Formal Methods: Practice and Pedagogy

J Strother Moore
Department of Computer Sciences
The University of Texas at Austin

presented at
IX Jornadas de Enseñanza Universitaria de la Informática
Cádiz, 9–11 July, 2003
Formal Methods

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program.

Boyer-Moore Project

McCarthy’s “Theory of Computation”

Edinburgh Pure Lisp Theorem Prover

A Computational Logic

NQTHM

ACL2

Boyer
Moore
Kaufmann
The Expressiveness Spectrum

Prop Calc

ACL2

BDD
zChaff

SMV
COSPAN

Set Theory

PVS
HOL
Coq
A Classic Challenge Theorem

Theorem: List concatenation ("append") is associative.

\[
\text{equal} \ (\text{append} \ (\text{append} \ a \ b) \ c) \\
\quad \ (\text{append} \ a \ (\text{append} \ b \ c))
\]

\[
\forall a \forall b \\
\text{append}(\text{append}(a,b),c) \\
= \\
\text{append}(a,\text{append}(b,c)).
\]
Examples

(cons 1 (cons 2 (cons 3 nil)))
= '(1 2 3)

(append '(1 2 3) (append '(4 5 6) '(7 8 9)))
= '(1 2 3 4 5 6 7 8 9)
The Definition of append

(defun append (x y)
 (if (endp x)
 y
 (cons (car x)
 (append (cdr x) y))))

(endp x) → (append x y) = y
¬(endp x) → (append x y) =
 (cons (car x)
 (append (cdr x) y))
A Few Axioms

\[t \neq \text{nil} \]

\[x = \text{nil} \rightarrow (\text{if } x \ y \ z) = z \]

\[x \neq \text{nil} \rightarrow (\text{if } x \ y \ z) = y \]

\[(\text{car } (\text{cons } x \ y)) = x \]

\[(\text{cdr } (\text{cons } x \ y)) = y \]

\[(\text{endp } \text{nil}) = t \]

\[(\text{endp } (\text{cons } x \ y)) = \text{nil} \]
(equal (append (append a b) c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append (append a b) c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)
 (append a (append b c)))
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c) (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)
 (append b c))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)
 (append b c))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
T
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append a b) c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (cons (car a)
 (append (cdr a) b)) c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (cons (car a)
 (append (cdr a) b)) c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (append (append (cdr a) b) c))
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (append (append (cdr a) b) c))
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (append (append (cdr a) b) c))
 (cons (car a)
 (append (cdr a) (append b c))))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (append (append (cdr a) b) c))
 (cons (car a)
 (append (cdr a) (append b c)))))
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (equal (append (append (cdr a) b) c) (append (cdr a) (append b c))))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append (cadr a) b) c)
 (append (cadr a) (append b c)))
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append (cdr a) b) c) (append (cdr a) (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Q.E.D.
(defun append (x y)
 (if (endp x)
 y
 (cons (car x)
 (append (cdr x) y))))

Induction and recursion are duals.

Theorem

(equal (append (append a b) c)
 (append a (append b c)))
Demo 1
The Need for Formal Methods in Practice

An elusive circuitry error is causing a chip used in millions of computers to generate inaccurate results — *NY Times*, “*Circuit Flaw Causes Pentium Chip to Miscalculate, Intel Admits,*” Nov 11, 1994

Intel Corp. last week took a $475 million write-off to cover costs associated with the divide bug in the Pentium microprocessor’s floating-point unit — *EE Times*, Jan 23, 1995
AMD K5 Algorithm \(\text{FDIV}(p, d, \text{mode}) \)

1. \(sd_0 = \text{lookup}(d) \) \hspace{1cm} [exact 17 8]
2. \(d_r = d \) \hspace{1cm} [away 17 32]
3. \(sdd_0 = sd_0 \times d_r \) \hspace{1cm} [away 17 32]
4. \(sd_1 = sd_0 \times \text{comp}(sd_0, 32) \) \hspace{1cm} [trunc 17 32]
5. \(sdd_1 = sd_1 \times d_r \) \hspace{1cm} [away 17 32]
6. \(sd_2 = sd_1 \times \text{comp}(sd_1, 32) \) \hspace{1cm} [trunc 17 32]

... ... \(= ... \)

29. \(q_3 = sd_2 \times ph_3 \) \hspace{1cm} [trunc 17 24]
30. \(qq_2 = q_2 + q_3 \) \hspace{1cm} [sticky 17 64]
31. \(qq_1 = qq_2 + q_1 \) \hspace{1cm} [sticky 17 64]
32. \(fdiv = qq_1 + q_0 \) \hspace{1cm} \text{mode}
Using the Reciprocal

\[
\begin{array}{c}
36.00000000 \\
+ \quad -1.7 \\
+ \quad .0034 \\
+ \quad -.000066 \\
\hline
35.83333334 \\
\end{array}
\]

Reciprocal Calculation:

\[
1/12 = 0.083\overline{3} \approx 0.083 = sd_2
\]

Quotient Digit Calculation:

\[
0.083 \times 0.00000 = 35.69000000 \approx 36.000000 = q_0
\]

\[
0.083 \times -2.0000 = -1660000 \approx -170000 = q_1
\]

\[
0.083 \times .0400 = .0033200 \approx .003400 = q_2
\]

\[
0.083 \times -.0008 = -.000664 \approx -.00067 = q_3
\]

Summation of Quotient Digits:

\[
q_0 + q_1 + q_2 + q_3 = 35.833333
\]
Computing the Reciprocal

\[y = \frac{1}{x} - d \]

\[\frac{dy}{dx} = -x^{-2} \]

\[sd_{i+1} = sd_i (2 - sd_i d) \]
<table>
<thead>
<tr>
<th>top 8 bits of d</th>
<th>approx inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000002</td>
<td>0.111111112</td>
<td>1.00000002</td>
<td>0.110011002</td>
<td>1.00000002</td>
<td>0.101010102</td>
<td>1.11000002</td>
<td>0.100100102</td>
</tr>
<tr>
<td>1.00000012</td>
<td>0.111111012</td>
<td>1.01000012</td>
<td>0.110010112</td>
<td>1.10000012</td>
<td>0.101010112</td>
<td>1.11000012</td>
<td>0.100100012</td>
</tr>
<tr>
<td>1.00000102</td>
<td>0.111110112</td>
<td>1.01000102</td>
<td>0.110010102</td>
<td>1.10000102</td>
<td>0.101010002</td>
<td>1.11000102</td>
<td>0.100100112</td>
</tr>
<tr>
<td>1.00000112</td>
<td>0.111110012</td>
<td>1.01000112</td>
<td>0.110010002</td>
<td>1.10001102</td>
<td>0.101001002</td>
<td>1.11000112</td>
<td>0.100100002</td>
</tr>
<tr>
<td>1.00001002</td>
<td>0.111101112</td>
<td>1.01001002</td>
<td>0.110001112</td>
<td>1.10001112</td>
<td>0.101001102</td>
<td>1.11001002</td>
<td>0.100011112</td>
</tr>
<tr>
<td>1.00001112</td>
<td>0.111100102</td>
<td>1.01001112</td>
<td>0.110001012</td>
<td>1.10001112</td>
<td>0.101001112</td>
<td>1.11001112</td>
<td>0.100011102</td>
</tr>
<tr>
<td>1.00010002</td>
<td>0.111010002</td>
<td>1.01010002</td>
<td>0.11000102</td>
<td>1.10010002</td>
<td>0.101000112</td>
<td>1.11010002</td>
<td>0.100011012</td>
</tr>
<tr>
<td>1.00010102</td>
<td>0.111001102</td>
<td>1.01010102</td>
<td>0.110000102</td>
<td>1.10010102</td>
<td>0.101000112</td>
<td>1.11010102</td>
<td>0.100011002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.01011012</td>
<td>0.101111012</td>
<td>1.10101102</td>
<td>0.10111002</td>
<td>1.11101012</td>
<td>0.100011102</td>
<td>1.11110102</td>
<td>0.100001102</td>
</tr>
<tr>
<td>1.01011112</td>
<td>0.101101012</td>
<td>1.10111012</td>
<td>0.10110012</td>
<td>1.11111002</td>
<td>0.100001012</td>
<td>1.11111102</td>
<td>0.100000112</td>
</tr>
<tr>
<td>1.01010102</td>
<td>0.10110012</td>
<td>1.10111102</td>
<td>0.101101112</td>
<td>1.11111112</td>
<td>0.100000102</td>
<td>1.11111112</td>
<td>0.100000012</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The Formal Model of the Code

(defun FDIV (p d mode)
 (let*
 (sd0 (eround (lookup d)) '(exact 17 8)))
 (dr (eround d) '(away 17 32)))
 (sdd0 (eround (* sd0 dr)) '(away 17 32)))
 (sd1 (eround (* sd0 (comp sdd0 32)) '(trunc 17 32)))
 (sdd1 (eround (* sd1 dr)) '(away 17 32)))
 (sd2 (eround (* sd1 (comp sdd1 32)) '(trunc 17 32)))

 ...
 (qq2 (eround (+ q2 q3)) '(sticky 17 64)))
 (qq1 (eround (+ qq2 q1)) '(sticky 17 64)))
 (fdiv (round (+ qq1 q0) mode)))

 (or (first-error sd0 dr sdd0 sd1 sdd1 ... fdiv)
 fdiv)))
IEEE 754 Floating Point Standard

Elementary operations are to be performed as though the infinitely precise (standard mathematical) operation were performed and then the result rounded to the indicated precision.
The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides
 (implies (and (floating-point-numberp p 15 64)
 (floating-point-numberp d 15 64)
 (not (equal d 0))
 (rounding-modep mode))
 (equal (FDIV p d mode)
 (round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995, before the K5 was fabricated)
A Lemma from the FP Books

Lemma 7.3.2 (Sticky Plus)
Let x be a non-0 rational that fits in $n > 0$ bits, which is to say $\text{trunc}(x, n) = x$. Let y be a rational whose exponent is at least two smaller than that of x, $1 + e_y < e_x$. Let k be a positive integer such that $n + e_y - e_x < k$.

Then $\text{sticky}(x + y, n) = \text{sticky}(x + \text{sticky}(y, k), n)$.
AMD Athlon 1997

All elementary floating-point operations, FADD, FSUB, FMUL, FDIV, and FSQRT, on the AMD Athlon were

- specified in ACL2 to be IEEE compliant,
- proved to meet their specifications, and
- the proofs were checked mechanically.
module FMUL; // sanitized from AMD Athlon(TM)
 // by David Russinoff and Art Flatau
/*---*/
// Declarations
/*---*/
//Precision and rounding control:
‘define SNG 1’b0 // single precision
‘define DBL 1’b1 // double precision
‘define NRE 2’b00 // round to nearest
‘define NEG 2’b01 // round to minus infinity
‘define POS 2’b10 // round to plus infinity
//Parameters:
input x[79:0]; //first operand
input y[79:0]; //second operand
input rc[1:0]; //rounding control
input pc; //precision control
output z[79:0]; //rounded product

// First Cycle
//Operand fields:
sgnx = x[79]; sncpy = y[79];
expx[14:0] = x[78:64]; expy[14:0] = y[78:64];
RTL \rightarrow \text{proofs} \leftarrow \text{ACL2}

\text{RTL sim} \rightarrow \text{AMD} \rightarrow \text{proofs}

\ldots

\text{fabrication}
The Athlon FMUL Theorem

(let ((ideal (\text{\texttt{r\texttt{nd}}} (* (\text{\texttt{hat} } x) (\text{\texttt{hat} } y)))
 (mode rc)
 (precision pc)))
 (z (\text{\texttt{fmul} } x y rc pc)))
(implies (and (normal-encoding-p x (extfmt))
 (normal-encoding-p y (extfmt))
 (member rc (list 0 1 2 3))
 (member pc (list 0 1))
 (repp ideal (extfmt)))
 (and (normal-encoding-p z (extfmt))
 (= (\text{\texttt{hat}} z) ideal))))
The ACL2 proofs uncovered bugs that had remained hidden through hundreds of millions of test cases in RTL simulators. The bugs were fixed and the new RTL verified before the Athlon was fabricated. This work was done primarily by David Russinoff and Art Flatau, of AMD.
Other Work at AMD

AMD is using ACL2 to reason about multi-processor implementations, at the algorithm level and close to the RTL level.

They have proved a progress theorem about a model hand-derived from the RTL.

They have proved correctness at the algorithm level of a mechanism related to speculative reads.

New bugs (which were undetected after simulation) have been found and fixed before tapeout.
Other Commercial Work

- FDIV on AMD K5 (Moore-Kaufmann-Lynch)
- AMD Athlon floating point (Russinoff-Flatau)
- Motorola 68020 and Berkeley C String Library (Yu)
- ...
Motorola 68020 and the C String Library

/* copy char from[] to to[] */
char *
strcpy(to, from)
{
 register char *to, *from;
 char *save = to;
 for (; *to = *from; ++from, ++to);
 return(save);
}
gcc -o ...
0x2558 <strcpy>: linkw fp,#0
0x255c <strcpy+4>: moveal fp@(8),a0
0x2560 <strcpy+8>: moveal fp@(12),a1
0x2564 <strcpy+12>: movel a0,d1
0x2566 <strcpy+14>: bra 0x256c <strcpy+20>
0x2568 <strcpy+16>: adqw #1,a1
0x256a <strcpy+18>: adqw #1,a0
0x256c <strcpy+20>: moveb a1@,d0
Other Commercial Work

- Motorola 68020 and Berkeley C String Library (Yu)
- Motorola CAP DSP (Brock)
- ...
Motorola CAP DSP
ROM containing 50 microcoded DSP algorithms

Pipelined microarchitecture = Sequential microcode ISA

(if no hazards)
Other Commercial Work

- ...

- Motorola CAP DSP (Brock)

- IBM 4758 secure co-processor (Austel)

- Union Switch and Signal safety-critical checker (Bertolli)

- ...
The security model was formalized in ACL2 and certain properties were proved to obtain FIPS 140-1 Level Four certification.
Other Commercial Work

- IBM 4758 secure co-processor (Austel)
- Union Switch and Signal safety-critical checker (Bertolli)
- Rockwell Collins / aJile Systems JEM1 (Hardin-Greve-Wilding)
- Java and the JVM (UT Austin with Sun and others)
Java and the JVM

(defun make-state (tt hp ct)
 (...)
(defun step (th s)
 (...)
(defun run (sched s)
 (if (endp sched)
 s
 (run
 (cdr sched)
 (step (car sched) s))))

; JVM in ACL2
Demo 2
(defun run (signals state)
 (if (endp signals)
 state
 (run (cdr signals)
 (step (car signals) state)))))
Our State: \(<tt, hp, ct >\)
(defun step (th s)
 (if (equal (call-stack-status th s)
 'SCHEDULED)
 (do-inst (next-inst th s) th s)
 s))

In our case, th is a thread identifier and is treated as a “signal.”
Our State: \(<tt, hp, ct >\)
(defun do-instr (inst th s)
 (case (op-code inst)
 (AALOAD (execute-AALOAD inst th s))
 (AASTORE (execute-AASTORE inst th s))
 (ALOAD (execute-ALOAD inst th s))
 (ALOAD_0 (execute-ALOAD_X inst th s 0))
 (ALOAD_1 (execute-ALOAD_X inst th s 1))
 (ALOAD_2 (execute-ALOAD_X inst th s 2))
 (ALOAD_3 (execute-ALOAD_X inst th s 3))
 ...)))
The JVM Spec from Sun

iload_0

Operation
Load int from local variable 0

Format
iload_0

Form
26 (0x1a)

Operand Stack
... ⇒ ..., value

Description
The local variable at 0 must contain an int.
The value of the local variable at 0 is pushed onto the operand stack.

Note: ILOAD_0, ... ILOAD_3 are 1-byte specializations of the 3-byte ILOAD n.
(defun execute-ILOAD (inst th s)
 ; inst = (ILOAD n)
 (let ((n (arg1 inst)))
 (modify th s
 :pc (+ (inst-length inst)
 (pc (top-frame th s)))
 :stack (push (nth n
 (locals (top-frame th s)))
 (stack (top-frame th s)))))))
Some Java

class Demo {

 public static int fact(int n) {
 if (n > 0) {
 return n * fact(n - 1);
 } else return 1;
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0], 10);
 System.out.println(fact(n));
 return;
 }
}
```
fact(5) = 120

fact(n) = n!
```
Demo 3
Performance

The ACL2 function `run` is an executable formal model of the JVM.

On a 728 MHz processor, we get about 75K bytecodes/second.

With optimization, we get about 3M bytecodes/sec.
% java Demo 20
-2102132736

ACL2 > (acl2-Demo 20)
-2102132736

ACL2 > (! 20)
2432902008176640000

ACL2 > (int-fix (! 20))
-2102132736
Conjecture

Our Java `fact` method computes the twos-complement integer represented by the low-order 32 bits of the actual factorial.
Demo 4
Pedagogy

What are the lessons here for undergraduate Computer Science majors?

- Mechanized formal analysis of digital artifacts is sometimes possible and effective.

- Formal specifications can serve as prototypes and simulators.

- Formal specification of correctness often requires definition of new concepts.
• Formal proof is facilitated by \textit{structured code development} and \textit{compositional reasoning}.

• There is an illuminating duality between \textit{induction} and \textit{recursion}.

• \textit{Code analysis techniques} are separable from \textit{language semantic techniques}. E.g., \textit{operational semantics} can be used directly to support \textit{Floyd-Hoare style code proofs}.

• \textit{Tool support} for formal methods is available across a wide spectrum of applications.
Formal methods is *not a panacea* but just one of the tools available to the system designer.
Undergraduate “Formal Methods” Courses at UT Austin

- **313** Logic, Sets and Functions – introduction to mathematical logic (year 1).

- **337** Theory in Programming Practice – illustrative examples of the use of formal analysis in program design (year 2).

- **336** Analysis of Programs – code analysis and proof techniques (year 2).
• 341 Automata Theory – automata and formal languages (year 3).

• 378 Computer-Aided Verification – model checking (year 4).

• 378 Formal Model of the JVM – theorem proving (year 4).

There are also a regular stream of topics classes on security, distributed programming, and hardware verification.
An Entertaining Puzzle: The Thread Game

process A:
repeat{
C = C + C;
}

atomic

read C
read C
add
write C

process B:
repeat{
C = C + C;
}

read C
read C
add
write C

Theorem? For every positive integer n there is an interleaving of A and B steps that produces $C = n$.
References

http://www.cs.utexas.edu/users/moore/acl2