
Formal Models of Java at the JVM LevelA Survey from the ACL2 PerspetiveJ Strother MooreRobert KrugHanbing LiuGeorge PorterDepartment of Computer Sienes, University of Texas at Austinmoore�s.utexas.eduhttp://www.s.utexas.edu/users/mooreAbstrat. We argue that a pratial way to apply formal methods toJava is to apply formal methods to the Java Virtual Mahine (JVM)instead. A Java system an be proved orret by analyzing the byteodeprodued for it. We believe that this lari�es the semanti issues withoutintroduing inappropriate omplexity. We say \inappropriate" beausewe believe the omplexity present in the JVM view of a Java lass isinherent in the Java, when aurately modeled. If it is desired to modela subset of Java or to model \Java" with a slightly simpler semantis,that an be done by formalizing a suitable abstration of the JVM. In thispaper we support these ontentions by surveying reent appliations ofthe ACL2 theorem proving system to the JVM. In partiular, we desribehow ACL2 is used to formalize operational semantis, we desribe severalmodels of the JVM, and we desribe proofs of theorems involving thesemodels. We are using these models to explore a variety of Java issuesfrom a formal perspetive, inluding Java's bounded arithmeti, objetmanipulation via the heap, lass inheritane, method resolution, single-and multi-threaded programming, synhronization via monitors in theheap, and properties of the byteode veri�er.1 ACL2 BakgroundACL2 [11℄ is a funtional programming language based on Common Lisp, a�rst-order mathematial logi with indution and reursive de�nition, and a me-hanial theorem prover in the style of the Boyer-Moore theorem prover NQTHM[2, 4℄. Among other suessful industrial uses of ACL2 is the veri�ation of thehardware designs for the elementary oating-point arithmeti operations on theAMD Athlon miroproessor [21℄ and the formalization of the �rst silion versionof the JVM [8, 9℄. See [10℄ for other ase studies.In this paper we advoate the use of formal models of the JVM [13℄ to verifyJava programs. Some readers may think this is an impratial suggestion. Butwork by Yu [5℄ with NQTHM (the predeessor of ACL2) supports our sugges-tion. Yu developed an operational formal model of the Motorola 68020 and then



2veri�ed C programs from the Berkeley C String Library by verifying the mahineode produed by g. Sine the oneptual gap between C and 68020 mahineode is muh greater than the gap between Java and JVM byteode, we believeit is reasonable to follow an analogous strategy to deal with Java programs.2 Our Basi ApproahOur models of the JVM are operational ones. The state of the mahine is rep-resented by a list ontaining, say, a thread table, a heap, and a lass table. Thethread table is a list ontaining an entry for eah thread. The entry inludesthe thread's all stak, sheduled status and other information. A all stak isa stak (list) of frames, eah of whih ontains a program ounter, the methodbody, a map from loal variable names to values, an operand stak, and a agindiating whether the method is synhronized. The heap is a �nite mappingfrom referene \addresses" to instane objets. The lass table is a list desrib-ing the superlasses, �elds and methods and other attributes of eah lass. Wethen de�ne in ACL2 the funtion that \steps" suh a state, produing the nextstate. We �nally de�ne a funtion, run, that \runs" a state, by stepping it re-peatedly. Suh an ACL2 model of the JVM may be thought of as a system ofLisp programs that simulates the JVM.We have produed several suh models of the JVM, so that we an exploreways to prove various kinds of properties. Before disussing the variety of for-mal models we have, we will use one of them to illustrate the foregoing sketh.The model we use is a multi-threaded JVM with unbounded arithmeti. It sup-port lasses, instanes, instane methods, monitors and synhronization, but notarrays, oats and ertain other data types. It also ompletely ignores lass load-ing, onstrutor methods, exeptions, the JVM's provisions for type safety, anda variety of other issues.For eah JVM opode supported in the model we de�ne an ACL2 funtionthat produes the orresponding state hange. Here, for example, is that part ofthe formal model for an instrution alled LOAD, whih is analogous to the JVM'sfamily of typed load instrutions ILOAD, ALOAD, DLOAD, et. In this funtion, instis a symboli form of the partiular load instrution to be exeuted; its value willbe a list of the form (LOAD var), where var is a variable name. The variable thidenti�es whih thread is to be stepped and s is the JVM state.(defun exeute-LOAD (inst th s)(make-state(modify-tt th(push (make-frame (+ 1 (p (top-frame s th)))(loals (top-frame s th))(push (binding (arg1 inst)(loals (top-frame s th)))(stak (top-frame s th)))(program (top-frame s th))(syn-flg (top-frame s th)))



3(pop (all-stak s th)))'SCHEDULED(thread-table s))(heap s)(lass-table s)))Informally, this funtion returns a new state obtained by hanging the threadtable of s at thread th. The topmost item on the all stak of that entry ispopped o� and replaed by a new frame in whih the program ounter has beenadvaned and the value of var has been pushed onto the operand stak of thatframe.Here is our byteode for the instane methodpubli int fat(int n)fif (n<=0) return 1;else return n*fat(n-1);gexept in our model arithmeti is not bounded.("fat" (N) NIL ; Method int fat(int)(LOAD N) ; 0 iload 1(IFGT 3) ; 1 ifgt 6(PUSH 1) ; 4 ionst 1(XRETURN) ; 5 ireturn(LOAD N) ; 6 iload 1(LOAD THIS) ; 7 aload 0(LOAD N) ; 8 iload 1(PUSH 1) ; 9 ionst 1(SUB) ; 10 isub(INVOKEVIRTUAL "Alpha" "fat" 1) ; 11 invokevirtual ...fat...(MUL) ; 14 imul(XRETURN)) ; 15 ireturnBeause our model is an ACL2 program, it an be exeuted on onrete datato produe onrete results. Beause ACL2 is a mathematial logi, it is possibleto prove the following theorem:(implies (poised-to-invoke-fat th s n)(equal (top(stak(top-frameth(run (fat-shed n th) s))))(fatorial n)))whih says that, given any state poised, in thread th, to exeute the fat byte-ode the natural number n, the exeution of a ertain number of instrutions inthread th will leave n! on top of the operand stak in thread th. The numberof instrutions required is given by the funtion fat-shed, whih returns a



4shedule adequate to ompute the method on input n. We have proved similartheorems about other arithmeti methods, methods manipulating the heap indestrutive ways [15℄, and insertion sort implemented in a list proessing lass[12℄. Insertion sort is disussed briey below.3 A Survey of Our ModelsWe have several JVM models and are in the proess of building others. Allof our urrent models ignore oats, lass loading and initialization, exeptions,and interfaes. We do not onsider oats a problem; there is so muh work inmodeling oating-point arithmeti in ACL2 (see for example [21℄) that we haveextensive oating-point models and libraries about them. Aspets of lass loadingand initialization, exeptions and interfaes have been modeled by others [19, 1℄.Garbage olletion is invisible on the JVM and so need not be modeled.3.1 Single-Threaded/Non-Safe/UnboundedOur basi model is a single-threaded JVM in whih we ignore typing issues andsupport unbounded integer arithmeti only. Using this model we have proved avariety of theorems about byteode programs, inluding a single-threaded versionof the fatorial theorem above and theorems involving the overriding of methodsand the destrutive modi�ation of instane objets in the heap [15℄. Using thismodel we an explore basi issues of ode spei�ation and veri�ation, inludingontrol ow and data operations, instane objet reation and manipulation,lass inheritane, and method resolution and invoation.For example, we have used the model to prove the orretness of a byteodedinsertion sort method that opies a linked list of numbers in the heap, produinga permutation of it in whih the elements appear in asending order. To statethe theorem we had to de�ne the sense in whih a referene (into a given \non-irular" heap) denotes some struture. The theorem we proved says that if theisort method (not shown here) is invoked on a referene, ref0 and allowed torun for a ertain number of instrutions, returning a referene ref1, then the listdenoted by ref1 in the �nal heap is an ordered permutation of the list denotedby ref0 in the original heap. The preonditions imposed ertain onstraints onthe non-irularity of the initial referene [12℄. Here is the theorem proved.(implies (poised-to-invoke-isort s0)(let* ((x0 (top (stak (top-frame s0))))(heap0 (heap s0))(n0 (isort-lok x0 heap0))(s1 (run n0 s0))(x1 (top (stak (top-frame s1))))(heap1 (heap s1)))(let ((list0 (deref* x0 heap0))(list1 (deref* x1 heap1)))(and (ordered list1)



5(perm list1 list0)))))One an prove theorems about non-terminating omputations in ACL2. Ifone adds to the model an instrution for expliitly indiating the normal termi-nation of a program (e.g., add a halt ag to the state and arrange for a byteodeinstrution, e.g., halt, to set it and for the mahine not to proeed afterwards),one an prove theorems about the onditions under whih a program halts nor-mally, inluding that halting never ours. One an also eliminate the use of\loks" [14℄.3.2 Single-Threaded/Non-Safe/BoundedWe have produed a version of the simple mahine that supports Java's int andlong (bounded) arithmeti. It also supports arrays. Using this model we havea proved the analogous theorem about the bounded fatorial method. The odefor this method is like that shown for fat above, exept that the arithmeti op-erations are those for 32-bit twos omplement. The theorem states that the �nalanswer is equal to the result of onverting to an int the fatorial of the input.This theorem orretly haraterizes the atual behavior of the Java programfor fat shown above.The user input required to prove the bounded fatorial is exatly analogousto that required to prove the unbound fatorial, justifying our belief that theunbounded model is a simpler (though tehnially inaurate) test bed. The\new" reasoning, about modular arithmeti, is handled automatially by anACL2 library of lemmas. We are ontinuing the development of ACL2's alreadyextensive olletion of arithmeti theorems.3.3 Multi-Threaded/Non-Safe/UnboundedAn orthogonal variation of the basi model introdues multiple threads [17℄.Eah entry in the thread table lists a unique thread number, a all stak, astatus ag (e.g., indiating whether the thread has been started), and a refereneto the instane objet representing the thread objet in the heap. We do notmodel the sheduler, whih is unspei�ed in [13℄, but provide an \orale" to theoperational semantis.With this model we have proved an interesting theorem about the Java lassesshown in Figure 1. Inspetion of the ode shows that the main method in lassApprentie starts an unbounded number of Jobs, eah of whih is ontendingfor a shared objet alled the Container. Eah Job is in an in�nite loop inre-menting the ounter �eld of the Container. Eah suh inrement is done withina synhronized blok. (The model supports unbounded arithmeti.)One might think that it is obvious that the value of the ounter �eld ofthe Container inreases monotonially. However, this is a nontrivial observationthat requires showing that eah Job has mutually exlusive aess to the ounter.Again, the naive Java user may think this mutual exlusion property is obvious.



6lass Container fpubli int ounter; glass Job extends Thread fContainer objref;Objet x;publi Job inr () fsynhronized(objref) fobjref.ounter = objref.ounter + 1; greturn this; gpubli void setref(Container o) fobjref = o; gpubli void run() ffor (;;) finr(); g g glass Apprentie fpubli stati void main(String[℄ args)fContainer ontainer = new Container();for (;;) fJob job = new Job();job.setref(ontainer);job.start(); g g gFig. 1. The Apprentie Class: Unbounded ParallelismWe have had several programmers dismiss our theorem as trivial and laim thatit may be observed merely by looking at the textsynhronized(objref) fobjref.ounter = objref.ounter + 1; gin the ode for lass Job. This laim is false.A few hanges to the main method of the Apprentie lass an ause mutualexlusion to be violated and an permit the ounter value to derease undersome sheduling regimes. These hanges do not involve writing to the ounter�eld of the Container or hanging the Job lass at all. The pathologial behav-ior (of the ounter dereasing) is ultimately manifested by the very assignmentstatement shown above. The hanges we have in mind an ause that \synhro-nized" assignment statement to lobber the ounter without owning the monitorfor it.Sine many readers insist that it is \obvious" that the Apprentie lassauses the ounter to inrease monotonially, we will not explain here how toause the bad behavior. Ask someone who thinks it is obvious. Or try to proveit from a detailed formal model of multi-threaded Java. Our disussion of theproblem and our proof is reported in [16℄.Our multi-threaded model inludes all of the funtionality of our basi ma-hine (e.g., lasses, heap-alloated instane objets, virtual method invoation,et.) plus support for the Thread lass (inluding the signi�ane of the run



7method for an extension of the Thread lass, the native methods start andstop, monitors on all Objets, the opodes MONITORENTER and MONITOREXIT,and support for synhronous methods.4 Relations Between ModelsSo far we have only disussed theorems about partiular byteoded methodsunder the semantis formalized in partiular models. Beause our models areformal, we an reason about the models themselves and even relate them. Lakof spae preludes muh disussion.4.1 Single- versus Multi-Threaded ModelsWe have proved [18℄ a theorem relating the single-threaded model to the multi-threaded one. If the multi-threaded mahine is being used to do what is essen-tially a single-threaded omputation, the single-threaded mahine may be usedinstead. We formalize the hypothesis so that we are onerned with states inwhih only one thread is sheduled (meaning the start method has been alledon only one thread) and the byteode running in that thread does not reate orinterfere with other threads. The onlusion is a \ommuting diagram" statingthat the \same" omputation ould be done on the single-threaded model bytransforming the states appropriately. The theorem allows us to \lift" ertainveri�ed programs from the single-threaded model to the multi-threaded model.Ultimately we hope to be able to reason formally about \independent" on-urrent threads by reasoning about eah on the single-threaded model. Thebiggest problem will be ombining the \independent" e�ets of the two threadson the shared heap. This involves reasoning not unlike that already done inanalyzing the denotation of the objet referenes in the heap produed by theinsertion sort method.4.2 Single-Threaded/Type Safe/UnboundedWe have developed a \type safe" version of the basi mahine. Before eahinstrution is exeuted, this mahine heks that the state is suitable for theexeution of the instrution. For example, if an ADD instrution is to be exeuted,then the mahine dynamially heks that the operand stak has at least twoitems on it and that the top two items are numbers. The mahine sets a ag inthe state and halts if the next instrution is to be exeuted in an unaeptablesituation.We are developing a formal version of the Java byteode veri�er desribed by[13℄ that rawls over a lass delaration and does a ertain syntati hek of theode therein. Our goal is to prove a theorem relating the type safe mahine to theunsafe mahine, namely, the two are \equivalent" on ode that has been aeptedby the byteode veri�er. This work an be thought of as leading towards theformal statement of the orretness of the byteode veri�er and the mehanizedveri�ation that for a partiular veri�ation algorithm.



85 Related WorkThe earliest formal mehanized JVM model we know of was Cohen' \defensiveJVM" [6℄, formalized in ACL2. Our series of models evolved from his: Mooreand Cohen simpli�ed Cohen's model and developed the series of suessive elab-orations to make it easier to teah at the undergraduate level.Projets formalizing the JVM are ongoing in other mehanized logis withonsiderable suess. The soundness of a byteode veri�ation algorithm is ad-dressed in Isabelle/HOL in [20, 19℄. The approah follows losely the lass �leformat of [13℄ and model aspets of interfaes, signatures and exeptions, all ofwhih we ignore. As in [6℄ and (some of) our work, type information is storedwith data and instrutions are modeled as state transforming funtions. The Is-abelle/HOL work is the �rst published mehanially heked proof of the sound-ness of a byteode veri�er.Somewhat loser to our work is that done with Coq and desribed in [1℄.In this work, an operational model of the entire JavaCard VM is presented.They provide a tool for onverting lass �les into their formal format. They alsoverify a byteode veri�er mehanially. The authors of [1℄ stress the importaneof exeutability { an emphasis with whih we agree. They do not disuss theeÆieny with whih their model an be implemented.ACL2 was used to model the Rokwell JEM1 miroproessor, the world's �rstsilion JVM, now marketed by Ajile Systems, In. The formal ACL2 model wasatually used in the standard test benh on whih Rokwell engineers tested thehip design against the requirements by exeuting ompiled Java programs. TheACL2 model exeuted at approximately 90% of the speed of the previously usedC model [8, 9℄. In [7℄, Wilding and Greve desribe how miroproessor modelsin ACL2 are made to exeute fast. The model there exeutes at approximately3 million simulated instrutions per seond on a 733 MHZ Pentium III hostrunning Allegro Common Lisp.As far as we know, ours is the �rst formal thread model for the JVM. Inaddition, the emphasis of our work is on the veri�ation of byteode programswith respet to the operational semantis. This is surely within the reah ofthe related work above, but has not, apparently, been a fous of their work.Beause of the way previously proved lemmas in the ACL2 library an be usedto on�gure ACL2 to do proofs automatially in a given domain, we antiipatethat the ontinued development of orretness proofs for individual byteodedmethods will inrease the ease with whih new methods an be veri�ed.6 ConlusionWe have desribed a variety of formal models of the JVM and disussed Javaand JVM programs that we have veri�ed with respet to these models. We havealso disussed formally veri�ed relationships between some of our models.These examples support the ontention that with formal operational seman-tis of the JVM one an



9{ speify and verify Java ode with respet to a detailed and aurate seman-tis,{ reuse muh previously developed formal work,{ explore the spei�ations of ode under various re�nements of the semantisof Java,{ establish properties of the semanti models,{ formally relate di�erent semanti models, and{ speify and verify the byteode veri�er.Our models are inadequate for pratial Java: among other omissions areoating point, exeptions, and lass loading. But there is ample evidene [10℄that ACL2 is rugged enough to permit the models to be suÆiently elaborated.Among the ompelling reasons to base a formal semantis of Java on an op-erational semantis of the JVM are the following. First, the Java ompiler takesare of many subtle stati semantis issues. Seond, the operational semantisof the JVM an be exeuted, meaning it is possible to test the semantis againstaepted implementations of the JVM. Third, the operational semantis is easilyunwound by standard symboli evaluation and indution tehniques [3℄. Fourth,and most important, the semantis is rendered formally, so it an be inspetedby language experts and used diretly by the veri�er.7 AknowledgmentsOur JVM models owe muh to Rih Cohen who used ACL2 to formalize a single-threaded version of the \defensive JVM" [6℄. We are grateful to Rih for hispioneering e�ort into the JVM formalization, as well as to the entire ACL2and NQTHM ommunities for their development of tehniques to formalize andreason about suh mahines. We are also grateful to David Hardin and PeteManolios, who have eah made many valuable suggestions in the ourse of thiswork.Referenes[1℄ G. Barthe, G. Dufay, L. Jakubie, B. Serpette, and S. Melo de Sousa. A formalexeutable semantis of the JavaCard platform. In D. Sands, editor, ESOP 2001,volume LNCS 2028, pages 302{319. Springer-Verlag, 2001.[2℄ R. S. Boyer and J S. Moore. A Computational Logi. Aademi Press, New York,1979.[3℄ R. S. Boyer and J S. Moore. Mehanized formal reasoning about programs andomputing mahines. In R. Vero�, editor, Automated Reasoning and Its Applia-tions: Essays in Honor of Larry Wos, pages 147{176. MIT Press, 1996.[4℄ R. S. Boyer and J S. Moore. A Computational Logi Handbook, Seond Edition.Aademi Press, New York, 1997.[5℄ Robert S. Boyer and Yuan Yu. Automated proofs of objet ode for a widely usedmiroproessor. Journal of the ACM, 43(1):166{192, January 1996.
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