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Abstract

We describe a new facility, for a �rst-order-logic theorem prover [1], that permits

the instantiation of theorems by the replacement of function symbols with new

function symbols, provided certain axioms about the original function symbols

can be proved about the new function symbols. Although this facility in e�ect

provides something of the spirit of higher order logic, the underlying �rst-order

logic itself is in no way extended. A proof of the correctness of the facility is

provided, and many examples are given.

0.1 Introduction

In this paper we describe CONSTRAIN and FUNCTIONALLY-INSTANTIATE, two

new user commands (events) that we have added to the \NQTHM" prover

[1]. FUNCTIONALLY-INSTANTIATE implements a derived rule of inference that

provides something of the 
avor of higher order logic in that it permits one to

infer new theorems by instantiating function symbols instead of variables. To

be sure that such an instantiation actually produces a theorem, we �rst check

that the formulas that result from similarly instantiating certain of the axioms

about the function symbols being replaced are also theorems. Intuitively speak-

ing, the correctness of this derived rule of inference consists of little more than

the trivial observation that one may systematically change the name of a func-

tion symbol to a new name in a �rst-order theory without losing any theorems,

modulo the renaming. However, we have found that this trivial observation has

important potential practical rami�cations in reducing mechanical proof e�orts.

We also �nd that this observation leads to super�cially shocking results, such as

the proof of the associativity of APPEND by instantiation rather than induction.

And �nally, we are intrigued by the extent to which such techniques permit one

to capture the power of higher-order logic within �rst-order logic.

In order to make e�ective use of FUNCTIONALLY-INSTANTIATE, we have found

it necessary to augment our facility for de�ning functions, DEFN, with a facil-

ity for constraining, but not completely characterizing, new function symbols.

CONSTRAIN events are like DEFN events in that they add axioms about new func-

tion symbols consistently, i.e., an NQTHM history free of any use of ADD-AXIOM

(the mechanism for adding an arbitrary axiom) is consistent, even if DEFN and

CONSTRAIN are used repeatedly. We permit the introduction of several function

symbols simultaneously with a single CONSTRAIN. CONSTRAIN is weaker than

DEFN in the following sense. In general, any application of CONSTRAIN can be

replaced by one or more DEFNs, and the axiom added by the CONSTRAIN can be

proved after the DEFNs have been added. Intuitively, a good way to think about

a CONSTRAIN event is to imagine de�ning a new function symbol, proving a
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theorem about that function symbol, and then forgetting the de�ning equation

while remembering the theorem. In fact, in the implementation of CONSTRAIN,

we insist that the user provide us with an already de�ned \witness" function

and we check that the proposed new axiom is satis�ed by the witness.

FUNCTIONALLY-INSTANTIATE implements a derived rule of inference. That

is, anything that can be proved with FUNCTIONALLY-INSTANTIATE can be proved

without it. FUNCTIONALLY-INSTANTIATE permits one to infer about a function

symbol f anything that one has inferred about a function symbol g provided

that the relevant axioms about g can be proved about f. It is intended that

FUNCTIONALLY-INSTANTIATE will be used in coordination with CONSTRAIN.

0.2 Motivating Examples

0.2.1 Foldr v. Foldl

Consider the idea of iteratively applying some dyadic function � to the ele-

ments of a list, x, starting with some base value n. Let us denote the ele-

ments of the list by x

1

, x

2

, ... x

k

. Two algorithms come to mind. The �rst

proceeds in an \inside-out" fashion and computes x

1

� (x

2

� (... (x

k

�

n)...)). The second algorithm proceeds in an \outside-in" fashion and com-

putes (...((n � x

1

) � x

2

) � ...) � x

k

. In the functional programming

language SASL[11] the inside-out result is produced by foldr(�, x, n) while

the outside-in result is foldl(�, x, n). We use those names below.

If � is commutative and the foldl algorithm is applied to the reverse of the

original list, '(x

k

... x

2

x

1

), the result is the same as the foldr algorithm.

How can we say this in the �rst-order, quanti�er-free logic of NQTHM?

We cannot de�ne FOLDR and FOLDL to take functions as arguments. However,

we could declare FN (with NQTHM's DCL command) to be an unde�ned function

symbol of two arguments and then de�ne the two folders to use FN explicitly:

(DEFN FOLDR-FN (X N)

(IF (LISTP X)

(FN (CAR X) (FOLDR-FN (CDR X) N))

N))

(DEFN FOLDL-FN (X N)

(IF (LISTP X)

(FOLDL-FN (CDR X) (FN N (CAR X)))

N))

After de�ning the REVERSE function we could then claim that (FOLDR-FN X

N) is (FOLDL-FN (REVERSE X) N), provided FN is commutative:
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8 X 8 Y (EQUAL (FN X Y) (FN Y X))

!

(EQUAL (FOLDR-FN X N) (FOLDL-FN (REVERSE X) N)).

But this statement requires the universal quanti�er, which is also outside of the

NQTHM logic.

To tackle that problem we could add an axiom about FN, e.g.,

(ADD-AXIOM FN-IS-COMMUTATIVE (REWRITE)

(EQUAL (FN X Y) (FN Y X)))

Since axioms (and theorems in general) are implicitly universally quanti�ed this

axiom accomplishes our goal of constraining FN to be commutative. (The token

REWRITE has no logical signi�cance; it only tells the system to use this equality

as a rewrite rule.)

We could then state our �rst result:

(PROVE-LEMMA FOLDR-IS-FOLDL ()

(EQUAL (FOLDR-FN X N) (FOLDL-FN (REVERSE X) N)))

This theorem can be proved automatically by NQTHM.

If there are no other axioms about FN we can informally regard FOLDR-FN

and FOLDL-FN as two recursion schemas expressed in terms of an arbitrary com-

mutative function FN, and we could regard FOLDR-IS-FOLDL as expressing the

equivalence of those schemes (modulo the REVERSE). There are two problems

however.

First, how do we know the axiom we added did not render the system incon-

sistent? In general, adding axioms to a logic as rich as NQTHM's is treacherous.

Our solution is to avoid the addition of arbitrary axioms and instead encour-

age the use of a new, derived logical act, implemented as the CONSTRAIN event,

which permits the introduction of new function symbols that are constrained by

a given formula relating them. Logically speaking, CONSTRAIN requires that the

constraint formula be satis�able. The implementation enforces this by requiring

the user to supply \witnesses" for the new symbols that make the constraint

a theorem. That is, the user must show that existing functions of the logic

have the desired relationship in order to constrain new functions to have that

relationship.

For example, rather than DCL FN and then use ADD-AXIOM we could introduce

FN with the new event

(CONSTRAIN FN-COMMUTATIVE (REWRITE)

(EQUAL (FN X Y) (FN Y X))

((FN PLUS))).
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Observe that the last argument to CONSTRAIN is a \functional substitution" that

supplies the \witnesses" for the about-to-be introduced functions. In this case

we use the Peano addition function, PLUS, as the witness for a commutative

function. The system con�rms that PLUS has the property required of FN, thus

establishing the satis�ability of the proposed constraint, and then declares FN to

be a function symbol of two arguments and adds the constraining axiom about

FN.

The second problem noted above is that FOLDR-IS-FOLDL is not very use-

ful to the NQTHM user, even if he informally understands its logical content.

In particular, if the user de�nes two recursive functions, say FOLDR-TIMES and

FOLDL-TIMES that are just instances of the two \schemas" above but use the de-

�ned function TIMES in place of FN, there is no direct way to use FOLDR-IS-FOLDL

to deduce that the two new functions are equivalent. Of course, the two new

functions could be proved equivalent: the proof would go just like the proof of

FOLDR-IS-FOLDL, except that where the old proof appeals to the commutativity

of FN the new one would appeal to the commutativity of TIMES.

We don't consider reconstructing the proof for two reasons. The �rst is

merely practical: while we know a proof exists, it might take the system a long

time to �nd it. This is especially true if the original proof was complicated or,

more likely, the instantiation of the schemas is complicated. For example, if in

the instantiation we replace FN by several pages of propositional logic, chances

are NQTHM would fail to reproduce the analogous proof because its normal-

ization procedures would trigger a combinatoric explosion. More importantly,

the whole point of proving lemmas is to avoid the necessity of proving their

instances. It does us no good to \informally regard" FOLDR-IS-FOLDL as the

NQTHM statement of the equivalence if NQTHM cannot deduce the obvious

from it.

To that end we introduce a new derived rule of inference, called \functional

instantiation" by which we permit the immediate deduction of the equivalence

of FOLDR-TIMES and FOLDL-TIMES from FOLDR-IS-FOLDL once it has been estab-

lished that TIMES satis�es the constraints on FN. An example of the implemented

event is

(FUNCTIONALLY-INSTANTIATE FOLDR-TIMES-IS-FOLDL-TIMES (REWRITE)

(EQUAL (FOLDR-TIMES X N)

(FOLDL-TIMES (REVERSE X) N))

FOLDR-IS-FOLDL

((FOLDR-FN FOLDR-TIMES)

(FOLDL-FN FOLDL-TIMES)

(FN TIMES)))

The last argument above is a functional substitution that makes explicit the
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correspondences between the old (FN-based) function symbols and the new

(TIMES-based) symbols. This functional substitution is applied to the for-

mula of FOLDR-IS-FOLDL and must produce the formula to be deduced. Since

FOLDR-IS-FOLDL is

(EQUAL (FOLDR-FN X N)

(FOLDL-FN (REVERSE X) N))

we have to replace FOLDR-FN by FOLDR-TIMES and FOLDL-FN by FOLDL-TIMES

to produce the claimed relationship between the new functions. Observe that

the substitution also replaces FN by TIMES, even though FN is not involved in

the statement of the theorem we are instantiating. We explain below.

Roughly speaking, the proof obligation incurred in the use of functional

instantiation is that every axiom about the old symbols must hold of the new

symbols. Consider the axiom about FOLDR-FN, namely its de�nition:

(EQUAL (FOLDR-FN X N)

(IF (LISTP X)

(FN (CAR X) (FOLDR-FN (CDR X) N))

N)).

We must apply the functional substitution to this axiom (producing a formula

about the new symbols) and prove the result:

(EQUAL (FOLDR-TIMES X N)

(IF (LISTP X)

(TIMES (CAR X) (FOLDR-TIMES (CDR X) N))

N)).

Observe that this is just the de�nition of FOLDR-TIMES, so the proof is immediate.

1

Had we not mapped FN to TIMES in our functional substitution, the formula

above would call FN instead of TIMES and the result would have been unprov-

able. This is why the functional substitution must make explicit all the \ances-

tral" correspondences and not just those arising immediately in the theorem to

be instantiated. By \ancestral" we mean to include all the functions reachable

from the theorem to be instantiated by tracing back through de�nitions.

We characterized our proof obligation, above, as requiring the proof of the

functional instance of every axiom about the old symbols. This can be weakened.

Imagine that we had also used FN in some other de�nition, e.g., that of MAP-FN,

not involved (ancestrally) in the theorem being instantiated. Since the axiom

about MAP-FN mentions FN, one of the functions in our functional substitution,

1

Note that it is not necessary that FOLDR-TIMES be syntactically analogous to FOLDR-FN,

only that the functional instantiation of FOLDR-FN be provable.
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a literal interpretation of our proof obligation would require us to instantiate

the de�nition of MAP-FN and prove the result. But instantiating the de�nition of

MAP-FN with the substitution above would change its call of FN to a call of TIMES

and make no other changes. Clearly, the new equation would not be provable,

since MAP-FN won't satisfy two di�erent recurrence equations (one about FN and

one about TIMES). To make such an instantiation provable we would have to

de�ne the analogue of MAP-FN, say MAP-TIMES, and include that pair in the

substitution. We would then have to handle de�nitions involving MAP-FN since

it is now in the substitution, etc. Fortunately, we show that we do not have to

instantiate such irrelevant de�nitions; the program of extending the logic in the

obvious way to accommodate such functions can be shown always to work.

One might be tempted to view the arguments presented in this example as in-

volving \higher-order reasoning." In fact, our choice of the name FUNCTIONALLY-INSTANTIATE

seems a deliberate provocation of that perception. Although we agree that such

reasoning has a somewhat higher-order feel, we reiterate that functional in-

stantiation is a derived rule of inference for �rst-order logic: any theorem that

can be proved with FUNCTIONALLY-INSTANTIATE can be proved in �rst-order

logic without it. No new higher-order axioms, no functional variables, no typed

lambda calculus syntax have been added to the logic. We believe that a similar

derived rule of inference could be attached to any �rst-order logic prover, e.g.,

a resolution based theorem-prover.

0.2.2 Sorting

We brie
y present another example. In this example we de�ne a \generic"

insertion sort program that sorts according to an unde�ned ordering function

LT. For the insertion sort to work (in the sense that it produce LT-ordered

output), LT must be antisymmetric. No other properties of LT are required.

Therefore, it is feasible to constrain LT to be antisymmetric, de�ne the sort

function and the related sense of orderedness in terms of LT and prove that the

sort function produces ordered output. This is attractive because it permits us

to construct the proof of the sort program in isolation from the details of any

particular ordering relation. In a mechanized setting, where details often over-

whelm strategic heuristics, this o�ers more than mere mathematical elegance.

Below we reproduce the script necessary to justify the generic insertion sort.

Observe that we can use a trivial witness for the introduction of LT.

(CONSTRAIN LT-INTRO (REWRITE)

(IMPLIES (LT X Y)

(NOT (LT Y X)))

((LT (LAMBDA (X Y) F))))
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(DEFN ORDERED-LT (L)

(IF (LISTP L)

(IF (LISTP (CDR L))

(IF (LT (CADR L) (CAR L))

F

(ORDERED-LT (CDR L)))

T)

T))

(DEFN INSERT-LT (X L)

(IF (LISTP L)

(IF (LT X (CAR L))

(CONS X L)

(CONS (CAR L) (INSERT-LT X (CDR L))))

(LIST X)))

(DEFN SORT-LT (L)

(IF (LISTP L)

(INSERT-LT (CAR L) (SORT-LT (CDR L)))

NIL))

(PROVE-LEMMA ORDERED-SORT-LT (REWRITE)

(ORDERED-LT (SORT-LT L)))

The generic insertion sort routine is of no computational value { i.e., we cannot

execute it { because LT is not de�ned.

But now suppose that in some application we need to sort lists of natural

numbers according to the usual \less than" ordering on the naturals, LESSP. Be-

cause our logic is not higher-order, we have to de�ne analogues of the functions

above, only using LESSP in place of LT.

(DEFN ORDERED-LESSP

(L)

(IF (LISTP L)

(IF (LISTP (CDR L))

(IF (LESSP (CADR L) (CAR L))

F

(ORDERED-LESSP (CDR L)))

T)

T))
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(DEFN INSERT-LESSP (X L)

(IF (LISTP L)

(IF (LESSP X (CAR L))

(CONS X L)

(CONS (CAR L) (INSERT-LESSP X (CDR L))))

(LIST X)))

(DEFN SORT-LESSP (L)

(IF (LISTP L)

(INSERT-LESSP (CAR L) (SORT-LESSP (CDR L)))

NIL))

While having virtually to repeat previous de�nitions may strike many read-

ers as inelegant, three remarks can be made in its defense. First, generating

the analogous de�nitions (with a good text editor such as Emacs[9]) is easy

and represents almost no burden on the user. Second, keeping the logic �rst-

order is extraordinarily valuable, especially in light of the desire to mechanize

it. Finally, thanks to the new functional instantiation derived rule of inference,

the properties of these new functions can be deduced at minimal cost from

the theorems about the old functions. In particular, we can immediately con-

clude from the generic result, ORDERED-SORT-LT, that the particular program

SORT-LESSP produces ORDERED-LESSP output, at the cost of establishing that

LESSP is antisymmetric.

(FUNCTIONALLY-INSTANTIATE ORDERED-SORT-LESSP (REWRITE)

(ORDERED-LESSP (SORT-LESSP L))

ORDERED-SORT-LT

((LT LESSP)

(ORDERED-LT ORDERED-LESSP)

(INSERT-LT INSERT-LESSP)

(SORT-LT SORT-LESSP)))

0.3 Precise Description of the Derived Rules of

Inference

In this section we give a precise description of two new derived rules of inference.

This discussion is analogous to that in Chapter 4 of [1], \A Precise Description

of the Logic," in which we describe the logic precisely without regard for its
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mechanization. In the next section we document the mechanization of the new

rules, in a discussion analogous to Chapter 12 of [1], \Reference Guide." Our

mechanization of functional instantiation is somewhat more e�cient than its

formal description would suggest. After presenting the logical description and

the reference guide material, we derive the new rules and show that our mech-

anization is correct.

Henceforth the reader is assumed to be familiar with the logic of NQTHM

described in [1], especially with the concept of \proof" described there. Roughly

speaking, that notion of proof consists of a standard �rst-order logic [8] minus

the rules concerning quanti�cation but plus new principles of recursive de�nition

and induction. Ignoring the infrequently used axioms about the function V&C$,

this logic is very constructive, even computational, and is similar in power to

that of [4].

De�nition. A functional substitution is a function on a �nite set of function

symbols such that for each pair <f

1

,f

2

> in the substitution, either (a) f

2

is also

a symbol and the arity of f

1

is the arity of f

2

or (b) f

2

has the form (LAMBDA

(a

1

... a

n

) term) where the a

i

are distinct variables, the arity of f

1

is n, and

term is a term.

De�nition. We recursively de�ne the functional instantiation of a term t

under a functional substitution fs. If t is a variable, the result is t. If t is the

term (f t

1

... t

n

), let t

0

i

be the functional instantiation of t

i

, for i from 1 to n

inclusive, under fs. If, for some function symbol f

0

, the pair <f, f

0

> is in fs, the

result is (f

0

t

1

0

... t

n

0

). If a pair <f, (LAMBDA (a

1

... a

n

) term)> is in fs, the

result is term/f..., <a

i

,t

i

0

>, ...g. Otherwise, the result is (f t

1

0

... t

n

0

).

Note. Recall from [1] that \term/�" denotes the result of applying the

ordinary (variable) substitution � to term. If � is the variable substitution f<X,

(FN A)>, <Y, B>g, then (PLUS X Y)/� is (PLUS (FN A) B).

Example. The functional instantiation of the term

(PLUS (FN X) (TIMES Y Z))

under the functional substitution

f<PLUS, DIFFERENCE>, <FN, (LAMBDA (V) (QUOTIENT V A))>g

is the term

(DIFFERENCE (QUOTIENT X A) (TIMES Y Z)).

De�nition. We recursively de�ne the functional instantiation of a formula

� under a functional substitution fs. If � is �

1

_ �

2

, then the result is �

1

0

_

�

2

0

, where �

1

0

and �

2

0

are the functional instantiations of �

1

and �

2

under fs.

If � is :�

1

, then the result is :�

1

0

, where �

1

0

is the functional instantiation of
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�

1

under fs. If � is x = y, then the result is x

0

= y

0

, where x

0

and y

0

are the

functional instantiations of x and y under fs.

De�nition. A variable v is said to be free in (LAMBDA (a

1

... a

n

) term) if

and only if v is a variable of term and v is not among the a

i

. A variable v is

said to be free in a functional substitution if and only if it is free in a LAMBDA

expression in the range of the substitution. A variable v is said to be bound in

(LAMBDA (a

1

... a

n

) term) if and only if v is among the a

i

.

De�nition. The aspects of a LAMBDA expression. A LAMBDA expression is a

triple of the form (LAMBDA (a

1

... a

n

) body). For such a LAMBDA expression,

we say its arity is n, its argument list is (a

1

... a

n

), and its body is body.

Notation. We denote functional instantiation with \ to distinguish it from

ordinary (variable) substitution, which is denoted with /.

Example. If � is the functional substitution f<PLUS, (LAMBDA (U V) (ADD1

U))>g then (PLUS X Y)\� is (ADD1 X).

Derived Rule of Inference. Conservatively constraining new function

symbols.

It is permissible to add the term ax as an axiom to extend a history h

provided there exists a functional substitution fs such that

1. the domain of fs is a set of new function symbols,

2. each member of the range of fs is either an old function symbol or is a

LAMBDA expression whose body is formed of variables and old function

symbols,

3. no variable is free in any LAMBDA expression in the range of fs, and

4. ax\fs is a theorem of h.

De�nition. A functional substitution fs is tolerable with respect to a history

h provided that the domain of fs contains only function symbols introduced into

h by the user on top of the GROUND-ZERO logic, via CONSTRAIN, DCL, or DEFN,

but not ADD-SHELL.

Note. We do not want to consider functionally substituting for built-in

function symbols or shell function symbols because the axioms about them

are so di�use in the implementation. We especially do not want to consider

substituting for such function symbols as ORD-LESSP, because they are used in

the principle of induction.

Derived Rule Of Inference. Functional Instantiation.

If h is a history, fs is a tolerable functional substitution, p is a proof of thm

in h, no free variable of fs occurs in p, and the fs instance of every axiom of h

can be proved in h, then thm\fs can be proved in h.
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0.4 Reference Guide

0.4.1 CONSTRAIN

General Form:

(CONSTRAIN name types ax

(... (new

i

old

i

) ...) &OPTIONAL hints)

Example Form:

(CONSTRAIN H-COMMUTATIVITY2 (REWRITE)

(EQUAL (H X (H Y Z))

(H Y (H X Z)))

((H PLUS))

((USE (PLUS-COMMUTATIVITY2))))

CONSTRAIN creates a new event. It does not evaluate its arguments. CONSTRAIN

checks that <name, ..., new

i

, ... > is a sequence of distinct new names; that each

old

i

is an old function symbol or a LAMBDA expression in old function symbols,

without free variables, but with the same arity as new

i

; that types is a legit-

imate set of types for storing lemmas; that ax is a formula; and that ax\f...,

<new

i

,old

i

>, ...g is a theorem of the current history. The result of a CONSTRAIN

is to add ax as an axiom according to the types and to declare the arity of each

new

i

to be that of old

i

.

Note. We sometimes refer to the \old

i

" used in a CONSTRAIN event as

witnesses.

Examples. In the Example Form shown above we introduce a dyadic func-

tion H that has what we call the \commutativity2" property, namely, (H X

(H Y Z)) = (H Y (H X Z)). We use the Peano PLUS function as the witness.

The USE hint supplied to CONSTRAIN says that the proof that the witness sat-

is�es the commutativity2 property follows from the previously proved lemma

PLUS-COMMUTATIVITY2. On page 27 we show how such a constrained H might

be used to state and use the fact that to apply such a function iteratively to the

elements of a list one may proceed either \outside in" or \inside out."

Below we use CONSTRAIN to introduce three functions, P, Q, and R, each of

one argument. The functions are unconstrained, i.e., the constraining axiom

added is T. We use the identity function as the witness for each.

(CONSTRAIN P-Q-R-INTRO (REWRITE) T

((P (LAMBDA (X) X))

(Q (LAMBDA (X) X))

(R (LAMBDA (X) X))))
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0.4.2 FUNCTIONALLY-INSTANTIATE

General Form:

(FUNCTIONALLY-INSTANTIATE name types term old-name fs &OPTIONAL hints)

Example Form:

(FUNCTIONALLY-INSTANTIATE PR-TIMES-IS-AC-TIMES (REWRITE)

(EQUAL (AC-TIMES L Z) (PR-TIMES L Z))

PR-IS-AC

((H TIMES)

(PR-H PR-TIMES)

(AC-H (LAMBDA (X Y) (AC-TIMES X Y)))))

FUNCTIONALLY-INSTANTIATE is like PROVE-LEMMA in that it proves a theorem,

term, and adds it to the database as a lemma with name name and types types.

FUNCTIONALLY-INSTANTIATE requires that fs be a tolerable functional substitu-

tion, that old-name be a symbol that names some previously added event, and

that term be the result of functionally instantiating the FORMULA-OF old-name

with fs. (If term is the symbol *AUTO*, then term is automatically arranged to

be just this instantiation.) To succeed FUNCTIONALLY-INSTANTIATE must prove

the conjunction of instances under fs of some of the DEFNs, CONSTRAINs, and

ADD-AXIOMs, for which proof attempt the hints are used. The formulas that

must be proved are the fs instantiations of each user DEFN, CONSTRAIN, and

ADD-AXIOM that (a) uses as a function symbol some symbol in the domain of fs

and (b) is either (i) an ADD-AXIOM or (ii) a DEFN or CONSTRAIN that introduces

a function symbol ancestral

2

in the FORMULA-OF old-name or some ADD-AXIOM.

We wish to make it convenient to apply the same functional substitution to

several di�erent theorems in a sequence of FUNCTIONALLY-INSTANTIATE events,

without having to prove the same constraints repeatedly. Therefore, FUNCTIONALLY-INSTANTIATE

does not bother to prove ax\fs if any previous FUNCTIONALLY-INSTANTIATE did

prove it. If you would like to limit the set of previous FUNCTIONALLY-INSTANTIATE

events considered to some particular set fev1, ..., evng, then use (old-name ev1

... evn) for old-name.

FUNCTIONALLY-INSTANTIATE aborts if any of the DEFN, CONSTRAIN, or ADD-AXIOM

formulas to be instantiated and proved uses as a variable any variable that is

free in fs. Such an abort can always be avoided by choosing new variable names.

Note. Observe that the mechanization of FUNCTIONALLY-INSTANTIATE does

not require that we prove the fs instantiation of every axiom.

2

The concept \ancestral" is de�ned in the next section, on p. 20.
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0.5 Correctness

0.5.1 The Conservative Nature of Constrain

Suppose we embed our theory into a traditional �rst order logic, such as that

of [8], turning the induction principle into a collection of axioms, admitting ex-

istential quanti�ers and the existential-quanti�er introduction-rule. Then the

introduction of constrained functions, as de�ned above, results in a conserva-

tive extension of the previous theory. Proof. Suppose that we can satisfy the

conditions for adding the constraint, ax, to a theory T with the functional sub-

stitution f..., <new

i

,old

i

>, ...g. Extend the current theory T to a new theory

T

0

by adding de�nitions (Shoen�eld style de�nitions: no SUBRP axioms) that

equate each new

i

with the corresponding old

i

. Of course, T

0

is a conservative

extension of T since de�nition is proved by Shoen�eld to produce conservative

extensions. Note that ax is a theorem in T

0

because we have assumed that

ax\f..., <new

i

,old

i

>, ...g can be proved in T. Form T

00

from T

0

by throwing

out the de�nitions of new

i

but adding ax as an axiom. T

00

is a conservative

extension of T because it is an extension of T and because any formula of T

that can be proved in T

0 0

can be proved in T

0

and hence in T. Q.E.D.

Although NQTHM's de�nitional principle is not, strictly speaking, conser-

vative (because of the SUBRP axioms), an NQTHM de�nitional extension of a

theory T is a conservative extension of the extension of T produced by adding

the SUBRP axioms. Also, an NQTHM de�nitional extension has what Shoen�eld

calls a translation property: If a formula is provable in the new theory, there is

a syntactically very similar theorem provable in the old theory, extended by the

SUBRP axioms, which \says the same thing" as the formula.

0.5.2 Functional Instantiation as a Derived Rule

We prove that functional instantiation is a correct derived rule of inference.

We enter into great, nay tedious, detail to show that functional instantiation is

correct for the actual logic of NQTHM, with its constructive character, and not

merely for �rst-order logic, which is non-constructive. A proof for �rst-order

logic alone would be somewhat shorter, since handling the quanti�er axioms

would require less work than handling our induction and de�nition principles.

Essentially, the proof is inductive, showing that if we have proved a theorem

thm and we wish to instantiate thm with a functional substitution fs, then we

can, in e�ect, instantiate the entire proof of thm with fs to obtain a proof of the

desired instance of thm. Because the inductive proof would otherwise be a little

long, we �rst break out a few important, simple lemmas about the standard

rules of inference.
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Propositional axiom lemma. The functional instantiation of every propo-

sitional axiom is an axiom. Proof. (� _ :�)\fs = (�\fs _ :(�\fs)), which is a

propositional axiom itself. Q.E.D.

Equality axiom lemma. If fs is a functional substitution, and eq is an

equality axiom, then eq\fs is a theorem. Proof. Suppose the axiom is x

1

= y

1

^ ... ^ x

n

= y

n

! (f x

1

... x

n

) = (f y

1

... y

n

). If f is not in the domain of

fs, the instantiation does not change eq. If fs replaces f with function symbol

f

0

, we note that the instance is another equality axiom, about f

0

. If fs replaces

f with (LAMBDA (a

1

... a

n

) term), then the instance is x

1

= y

1

^ ... ^ x

n

=

y

n

! term/f..., <a

i

,x

i

>, ...g = term/f..., <a

i

,y

i

>, ...g. We now prove that for

all terms, x

i

, y

i

, and a

i

, that x

1

= y

1

^ ... ^ x

n

= y

n

! term/f..., <a

i

,x

i

>,

...g = term/f..., <a

i

,y

i

>, ...)g is a theorem by induction on term. If term is a

variable then we consider the cases. If term is one of the a

i

, then the theorem in

question has the form x

1

= y

1

^ ... ^ x

n

= y

n

! x

i

= y

i

, which is a tautology.

If term is not one of the a

i

, then the theorem in question has the form x

1

= y

1

^ ... ^ x

n

= y

n

! term = term, which follows from x = x. If term is not a

variable, suppose it is (f t

1

... t

n

). By induction, we have x

1

= y

1

^ ... ^ x

n

= y

n

! t

i

/f..., <a

i

,x

i

>, ...g = t

i

/f..., <a

i

,y

i

>, ...g. Q.E.D.

Propositional Rule of Inference Lemmas. The propositional rules

\commute" with functional instantiation. We show for each of the following

four rules of inference that if � is a consequence of � (and perhaps 
), then �\fs

is a consequence of �\fs (and 
\fs).

Expansion. � _ � follows from �.

(� _ �)\fs follows from �\fs because (� _ �)\fs is �\fs _ �\fs, which

follows from �\fs by expansion.

Contraction. � follows from � _ �.

�\fs follows from (� _ �)\fs because (� _ �)\fs is �\fs _ �\fs.

Associativity. � _ � _ 
 follows from (� _ �) _ 
.

(� _ � _ 
)\fs follows from ((� _ �) _ 
)\fs because (�\fs _ �\fs _ 
\fs)

follows from ((�\fs _ �\fs) _ 
\fs).

Cut. � _ 
 follows from � _ � and :� _ 
.

(� _ 
)\fs follows from (� _ �)\fs and (:� _ 
)\fs because (�\fs _ 
\fs)

follows from (�\fs _ �\fs) and (:(�\fs) _ 
\fs).

Notational Convention. a\b/c means (a\b)/c, and a/b\c means (a/b)\c.
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De�nition. Suppose that s is a substitution and fs is a functional substitu-

tion. Then fs%s is de�ned to be f<x,y\fs >: <x,y> is a member of sg. In other

words, to obtain fs%s, we apply fs to each element of the range of s.

Commutativity Lemma. If t is a term, fs is a functional substitution,

s is a substitution, and no variable free in fs occurs in the domain of s, then

t\fs/(fs%s) = t/s\fs. Proof by induction on the structure of t. If t is a variable

and for some v, <t,v> is in s, then t\fs/(fs%s) = t/(fs%s) = v\fs = t/s\fs; if t

is a variable not in the domain of s, then t\fs/(fs%s) = t = t/s\fs. If t is not

a variable but has the form (f ... t

i

...) and f is not in the domain of fs or is

mapped by fs to a function symbol, then t\fs/(fs%s) = (f

0

... t

i

\fs/(fs%s) ...)

= (f

0

... t

i

/s\fs ...) = t/s\fs, by induction, where f

0

is f or its image under fs.

Finally, if f is mapped to (LAMBDA (a

1

... a

n

) term) by fs, then t\fs/(fs%s) =

(term/f..., <a

i

, t

i

\fs>, ...g)/(fs%s) = term/f..., <a

i

, t

i

\fs/(fs%s)>, ...g because

no free variable of (LAMBDA (a

1

... a

n

) term) is in the domain of fs%s since

no such variable is in the domain of s; but term/f..., <a

i

, t

i

\fs/(fs%s)>, ...g =

term/f..., <a

i

, t

i

/s\fs>, ...g by induction, and term/f..., <a

i

, t

i

/s\fs>, ...g =

t/s\fs. Q.E.D.

Instantiation Rule of Inference Lemma. If t is a term, fs is a functional

substitution, s is an ordinary substitution, no variable in the domain of s is free

in fs, and t\fs is a theorem, then so is t/s\fs. Proof. t/s\fs = t\fs/(fs%s) by the

Commutativity Lemma. Hence t/s\fs is a theorem by instantiation of t\fs with

(fs%s). Q.E.D.

Justi�cation of Functional Instantiation.

Suppose

h is a history,

fs is a tolerable functional substitution,

p is a proof of thm with respect to h,

no variable free in fs occurs in p, and

for each axiom ax that results from a user DEFN, ADD-AXIOM, or

CONSTRAIN, ax\fs is a theorem of h.

Then thm\fs is a theorem of h.

Proof by induction on the length of p.

Base Case. If the length is 1, then thm must be an axiom of h. If ax

is a propositional or equality axiom, then thm\fs is also an axiom, as proved

above. If thm is another sort of GROUND-ZERO axiom or the result of a user shell

invocation, it mentions no function symbol in the domain of fs by the hypothesis

that fs is tolerable, and hence thm\fs = thm. If thm is any other user axiom, it

must come from an ADD-AXIOM, CONSTRAIN, DCL, or DEFN. DCL adds no axiom,

and in the other three cases, thm\fs is a theorem of h by hypothesis.
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Induction Step. Suppose that the theorem holds when the length of p is k

or less and suppose thm has a proof of length k+1. The rules of inference are

the propositional rules, instantiation, and induction. The Propositional and In-

stantiation Rule of Inference Lemmas handle everything except induction. Note

that the hypothesis that no variable free in fs occurs in p yields the necessary

condition for the Instantiation Rule of Inference that no variable in the domain

of an ordinary substitution used is free in fs.

Suppose then that thm has been proved by induction. We check the con-

ditions for the inductive proof of thm\fs, inside square brackets, as we walk

through the conditions that were checked in the proof of thm.

thm is a term [but so is thm\fs]

m is a term [we will use m\fs]

q

1

... q

n

are terms [we will use q

1

\fs ... q

n

\fs, which are terms]

h

1

... h

n

are positive integers [same]

it is a theorem that (ORDINALP m)

[we need to check that (ORDINALP m\fs) but this follows by induc-

tion, provided we have de�ned \proof" so that inductive proofs have

such theorems as parts of them]

for 1 � i � k and 1 � j � h

i

, s

i,j

is a substitution

[we will use the fs%s

i,j

as our new substitutions; note that because

no variable free in fs occurs in p, the Commutativity Lemma can be

applied to show that for any t, t/s

i,j

\fs = t\fs/fs%s

i,j

. This depends

on the somewhat peculiar, Shankar[10] style de�nition of \proof" in

such a way that substitutions are explicitly embedded in proofs.]

it is a theorem that

(IMPLIES q

i

(ORD-LESSP m/s

i,j

m))

[we need to check that

(IMPLIES q

i

\fs (ORD-LESSP m\fs/(fs%s

i,j

) m\fs))

but this is

(IMPLIES q

i

(ORD-LESSP m/s

i,j

m))\fs

by the Commutativity Lemma and we have

(IMPLIES q

i

(ORD-LESSP m/s

i,j

m))\fs

by induction since the proof of
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(IMPLIES q

i

(ORD-LESSP m/s

i,j

m))

is part of the proof of thm and hence has a length less than that of

p. Note: the fact that fs passes through calls to functions such as

ORD-LESSP, IMPLIES, etc., follows from the fact that fs is tolerable.]

Then thm is a theorem [i.e. thm\fs will be a theorem] if

(IMPLIES (AND ... (NOT q

i

) ...) thm)

is a theorem

[we need to check that

(IMPLIES (AND ... (NOT q

i

\fs) ...) thm\fs)

is a theorem, but this follows by induction]

and for 1 � i � k,

(IMPLIES (AND q

i

thm/s

i,1

... thm/s

i,h

i

) thm)

[we need to check that

(IMPLIES (AND q

i

\fs thm\fs/(fs%s

i,1

) ... thm\fs/(fs%s

i,h

i

))

thm\fs)

is a theorem but this, by the Commutativity Lemma, is the same as

(IMPLIES (AND q

i

\fs thm/s

i,1

\fs ... thm/s

i,h

i

\fs) thm\fs)

which is the same as

(IMPLIES (AND q

i

thm/s

i,1

... thm/s

i,h

i

) thm)\fs

which follows by induction.]

Q.E.D.

Note. The theorem we have just proved can be strengthened by weakening

the hypothesis

for each axiom ax that results from a user DEFN, ADD-AXIOM, or CONSTRAIN,

ax\fs is a theorem of h.

to
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for each axiom ax that

(a) results from a user DEFN, ADD-AXIOM, or CONSTRAIN,

(b) uses some member of the domain of fs as a function symbol, and

(c) is not one of the SUBRP axioms added by DEFN,

ax\fs is a theorem of h.

because in each case in which we no longer bother proving that ax\fs is a

theorem, it is the case that ax\fs = ax. In particular, it is the case that the

function symbols in the SUBRP axioms added by a DEFN (e.g., SUBRP, FORMALS,

and BODY) are not permitted in the domain of tolerable functional substitutions.

It is now our intention to develop a somewhat less obvious but more impor-

tant strengthening of functional instantiation, a strengthening that permits us

to ignore instantiating and proving \irrelevant" de�nitions. Let us say, roughly,

that a de�nition of a function fn in a history h is irrelevant to a theorem thm

of h provided that (a) fn is not involved in the statement of thm nor is any

function whose de�nition uses fn, etc., and (b) fn is similarly not involved in

any ADD-AXIOM. Intuitively speaking, if we (i) ignore the SUBRP axioms that are

added when a DEFN occurs and (ii) we embed our logic into a standard �rst order

logic, then it is not hard to see that we need not do functional instantiation and

proof on irrelevant de�nitions when using functional instantiation, because the

theorem can be proved in the history that results from dropping away the ir-

relevant de�nitions. However, for the actual logic of NQTHM, it is not possible

to ignore the SUBRP axioms. Furthermore, we are interested in a constructive

proof of the legitimacy of ignoring irrelevant de�nitions, a proof that does not

rely upon the presence of existential quanti�cation in our logic. Therefore, we

are about to embark upon a rather tedious proof that we can ignore irrelevant

de�nitions provided we are content with knowing that a functional instantiation

thm\fs of a theorem thm of a history h is at least a theorem of a de�nitional

extension of h. In preparation for proving the Justi�cation of Functional Instan-

tiation with Extension Lemma, which permits us to ignore irrelevant de�nition,

we �rst lay some groundwork.

Theorem. The generality of LAMBDA. Without loss of generality, we may

assume that every element of the range of a functional substitution is a LAMBDA

expression. Proof. Let fs = f..., <x

i

,y

i

>, ...g. Let fs

0

be the functional substitu-

tion obtained by replacing each y

i

in the range of fs

0

that is a function symbol

with (LAMBDA (a

1

... a

n

) (y

i

a

1

... a

n

)), where the a

j

are distinct variables

and n is the arity of y

i

. We now prove by induction on the structure of the

term t that t\fs = t\fs

0

. If t is a variable, both sides are t. So suppose t = (f

... t

i

...). If f is not in the domain of fs, then t\fs = (f ... t

i

\fs ...), which, by

induction is (f ... t

i

\fs

0

...) = t\fs

0

. But if f is replaced with f

0

by fs then t\fs

= (f

0

... t

i

\fs ...) = (f

0

... t

i

\fs

0

...) = (f

0

... a

i

...)/f..., <a

i

,t

i

\fs

0

>, ...g = t\fs

0

.
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Q.E.D.

De�nition. The composition of two functional substitutions fs

1

and fs

2

,

denoted fs

1

:fs

2

, is de�ned as follows, provided that no free variable of fs

2

occurs

bound in fs

1

. Without loss of generality, assume that each member of the range

of fs

1

is a LAMBDA expression. Let fs

1

= f..., <x

i

, (LAMBDA (... a

j

...) term

i

)>,

...g. Let fs

2

0

be the restriction of fs

2

to the complement of the domain of fs

1

.

Then fs

1

:fs

2

= f..., <x

i

, (LAMBDA (... a

j

...) term

i

\fs

2

)>, ...g[fs

2

0

. (This is

strictly analogous to the composition of ordinary substitutions.)

Theorem. The composition of functional substitutions. If no free variable

of fs

2

occurs bound in fs

1

, then t\fs

1

\fs

2

= t\(fs

1

:fs

2

). Proof by induction on

the structure of t. If t is a variable, then both sides equal t. If t has the form

(f ... t

i

...), assume inductively that t

i

\fs

1

\fs

2

= t

i

\(fs

1

:fs

2

).

Suppose that <f, (LAMBDA (... a

i

...) fterm)> is a member of fs

1

. Then

t\fs

1

\fs

2

by the de�nition of functional substitution

= (fterm/f..., <a

i

, t

i

\fs

1

>, ...g)\fs

2

by the Commutativity Lemma, checking that no a

i

is free in fs

2

= (fterm\fs

2

)/(fs

2

%f..., <a

i

, t

i

\fs

1

>, ...g)

by the de�nition of %

= (fterm\fs

2

)/f..., <a

i

, t

i

\fs

1

\fs

2

>, ...g)

by induction

= (fterm\fs

2

)/f..., <a

i

, t

i

\(fs

1

:fs

2

)>, ...g

= t\(fs

1

:fs

2

).

On the other hand, suppose that f is not a member of the domain of fs

1

but

<f, (LAMBDA (... a

i

...) fterm)> is a member of fs

2

. Then

t\fs

1

\fs

2

= (f ... t

i

\fs

1

...)\fs

2

= fterm/f..., <a

i

, t

i

\fs

1

\fs

2

>, ...g

= fterm/f..., <a

i

, t

i

\(fs

1

:fs

2

)>, ...g

= t\(fs

1

:fs

2

)

Finally, if f is a member of neither the domain of fs

1

nor of fs

2

,

t\fs

1

\fs

2

= (f ... t

i

\fs

1

...)\fs

2

= (f ... t

i

\fs

1

\fs

2

...)



Functional Instantiation in First Order Logic

Technical Report #44

20

= t\(fs

1

:fs

2

)

Q.E.D.

De�nition. A function symbol f

1

is an ancestor of a function symbol f

2

i�

f

2

is introduced by a DEFN or CONSTRAIN and either f

1

is one of the function

symbols introduced with f

2

(including f

2

itself) or f

1

is an ancestor of a symbol

that is used as a function symbol in the axiom(s) added by the introduction of

f

2

.

De�nition. A function symbol f is ancestral in a term t if and only if f is

an ancestor of some symbol used as a function symbol in t.

Note. It is possible that when we do functional instantiation, we pick up

new \governors." For example, if we consider the de�nitional equation

(F1 X Y)

=

(IF (NLISTP X)

NIL

(G1 (F1 (CDR X) Y) Y)))

and consider the functional instantiation

f<F1, F2>, <G1, (LAMBDA (X Y) (IF (G2 Y) X 3))>g

the resulting instantiated equation is

(F2 X Y)

=

(IF (NLISTP X)

NIL

(IF (G2 Y)

(F2 (CDR X) Y)

3))

Note that the recursive call of F2 is now governed by the additional condition (G2

Y). The crucial point for arguing the termination of the instantiated function is

that we do not lose any governors.

Theorem. The Governor's Lemma. If fs is a functional substitution, f is

not in the domain of fs, f* is not in fs or term nor equal to f, fs

0

= fs[f<f,

(LAMBDA (x

1

... x

m

) (f* x

1

... x

n

a

1

... a

n

))>g, and fs

0

is tolerable, then the

governors of an occurrence of a term o whose function symbol is f* in term\fs

0

include the fs

0

instances of the governors of a term n in term, with function

symbol f, such that n\fs

0

= o. Proof by induction on the size of term. If term is

a variable, nothing governs anything. Case 1. Suppose term has the form (IF x
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y z). Consider occurrences of a term o in (IF x y z)\fs

0

with function symbol

f*. Case 1.1. o is not (IF x y z)\fs

0

itself because fs

0

is tolerable. Case 1.2. o

occurs in the �rst argument of (IF x y z)\fs

0

. The governors of o here are the

governors of o in x, so by induction those governors include the fs

0

instances

of the governors of a term n in x, with function symbol f, such that n\fs

0

=

o. Case 1.3. o occurs in the second argument of (IF x y z)\fs

0

. The one new

governor that an occurrence of any term in y\fs

0

obtains, when that occurrence

is viewed as an occurrence in the second argument of (IF x y z)\fs

0

, is x\fs

0

,

which is an fs

0

instance of x. Case 1.4. Analogous to 1.3. Case 2. term has the

form (f ... t

i

...), so term\fs

0

has the form (f* ... t

i

\fs

0

...). The governors of

(f* ... t

i

\fs

0

...) in (f* ... t

i

\fs

0

...) is the empty set, which is the governors

of t in t. The governors of an occurrence of term o with function symbol f* in

a t

i

\fs

0

correspond to the governors of f terms in t

i

by induction, and no new

governors arise. Case 3. term has the form (g ... t

i

...), where g is not f. If

g is not in the domain of fs

0

, then induction does the job. If <g, (LAMBDA (...

a

i

...) gterm)> is a member of fs

0

, then term\fs

0

= gterm\f..., <a

i

, t

i

\fs

0

>, ...g.

Because f* does not occur in fs, it does not occur in gterm. Hence the only

occurrences of o terms with function symbol f* we must consider are those in

the t

i

\fs

0

, which are covered by the induction hypothesis. They may pick up

additional governors from gterm, but they do not lose any. Q.E.D.

We now show that certain functional substitutions can be extended to include

CONSTRAINs and DEFNs not supplied.

De�nition. A functional substitution fs and a history h are said to be

extensible provided that no variable free in fs occurs in h, and for each user

DEFN, ADD-AXIOM, or CONSTRAIN axiom ax of h either (a) ax\fs is a theorem of

h or (b) ax arises from a DEFN or CONSTRAIN and none of the function symbols

there introduced are ancestors of any function symbol in the domain of fs or are

ancestral in any ADD-AXIOM of h.

Convention. We take the attitude that embedded within a history h we

have the proofs checking the acceptability of the DEFNs and CONSTRAINs. We

adopt this only to be able to obtain variables and function symbols not in those

proofs.

Note. The concept introduced next, \obvious extension," is the key to

the generation of the de�nitional extensions we will need in the proof of the

Justi�cation of Functional Instantiation with Extension Lemma. With obvious

extensions, we can introduce for each irrelevant de�nition, (fn args) = body,

another de�nition, very roughly (fn* args) = body/fs[f<fn, fn*>), whose axiom

will provide an automatic proof for the fs instance of fn, which we prefer not to

consider.

Note. The following de�nition is several pages long because we prove the

well-formedness of the de�nition as we present it.
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De�nition. The obvious extensions of an extensible functional substitution

fs and history h are a new functional substitution fs

0

and history h

0

de�ned as

follows.

If there is no axiom ax of h such that ax\fs is not a theorem of h, then fs

0

is

fs and h

0

is h.

Otherwise, let ax be the �rst axiom in h such that ax\fs is not a theorem.

Because fs is extensible, ax is a DEFN or CONSTRAIN, and the function symbols

there introduced are not in the domain of fs. There are two cases to consider,

depending upon whether the event in question is a DEFN or a CONSTRAIN.

DEFN Case. If the event is a DEFN of a function symbol f, then let f* be a

function symbol new in h, one that is used in no DEFN or CONSTRAIN proofs of h.

Let a

1

, ..., a

n

be the free variables of fs. Let the arity of f* be the arity of f plus

n. Let a

1

*, ..., a

n

* be distinct variables not in fs or h. Let A be the substitution

f..., <a

i

,a

i

*>, ...g. If the de�nitional axiom added for f is (f x

1

... x

m

) = body,

then fs

0

is fs[f<f, (LAMBDA (x

1

... x

m

) (f* x

1

... x

m

a

1

... a

n

))>g and h

0

is

the history obtained by extending h with the de�nition (f* x

1

... x

m

a

1

* ...

a

n

*) = body\fs

0

/A.

Before proceeding to the CONSTRAIN case we check that the de�nition added

to h to build h

0

is admissible. A new function symbol is being introduced, the

argument list consists of distinct variables, and the new body is a term that

mentions no variable not in the argument list. We now check condition (d) of

the principle of de�nition. We review the argument that led to the introduction

of f; the argument for f* is closely analogous, with the analogues noted in square

brackets.

there is a term m [we take m\fs

0

/A]

such that (a) (ORDINALP m) can be proved directly in h

[we need to check that (ORDINALP m\fs

0

/A) can be be proved di-

rectly in h. Let p be the proof of (ORDINALP m) used to justify the

introduction of f. Every axiom used in p is true under fs, from the

de�nition of extensible because ax is the �rst axiom in h such that

ax\fs is not a theorem. Because f was new at the time of its de�ni-

tion, the only axiom in p that could mention f as a function symbol

would be the equality axiom for f. Hence for every axiom used in

p, ax\fs

0

is also a theorem. Hence by the Justi�cation of Functional

Substitution, (ORDINALP m)\fs

0

is a theorem of h. That ax\fs

0

can

be proved \directly" follows from inspecting the proof constructed in

the Justi�cation Lemma, noting that no new functions are de�ned.

(ORDINALP m\fs

0

/A) is an instance, indeed a variant, of (ORDINALP

m\fs

0

).]
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and (b) for each occurrence of a subterm of the form (f y

1

... y

m

) in

body and the terms t

1

... t

k

governing it, the following formula can

be proved directly in h:

(IMPLIES (AND t

1

... t

k

)

(ORD-LESSP m/s m))

where s is the substitution f..., <x

i

,y

i

>, ...g.

[Observe that, by the Governor's Lemma, for each occurrence n of

a subterm of the form (f* y

1

0

... y

m

0

z

1

... z

n

) in the new body,

there is an occurrence o of a subterm of the form (f y

1

... y

m

) in

the original body such that y

i

0

= y

i

\fs

0

/A, z

i

= a

i

*, and such that

if g governs o in the old body, then g\fs

0

/A governs n in the new

body.]

We need to check that for each subterm of the form (f* y

1

0

... y

m+n

0

) in

body\fs

0

/A, and the terms v

i

governing the occurrence, the following

formula can be proved directly in h:

(IMPLIES (AND ... v

i

...)

(ORD-LESSP m\fs

0

/A/s

0

m\fs

0

/A))

where s

0

is the substitution f..., <x

i

, y

i

\fs

0

/A>, ...g (we can ignore the

pairs <a

i

*, a

i

*>). We will prove the stronger theorem

(IMPLIES (AND t

1

\fs

0

/A ... t

k

\fs

0

/A)

(ORD-LESSP m\fs

0

/A/s

0

m\fs

0

/A)),

which is stronger because each t

i

\fs

0

/A is one of the v

i

, by the Gover-

nor's Lemma.

Note that for all terms t, t/A/s

0

= t/(fs

0

%s)/A, so we need to prove

(IMPLIES (AND t

1

\fs

0

/A ... t

k

\fs

0

/A)

(ORD-LESSP m\fs

0

/fs

0

%s/A m\fs

0

/A)),

which by the Commutativity Lemma is

(IMPLIES (AND t

1

\fs

0

/A ...t

k

\fs

0

/A)

(ORD-LESSP m/s\fs

0

/A m\fs

0

/A)),

which by the de�nition of substitution is
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(IMPLIES (AND t

1

...t

k

)

(ORD-LESSP m/s m))\fs

0

/A,

which is a theorem by the Justi�cation Lemma and instantiation be-

cause every axiom used in the proof of

(IMPLIES (AND t

1

... t

k

)

(ORD-LESSP m/s m))

is a theorem under fs

0

.

CONSTRAIN Case. If the event was a CONSTRAIN with axiom ax and justifying

functional substitution f..., <f

i

, (LAMBDA (x

i,1

... x

i,k

i

) w

i

)>, ...g, let a

1

, ...,

a

n

be the free variables of fs, let f

i

* be distinct function symbols, new for h,

that do not occur in fs, and that have the same arities as the f

i

, plus n more

arguments. Let a

1

*, ..., a

n

* be distinct variables not in fs or h. Let A be the

substitution f..., <a

i

,a

i

*>, ...g. Then

fs

0

=

fs[f..., <f

i

, (LAMBDA(x

i,1

... x

i,k

i

)

(f

i

* x

i,1

... x

i,k

i

a

1

... a

n

))>, ...g,

and h

0

is the extension of h with the CONSTRAIN event ax\fs

0

/A and justifying

functional substitution f..., <f

i

*, w

i

0

>, ...g, where

w

i

0

= (LAMBDA (x

i,1

... x

i,k

i

a

1

* ... a

n

*) w

i

\fs

0

/A).

We now check that the CONSTRAIN event added to h to build h

0

is admissible.

Note that ax\f..., <f

i

,(LAMBDA (x

i,1

... x

i,k

i

) w

i

)>, ...g was a theorem of h,

checked when ax was added. Let p be the proof used in the introduction of ax.

Because every axiom used in p has a proof in h under fs (since ax is the �rst

axiom not a theorem under fs), we have that

ax\f..., <f

i

,(LAMBDA (x

i,1

... x

i,k

i

) w

i

)>, ...g\fs

is a theorem of h. But

ax\fs

0

/A\f..., <f

i

*,w

i

0

>, ...g,

which is what we must prove to show the admissibility of the new CONSTRAIN,

is, because no variable is free in a w

i

0

, and by using the Commutativity Lemma,
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ax\fs

0

\f..., <f

i

*,w

i

0

>, ...g/(f..., <f

i

*, w

i

0

>, ...g%A),

which, by the de�nition of A, equals

ax\fs

0

\f..., <f

i

*,w

i

0

>, ...g/A,

which is, by the de�nition of fs

0

,

ax\(fs[f..., <f

i

, (LAMBDA (x

i,1

... x

i,k

i

) (f

i

* x

i,1

... x

i,k

i

a

1

...

a

n

))>, ...g) \f..., <f

i

*,w

i

0

>, ...g /A,

which, because no f

i

* occurs in fs or ax, because no w

i

0

has a free variable bound

in fs

0

, and because of the theorem on composition of functional substitutions is

ax\(fs[f..., <f

i

, (LAMBDA (x

i,1

... x

i,k

i

) (w

i

\fs

0

/A)/f<x

i,j

, x

i,j

>,

<a

i

, a

i

>g)>, ...g/A,

which, because of the trivial substitutions, is

ax\(fs[f..., <f

i

, (LAMBDA (x

i,1

... x

i,k

i

) (w

i

\fs

0

/A))>, ...g/A,

which, because f

i

occurs in no w

i

and a

i

occurs in no w

i

nor in fs due to the

extensibility of fs, is

ax\(fs[f..., <f

i

, (LAMBDA (x

i,1

... x

i,k

i

) (w

i

\fs))>, ...g/A,

which, by the composition of functional substitutions, and the observation that

no a

i

occurs in any w

i

, is

ax\f..., <f

i

,(LAMBDA (x

i,1

... x

i,k

i

) w

i

)>, ...g\fs/A

Hence what we must prove is only a variant of what we proved when we intro-

duced the original CONSTRAIN.

End of the de�nition of obvious extensions.

Theorem. The obvious extensions of an extensible functional substitution

and history are themselves extensible. Proof. To check that in both cases

fs

0

and h

0

are extensible, we must show that if ax is any axiom of h

0

such

that ax\fs

0

is not a theorem of h

0

, ax must arise from a DEFN or CONSTRAIN

that introduces functions symbols, none of which is an ancestor of any function

symbol in the domain of fs

0

or ancestral in any ADD-AXIOM of h

0

. Suppose

that ax is an axiom of h

0

such that ax\fs

0

is not a theorem of h

0

. Then ax is

not the old DEFN or CONSTRAIN of h just analogized because ax\fs

0

is a variant

of the axiom just added to h to form h

0

and hence is a now a theorem of h

0

with a proof of length 2. If ax is the newly introduced DEFN or CONSTRAIN

axiom, we note that no f* (the function or functions introduced there) is an

ancestor of any function symbol in the domain of fs

0

nor is it ancestral in any
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ADD-AXIOM of h

0

. But ax is not an ADD-AXIOM because for every ADD-AXIOM

axiom, ax

1

, ax

1

\fs = ax

1

\fs

0

since the function symbols just introduced and

added to make fs

0

are ancestral in no ADD-AXIOM. So ax must be introduced

by a DEFN or CONSTRAIN, which occurs in h after the DEFN or CONSTRAIN just

analogized. Because fs was extensible with respect to h, none of the function

symbols g

1

, ..., g

n

introduced with ax is an ancestor of any function symbol in

the domain of fs nor ancestral in an ADD-AXIOM of h; but none of the g

1

, ..., g

n

introduced with ax is then an ancestor of any function symbol of the domain of

fs

0

, since function symbols introduced with later DEFNs and CONSTRAINs cannot

be ancestors of earlier ones. Furthermore, the g

1

, ..., g

n

introduced with ax are

not ancestral in any ADD-AXIOMs of h

0

because the ADD-AXIOMs of h

0

are those

of h. Q.E.D.

Lemma. Justi�cation of Functional Instantiation with Extension.

Suppose

h is a history,

fs is a tolerable functional substitution,

p is a proof of thm with respect to h,

no variable free in fs occurs in p,

and <h, fs> is extensible, and, furthermore, for each DEFN or CONSTRAIN

of h whose instance under fs is not a theorem of h, none of the func-

tion symbols introduced by the DEFN or CONSTRAIN is ancestral in

thm.

Then thm\fs is a theorem in a DEFN/CONSTRAIN extension of h.

Proof. Because fs and h are extensible, we can keep obviously extending

them to fs

0

and h

0

such that for each axiom ax used in p, ax\fs

0

is a theorem

of h

0

. Hence thm\fs

0

will be a theorem of h

0

. But no function symbol ancestral

in thm will be added to the domain of fs to form fs

0

, hence thm\fs = thm\fs

0

.

Thus thm\fs is a theorem of h

0

, a DEFN/CONSTRAIN extension of h. Q.E.D.

Note. Justi�cation of the Implementation of FUNCTIONALLY-INSTANTIATE.

The implementation of the new event FUNCTIONALLY-INSTANTIATE di�ers in

a minor way from that which is suggested by the Justi�cation of Functional

Instantiation with Extension Lemma, namely (i) we permit the free variables of

fs to occur in thm and (ii) we cause a simple error if any of the free variables

of fs occur in any of the DEFN, CONSTRAIN, or ADD-AXIOM axioms that need

instantiation and proof. We now justify (i). If a user wishes to functionally

instantiate a theorem thm with a functional substitution fs, let p be any proof

of thm, let s be a 1:1 substitution that maps the free variables of fs to variables

that occur nowhere in p or fs, and let fs

0

be the set of pairs <f

1

, f

2

> such that

either <f

1

, f

2

> occurs in fs and f

2

is a symbol or for some term and (a

1

... a

n

) it
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is the case that <f

1

, (LAMBDA (a

1

... a

n

) term)> occurs in fs and f

2

= (LAMBDA

(a

1

... a

n

) term)/s where (LAMBDA (a

1

... a

n

) term)/s is (LAMBDA (a

1

...

a

n

) term/s

1

) where s

1

is the result of removing from s every pair whose �rst

element is one of the a

i

. Because no variable free in fs

0

occurs in p, thm\fs

0

will be a theorem provided that we check that each relevant ax\fs

0

is a theorem.

Given thm\fs

0

, then, how do we derive the desired thm\fs ? The answer is that

thm\fs = thm\fs

0

/s

2

, where s

2

is the inverse of s.

0.6 Examples

0.6.1 Inside-Outside

Here we introduce a dyadic function H with the property we call \commutativ-

ity2," and show that one can \map" with such a function in a primitive recursive

way (using PR-H, which computes \inside-out") or in an accumulator-using way

(using AC-H, which computes \outside-in"), getting the same result either way.

The equivalence of these two methods of applying H to a list is formally stated

in PR-IS-AC below.

(CONSTRAIN INTRO-H

(REWRITE)

(EQUAL (H X (H Y Z))

(H Y (H X Z)))

((H PLUS)))

(DEFN PR-H (L Z)

(IF (NLISTP L)

Z

(H (CAR L) (PR-H (CDR L) Z))))

(DEFN AC-H (L Z)

(IF (NLISTP L)

Z

(AC-H (CDR L) (H (CAR L) Z))))

(PROVE-LEMMA PR-IS-AC (REWRITE)

(EQUAL (AC-H L Z) (PR-H L Z))

((INDUCT (AC-H L Z))))

Since H is unconstrained except for having the commutativity2 property,

the intuitive force of PR-IS-AC, above, is that it should hold for any function
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with the commutativity2 property. More precisely, given any function with the

commutativity2 property, the two analogues of PR-H and AC-H are equal. We

show how, with functional instantiation, PR-IS-AC can be used to draw this

conclusion about two analogous functions that map with TIMES.

(DEFN PR-TIMES (L Z)

(IF (NLISTP L)

Z

(TIMES (CAR L) (PR-TIMES (CDR L) Z))))

(DEFN AC-TIMES (L Z)

(IF (NLISTP L)

Z

(AC-TIMES (CDR L) (TIMES (CAR L) Z))))

(FUNCTIONALLY-INSTANTIATE PR-TIMES-IS-AC-TIMES (REWRITE)

(EQUAL (AC-TIMES L Z) (PR-TIMES L Z))

PR-IS-AC

((H TIMES)

(PR-H PR-TIMES)

(AC-H (LAMBDA (X Y) (AC-TIMES X Y)))))

0.6.2 Map-Append

We here de�ne the familiar MAP function that collects the results of applying

an arbitrary unary function FN to every element of a list. We show that MAP

distributes over the list concatenation function, APPEND, and instantiate the

result so that we map with a function that takes two arguments instead of one.

(CONSTRAIN FN-INTRO () T ((FN ADD1)))

(DEFN MAP-FN (X)

(IF (NLISTP X)

NIL

(CONS (FN (CAR X)) (MAP-FN (CDR X)))))

(PROVE-LEMMA MAP-DISTRIBUTES-OVER-APPEND (REWRITE)

(EQUAL (MAP-FN (APPEND U V))

(APPEND (MAP-FN U) (MAP-FN V))))

(DEFN MAP-PLUS-Y (X Y)
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(IF (NLISTP X)

NIL

(CONS (PLUS (CAR X) Y) (MAP-PLUS-Y (CDR X) Y))))

(FUNCTIONALLY-INSTANTIATE MAP-PLUS-Y-DISTRIBUTES-OVER-APPEND (REWRITE)

(EQUAL (MAP-PLUS-Y (APPEND U V) Z)

(APPEND (MAP-PLUS-Y U Z) (MAP-PLUS-Y V Z)))

MAP-DISTRIBUTES-OVER-APPEND

((FN (LAMBDA (X) (PLUS X Z)))

(MAP-FN (LAMBDA (X) (MAP-PLUS-Y X Z)))))

0.6.3 Properties of the Generic Interpreter

NQTHM is often used to formalize programming languages or general comput-

ing systems. The typical formalization involves de�ning an interpreter for the

language or system. This interpreter generally takes the form of a function of

a \state" and a \clock" and repeatedly applies a \step" function to the state

until \time" has run out.

For example, in an assembly-level language[6,7], the state might include a

\program counter" and some \program space" and \data space." Often the

notion of state is further re�ned to include just \good states," i.e., states whose

components stand in certain invariant relations to one another e.g., the program

counter points to a legal address in program space, program space contains

well-formed instructions, etc. Stepping generally involves determining from the

initial state some transformation to be performed. For example, if the program

counter points to an (ADD a b) instruction in program space, then the step is to

compute the sum of the contents of data locations a and b, store that into data

location a, and increment the program counter by 1. For realistic languages,

the formal de�nitions of \good state" and \step" often run to a hundred pages.

But if an interpreter is just the iterated application of a step function to an

initial state, then many properties of the formal language can be proved without

regard for the details. Below we introduce the generic notions of a \good state"

and of \stepping" from one good state to another. Then we de�ne the generic

interpreter.

(CONSTRAIN STATEP-AND-STEP-INTRO (REWRITE)

(IMPLIES (STATEP S) (STATEP (STEP S)))

((STEP (LAMBDA (X) X))

(STATEP (LAMBDA (X) F))))

Observe that STEP is constrained to preserve STATEP.
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(DEFN INTERP (S N)

(IF (ZEROP N)

S

(INTERP (STEP S) (SUB1 N))))

We can then prove two important lemmas about this generic interpreter.

The �rst is that if it is started in a good state then it ends in a good state:

(PROVE-LEMMA STATEP-INTERP (REWRITE)

(IMPLIES (STATEP S) (STATEP (INTERP S N))))

The second is that to run it I+J steps starting from some state S is the same

as running it I steps from S and then running it J steps more from there.

(PROVE-LEMMA SEQUENTIAL-INTERP (REWRITE)

(EQUAL (INTERP S (PLUS I J))

(INTERP (INTERP S I) J)))

If it is desired to conclude these facts about a particular, realistic interpreter,

they can be inferred by functional instantiation at the cost only of proving that

the constraint on STATEP and STEP is satis�ed, i.e., proving that the realistic

step function preserves realistic good states.

0.6.4 The Associativity of APPEND without Induction

Here we follow the lead of Goodstein in [4] and of McCarthy with his re-

cursion induction [5]. We show, using FUNCTIONALLY-INSTANTIATE, that the

associativity of APPEND can be proved without explicit appeal to induction.

Of course there are inductions hidden all over the place, e.g., in the type-

set analysis for TRUE-REC and in the proof of the metatheorem that justi�es

FUNCTIONALLY-INSTANTIATE. Still, this is a startling development to those who

regard the associativity of APPEND as the �rst theorem requiring an inductive

proof.

In this example we actually de�ne and use the function APP in place of

APPEND, which is prede�ned in NQTHM, so that the entire development is ex-

plicit.

(DEFN TRUE-REC (X)

(IF (NLISTP X)

T

(TRUE-REC (CDR X))))

(PROVE-LEMMA TRUE-REC-IS-TRUE (REWRITE) (TRUE-REC X))
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(DEFN APP (X Y)

(IF (NLISTP X)

Y

(CONS (CAR X) (APP (CDR X) Y))))

(FUNCTIONALLY-INSTANTIATE ASSOC-OF-APP (REWRITE)

(EQUAL (APP (APP X Y) Z) (APP X (APP Y Z)))

TRUE-REC-IS-TRUE

((TRUE-REC (LAMBDA (X) (EQUAL (APP (APP X Y) Z) (APP X (APP Y Z)))))))

0.6.5 Faking Quanti�ers

We next illustrate the use of CONSTRAIN and FUNCTIONALLY-INSTANTIATE in

theorems that resemble proofs in �rst-order predicate calculus with quanti-

�ers. We �rst introduce an unconstrained unary function P. We then constrain

(ALL-X-P-X) so that its truth implies that (P X) is true for all X. We give

the analogous constrained meaning to (SOME-X-P-X). Then we prove that the

former implies the latter.

(CONSTRAIN P-INTRO () T ((P LISTP)))

(CONSTRAIN ALL-X-P-X-INTRO (REWRITE)

(IMPLIES (ALL-X-P-X) (P X))

((ALL-X-P-X FALSE)))

(CONSTRAIN SOME-X-P-X-INTRO (REWRITE)

(IMPLIES (P X) (SOME-X-P-X))

((SOME-X-P-X TRUE)))

(PROVE-LEMMA ALL-IMPLIES-SOME ()

(IMPLIES (ALL-X-P-X) (SOME-X-P-X))

((USE (ALL-X-P-X-INTRO))))

0.6.6 Fairness

We illustrate a CONSTRAIN that expresses that a function is \fair" in the sense

that it is in�nitely often true and false. This sort of constraint is used in

Goldschlag's NQTHM formalization of Unity[3].

(DEFN EVEN (X)
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(IF (ZEROP X)

T

(IF (EQUAL X 1) F (NOT (EVEN (SUB1 X))))))

(CONSTRAIN FAIR-INTRO (REWRITE)

(AND (FAIR (FAIR-TRUE-WITNESS N))

(NOT (FAIR (FAIR-FALSE-WITNESS N)))

(NOT (LESSP (FAIR-TRUE-WITNESS N) N))

(NOT (LESSP (FAIR-FALSE-WITNESS N) N)))

((FAIR EVEN)

(FAIR-TRUE-WITNESS (LAMBDA (X) (IF (EVEN X) X (ADD1 X))))

(FAIR-FALSE-WITNESS (LAMBDA (X) (IF (EVEN X) (ADD1 X) X)))))

0.6.7 Tracking ADD-AXIOMs

In this section we illustrate a functional instantiation that fails. Suppose we

constrain P to be an arbitrary unary function:

(CONSTRAIN P-INTRO (REWRITE) T ((P (LAMBDA (X) 0))))

Suppose we de�ne the function P-ALIAS just to be another name for P.

(DEFN P-ALIAS (X) (P X))

but we then \constrain" P-ALIAS to be even by adding an axiom

(ADD-AXIOM EVEN-P-ALIAS (REWRITE)

(EVEN (P-ALIAS X)))

This implicitly constrains P to be even, as we can now prove:

(PROVE-LEMMA EVEN-P (REWRITE) (EVEN (P X))

((USE (EVEN-P-ALIAS)))).

Now a certain 
awed line of reasoning goes like this: P was introduced by

an unconstrained CONSTRAIN and we have proved P to be even. Therefore, we

ought to be able to conclude by functional instantiation that any function, e.g.,

ADD1, is even.

(FUNCTIONALLY-INSTANTIATE EVEN-ADD1 ()

(EVEN (ADD1 X))

EVEN-P

((P ADD1)))
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Why doesn't this work? At �rst glance, one is tempted to say \you can't

prove the functional instance of the ADD-AXIOM EVEN-P-ALIAS." But this is

false, we can prove it: the functional substitution does not include P-ALIAS in

its domain and so the instance of the axiom in question is just the axiom itself.

So what proof obligation can't we establish?

Consider what the Reference Guide for FUNCTIONALLY-INSTANTIATE requries:

The formulas that must be proved are the fs instantiations of each

user DEFN, CONSTRAIN, and ADD-AXIOM that (a) uses as a function

symbol some symbol in the domain of fs and (b) is either (i) an

ADD-AXIOM or (ii) a DEFN or CONSTRAIN that introduces a function

symbol ancestral in the FORMULA-OF old-name or some ADD-AXIOM.

Consider the DEFN of P-ALIAS. It is a DEFN that (a) uses a function symbol in

the domain of our fs, namely P, and (b) introduces a function symbol, namely

P-ALIAS, that is ancestral in some ADD-AXIOM, namely EVEN-P-ALIAS. Thus,

the functional instance of the de�nition of P-ALIAS under the substitution f<P,

ADD1>g must be proved. This produces the goal (P-ALIAS X) = (ADD1 X),

which is unprovable.

We could attempt to remedy this situation by providing an instantiation of

P-ALIAS, namely, ADD1, in our functional substitution. But if we did that, the

previously considered instance of the ADD-AXIOM EVEN-P-ALIAS would no longer

be provable.

0.6.8 Tracking Free Variables

It is necessary for soundness that we check that the variables in the constraints

do not intersect the free variables in the FUNCTIONALLY-INSTANTIATE substitu-

tions. The example in this section illustrates this.

Suppose we constrain the constant function Z to be 0, but we use the variable

X in the constraint

(CONSTRAIN Z-INTRO (REWRITE)

(IMPLIES (EQUAL X 0)

(EQUAL (Z) X))

((Z (LAMBDA () 0))))

because we think we see how to compromise the system with free variable con-

fusion.

We can prove that Z is 0:

(PROVE-LEMMA Z-IS-0 (REWRITE) (EQUAL (Z) 0))

Now let us try to prove (EQUAL X 0), i.e., everything is 0, by functionally

instantiating (Z) to be X, using the substitution f<Z, (LAMBDA () X)>g.
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(FUNCTIONALLY-INSTANTIATE EVERY-X-IS-0 ()

(EQUAL X 0)

Z-IS-0

((Z (LAMBDA () X))))

The faulty reasoning goes as follows: To prove EVERY-X-IS-0 we have to

prove the functional instance of the constraint on Z, namely,

(IMPLIES (EQUAL X 0)

(EQUAL (Z) X))

under the functional substitution f<Z, (LAMBDA () X)>g. But that instance is

the trivial:

(IMPLIES (EQUAL X 0)

(EQUAL X X)).

That reasoning is correct, as far as it goes. However, the Reference Guide for

FUNCTIONALLY-INSTANTIATE goes on to say

FUNCTIONALLY-INSTANTIATE aborts if any of the DEFN, CONSTRAIN,

or ADD-AXIOM formulas to be instantiated and proved uses as a vari-

able any variable that is free in fs. Such an abort can always be

avoided by choosing new variable names.

Thus, the above FUNCTIONALLY-INSTANTIATE event is rejected. If we avoid the

abort by choosing a di�erent variable, e.g., V, we must prove a non-theorem,

e.g.,

(IMPLIES (EQUAL X 0)

(EQUAL V X)),

which is equivalent to having to prove (EQUAL V 0).
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