
Formal Models of Java at the JVM LevelA Survey from the ACL2 Perspe
tiveJ Strother MooreRobert KrugHanbing LiuGeorge PorterDepartment of Computer S
ien
es, University of Texas at Austinmoore�
s.utexas.eduhttp://www.
s.utexas.edu/users/mooreAbstra
t. We argue that a pra
ti
al way to apply formal methods toJava is to apply formal methods to the Java Virtual Ma
hine (JVM)instead. A Java system 
an be proved 
orre
t by analyzing the byte
odeprodu
ed for it. We believe that this 
lari�es the semanti
 issues withoutintrodu
ing inappropriate 
omplexity. We say \inappropriate" be
ausewe believe the 
omplexity present in the JVM view of a Java 
lass isinherent in the Java, when a

urately modeled. If it is desired to modela subset of Java or to model \Java" with a slightly simpler semanti
s,that 
an be done by formalizing a suitable abstra
tion of the JVM. In thispaper we support these 
ontentions by surveying re
ent appli
ations ofthe ACL2 theorem proving system to the JVM. In parti
ular, we des
ribehow ACL2 is used to formalize operational semanti
s, we des
ribe severalmodels of the JVM, and we des
ribe proofs of theorems involving thesemodels. We are using these models to explore a variety of Java issuesfrom a formal perspe
tive, in
luding Java's bounded arithmeti
, obje
tmanipulation via the heap, 
lass inheritan
e, method resolution, single-and multi-threaded programming, syn
hronization via monitors in theheap, and properties of the byte
ode veri�er.1 ACL2 Ba
kgroundACL2 [11℄ is a fun
tional programming language based on Common Lisp, a�rst-order mathemati
al logi
 with indu
tion and re
ursive de�nition, and a me-
hani
al theorem prover in the style of the Boyer-Moore theorem prover NQTHM[2, 4℄. Among other su

essful industrial uses of ACL2 is the veri�
ation of thehardware designs for the elementary 
oating-point arithmeti
 operations on theAMD Athlon mi
ropro
essor [21℄ and the formalization of the �rst sili
on versionof the JVM [8, 9℄. See [10℄ for other 
ase studies.In this paper we advo
ate the use of formal models of the JVM [13℄ to verifyJava programs. Some readers may think this is an impra
ti
al suggestion. Butwork by Yu [5℄ with NQTHM (the prede
essor of ACL2) supports our sugges-tion. Yu developed an operational formal model of the Motorola 68020 and then



2veri�ed C programs from the Berkeley C String Library by verifying the ma
hine
ode produ
ed by g

. Sin
e the 
on
eptual gap between C and 68020 ma
hine
ode is mu
h greater than the gap between Java and JVM byte
ode, we believeit is reasonable to follow an analogous strategy to deal with Java programs.2 Our Basi
 Approa
hOur models of the JVM are operational ones. The state of the ma
hine is rep-resented by a list 
ontaining, say, a thread table, a heap, and a 
lass table. Thethread table is a list 
ontaining an entry for ea
h thread. The entry in
ludesthe thread's 
all sta
k, s
heduled status and other information. A 
all sta
k isa sta
k (list) of frames, ea
h of whi
h 
ontains a program 
ounter, the methodbody, a map from lo
al variable names to values, an operand sta
k, and a 
agindi
ating whether the method is syn
hronized. The heap is a �nite mappingfrom referen
e \addresses" to instan
e obje
ts. The 
lass table is a list des
rib-ing the super
lasses, �elds and methods and other attributes of ea
h 
lass. Wethen de�ne in ACL2 the fun
tion that \steps" su
h a state, produ
ing the nextstate. We �nally de�ne a fun
tion, run, that \runs" a state, by stepping it re-peatedly. Su
h an ACL2 model of the JVM may be thought of as a system ofLisp programs that simulates the JVM.We have produ
ed several su
h models of the JVM, so that we 
an exploreways to prove various kinds of properties. Before dis
ussing the variety of for-mal models we have, we will use one of them to illustrate the foregoing sket
h.The model we use is a multi-threaded JVM with unbounded arithmeti
. It sup-port 
lasses, instan
es, instan
e methods, monitors and syn
hronization, but notarrays, 
oats and 
ertain other data types. It also 
ompletely ignores 
lass load-ing, 
onstru
tor methods, ex
eptions, the JVM's provisions for type safety, anda variety of other issues.For ea
h JVM op
ode supported in the model we de�ne an ACL2 fun
tionthat produ
es the 
orresponding state 
hange. Here, for example, is that part ofthe formal model for an instru
tion 
alled LOAD, whi
h is analogous to the JVM'sfamily of typed load instru
tions ILOAD, ALOAD, DLOAD, et
. In this fun
tion, instis a symboli
 form of the parti
ular load instru
tion to be exe
uted; its value willbe a list of the form (LOAD var), where var is a variable name. The variable thidenti�es whi
h thread is to be stepped and s is the JVM state.(defun exe
ute-LOAD (inst th s)(make-state(modify-tt th(push (make-frame (+ 1 (p
 (top-frame s th)))(lo
als (top-frame s th))(push (binding (arg1 inst)(lo
als (top-frame s th)))(sta
k (top-frame s th)))(program (top-frame s th))(syn
-flg (top-frame s th)))



3(pop (
all-sta
k s th)))'SCHEDULED(thread-table s))(heap s)(
lass-table s)))Informally, this fun
tion returns a new state obtained by 
hanging the threadtable of s at thread th. The topmost item on the 
all sta
k of that entry ispopped o� and repla
ed by a new frame in whi
h the program 
ounter has beenadvan
ed and the value of var has been pushed onto the operand sta
k of thatframe.Here is our byte
ode for the instan
e methodpubli
 int fa
t(int n)fif (n<=0) return 1;else return n*fa
t(n-1);gex
ept in our model arithmeti
 is not bounded.("fa
t" (N) NIL ; Method int fa
t(int)(LOAD N) ; 0 iload 1(IFGT 3) ; 1 ifgt 6(PUSH 1) ; 4 i
onst 1(XRETURN) ; 5 ireturn(LOAD N) ; 6 iload 1(LOAD THIS) ; 7 aload 0(LOAD N) ; 8 iload 1(PUSH 1) ; 9 i
onst 1(SUB) ; 10 isub(INVOKEVIRTUAL "Alpha" "fa
t" 1) ; 11 invokevirtual ...fa
t...(MUL) ; 14 imul(XRETURN)) ; 15 ireturnBe
ause our model is an ACL2 program, it 
an be exe
uted on 
on
rete datato produ
e 
on
rete results. Be
ause ACL2 is a mathemati
al logi
, it is possibleto prove the following theorem:(implies (poised-to-invoke-fa
t th s n)(equal (top(sta
k(top-frameth(run (fa
t-s
hed n th) s))))(fa
torial n)))whi
h says that, given any state poised, in thread th, to exe
ute the fa
t byte-
ode the natural number n, the exe
ution of a 
ertain number of instru
tions inthread th will leave n! on top of the operand sta
k in thread th. The numberof instru
tions required is given by the fun
tion fa
t-s
hed, whi
h returns a



4s
hedule adequate to 
ompute the method on input n. We have proved similartheorems about other arithmeti
 methods, methods manipulating the heap indestru
tive ways [15℄, and insertion sort implemented in a list pro
essing 
lass[12℄. Insertion sort is dis
ussed brie
y below.3 A Survey of Our ModelsWe have several JVM models and are in the pro
ess of building others. Allof our 
urrent models ignore 
oats, 
lass loading and initialization, ex
eptions,and interfa
es. We do not 
onsider 
oats a problem; there is so mu
h work inmodeling 
oating-point arithmeti
 in ACL2 (see for example [21℄) that we haveextensive 
oating-point models and libraries about them. Aspe
ts of 
lass loadingand initialization, ex
eptions and interfa
es have been modeled by others [19, 1℄.Garbage 
olle
tion is invisible on the JVM and so need not be modeled.3.1 Single-Threaded/Non-Safe/UnboundedOur basi
 model is a single-threaded JVM in whi
h we ignore typing issues andsupport unbounded integer arithmeti
 only. Using this model we have proved avariety of theorems about byte
ode programs, in
luding a single-threaded versionof the fa
torial theorem above and theorems involving the overriding of methodsand the destru
tive modi�
ation of instan
e obje
ts in the heap [15℄. Using thismodel we 
an explore basi
 issues of 
ode spe
i�
ation and veri�
ation, in
luding
ontrol 
ow and data operations, instan
e obje
t 
reation and manipulation,
lass inheritan
e, and method resolution and invo
ation.For example, we have used the model to prove the 
orre
tness of a byte
odedinsertion sort method that 
opies a linked list of numbers in the heap, produ
inga permutation of it in whi
h the elements appear in as
ending order. To statethe theorem we had to de�ne the sense in whi
h a referen
e (into a given \non-
ir
ular" heap) denotes some stru
ture. The theorem we proved says that if theisort method (not shown here) is invoked on a referen
e, ref0 and allowed torun for a 
ertain number of instru
tions, returning a referen
e ref1, then the listdenoted by ref1 in the �nal heap is an ordered permutation of the list denotedby ref0 in the original heap. The pre
onditions imposed 
ertain 
onstraints onthe non-
ir
ularity of the initial referen
e [12℄. Here is the theorem proved.(implies (poised-to-invoke-isort s0)(let* ((x0 (top (sta
k (top-frame s0))))(heap0 (heap s0))(n0 (isort-
lo
k x0 heap0))(s1 (run n0 s0))(x1 (top (sta
k (top-frame s1))))(heap1 (heap s1)))(let ((list0 (deref* x0 heap0))(list1 (deref* x1 heap1)))(and (ordered list1)



5(perm list1 list0)))))One 
an prove theorems about non-terminating 
omputations in ACL2. Ifone adds to the model an instru
tion for expli
itly indi
ating the normal termi-nation of a program (e.g., add a halt 
ag to the state and arrange for a byte
odeinstru
tion, e.g., halt, to set it and for the ma
hine not to pro
eed afterwards),one 
an prove theorems about the 
onditions under whi
h a program halts nor-mally, in
luding that halting never o

urs. One 
an also eliminate the use of\
lo
ks" [14℄.3.2 Single-Threaded/Non-Safe/BoundedWe have produ
ed a version of the simple ma
hine that supports Java's int andlong (bounded) arithmeti
. It also supports arrays. Using this model we havea proved the analogous theorem about the bounded fa
torial method. The 
odefor this method is like that shown for fa
t above, ex
ept that the arithmeti
 op-erations are those for 32-bit twos 
omplement. The theorem states that the �nalanswer is equal to the result of 
onverting to an int the fa
torial of the input.This theorem 
orre
tly 
hara
terizes the a
tual behavior of the Java programfor fa
t shown above.The user input required to prove the bounded fa
torial is exa
tly analogousto that required to prove the unbound fa
torial, justifying our belief that theunbounded model is a simpler (though te
hni
ally ina

urate) test bed. The\new" reasoning, about modular arithmeti
, is handled automati
ally by anACL2 library of lemmas. We are 
ontinuing the development of ACL2's alreadyextensive 
olle
tion of arithmeti
 theorems.3.3 Multi-Threaded/Non-Safe/UnboundedAn orthogonal variation of the basi
 model introdu
es multiple threads [17℄.Ea
h entry in the thread table lists a unique thread number, a 
all sta
k, astatus 
ag (e.g., indi
ating whether the thread has been started), and a referen
eto the instan
e obje
t representing the thread obje
t in the heap. We do notmodel the s
heduler, whi
h is unspe
i�ed in [13℄, but provide an \ora
le" to theoperational semanti
s.With this model we have proved an interesting theorem about the Java 
lassesshown in Figure 1. Inspe
tion of the 
ode shows that the main method in 
lassApprenti
e starts an unbounded number of Jobs, ea
h of whi
h is 
ontendingfor a shared obje
t 
alled the Container. Ea
h Job is in an in�nite loop in
re-menting the 
ounter �eld of the Container. Ea
h su
h in
rement is done withina syn
hronized blo
k. (The model supports unbounded arithmeti
.)One might think that it is obvious that the value of the 
ounter �eld ofthe Container in
reases monotoni
ally. However, this is a nontrivial observationthat requires showing that ea
h Job has mutually ex
lusive a

ess to the 
ounter.Again, the naive Java user may think this mutual ex
lusion property is obvious.



6
lass Container fpubli
 int 
ounter; g
lass Job extends Thread fContainer objref;Obje
t x;publi
 Job in
r () fsyn
hronized(objref) fobjref.
ounter = objref.
ounter + 1; greturn this; gpubli
 void setref(Container o) fobjref = o; gpubli
 void run() ffor (;;) fin
r(); g g g
lass Apprenti
e fpubli
 stati
 void main(String[℄ args)fContainer 
ontainer = new Container();for (;;) fJob job = new Job();job.setref(
ontainer);job.start(); g g gFig. 1. The Apprenti
e Class: Unbounded ParallelismWe have had several programmers dismiss our theorem as trivial and 
laim thatit may be observed merely by looking at the textsyn
hronized(objref) fobjref.
ounter = objref.
ounter + 1; gin the 
ode for 
lass Job. This 
laim is false.A few 
hanges to the main method of the Apprenti
e 
lass 
an 
ause mutualex
lusion to be violated and 
an permit the 
ounter value to de
rease undersome s
heduling regimes. These 
hanges do not involve writing to the 
ounter�eld of the Container or 
hanging the Job 
lass at all. The pathologi
al behav-ior (of the 
ounter de
reasing) is ultimately manifested by the very assignmentstatement shown above. The 
hanges we have in mind 
an 
ause that \syn
hro-nized" assignment statement to 
lobber the 
ounter without owning the monitorfor it.Sin
e many readers insist that it is \obvious" that the Apprenti
e 
lass
auses the 
ounter to in
rease monotoni
ally, we will not explain here how to
ause the bad behavior. Ask someone who thinks it is obvious. Or try to proveit from a detailed formal model of multi-threaded Java. Our dis
ussion of theproblem and our proof is reported in [16℄.Our multi-threaded model in
ludes all of the fun
tionality of our basi
 ma-
hine (e.g., 
lasses, heap-allo
ated instan
e obje
ts, virtual method invo
ation,et
.) plus support for the Thread 
lass (in
luding the signi�
an
e of the run



7method for an extension of the Thread 
lass, the native methods start andstop, monitors on all Obje
ts, the op
odes MONITORENTER and MONITOREXIT,and support for syn
hronous methods.4 Relations Between ModelsSo far we have only dis
ussed theorems about parti
ular byte
oded methodsunder the semanti
s formalized in parti
ular models. Be
ause our models areformal, we 
an reason about the models themselves and even relate them. La
kof spa
e pre
ludes mu
h dis
ussion.4.1 Single- versus Multi-Threaded ModelsWe have proved [18℄ a theorem relating the single-threaded model to the multi-threaded one. If the multi-threaded ma
hine is being used to do what is essen-tially a single-threaded 
omputation, the single-threaded ma
hine may be usedinstead. We formalize the hypothesis so that we are 
on
erned with states inwhi
h only one thread is s
heduled (meaning the start method has been 
alledon only one thread) and the byte
ode running in that thread does not 
reate orinterfere with other threads. The 
on
lusion is a \
ommuting diagram" statingthat the \same" 
omputation 
ould be done on the single-threaded model bytransforming the states appropriately. The theorem allows us to \lift" 
ertainveri�ed programs from the single-threaded model to the multi-threaded model.Ultimately we hope to be able to reason formally about \independent" 
on-
urrent threads by reasoning about ea
h on the single-threaded model. Thebiggest problem will be 
ombining the \independent" e�e
ts of the two threadson the shared heap. This involves reasoning not unlike that already done inanalyzing the denotation of the obje
t referen
es in the heap produ
ed by theinsertion sort method.4.2 Single-Threaded/Type Safe/UnboundedWe have developed a \type safe" version of the basi
 ma
hine. Before ea
hinstru
tion is exe
uted, this ma
hine 
he
ks that the state is suitable for theexe
ution of the instru
tion. For example, if an ADD instru
tion is to be exe
uted,then the ma
hine dynami
ally 
he
ks that the operand sta
k has at least twoitems on it and that the top two items are numbers. The ma
hine sets a 
ag inthe state and halts if the next instru
tion is to be exe
uted in an una

eptablesituation.We are developing a formal version of the Java byte
ode veri�er des
ribed by[13℄ that 
rawls over a 
lass de
laration and does a 
ertain synta
ti
 
he
k of the
ode therein. Our goal is to prove a theorem relating the type safe ma
hine to theunsafe ma
hine, namely, the two are \equivalent" on 
ode that has been a

eptedby the byte
ode veri�er. This work 
an be thought of as leading towards theformal statement of the 
orre
tness of the byte
ode veri�er and the me
hanizedveri�
ation that for a parti
ular veri�
ation algorithm.



85 Related WorkThe earliest formal me
hanized JVM model we know of was Cohen' \defensiveJVM" [6℄, formalized in ACL2. Our series of models evolved from his: Mooreand Cohen simpli�ed Cohen's model and developed the series of su

essive elab-orations to make it easier to tea
h at the undergraduate level.Proje
ts formalizing the JVM are ongoing in other me
hanized logi
s with
onsiderable su

ess. The soundness of a byte
ode veri�
ation algorithm is ad-dressed in Isabelle/HOL in [20, 19℄. The approa
h follows 
losely the 
lass �leformat of [13℄ and model aspe
ts of interfa
es, signatures and ex
eptions, all ofwhi
h we ignore. As in [6℄ and (some of) our work, type information is storedwith data and instru
tions are modeled as state transforming fun
tions. The Is-abelle/HOL work is the �rst published me
hani
ally 
he
ked proof of the sound-ness of a byte
ode veri�er.Somewhat 
loser to our work is that done with Coq and des
ribed in [1℄.In this work, an operational model of the entire JavaCard VM is presented.They provide a tool for 
onverting 
lass �les into their formal format. They alsoverify a byte
ode veri�er me
hani
ally. The authors of [1℄ stress the importan
eof exe
utability { an emphasis with whi
h we agree. They do not dis
uss theeÆ
ien
y with whi
h their model 
an be implemented.ACL2 was used to model the Ro
kwell JEM1 mi
ropro
essor, the world's �rstsili
on JVM, now marketed by Ajile Systems, In
. The formal ACL2 model wasa
tually used in the standard test ben
h on whi
h Ro
kwell engineers tested the
hip design against the requirements by exe
uting 
ompiled Java programs. TheACL2 model exe
uted at approximately 90% of the speed of the previously usedC model [8, 9℄. In [7℄, Wilding and Greve des
ribe how mi
ropro
essor modelsin ACL2 are made to exe
ute fast. The model there exe
utes at approximately3 million simulated instru
tions per se
ond on a 733 MHZ Pentium III hostrunning Allegro Common Lisp.As far as we know, ours is the �rst formal thread model for the JVM. Inaddition, the emphasis of our work is on the veri�
ation of byte
ode programswith respe
t to the operational semanti
s. This is surely within the rea
h ofthe related work above, but has not, apparently, been a fo
us of their work.Be
ause of the way previously proved lemmas in the ACL2 library 
an be usedto 
on�gure ACL2 to do proofs automati
ally in a given domain, we anti
ipatethat the 
ontinued development of 
orre
tness proofs for individual byte
odedmethods will in
rease the ease with whi
h new methods 
an be veri�ed.6 Con
lusionWe have des
ribed a variety of formal models of the JVM and dis
ussed Javaand JVM programs that we have veri�ed with respe
t to these models. We havealso dis
ussed formally veri�ed relationships between some of our models.These examples support the 
ontention that with formal operational seman-ti
s of the JVM one 
an



9{ spe
ify and verify Java 
ode with respe
t to a detailed and a

urate seman-ti
s,{ reuse mu
h previously developed formal work,{ explore the spe
i�
ations of 
ode under various re�nements of the semanti
sof Java,{ establish properties of the semanti
 models,{ formally relate di�erent semanti
 models, and{ spe
ify and verify the byte
ode veri�er.Our models are inadequate for pra
ti
al Java: among other omissions are
oating point, ex
eptions, and 
lass loading. But there is ample eviden
e [10℄that ACL2 is rugged enough to permit the models to be suÆ
iently elaborated.Among the 
ompelling reasons to base a formal semanti
s of Java on an op-erational semanti
s of the JVM are the following. First, the Java 
ompiler takes
are of many subtle stati
 semanti
s issues. Se
ond, the operational semanti
sof the JVM 
an be exe
uted, meaning it is possible to test the semanti
s againsta

epted implementations of the JVM. Third, the operational semanti
s is easilyunwound by standard symboli
 evaluation and indu
tion te
hniques [3℄. Fourth,and most important, the semanti
s is rendered formally, so it 
an be inspe
tedby language experts and used dire
tly by the veri�er.7 A
knowledgmentsOur JVM models owe mu
h to Ri
h Cohen who used ACL2 to formalize a single-threaded version of the \defensive JVM" [6℄. We are grateful to Ri
h for hispioneering e�ort into the JVM formalization, as well as to the entire ACL2and NQTHM 
ommunities for their development of te
hniques to formalize andreason about su
h ma
hines. We are also grateful to David Hardin and PeteManolios, who have ea
h made many valuable suggestions in the 
ourse of thiswork.Referen
es[1℄ G. Barthe, G. Dufay, L. Jakubie
, B. Serpette, and S. Melo de Sousa. A formalexe
utable semanti
s of the JavaCard platform. In D. Sands, editor, ESOP 2001,volume LNCS 2028, pages 302{319. Springer-Verlag, 2001.[2℄ R. S. Boyer and J S. Moore. A Computational Logi
. A
ademi
 Press, New York,1979.[3℄ R. S. Boyer and J S. Moore. Me
hanized formal reasoning about programs and
omputing ma
hines. In R. Vero�, editor, Automated Reasoning and Its Appli
a-tions: Essays in Honor of Larry Wos, pages 147{176. MIT Press, 1996.[4℄ R. S. Boyer and J S. Moore. A Computational Logi
 Handbook, Se
ond Edition.A
ademi
 Press, New York, 1997.[5℄ Robert S. Boyer and Yuan Yu. Automated proofs of obje
t 
ode for a widely usedmi
ropro
essor. Journal of the ACM, 43(1):166{192, January 1996.



10[6℄ R. M. Cohen. The defensive Java Virtual Ma
hine spe
i�
ation, version 0.53.Te
hni
al report, Ele
troni
 Data Systems Corp, Austin Te
hni
al Servi
es Cen-ter, 98 San Ja
into Blvd, Suite 500, Austin, TX 78701, 1997.[7℄ D. Greve, M. Wilding, and D. Hardin. High-speed, analyzable simulators. InKaufmann et al. [10℄, pages 113{136.[8℄ D. A. Greve and M. M. Wilding. Sta
k-based Java a ba
k-to-future step. Ele
-troni
 Engineering Times, page 92, Jan. 12, 1998.[9℄ David A. Greve. Symboli
 simulation of the JEM1 mi
ropro
essor. In FormalMethods in Computer-Aided Design { FMCAD, Le
ture Notes in Computer S
i-en
e. Springer-Verlag, 1998.[10℄ M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:ACL2 Case Studies. Kluwer A
ademi
 Press, 2000.[11℄ M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: AnApproa
h. Kluwer A
ademi
 Press, 2000.[12℄ M. Kaufmann and J S. Moore. A 
ying demo of ACL2. Te
hni-
al Report http://www.
s.utexas.edu/users/moore/publi
ations/flying-%-demo/s
ript.html, Computer S
ien
es, University of Texas at Austin, 2000.[13℄ T. Lindholm and F. Yellin. The Java Virtual Ma
hine Spe
i�
ation (Se
ond Edi-tion). Addison-Wesley, 1999.[14℄ P. Manolios and J S. Moore. Partial fun
tions in a
l2. Te
hni
al Report http://-www.
s.utexas.edu/users/moore/publi
ations/defpun/% -index.html, Com-puter S
ien
es, University of Texas at Austin, 2001.[15℄ J S. Moore. Proving theorems about Java-like byte 
ode. In E.-R. Olderog andB. Ste�en, editors, Corre
t System Design { Re
ent Insights and Advan
es, pages139{162. LNCS 1710, 1999.[16℄ J S. Moore and G. Porter. Me
hanized reasoning about Javathreads via a JVM thread model. (submitted for publi
ation), 2000.http://www.
s.utexas.edu/users/moore/publi
ations/m4/proofs.ps.gz.[17℄ J S. Moore and G. Porter. An exe
utable formal JVM thread model. In Java Vir-tual Ma
hine Resear
h and Te
hnology Symposium (JVM '01), 2001 (to appear).http://www.
s.utexas.edu/users/moore/publi
ations/m4/model.ps.gz.[18℄ G. Porter. A 
ommuting diagram relating threaded and non-threaded jvm models.Te
hni
al report, Honors Thesis, Department of Computer S
ien
es, Universityof Texas at Austin, 2001.[19℄ Cornelia Pus
h. Formalizing the Java virtual ma
hine in Isabelle/HOL. Te
hni-
al Report TUM-I9816, Institut f�ur Informatik, Te
hnis
he Universi�at M�un
hen,1998. See URL http://www.in.tum.de/�pus
h/.[20℄ Cornelia Pus
h. Proving the soundness of a Java byte
ode veri�er in Is-abelle/HOL. Te
hni
al report, Institut f�ur Informatik, Te
hnis
he Universi�atM�un
hen, 1998. See URL http://www.in.tum.de/�pus
h/.[21℄ D. Russino�. A me
hani
ally 
he
ked proof of IEEE 
omplian
e of a register-transfer-level spe
i�
ation of the AMD-K7 
oating-point multipli
ation, division,and square root instru
tions. London Mathemati
al So
iety Journal of Computa-tion and Mathemati
s, 1:148{200, De
ember 1998.


