
A Mechanized Program Verifier

J Strother Moore1

Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712, USA
moore@cs.utexas.edu,

WWW home page: http://cs.utexas.edu/users/moore

Abstract. In my view, the “verification problem” is the theorem proving problem, restricted
to a computational logic. My approach is: adopt a functional programming language, build
a general purpose formal reasoning engine around it, integrate it into a program and proof
development environment, and apply it to model and verify a wide variety of computing arti-
facts, usually modeled operationally within the functional programming language. Everything
done in this approach is software verification since the models are runnable programs in a
subset of an ANSI standard programming language (Common Lisp). But this approach is of
interest to proponents of other approaches (e.g., verification of procedural programs or syn-
thesis) because of the nature of the mathematics of computing. I summarize the progress so
far using this approach, sketch the key research challenges ahead and describe my vision of
the role and shape of a useful verification system.

1 Approach

The verification community seeks to build a system that can follow the reasoning of an average
human engaged in a creative, computational, problem solving task lasting months or years and
spanning an arbitrary set of application domains.

Now step back and reconsider what was just said: we seek to build a system that follows –
if not reconstructs or anticipates – the reasoning of an average human in an arbitrary, creative,
computational, problem solving task. This is the theorem proving problem, perhaps restricted to a
computational logic. We seek to build a system that reasons about computation.

I believe one is not likely to achieve a goal unless one identifies precisely what the goal is. My
goal is build a practical theorem prover for a computational logic. I believe that any attack on the
verification problem will fail unless theorem proving – machine assisted reasoning – is at its heart.

My1 approach to the “verification problem” is thus:

– Adopt a functional programming language so that programs are functions in a mathematical
theory. The particular language I use is the functional subset of the ANSI standard programming
language Common Lisp.

– The theory is described by a set of axioms and rules of inference, including well-founded induction
and a definitional principle that allows conservative introduction of new concepts.

– The theory is directly supported by an interactive theorem prover.

– The theorem prover employs heuristics and various decision procedures so that many “simple”
proofs can be found completely automatically.

1 This vision is consistent with McCarthy’s, was developed by Boyer and me and then Kaufmann and me,
and probably describes the vision of verification as seen by most of the “Boyer-Moore” community. But
the community has not been consulted. So I use the first person pronoun here.



2

– The theorem prover is designed to operate automatically once a conjecture is posed to it. Its
behavior is determined by previously proved theorems residing in its database. This addresses
three key problems:

• Since verifying functional correctness of interesting programs requires operation in an un-
decidable domain, provision for some user guidance is unavoidable. It should not be an
after-thought, nor should it force the user to eschew powerful automatic features.

• Using previously proved lemmas to guide the system encourages the user to think at the
high level, i.e., about concepts involved in the specification and their relationships. This also
encourages the creation of libraries of general concepts and lemmas.

• Automatic operation (with respect to previously proved theorems) facilitates proof mainte-

nance: the task of verifying a system produced by making incremental modifications to a
previously verified one.

– The programming language and theorem prover are embedded in a program/proof development
environment in which prototyping, testing, and proving are seamlessly integrated. Like any
good programming environment, ours supports a rich collection of code/proof structuring tools
including name scopes, modules, libraries, etc., in which the work of many other developers can
be made available. The theory must support such tools formally.

– While everything proved in this system exemplifies software verification – the mathematical
language is an ANSI standard programming language – systems written in other languages may
be modeled and verified by using the system as a formal meta-language. This allows many
different languages to be related within a common framework.

– To demonstrate the practicality of a functional programming language the system should be
implemented in it.

– To keep the work focused on the goal, every opportunity should be taken to verify systems of
commercial (or at least, outside) interest.

A prototype of this vision of mechanized verification was first demonstrated by Boyer and Moore
in 1973 in what was called “The Edinburgh Pure Lisp Theorem Prover.” The demonstration has been
continuously improved and elaborated through a series of so-called “Boyer-Moore theorem provers,”
including Nqthm [8] and ACL2 (by Kaufmann and Moore, with early contributions by Boyer) [21].

2 Progress So Far

Here is a chronology of work done by the Boyer-Moore community. This represents 35 years of
unbroken pursuit of the software verification grand challenge. This litany makes plausible the vision
I describe later.

– 1970–1979: fully automatic proof of insertion sort, including the permutation property, and
fully automatic proofs of many other theorems about Pure Lisp programs [3]; the correctness of
a McCarthy-Painter-like expression compiler, the soundness and completeness of a propositional
tautology checker, and the correctness of the Boyer-Moore fast string searching algorithm in
FORTRAN 77 [4]; proof of the correctness of a linear-time majority vote program written in
FORTRAN 77 [7]; proof that a “cruise control” program keeps a vehicle on course in a smoothly
varying cross-wind and homes to the course if the wind becomes steady [10]. During this period,
Boyer and Moore worked on the Software Implemented Fault Tolerance (SIFT) project [15] and
our attempts to formalize the BDX 930 to explain the mix of Pascal and machine code in that
system drove much of the subsequent improvement to the theorem prover.



3

– 1980–1989: the invertibility of the RSA encryption algorithm [6]; the unsolvability of the halting
problem [5]; Gödel’s First Incompleteness Theorem [34]; the correctness of a gate-level micro-
processor design [19]; the correctness of an operating system kernel [1]; the correctness of an
assembler, linker and loader for a stack based relocatable symbolic assembly language support-
ing Booleans, integer arithmetic, bit vectors, arrays, and recursive subroutine calls – the system
produced binary images for the microprocessor mentioned earlier and the proof guaranteed func-
tional correctness of the binary images with respect to the machine code ISA [2]; the correctness
of a compiler from a subset of Pascal to the assembly code above and the verification of some
simple applications written in that language [38]; the correctness of a compiler from a subset of
Pure Lisp to the assembly code [14]; the composition of many of the above theorems to make
it possible to prove an application program correct with the high-level language semantics and
then derive in one step the correctness of its binary image under the gate-level semantics of the
microprocessor – – this is known as the verified stack of Computational Logic, Inc., and it was
completed and published in a special issue of the Journal of Automated Reasoning in 1989.

– 1990–1999: proof that an NDL netlist implements the machine code ISA of a 32-bit micropro-
cessor and the fabrication of the microprocessor by LSI Logic [20]; porting the verified stack to
the fabricated machine by re-targeting and re-verifying the assembler [27]; verification that a
Nim-playing program plays winning Nim and the demonstration of this program on a fabricated,
verified microprocessor using the verified stack [37]; verification of 21 of the 22 routines in the
Berkeley Unix C String Library – performed by compiling the library with gcc -o to obtain
binary machine code for the Motorola 68020 and then verifying that with respect to a formal
operational semantics capturing 80% of the user-level 68020 instructions [11]; proof by the same
technique of a variety of other C programs, including the C code for binary search and Hoare’s in

situ Quick Sort from [24]; proof that the microarchitectural design of the Motorola CAP digital
signal processor (dsp) implements a certain microcode engine, including the verification that a
pipeline hazard detection algorithm was sufficient to insure bit- and cycle-accurate equivalence
of the two models [12]; use of the formal dsp microcode engine as a simulator for the microarchi-
tecture, because the formal microcode model was three times faster than Motorola’s SPW model
of the microarchitecture [12]; proof of several dsp microcode programs written by Motorola [12,
13]; proof that the microcode for the AMD K5 correctly implemented IEEE floating point di-
vision – carried out before the K5 was fabricated [29]; proof that all elementary floating point
on the AMD Athlon was correctly implemented in RTL (a variant of Verilog)[32]; proof of the
soundness of a Lisp program that checks the proofs produced by the Ivy theorem prover from
Argonne National Labs – Ivy proofs may thus be generated by unverified code but confirmed to
be proofs by a verified Lisp function [26]; proof that a security model of the IBM 4758 secure co-
processor satisfied properties required for FIPS 140-1 Level Four certification [35]; development
and production use of a formal model at Rockwell Collins as the microarchitectural simulator
for the first silicon-implemented JVM (the design became the JEM1 of aJile Systems, Inc.) [18]
– the formal simulator runs at 90% of the speed of a comparable simulator written in C.

– 2000–2005: proofs of properties of components of the AMD Opteron and other processors
[private communication]; proof of the soundness and completeness of a Lisp implementation of a
BDD package that achieves runtime speeds of about 60% those of the CUDD package (however,
unlike CUDD, the verified package does not support dynamic variable reordering and is thus
more limited in scope) [36]; proof of correctness of the algorithms used for floating point division
and square root on the IBM Power 4 [33]; proof of instruction equivalence between different
implementations of a commercial microprocessor [16]; proof that microcode for the Rockwell
Collins AAMP7 implements a given security policy having to do with process separation [17];
verification that the JVM bytecode produced by the Sun compiler javac on certain simple



4

Java classes implements the claimed functionality [28], including verification of a small class
file that spawns an unbounded number of non-terminating threads in contention for a common
data structure [30]; verification of certain properties of the Sun bytecode verifier as described
in JSR-139 for J2ME JVMs [25] (part of an ongoing effort to verify the runtime safety of the
JVM).

Many other applications are available at [22].

3 Research Challenges and Milestones

Kaufmann and I describe the our research challenges in [23]. These include the mechanized invention
of lemmas and new concepts, including the discovery of inductive invariants (perhaps by augmenting
a user supplied core invariant); the use of examples and counterexamples to guide search and concept
and conjecture formation; analogy, learning and data mining in theorem proving; the adoption of an
open architecture for a theorem prover allowing it to build on other work and to be tailored by the
user in a sound way; support for parallel and collaborative theorem proving projects; an empowering
interactive user interface supporting, among other things, interactive steering of an ongoing proof
attempt; training people to use these tools; the construction of a useful and verified theorem prover
hosted on a verified platform.

4 Discussion and Speculation

While I strongly advocate and actively work on the integration of decision procedures and static
analyzers into mechanized theorem provers to ease the burden of proof, I do not believe they are
the breakthroughs needed to make software verification palatable to the masses. I do not believe
software verification will ever be palatable to the masses (until the AI challenge is solved).

I believe that mechanized verification of the functional correctness of software crucially depends
upon the designer or some other human annotating the code to explain the intention of important
routines or blocks. This will not happen until programmers and their masters stop measuring pro-
ductivity in lines-of-code per day and start insisting on functional correctness as a deliverable. This
will probably never be commonplace because most software is non-critical.

Nevertheless, for critical applications the software industry ought to have a way to check the
correctness of its products.

What follows is my own speculation as to the verification system of the future. The references
below point to closely related work mentioned above. Scrutiny of those references will support my
conviction that this proposal is plausible.

The necessary tool suite will have to be tightly integrated with several programming languages
to provide the necessary assurance, runtime efficiency and proof power. Code portability will be
provided by a virtual machine (VM). Two levels of programming language are provided. The high-
level language will be a functional one – and that same language will be the mathematical language in
which proofs are conducted. [The entire Boyer-Moore project supports the conclusion that adequate
speed can be obtained via a functional language while providing a unified framework for machine-
aided reasoning.] A verified compiler will map that language into the low level language, which will
be the assembly code of the VM [27, 14]. The formal semantics of the VM are given operationally in
the logic [25]. Thus, VM code can be verified, using the techniques of [31] to mix inductive assertion-
style proofs with direct proofs. Special static analyzers, especially something akin to escape analysis
or the restrictions enforced by ACL2 on single-threaded objects [9] (ACL2’s version of monads), will
allow the mixture of functional high-level programs with occasional calls to VM code for efficiency.



5

The entire programming environment is integrated into a theorem proving environment [21]. This
keeps the user focused on the obligation to deliver correct code and eliminates cognitive dissonance.
The theorem prover will make our current systems seem weak and rigid. It will: be fully automatic
but steered by context; provide visualization and animation of the proof search process so the user
understands what is happening; be capable of using a vast database of examples to guide search,
concept formation, and conjecturing; and be parallelized so that multiple strategies can be pursued
simultaneously.

5 Summary

I believe the “verification problem” is the theorem proving problem, restricted to a computational
logic. Are we likely to build a system that follows and reconstructs human reasoning if we adopt a
lesser goal?

References

1. W. R. Bevier. A verified operating system kernel. Ph.d. dissertation, University of Texas at Austin,
1987.

2. W.R. Bevier, W.A. Hunt, J S. Moore, and W.D. Young. Special issue on system verification. Journal
of Automated Reasoning, 5(4):409–530, 1989.

3. R. S. Boyer and J S. Moore. Proving theorems about pure lisp functions. JACM, 22(1):129–144, 1975.
4. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.
5. R. S. Boyer and J S. Moore. A mechanical proof of the unsolvability of the halting problem. Journal of

the Association for Computing Machinery, 31(3):441–458, 1984.
6. R. S. Boyer and J S. Moore. Proof checking the rsa public key encryption algorithm. American Mathe-

matical Monthly, 91(3):181–189, 1984.
7. R. S. Boyer and J S. Moore. Mjrty – a fast majority vote algorithm. In R. S. Boyer, editor, Automated

Reasoning: Essays in Honor of Woody Bledsoe, pages 105–117, Dordrecht, The Netherlands, 1991. Kluwer
Academic Publishers, Automated Reasoning Series.

8. R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition. Academic Press, New
York, 1997.

9. R. S. Boyer and J S. Moore. Single-threaded objects in ACL2. In PADL 2002, pages 9–27, Heidelberg,
2002. Springer-Verlag LNCS 2257. http://www.cs.utexas.edu/users/moore/publications/stobj/-

main.ps.gz.
10. R. S. Boyer, J S. Moore, and M. W. Green. The use of a formal simulator to verify a simple real time

control program. In Beauty is Our Business: A Birthday Salute to Edsger W. Dijkstra, pages 54–66.
Springer-Verlag Texts and Monographs in Computer Science, 1990.

11. R. S. Boyer and Y. Yu. Automated proofs of object code for a widely used microprocessor. Journal of
the ACM, 43(1):166–192, January 1996.

12. B. Brock and W. A. Hunt, Jr. Formal analysis of the motorola CAP DSP. In Industrial-Strength Formal
Methods. Springer-Verlag, 1999.

13. B. Brock and J S. Moore. A mechanically checked proof of a comparator sort algorithm. In Engineering
Theories of Software Intensive Systems. IOS Press, Amsterdam, 2005 (to appear).

14. A. D. Flatau. A verified implementation of an applicative language with dynamic storage allocation.
Phd thesis, University of Texas at Austin, 1992.

15. J. Goldberg, W. Kautz, P. M. Mellear-Smith, M. Green, K. Levitt, R. Schwartz, and C. Weinstock.
Development and analysis of the software implemented fault-tolerance (sift) computer. Technical Report
NASA Contractor Report 172146, NASA Langley Research Center, Hampton, VA, 1984.

16. D. Greve and M. Wilding. Evaluatable, high-assurance microprocessors. In NSA High-
Confidence Systems and Software Conference (HCSS), Linthicum, MD, March 2002.
http://hokiepokie.org/docs/hcss02/proceedings.pdf.



6

17. David Greve and M. Wilding. A separation kernel formal security policy, 2003.
18. David A. Greve. Symbolic simulation of the JEM1 microprocessor. In G. Gopalakrishnan and P. Windley,

editors, Formal Methods in Computer-Aided Design – FMCAD, LNCS 1522, Heidelberg, 1998. Springer-
Verlag.

19. W. A. Hunt. FM8501: A Verified Microprocessor. Springer-Verlag LNAI 795, Heidelberg, 1994.
20. W.A. Hunt and B. Brock. A formal HDL and its use in the FM9001 verification. Proceedings of the

Royal Society, April 1992.
21. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approach. Kluwer Academic

Press, Boston, MA., 2000.
22. M. Kaufmann and J S. Moore. The ACL2 home page. In http://www.cs.utexas.edu/users/moore/-

acl2/. Dept. of Computer Sciences, University of Texas at Austin, 2004.
23. M. Kaufmann and J S. Moore. Some key research problems in automated theorem proving for hardware

and software verification. Revista de la Real Academia de Ciencias (RACSAM), 98(1):181–196, 2004.
24. B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second Edition. Prentice Hall,

Englewood Cliff, New Jersey, 1988.
25. H. Liu and J S. Moore. Executable JVM model for analytical reasoning: A study. In Workshop on

Interpreters, Virtual Machines and Emulators 2003 (IVME ’03), San Diego, CA, June 2003. ACM
SIGPLAN.

26. W. McCune and O. Shumsky. Ivy: A preprocessor and proof checker for first-order logic. In M. Kauf-
mann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies, pages
265–282, Boston, MA., 2000. Kluwer Academic Press.

27. J S. Moore. Piton: A Mechanically Verified Assembly-Level Language. Automated Reasoning Series,
Kluwer Academic Publishers, 1996.

28. J S. Moore. Proving theorems about Java and the JVM with ACL2. In M. Broy and M. Pizka,
editors, Models, Algebras and Logic of Engineering Software, pages 227–290. IOS Press, Amsterdam,
2003. http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-03.

29. J S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the correctness of the kernel
of the AMD5K86 floating point division algorithm. IEEE Transactions on Computers, 47(9):913–926,
September 1998.

30. J S. Moore and G. Porter. The Apprentice challenge. ACM TOPLAS, 24(3):1–24, May 2002.
31. S. Ray and J S. Moore. Proof styles in operational semantics. In A. J. Hu and A. K. Martin, editors,

Formal Methods in Computer-Aided Design (FMCAD-2004), volume 3312 of Lecture Notes in Computer
Science, pages 67–81. Springer, 2004.

32. D. Russinoff. A mechanically checked proof of IEEE compliance of a register-transfer-level specification of
the AMD-K7 floating-point multiplication, division, and square root instructions. London Mathematical
Society Journal of Computation and Mathematics, 1:148–200, December 1998. http://www.onr.com/-
user/russ/david/k7-div-sqrt.html.

33. J. Sawada. Formal verification of divide and square root algorithms using series calculation. In Pro-
ceedings of the ACL2 Workshop, 2002. http://www.cs.utexas.edu/users/moore/acl2/workshop-2002,
Grenoble, April 2002.

34. N. Shankar. Metamathematics, Machines, and Godel’s Proof. Cambridge University Press, 1994.
35. S. W. Smith and V. Austel. Trusting trusted hardware: Towards a formal model for programmable

secure coprocessors. In The Third USENIX Workshop on Electronic Commerce, September 1998.
36. R. Sumners. Correctness proof of a BDD manager in the context of satisfiability checking. In Proceedings

of ACL2 Workshop 2000. Department of Computer Sciences, Technical Report TR-00-29, November
2000. http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/final/sumners2/paper.ps.

37. M. Wilding. Nim game proof. Technical Report CLI Tech
Report 249, Computational Logic, Inc., November 1991. See
http://www.cs.utexas.edu/users/boyer/ftp/nqthm/nqthm-1992/examples/numbers/nim.eventsq.

38. W. D. Young. A verified code generator for a subset of Gypsy. Technical Report 33, Comp. Logic. Inc.,
Austin, Texas, 1988.


