guidan
e from Moore. Then Zhang 
leaned uphis proof, removing many user-supplied proof hints in the pro
ess. The proofdes
ribed here is Zhang's se
ond proof.The rest of this paper is organized as follows. In the next se
tion we des
ribethe formalization of the algorithm in ACL2. In the subsequent se
tions we giveour spe
i�
ation, the main invariant, a sket
h of the proof, and a typi
al user-supplied hint. In Se
tion 7 we give some statisti
s about it. The 
omplete s
riptof our work is available online at http://www.
s.utexas.edu/users/qzhang/shortest-path/index.html.2 FormalizationThe ACL2 language is a subset of Common Lisp. We use Lisp syntax. Supposeneighbors is a fun
tion of two arguments. Then we write (neighbors u g) todenote the appli
ation of that fun
tion to u and g. That is, we write (neighborsu g) where neighbors(u; g) would be written in traditional notation. Lisp 
on-ventions make the 
apitalization of symbols irrelevant (for the parti
ular symbolsused in this paper). Thus neighbors, Neighbors, and NEIGHBORS all denote thesame symbol. We use lower
ase 
onsistently, but 
apitalize symbols when theyo

ur as the �rst word of a senten
e.3 The Mizar arti
le, not 
ounting the arti
les it referen
es, 
ontains about 132,000
hara
ters, about 30,000 lexi
al tokens, and about 3,480 lines. The ACL2 s
ript
ontains about 35,500 
hara
ters, about 8,400 lexi
al tokens, and about 1,200 lines.Comments are not 
ounted.



3In ACL2, ordered pairs are 
alled 
onses and are 
onstru
ted by the fun
tion
ons. The left 
omponent of a 
ons is a

essed with the fun
tion 
ar and theright 
omponent is a

essed with 
dr. Conses are used to represent lists. The 
arof su
h a 
ons is the �rst element in the list and the 
dr is the list 
ontaining theremaining elements. A list is said to be a true-list if its 
dr-
hain is terminatedwith nil rather than some other atom.An asso
iation list (or alist) is a true-list in whi
h the elements are pairs inwhi
h the 
ar is said to be asso
iated with or bound to the 
dr. It is easy to writethe fun
tion that looks up the value of a key in an alist, by re
urring down the
dr-
hain to the �rst pair that binds the key in question. It is also easy to writethe fun
tion that 
opies an alist inserting a new binding for given key. Alists areused to represent �nite fun
tion obje
ts. Thus, if we say \v is bound to w in alistf" then one may think \f(v) = w."We use alists extensively in this work. A dire
ted graph is an alist asso
iatingverti
es with edge lists. An edge list is an asso
iation list asso
iating verti
esto nonnegative rationals 
alled edge lengths. Thus, a dire
ted graph is a �nitefun
tion from verti
es to �nite fun
tions from verti
es to nonnegative rationals.The fun
tion graphp 
he
ks that an obje
t is of the shape just des
ribed. Ifthe edge list asso
iated with some vertex u in a graph g binds v to w, then itmeans there is an edge in g from u to v with edge length w, i.e., (edge-len u vg) is w. The fun
tion all-nodes 
olle
ts a dupli
ation-free true-list (\set") of allverti
es mentioned in a graph. (Neighbors u g) returns the set of all verti
esrea
hable from vertex u via one edge in g.Of 
ourse, there are other representations of graphs. The parti
ular one 
ho-sen here is unimportant on
e we have de�ned and proved the basi
 propertiesof graphp, all-nodes, neighbors, edge-len, et
. Graphs are a

essed entirelyvia these generi
 
on
epts (and no graph is 
onstru
ted by the algorithm). Wethus 
ould have merely 
onstrained these fun
tions to be in the appropriate rela-tionships and 
ondu
ted our proof without a 
on
rete representation of graphs.We prefer de�ning su
h 
on
epts on a 
on
rete representation to establish thatfun
tions satisfying all those 
onstraints indeed exist. In fa
t, ACL2 for
es usto so witness any su
h 
olle
tion of 
onstraints to establish 
onsisten
y. In ad-dition, having an exe
utable model of the algorithm enables testing, whi
h isparti
ularly helpful when one is trying to formulate lemmas and invariants.A path p in a graph g is a non-empty list of verti
es with the property thatsu

essive elements of p are linked by an edge in the graph g. Path-len returnsthe sum of the edge lengths of the edges in a path.In ACL2 it is 
ommon to use the atom nil for a variety of extended meanings.It is used both as the terminal marker in true-lists and as the \false" truth-value.We also use it as \in�nity" in our system of lengths. That is, we de�ne a stri
tordering lt (\less than") and its weaker 
ounterpart lte (\less than or equal")so that nil dominates all rational lengths. We also use nil to denote a non-existent path; that is, if asked to �nd a path between two verti
es where no su
hpath exists, we will return nil. We de�ne path-len to return nil (in�nity) onthe non-path nil. In an abuse of the stri
tness implied by the word \shorter,"



4we de�ne (shorterp p1 p2 g) to be (lte (path-len p1 g) (path-len p2g)).4The 
ore of Dijkstra's shortest path algorithm is an iterative pro
edure, here
alled dsp (for Dijkstra's shortest path), that 
omputes a path table. In our work,path tables are asso
iation lists (�nite fun
tions) from verti
es to paths. All thepaths start at the same sour
e vertex. Suppose the sour
e vertex is a. Then ifu is paired with path p in the path table, then p is a path from a to u. Otherimportant invariants on the path table are dis
ussed later. We use the variablesymbol pt to denote the path table. We de�ne (path u pt) to return the pathasso
iated with u in pt (or nil if no path is asso
iated with u) and we de�ne (du pt g) to return its length, (path-len (path u pt) g).The dsp fun
tion is de�ned re
ursively as shown below.(defun dsp (ts pt g)(
ond ((endp ts) pt)(t (let ((u (
hoose-next ts pt g)))(dsp (del u ts)(reassign u (neighbors u g) pt g)g)))))Here, dsp is the name of the fun
tion and it takes three arguments: ts (the\temporary set" of nodes not yet visited, pt (the path table), and g (the graphto be explored). We 
an interpret this re
ursive fun
tion de�nition operationallyas follows. To 
ompute (dsp ts pt g), ask whether ts is empty. If so, returnpt. Otherwise, let u be the value of the 
hoose-next expression and 
all dspre
ursively on (del u ts), the reassign expression, and g.From the traditional des
ription of the iterative 
ore of the algorithm thereader should be able to infer the de�nitions of the fun
tions used above.Repeat until ts is empty:Choose u in ts su
h that (d u pt g) is minimal.For ea
h edge from u to some neighbor v with edge length w, if (d v ptg) > (d u pt g) + w, then modify pt so that the path asso
iatedwith v is the 
urrent path to u in pt, extended onward to v, (append(path u pt) (list v)).Delete u from ts.We then de�ne Dijkstra's algorithm as(defun dijkstra-shortest-path (a b g)(let ((pt (dsp (all-nodes g) (list (
ons a (list a))) g)))(path b pt)))whi
h may be des
ribed as:Let pt be the �nal path table 
omputed by dsp starting from an initial ts
ontaining all the nodes of the graph and an initial path table pairing thesour
e vertex a, with the singleton path that starts and ends at a.4 Some authors write \(weakly) shorter."



5Return the path asso
iated with b in the �nal path table.Given that ACL2 is a fun
tional programming language, this algorithm maybe exe
uted on 
on
rete input, though as 
oded here it is not very eÆ
ient.Mu
h more eÆ
ient implementations are possible in ACL2, e.g., using ACL2'ssingle-threaded obje
ts [1℄ (whi
h are data stru
tures that may be modi�eddestru
tively but under synta
ti
 restri
tions that ensure 
onforman
e to theappli
ative semanti
s) and the MBE feature (whi
h permits the repla
ement ofone ACL2 
ode fragment by another provided they are provably equivalent inthe given 
ontext). These features 
ould be used to implement the array-basedbinary trees 
ommonly employed to represent the path table eÆ
iently; the keystep would be a 
ommuting diagram relating the \a

essor" fun
tion, path,whi
h re
overs the path asso
iated with a given vertex in the path table, to the\updater" fun
tion, reassign, for the two di�erent 
on
rete representations ofpath tables.To our knowledge, no ACL2 proof of su
h an implementation has been 
arriedout. But 
orre
tness proofs by Sumners and Ray for an in situ ACL2 qui
ksort[12℄, Sumners for an ACL2 BDD pa
kage that operates a 60% of the speed ofCUDD [11℄, and Greve and Wilding for an ACL2 graph path �nding algorithmthat exe
utes at speeds near those of a C implementation [7℄ are eviden
e thatmoving from this implementation to an eÆ
ient one in ACL2 is a well-troddenpath. The main obsta
le is proving the 
orre
tness of some ACL2 fun
tion im-plementing the algorithm in question.3 Spe
i�
ationOur spe
i�
ation of the algorithm is(defthm main-theorem(implies (and (nodep a g)(nodep b g)(graphp g))(let ((rho (dijkstra-shortest-path a b g)))(and (or (null rho)(pathp-from-to rho a b g))(shortest-pathp a b rho g)))))That is, suppose a and b are nodes in graph g. Let � be the output of Dijkstra'salgorithm on a, b, and g. Then � is either nil or a path in g from a to b, and� is a (weakly) shortest path from a to b in g. Note that if � is nil the 
laimthat it is nevertheless the shortest path from a to b is equivalent to the 
laimthat there is no su
h path, sin
e any true path from a to b is shorter than thein�nite path-len of nil.To formalize the notion that a path is a (weakly) shortest path we de�ne(shortest-pathp a b p g) so that it is true if and only if for every path,path, from a to b in g, p is (weakly) shorter than path. We 
ould \fake" thisquanti�
ation with a re
ursive fun
tion that 
he
ks all possible paths, if there



6were a �nite number of them. But in general there may be an in�nite number of(non-simple) paths to a given node. ACL2 does not provide quanti�ers per se.But it does provide a fa
ility, def
hoose [9℄, like Hilbert's �, by whi
h one 
anintrodu
e a fun
tion to return an obje
t satisfying a given formula, if su
h anobje
t exists.Therefore, to de�ne shortest-pathp we �rst use def
hoose to introdu
ea witness, (shortest-pathp-witness a b p g) with the property that it is apath in g from a to b and is shorter than p, if su
h an obje
t exists. Then wede�ne shortest-pathp so that it is true of p pre
isely if the witness fails to bea path from a to b that is shorter than p. In ACL2, this entire development iswrapped up in a ma
ro 
alled defun-sk (for \de�ne Skolemized fun
tion").(defun-sk shortest-pathp (a b p g)(forall path(implies (pathp-from-to path a b g)(shorterp p path g))))The ma
ro expands to an appropriate use of def
hoose for the witness ex-pression (shortest-pathp-witness a b p g) followed by an appropriately en-
apsulated de�nition of shortest-path. This method of introdu
ing quanti�ed
on
epts in ACL2 di�ers from the method in Nqthm, where Skolemization wassupported dire
tly.Su
h Skolem fun
tions are not exe
utable: even when the arguments areknown 
onstants, ACL2 
annot redu
e a 
all of shortest-pathp-witness toa 
onstant. This does not trouble us be
ause these fun
tions are used in thespe
i�
ation and proof, but not in the path-�nding algorithm itself.The witness fun
tion is used extensively in a series of hand-written hints usedto 
arry out the most deli
ate arguments in the 
orre
tness proof. In parti
ular,to show that a just-
onstru
ted path is a shortest one, we suppose it is not, usethe witness to obtain an allegedly shorter one, and then derive a 
ontradi
tion.But while the various 
ase splits and 
onstru
tions used to 
ondu
t these argu-ments are the messiest part of the proof, the real 
rux of the proof is identifyingand formalizing the invariant mentioned above.4 The InvariantThe me
hani
al proof is mainly 
on
erned with establishing an invariant on thetemporary set, ts and the path table, pt, of dsp. The invariant also takes thestarting vertex, a, and the graph, g.Several 
on
epts are used repeatedly in de�ning the invariant. One is thenotion of the \�nal set," usually represented here by the variable fs and equalto (
omp-set ts (all-nodes g)), the 
omplement of the temporary set (withrespe
t to the set of all nodes of the graph). Another is the idea of a path p being
on�ned to fs, whi
h means that every node in p ex
ept the last is a member offs. We de�ne the 
on
ept re
ursively.(defun 
onfinedp (p fs)



7(if (endp p) t(if (endp (
dr p)) t(and (memp (
ar p) fs)(
onfinedp (
dr p) fs)))))A third important 
on
ept is that of p being a shortest 
on�ned path, meaningit is shorter than any path from a to b that is 
on�ned to fs. We need universalquanti�
ation (defun-sk) to formalize this.(defun-sk shortest-
onfined-pathp (a b p fs g)(forall path (implies (and (pathp-from-to path a b g)(
onfinedp path fs))(shorterp p path g))))We de�ne the invariant as follows:(defun invp (ts pt g a)(let ((fs (
omp-set ts (all-nodes g))))(and (ts-propertyp a ts fs pt g)(fs-propertyp a fs fs pt g)(pt-propertyp a pt g))))The invariant has three 
onjun
ts, one ea
h about the temporary set, the�nal set, and the path table, although this partitioning is somewhat arti�
ialsin
e all involve fs and pt to some extent.We de�ne ts-propertyp re
ursively to 
he
k that for every node in thetemporary set, the path to that node in the path table is a shortest 
on�nedpath to that node and the path is itself 
on�ned.(defun ts-propertyp (a ts fs pt g)(if (endp ts) t(and (shortest-
onfined-pathp a (
ar ts)(path (
ar ts) pt)fs g)(
onfinedp (path (
ar ts) pt) fs)(ts-propertyp a (
dr ts) fs pt g))))We de�ne fs-propertyp re
ursively in a very similar fashion, ex
ept it 
he
ksthat for every node in the �nal set, the path assigned to that node in the pathtable is a shortest path to that node and is 
on�ned.(defun fs-propertyp (a fs fs0 pt g)(if (endp fs) t(and (shortest-pathp a (
ar fs) (path (
ar fs) pt) g)(
onfinedp (path (
ar fs) pt) fs0)(fs-propertyp a (
dr fs) fs0 pt g))))



8 Finally, we de�ne pt-propertyp to 
he
k that for every entry in the pathtable is either nil or a path from a to the node with whi
h it is asso
iated inthe table.(defun pt-propertyp (a pt g)(if (endp pt) t(and (or (null (
dar pt))(pathp-from-to (
dar pt) a (
aar pt) g))(pt-propertyp a (
dr pt) g))))5 Me
hani
al ProofThe proof breaks down into two main lemmas. The �rst is that the invariantholds initially.(defthm invp-0(implies (nodep a g)(invp (all-nodes g) (list (
ons a (list a))) g a)))The se
ond is that the invariant holds as dsp re
urs.(defthm invp-
hoose-next(implies (and (invp ts pt g a)(my-subsetp ts (all-nodes g))(graphp g)(
onsp ts)(setp ts)(nodep a g)(equal (path a pt) (list a)))(let ((u (
hoose-next ts pt g)))(invp (del u ts)(reassign u (neighbors u g) pt g)g a))):hints : : :)From these two, it is straightforward to prove(defthm invp-last(implies (and (nodep a g)(graphp g))(invp nil(dsp (all-nodes g)(list (
ons a (list a)))g)g a)))and main-theorem follows without mu
h more work.



96 HintsThe hardest part of the proof is, of 
ourse, the proof of invp-
hoose-next. Wepresent only one of the major 
ases. Dsp uses 
hoose-next to 
hoose a vertex,u, in ts whose asso
iated path in pt is of minimal length. Why is this path theshortest path to that vertex? Here is the lemma that states that it is.(defthm 
hoose-next-shortest(implies (and (graphp g)(
onsp ts)(my-subsetp ts (all-nodes g))(invp ts pt g a))(shortest-pathp a(
hoose-next ts pt g)(path (
hoose-next ts pt g) pt)g)):hints : : :)ACL2 
annot prove this without help. Help is given by the user in the form ofhints. We �rst des
ribe the proof and then show the a
tual hints.Let the 
hoose-next term above be u and let its asso
iated path in pt be Æ.Let fs be the \�nal set," (
omp-set ts (all-nodes g)). We know, from theinvp hypothesis, that Æ is the shortest path to u that is 
on�ned to fs. We wishto show it is the shortest path (
on�ned or not). Suppose it is not. Then there isa shorter path, say �, to u that is not 
on�ned to fs, i.e., � 
ontains a vertex vin ts. Let �0 be the initial portion of � up to and in
luding v. Then �0 is shorterthan �, terminates on a node in ts, and is 
on�ned to fs. But the path in ptasso
iated with v is, by invp, shorter than �0. And Æ is shorter than that pathby the sele
tion 
riteria in 
hoose-next. Hen
e, Æ is shorter than �.The a
tual term for � above is (shortest-pathp-witness a u Æ g). Andthe a
tual term for �0 is (find-partial-path � fs). Find-partial-path is auser-de�ned re
ursive fun
tion that �nds the subpath of a path that terminatesin the �rst node outside of fs.Hints in ACL2 are generally 
oded by listing a series of instantiations ofpreviously proved lemmas. These instan
es are 
onjoined to the hypotheses ofthe goal theorem and then used freely by ACL2. To 
ode the above hint we tellACL2 not to expand the de�nitions of shorterp, path and pathp and we providetwo instan
es. The ellipsis in the display above for 
hoose-next-shortest is�lled in by:(("Goal" :in-theory (disable shorterp path pathp):use ((:instan
e pathp-partial-path (p �) (s fs))(:instan
e shorterp-by-partial-and-
hoose-next(u u) (path �0) (v (
ar (last �0)))))))The expression following the symbol :use spe
i�es that the theorem prover isto add two lemma instan
es to the hypotheses of the goal. The �rst lemma,pathp-partial-path, instantiated above says that find-partial-path 
on-stru
ts a 
on�ned path to its last node. The given substitution repla
es the



10variable symbol p in the lemma by � and the variable s by fs. The se
ondlemma says that if the path to u in pt is shorter than the path to v in pt, andts-propertyp holds, and path is a 
on�ned path to v, then the path to u isshorter than path.7 Some Details and Statisti
sThe entire proof s
ript 
ontains 39 defuns and 125 defthms. The defthms 
anbe broken into to two broad 
ategories: elementary lemmas about the basi
ideas and \
ustom" lemmas for this parti
ular proof. We 
lassi�ed as \
ustom"any lemma mentioning 
hoose-next, reassign, ts-propertyp, fs-propertyp,pt-propertyp, invp, dsp, or dijkstra-shortest-path.There are 68 elementary lemmas about �nite set theory, the notions of shorterand shortest path, elementary path properties (in
luding that of being 
on�ned)and manipulation (in
luding the notion of �nding a 
on�ned subpath), and stru
-tural properties of asso
iation lists, paths, tables, and graphs. Here are a few.(defthm 
omp-set-id(equal (
omp-set s s) nil))(defthm neighbor-implies-nodep(implies (memp v (neighbors u g))(memp v (all-nodes g))))(defthm shortest-pathp-
orollary(implies (and (shortest-pathp a b p g)(pathp-from-to path a b g))(shorterp p path g)))(defthm 
onfinedp-append(implies (and (
onfinedp p s)(memp (
ar (last p)) s))(
onfinedp (append p (list v)) s)))(defthm path-len-append(implies (pathp p g)(equal (path-len (append p (list v)) g)(plus (path-len p g)(edge-len (
ar (last p)) v g)))))All are used by ACL2 as 
onditional rewrite rules. For example, the last theoremis used to rewrite (path-len (append : : :)) to the plus expression, provided(pathp p g) 
an be established. (Plus is just addition extended to handle nilas\in�nity.")There are 57 
ustom lemmas, in
luding four shown in this paper: invp-0,invp-
hoose-next, invp-last, and 
hoose-next-shortest. Some are easy toprove lemmas that \explain" the fa
t that fun
tions like ts-propertyp are re-
ursively de�ned quanti�ers:(defthm ts-propertyp-prop-lemma1(implies (and (ts-propertyp a ts fs pt g)



11(memp v ts))(and (shortest-
onfined-pathp a v (path v pt) fs g)(
onfinedp (path v pt) fs))))In all, we had to give 51 hints. About 30 of these were hints only to disable(i.e., avoid using) 
ertain de�nitions or theorems. Twenty-three times we had toinstru
t the theorem prover to :use instan
es of 
ertain theorems, as illustratedabove, and a total of 31 instan
es were mentioned in the s
ript. The vast majorityof the hints were used in the 
ustom theorems: 37 of the 51 hints, 19 of the 23:use hints for 28 of the 31 instan
es.The proof takes about 67 se
onds on a 2.4 GHz Intel XeonTM running ACL2Version 2.9 
ompiled under GNU Common Lisp.Referen
es1. R. S. Boyer and J S. Moore. Single-threaded obje
ts in ACL2. In PADL 2002, pages9{27, Heidelberg, 2002. Springer-Verlag LNCS 2257. http://www.
s.utexas.edu/users/moore/publi
ations/stobj/main.ps.gz.2. Jing-Chao Chen. Dijkstra's shortest path algorithm. Journal of Formalized Math-emati
s, vol. 15, 2003.3. E. W. Dijkstra. A note on two problems in 
onne
tion with graphs. Numer. Math.1, pages 269{271, 1959.4. Shimon Even. Graph Algorithms, 
hapter 1. Computer S
ien
e Press, In
., 1979.5. Eri
 Fleury. Implantation des algorithmes de Floyd et de Dijkstra dans le Cal
uldes Constru
tions. Rapport de Stage, July 1990.6. M. Gordon, J. Hurd, and K. Slind. Exe
uting the formal semanti
s of the A

elleraproperty spe
i�
ation language by me
hanized theorem proving. In D. Geist, ed-itor, Pro
eedings of CHARME 2003, volume 2860 of Le
ture Notes in ComputerS
ien
e, pages 200{215. Springer Verlag, 2003.7. D. Greve and M. Wilding. Using mbe to speed a veri�ed graph path�nder. InACL2 Workshop 2003, Boulder, Colorado, July 2003. http://www.
s.utexas.edu/users/moore/a
l2/workshop-2003/.8. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: AnApproa
h. Kluwer A
ademi
 Press, Boston, MA., 2000.9. M. Kaufmann and J S. Moore. Stru
tured theory development for a me
hanizedlogi
. Journal of Automated Reasoning, 26(2):161{203, 2001.10. C. Paulin and J. C. Filliâtre. http://pauilla
.inria.fr/
drom/www/
oq/
ontribs/floyd.html.11. R. Sumners. Corre
tness proof of a BDD manager in the 
ontext of satis�ability
he
king. In Pro
eedings of ACL2 Workshop 2000. Department of Computer S
i-en
es, Te
hni
al Report TR-00-29, November 2000. http://www.
s.utexas.edu/users/moore/a
l2/workshop-2000/final/sumners2/paper.ps.12. R. Sumners and S. Ray. Veri�
ation of an in-pla
e qui
ksort in ACL2. In Pro-
eedings of the ACL2 Workshop, 2002. http://www.
s.utexas.edu/~moore/a
l2/workshop-2002, Grenoble, April 2002.


