
Well-Formedness Guarantees for ACL2 Metafunctions

and Clause Processors

Matt Kaufmann and J Strother Moore

Department of Computer Science

University of Texas at Austin

email:{kaufmann,moore}@cs.utexas.edu

September 11, 2015

Abstract

Some runtime checks can be safely removed
from code if appropriate program properties are
proved. We describe how we have applied this
idea to the ACL2 theorem prover to speed up
the application of user-defined proof procedures.
In particular, we discuss how and why we have
added a new feature to ACL2 that allows the
user to verify certain well-formedness proper-
ties of the expressions produced by user-defined
proof procedures. Of special interest are the is-
sues of extensibility (how we know that guaran-
tees proved in one theory are adequate in an-
other), formalization of the problem, and design
decisions affecting the user interface.

Keywords: metatheory, derived rules, tactics,
soundness, runtime testing

1 Introduction

ACL2 is a theorem proving system for an ap-
plicative subset of Common Lisp and is largely
written in that subset. ACL2 is also a program-
ming language that takes advantage of Common

Lisp compilers so, by necessity, ACL2 adheres
to the specification of Common Lisp[12]. ACL2
is used in industry to verify functional correct-
ness and other properties of commercial hard-
ware and some low-level software. Companies
that have used ACL2 for such purposes include
AMD, Centaur, IBM, Intel, Oracle, and Rock-
well Collins. See [4] for some case studies dating
from 2000. Today the most complete integra-
tion of ACL2 into an industrial workflow is at
Centaur [11].

The ACL2 theorem prover allows the user to
define new simplifiers (called metafunctions) and
provers (called clause processors). These are just
functions on Lisp s-expressions.

Every term in ACL2 is represented internally
by a Lisp s-expression. Conveniently, each such
s-expression, if preceded by a quote mark, is also
a term, in particular a constant term whose eval-
uation is that s-expression. If α is a term, then
’α is called its quotation.

By applying an evaluator to the quotation of
a term, with the appropriate assignment of val-
ues to variable symbols, one obtains the value
of the term. For example, (+ x (+ y (- x)))

is a term whose quotation is ’(+ X (+ Y (-

X))), and (eval ’(+ X (+ Y (- X))) σ) =
(+ x (+ y (- x))), if σ is the association list
(assignment) that pairs the symbol ’X with x

and the symbol ’Y with y.1 Such a σ can
be constructed with (list (cons ’X x) (cons

’Y y)).

In the simplest case, a metafunction f is just a
Lisp function that takes an s-expression and pro-
duces an s-expression with an equivalent value
under a certain evaluator, as suggested by the
theorem:

ACL2 Metafunction Correctness:

(implies (and (pseudo-termp x)

(alistp a))

(equal (eval x a)

(eval (f x) a)))

This looks very strong, since it says that f trans-
forms every input to an equivalent one. But
practically speaking, f will be the identity func-
tion on all inputs except those of the “expected”
shape. When a metafunction f is proved cor-
rect, we require the user to specify the top-level
function symbols of those terms which might be
usefully simplified by f . Thus, the prover does
not actually try f on every term it encounters
(though that would be sound). See Section 4.

Assume the formula above has been proved for
a user-defined function f . Then if α and β are
terms and (f ’α) = ’β, then it is permitted to
replace any occurrence of α by β, i.e., to use f

as a simplifier. Of course, ACL2 does this only if

1We lie a little bit for clarity’s sake! + is not really
an ACL2 function symbol; it is a macro that expands
into a call of the function symbol BINARY-+ of arity 2.
We hope the reader familiar with ACL2 will overlook our
misrepresentations. By the way, ACL2 is case insensitive
for the function and variable symbols used in this pa-
per; the symbol BINARY-+ can also be written binary-+,
Binary-+, etc. Ignore case if it is confusing.

α and β are different. To see why we can replace
α by β, let σ be the list binding the variable
symbols of α and β to their values. Then

α = (eval ’α σ)

= (eval (f ’α) σ)

= (eval ’β σ)

= β.

In the ACL2 Metatheorem Correctness theo-
rem above, pseudo-termp is a function that re-
turns t (true) or nil (false) according to whether
its argument is an s-expression that has the basic
shape of a well-formed term. But pseudo-termp
does not check that every symbol used as a vari-
able is a legal variable symbol, that every sym-
bol used as a function is a function symbol in the
current theory, or that the number of arguments
supplied is correct.

Alistp checks that its argument is a list of
pairs “binding” symbols to values.

The name eval above is merely sugges-
tive. ACL2 is first-order and does not per-
mit the axiomatization of Lisp’s universal in-
terpreter. Instead, ACL2 can recognize a func-
tion as an evaluator, where (according to :DOC
defevaluator2):

an evaluator function for a fixed, fi-
nite set of function symbols is a re-
striction of the universal evaluator to
terms composed of variables, constants,
lambda expressions, and applications of
the given functions. However, evalu-
ator functions are constrained rather

2When we refer to “:DOC x” we mean see the doc-
umentation topic x in the ACL2 documentation, which
may be found by visiting the ACL2 home page[5],
clicking on The User’s Manuals, then clicking on the
ACL2+Books Manual and typing x into the “Jump to”
box.

than defined, so that the proof that a
given metafunction is correct vis-a-vis
a particular evaluator function can be
lifted (by functional instantiation) to a
proof that it is correct for any larger
evaluator function

The evaluator appropriate for proving the meta-
function f correct is generally one that handles
all and only the function symbols recognized and
generated by that metafunction. For example, if
f checks that its first argument is a list whose
first element is the symbol ’+, and for some such
inputs f ultimately returns a list whose first el-
ement is the symbol ’FIX, then the evaluator
needed to prove f correct is probably one that
includes + and fix in the finite subset of function
symbols known to that evaluator. That evalu-
ator, which we now denote by ev rather than
Lisp’s eval, would satisfy:

(ev (list ’+ x y) a)

= (+ (ev x a) (ev y a))

and

(ev (list ’FIX x) a)

= (fix (ev x a)).

But in any case, if ev is any ACL2 evaluator
and it is a theorem that

(implies (and (pseudo-termp x)

(alistp a))

(equal (ev x a)

(ev (f x) a)))

then any time the ACL2 rewriter encounters an
s-expression it can, if it chooses, replace that s-
expression by the value of f on that s-expression,
provided the value represents a term. The itali-
cized proviso is the crux of this paper.

A clause processor is similar to a metafunc-
tion except it takes a clause (a list of terms) as
input and produces a list of clauses as output.
The meaning of a clause is the disjunction of the
evaluations of its elements and the correctness
of a clause processor says that the conjunction
of the meanings of the output clauses implies
the meaning of the input clause. Otherwise, the
issues with using clause processors to simplify
a goal clause to a set of stronger subgoals are
analogous to the issues of using a metafunction
and we do not discuss clause processors in detail
further.

2 Back to the Future

Metafunctions were introduced to the Nqthm
theorem prover [2], the predecessor of ACL2, in
1979 [1].3 As that paper says, “There is nothing
magic or ‘meta’ about this function,” referring to
a restricted evaluator and the modern connota-
tion of “meta.” “Meta” in Greek means “after,”
and in the received order of Aristotle’s works,
being, substance, cause, etc., are treated after
physical matters. So in the most literal sense,
evaluators and metafunctions are indeed “meta”
because they must be defined and verified after
all the function symbols they handle have been
introduced.

In [1], the evaluator was called meaning and
the correctness theorem for a metafunction was
of the form

(implies (formp x)

(and (equal (meaning x a)

(meaning (f x) a))

(formp (f x))))

3Publication [1] is dated 1981, but is virtually identi-
cal to SRI Technical Report CSL-108 of the same name,
dated December, 1979.

Note the conjunct in the conclusion requiring
that f return a “formp”. Formp recognized well-
formed terms and was definable in Nqthm be-
cause it relied on an axiomatized function arity

which “grew” as new function symbols were in-
troduced.

The paper [1] presents a detailed proof of the
validity of replacing α by β, along the lines
sketched in the previous section. While that
proof is in the context of Nqthm’s term repre-
sentation the basic argument is exactly the same.
See also :DOC meta.

When we implemented ACL2, starting in
1989, we deleted the ACL2 analogue of the formp
conjunct (and replaced the formp in the hypoth-
esis by the weaker pseudo-termp) for at least
two reasons. First, we chose not to introduce
a function like arity that is extended with ev-
ery new function symbol. Second, the require-
ments of Common Lisp forced a much more com-
plicated definition of a well-formed term. See
Appendix A. In 1989, the formal definition of
well-formedness sufficient to allow proof of well-
formedness just seemed daunting and likely to
lead to proof obligations that were inordinately
hard compared to the alternative: a runtime
check on the well-formedness of the output of
each instance of a metafunction.

This runtime check persisted, unnoticed, for
a quarter of a century, despite significant exten-
sions to metafunctions and the addition of the
analogous handling of clause processors [3, 7].
Meanwhile, ACL2 was applied successfully to
increasingly large and complex problems, with
concomitant improvements in its algorithms and
engineering. In 2015 we noticed that the runtime
well-formedness check was costing a lot because
of the size of the formulas ACL2 is now dealing
with. See the discussion of the decompilation of

machine code for the DES algorithm in Section
5 for an example.4

Thus, between the release of ACL2 Versions
7.1 and 7.2 (unreleased as of this writing, but
available from GitHub), we decided to allow
the runtime well-formedness check to be “proved
away,” i.e., to be made unnecessary by the proof
of a well-formedness condition on the metafunc-
tion, partially undoing the earlier decision and
making ACL2 more like Nqthm in this regard.

The reliance on a proof to replace a runtime
check highlights the importance of the consis-
tency of the theory. ACL2 discourages any “log-
ically dangerous” act that can render the theory
inconsistent. For example, new axioms about ex-
isting function symbols are discouraged; instead,
ACL2 provides a conservative definitional prin-
ciple and a widely used mechanism for extending
the theory with constrained functions whose con-
straints are proved to be satisfiable. But, in the
interests of allowing the user some flexibility in
developing proof scripts, ACL2 permits the addi-
tion of axioms, redefinition of functions, skipping
of proof obligations, and other logically danger-
ous acts – provided the user has signaled an un-
derstanding that the consequences are now his
or hers. One might think the consequences are
just that invalid formulas might be proved. But
that is wrong! Far worse things can happen, as
is easy to see in connection with the elimination
of the well-formedness check. If well-formedness
is proved in an inconsistent theory, then a meta-
function might introduce a “term” that violates
the fundamental invariants exploited by the the-
orem prover. Consequently, the Common Lisp
execution engine could crash, overwrite code,

4In fact, decompilation is the motivating application
in this work but we expect this work primarily to benefit
industrial users of ACL2’s metafunctions after it has been
distributed.

delete files, etc. This issue is discussed in the
1979 version of [1] on page 67:

Finally, we should observe that we
could have stated [the metatheorem]
so that [(FORMP (f x))] did not have
to be proved in [theory] T1 and then
could have implemented a run-time
check that [the output] indeed repre-
sents a term. We then could have per-
mitted T1 to be inconsistent without
catastrophic consequences. We did not
adopt this approach because in most
cases the proof of the FORMP part of
[the metatheorem] is straightforward
and buys efficiency at the mere expense
of complicating this paper.

The bracketed material was added by the current
authors to make the paragraph make sense with
the current notation.

It should be noted that such consequences
of inconsistency already pervade ACL2: if the
guards (preconditions) of a function are proved
in an inconsistent theory, then ACL2’s trust in
the fidelity of the Common Lisp execution engine
for ground evaluation is misplaced. See :DOC
guard.

3 Well-Formedness Guarantees

A data structure x represents a well-formed term
with respect to an ACL2 “logical world” w iff
(termp x w) is true. Termp and its important
subfunctions are defined in Appendix A. Termp
is mutually recursive with term-listp which
checks that its argument is a list of terms with
respect to a logical world. A “logical world” is a
Lisp data structure that captures a logical the-
ory. More precisely, a logical world is an en-
coding of a set of properties (as stored on the

property lists in the ACL2 session) that, among
other things, assigns a list of formal variables
(and hence, an arity) to the FORMALS property of
every function symbol in the theory. The ACL2
function arity uses the FORMALS property to de-
termine whether a symbol is a function symbol
in the current theory and how many arguments
it takes.

A well-formedness guarantee for metafunction
f is a theorem of the form:

ACL2 Well-Formedness Guarantee:

(implies (and (termp x w)

(arities-okp ’alist w))

(termp (f x) w))

where alist is an alist pairing symbols to pur-
ported arities and arities-okp checks that the
arity recorded in alist agrees with the arity
recorded in the logical world w. See Appendix
A.

Note that the alist in a well-formedness guar-
antee presents a finite list of symbols and their
purported arities. The theorem does not talk
about the current logical theory but any logical
theory with the same arities for that finite set
of symbols. The symbols mentioned in alist are
typically just the symbols known to the evalua-
tor used in the correctness result for f .

If such a theorem has been proved for a meta-
function and cited by the user when the meta-
function is proved correct and built into the
prover, then no runtime well-formedness check is
done on the output of the metafunction. How-
ever, a runtime check is done on the alist con-
stant from the well-formedness guarantee and
the then-current logical world. That is, we re-
place a potentially expensive call of termp, on
the output of f and the current world, with a
typically cheap call of arities-okp on the alist

of the theorem and the current world.

Let us sketch the correctness argument for
skipping the runtime well-formedness check.

Assume that a well-formedness guarantee for
f is a theorem of the current ACL2 logical world,
Γ. Suppose ACL2 replaces term α by β be-
cause (f ’α) = ’β and the arities-okp check
against Γ is true. Then by the well-formedness
theorem for f and the fact that we know ’α is
a termp in Γ, we know that (termp ’β Γ) is
true; hence, β is a termp in Γ. But this is ex-
actly the runtime test that is skipped because of
the well-formedness guarantee.

Prior to adding well-formedness guarantees,
the function termp and some of its subfunctions
were defined as ACL2 programs but not admit-
ted into the logic with definitional axioms. To
implement our guarantees we had to admit these
definitions by proving their termination and ver-
ifying their guards. The latter involves prov-
ing formulas that establish that when called in
accordance with their guards, no program will
cause an error (other than resource exhaustion
like running out of memory). ACL2 provides the
user with facilities for “lifting” any program that
is part of the ACL2 implementation into the logic
(provided, of course, the program can be proved
to terminate and satisfy its guards). When an
ACL2 function’s guards have been verified and
the function is invoked on arguments satisfying
its guard, then the compiled Common Lisp code
for the function is trusted to comply with ACL2’s
axioms; otherwise ACL2 runs slower code that
ensures compliance.

ACL2 provides for more sophisticated meta-
functions than indicated here. For example, a
metafunction can have an associated “hypothesis
metafunction” that generates a term that must
be shown true by the theorem prover before the
result of the metafunction is used. In addition,
besides the input term to rewrite, a metafunction

can take additional arguments that allow the
function to access the context in which the tar-
get term occurs, the ACL2 world, and the ACL2
state to make heuristic decisions. We do not
discuss these extensions here but they are docu-
mented in :DOC well-formedness-guarantee.

4 User Interface

The ACL2 user tags theorems with tokens that
tell the system how the theorem is to be used in
the future. The default token is :REWRITE and
indicates that the theorem is to be interpreted
as a conditional rewrite rule. These tokens al-
low the specification of additional pragmatic at-
tributes. For example, in the case of a rewrite
rule, one can rearrange the theorem to identify
the left- and right-hand sides of the rewriting
equality and identify the conditions that must
be relieved before the rule fires, one can limit the
resources expended to relieve hypotheses, etc.

To install a metafunction f one states its cor-
rectness theorem and tags it with the token
:META, further annotating it with a list of the
top-level function symbols of those terms that
should trigger the application of f (since it would
be inefficient to try every metafunction on ev-
ery subterm of every goal). For example, the
correctness theorem of a metafunction that ac-
tually changes only some terms that are calls of
+ or * would be tagged: (:meta :trigger-fns

(+ *)).

We decided to make well-formedness guaran-
tees optional since the runtime code for check-
ing well-formedness is already present and there
are many (approximately 150) metafunctions de-
fined and proved in the ACL2 regression suite.

To provide a well-formedness guarantee one
adds an additional annotation so that the one

above becomes:

(:meta :trigger-fns (+ *)

:well-formedness-guarantee name)

where name is the name of a previously proved
well-formedness theorem for the same metafunc-
tion. If that metafunction has an associated
hypothesis metafunction one must provide the
names of two well-formedness theorems, one for
the metafunction’s output and one for its hy-
pothesis function’s output. The downside of this
decision is that one must prove well-formedness
for both functions if one wants to omit runtime
checks. We thought doing otherwise would en-
able misunderstanding by the user, who might
forget to prove the well-formedness of the hy-
pothesis metafunction, say, and have no indica-
tion (other than unexplained slowness) that the
runtime check on its output is still being done.
When two theorems are provided, the arity a-
lists extracted from each must be compatible and
they are combined into a single alist to check at
application time.

We also decided to exploit the arity alists for
another purpose. ACL2 permits the user to de-
clare that a function symbol is “untouchable”.
This allows a user to define a function, prove
theorems about it, and then wall it off from fu-
ture explicit use. Metafunctions should not in-
troduce such untouchable functions. Every time
a well-formedness theorem is proved for a meta-
function, we add the function symbols from its
arity alist to a growing list. The user is then pro-
hibited from adding functions from that list to
the list of untouchables. The design of this fea-
ture is actually much more complicated, e.g., to
facilitate error messages that “blame” the appro-
priate metafunction when the user tries to make
a now-prohibited symbol untouchable.

5 Performance

The book5 meta-wf-guarantee-example.lisp

[6] defines a metafunction and proves its guards,
its well-formedness guarantee, and its correct-
ness. It illustrates the ideas in this paper
and sets up an experiment the reader can run
that demonstrates, on a particular example, the
termp test taking several thousand times longer
than the metafunction. See the book for addi-
tional comments on performance.

Of the other (∼ 150) metafunctions defined in
the ACL2 regression suite, none have had their
well-formedness guarantees proved yet. We dis-
cuss this further below.

Our only other test of this as-yet unreleased
feature is in the work described in [8], where
we discuss “decompiling” a 15,361 instruction
machine code program using a formal opera-
tional semantics in ACL2, the Codewalker tool6,
and an experimental machine state management
book, called Stateman. The state manage-
ment book is based entirely on metafunctions
and these metafunctions can generate very large
terms on long paths through code. For exam-
ple, the 5,280 instruction path through the DES
decryption loop generates a state term contain-
ing 2,158,895 function calls. This is just one of
four states with over two million function sym-
bols generated during the decompilation.

If the metafunctions in Stateman are guard
verified but have no well-formedness guarantees,
the decompilation time for the 15,361 instruc-
tions is 955 seconds on a MacBook Pro laptop

5A book is an ACL2 input file.
6Codewalker extracts ACL2 functions from machine

code given the formal operational semantics of the ISA
and is similar to the HOL decompilation work by Magnus
Myreen[9, 10]. See the README file in the Community
Book directory projects/codewalker/.

with a 2.6 GHz Intel Core i7 processor and 16 GB
of 1600 MHZ DDR3 memory, running Clozure
Common Lisp. If well-formedness guarantees are
proved, the time drops to 618 seconds. Thus we
see that the runtime termp checks were costing
us 337 seconds or about 35% of the time devoted
to decompilation.

Unlike many performance related changes,
this one has no real downside other than the
user’s effort to state and prove the guarantees.
Once the guarantees are proved, skipping the
runtime well-formedness check is always faster
than doing it.

The question comes down to how users and
maintainers of the regression suite want to spend
their time. The metafunctions in Stateman are
among the most complicated ever coded by the
authors and we found the proofs of their well-
formedness guarantees straightforward, follow-
ing the same decompositions used to prove they
return pseudo-termps. Roughly speaking, every
function that returns a term should be specified
to do so, conditional on appropriate termp hy-
potheses about its arguments. Because ACL2 is
untyped, this obvious signature information may
not be apparent in the regression suite. The
task of proving these termp signatures, which
seemed daunting in 1989, is now routinely au-
tomatic because of engineering improvements in
handling “large” definitions like termp (see Ap-
pendix A). But whether it is worth the time to
write out these signatures depends on the size of

the terms the metafunction generates, which typ-
ically depends on the size of the input terms. If
one omits the well-formedness guarantees, then
the runtime check is performed and that is very
fast on small terms. But if the metafunction
typically traffics in “galactic” terms, it is worth-
while.

Acknowledgements

This material is based upon work supported by
DARPA under Contract No. N66001-10-2-4087
and by ForrestHunt, Inc.

A The Formal Definitions of

Termp and Arities-Okp

In this appendix we present the ACL2 defi-
nitions of termp and its main subfunctions,
and arities-okp. Here *main-. . . abbre-
viates *main-lisp-package-name*, and
*common-. . .1 and *common-. . .2 abbreviate
common-lisp-specials-and-constants

and *common-lisp-symbols-from-main-lisp-

package*, respectively.

(defun legal-variable-or-constant-namep

(name)

(and

(symbolp name)

(cond

((or (eq name t) (eq name nil))

’constant)

(t

(let

((p (symbol-package-name name)))

(and

(not (equal p "KEYWORD"))

(let ((s (symbol-name name)))

(cond

((and

(not (= (length s) 0))

(eql (char s 0) #*)
(eql (char s (1- (length s)))

#*))
(if (equal p *main-. . .)

nil ’constant))

((and (not (= (length s) 0))

(eql (char s 0) #\&))
nil)

((equal p *main-. . .)

(and

(not

(member-eq

name

*common-. . .1))

(member-eq

name

*common-. . .2)

’variable))

(t ’variable)))))))))

(defun legal-variablep (name)

(eq (legal-variable-or-constant-namep

name)

’variable))

(mutual-recursion

(defun termp (x w)

(declare

(xargs

:guard

(plist-worldp-with-formals w)))

(cond

((atom x) (legal-variablep x))

((eq (car x) ’quote)

(and (consp (cdr x))

(null (cddr x))))

((symbolp (car x))

(let ((arity (arity (car x) w)))

(and arity

(true-listp (cdr x))

(eql (length (cdr x)) arity)

(term-listp (cdr x) w))))

((and (consp (car x))

(true-listp (car x))

(eq (car (car x)) ’lambda)

(equal 3 (length (car x)))

(arglistp (cadr (car x)))

(termp (caddr (car x)) w)

(null

(set-difference-eq

(all-vars (caddr (car x)))

(cadr (car x))))

(term-listp (cdr x) w)

(equal

(length (cadr (car x)))

(length (cdr x))))

t)

(t nil)))

(defun term-listp (x w)

(declare

(xargs

:guard

(plist-worldp-with-formals w)))

(cond ((atom x) (equal x nil))

((termp (car x) w)

(term-listp (cdr x) w))

(t nil))))

(defun arities-okp (alist w)

(declare

(xargs

:guard

(and (symbol-alistp alist)

(plist-worldp-with-formals w))))

(cond

((endp alist) t)

(t

(and (equal

(arity (car (car alist)) w)

(cdr (car alist)))

(arities-okp (cdr alist) w)))))

References

[1] R. S. Boyer & J S. Moore (1981): Meta-

functions: Proving Them Correct and Using

Them Efficiently as New Proof Procedures.
In: The Correctness Problem in Computer
Science, Academic Press, London.

[2] R. S. Boyer & J S. Moore (1997): A Com-

putational Logic Handbook, Second Edition.
Academic Press, New York.

[3] W. A. Hunt, Jr., M. Kaufmann, R. B. Krug,
J S. Moore & E. W. Smith (2005): Meta

Reasoning in ACL2. In J. Hurd & T. Mel-
ham, editors: 18th International Conference

on Theorem Proving in Higher Order Log-
ics: TPHOLs 2005, Lecture Notes in Com-
puter Science 3603, Springer, pp. 163–178,
doi:10.1007/11541868_11.

[4] M. Kaufmann, P. Manolios & J S. Moore,
editors (2000): Computer-Aided Reason-

ing: ACL2 Case Studies. Kluwer Academic
Press, Boston, MA.

[5] M. Kaufmann & J S. Moore (2014): The

ACL2 Home Page. In: http://www.cs.

utexas.edu/users/moore/acl2/ , Dept.
of Computer Sciences, University of Texas
at Austin.

[6] M. Kaufmann & J S. Moore (2015):
Example of Well-Formedness Guar-

antee for a Metafunction. Technical
Report, CS Department, University
of Texas at Austin. Available at
https://raw.githubusercontent.

com/acl2/acl2/master/books/demos/

meta-wf-guarantee-example.lisp.

[7] Matt Kaufmann, J Strother Moore, Sandip
Ray & Erik Reeber (2009): Integrating Ex-

ternal Deduction Tools with ACL2. Journal
of Applied Logic 7(1), pp. 3–25.

[8] J S. Moore (2015): Stateman: Using Meta-

functions to Manage Large Terms Repre-

senting Machine States. In: ACL2 Work-
shop 2015.

[9] Magnus O. Myreen (2009): Formal verifica-

tion of machine-code programs. Ph.D. the-
sis, University of Cambridge.

[10] Magnus O. Myreen, Konrad Slind &
Michael J. C. Gordon (2012): Decompila-

tion into Logic Improved. In: Formal Meth-

ods in Computer-Aided Design (FMCAD),
2012, pp. 78–81.

[11] Anna Slobodova, Jared Davis, Sol Swords
& Jr. Warren Hunt (2011): A Flexible For-

mal Verification Framework for Industrial

Scale Validation. In Satnam Singh, editor:
9th IEEE/ACM International Conference
on Formal Methods and Models for Code-
sign (MEMOCODE), IEEE, pp. 89–97.

[12] G. L. Steele, Jr. (1990): Common Lisp The

Language, Second Edition. Digital Press, 30
North Avenue, Burlington, MA. 01803.

http://dx.doi.org/10.1007/11541868_11
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
https://raw.githubusercontent.com/acl2/acl2/master/books/demos/meta-wf-guarantee-example.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/demos/meta-wf-guarantee-example.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/demos/meta-wf-guarantee-example.lisp

	Introduction
	Back to the Future
	Well-Formedness Guarantees
	User Interface
	Performance
	The Formal Definitions of Termp and Arities-Okp

