
Visualizing High-Dimensional Structure with the
Incremental Grid Growing Neural Network

Justine Blackmore and Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
justine,risto@cs.utexas.edu

Abstract

Understanding high-dimensional real world
data usually requires learning the structure
of the data space. The structure may contain
high-dimensional clusters that are related in
complex ways. Methods such as merge clus-
tering and self-organizing maps are designed
to aid the visualization and interpretation of
such data. However, these methods often fail
to capture critical structural properties of the
input. Although self-organizing maps cap-
ture high-dimensional topology, they do not
represent cluster boundaries or discontinu-
ities. Merge clustering extracts clusters, but
it does not capture local or global topology.
This paper proposes an algorithm that com-
bines the topology-preserving characteristics
of self-organizing maps with a exible, adap-
tive structure that learns the cluster bound-
aries in the data.

1 INTRODUCTION

Real world data is often very high-dimensional, and
often has a structure that is di�cult both to recog-
nize and describe. For instance, human blood can be
tested for the presence or absence of hundreds of inher-
ited traits such as blood types, HLA factors, proteins,
and DNA markers (Cavalli-Sforza et al.1994). Similar-
ity between blood samples is an indication of genetic
similarity between individuals. On a larger scale, the
structure of a set of samples from populations around
the world reects the global organization of human ge-
netics. Learning the structure of such a data set would
yield knowledge of how human populations are related.

Because the complicated relationships in real world
data are di�cult to perceive, tools for visualizing high-
dimensional data are crucial in discovering patterns in
the data. Visualization involves mapping an unknown
high-dimensional space (the data set) onto a drawable
structure. Current approaches to visualization of arbi-

trary data focus either on extracting and representing
the global topology of the space, or on extracting in-
formation about clusters in the data.

The merge clustering algorithm, for example, repre-
sents cluster properties of the data in a 2-dimensional
merge tree, such that leaves and branches under each
merge node have variances that are closer to each other
than to the variances of any other cluster in the tree.
The high-dimensional topology, however, is lost or un-
recognizable (�gure 1b). There may be important re-
lationships between branches that are not represented
because of the �xed connectivity of the tree.

On the other hand, methods that focus on dimen-
sion reduction, such as principal component analysis,
multidimensional scaling, and the self-organizing map
(Kohonen 1989; Kohonen 1990), do not represent clus-
ter boundaries explicitly in a 2-D structure. For ex-
ample, the self-organizing map maps high-dimensional
data onto a �xed network of nodes. Vectors nearby
in the high-dimensional input space are mapped onto
nearby nodes of the network. The network structure
preserves the topology of the data set as much as pos-
sible. However, the network cannot learn or represent
discontinuities in the data due to its full connectivity
(�gure 1c).

Self-organizing map algorithms have recently been de-
veloped that incrementally grow and prune a network
(Fritzke 1991a, 1991b, 1992, Jockusch 1990; Kan-
gas et al. 1990; Martinetz and Schulten 1991; Ritter
1991; Rodriques and Almeida 1990; Xu and Oja 1990).
These methods employ heuristics to ensure that nodes
are added only where the network needs them to rep-
resent the input space, and that nodes are deleted
only when they do not represent any part of the in-
put space. Most of the resulting networks, however,
have arbitrary dimensionality and connectivity. There
is no guarantee the �nal network structure can be eas-
ily visualized in two dimensions.

This paper presents an incremental self-organizing
algorithm called Incremental Grid Growing (IGG)
that captures both complicated topology and high-

In: A. Prieditis and S. Russell (eds.) Machine Learning: Proceedings of the 12th International Conference, 1995.



A0 A1 A2 A3

A4 A5 A6 A7

B4

B5

B6

B7
C0 C1 C2 C3

C4 C5 C6 C7
D4
D5

D6
D7

E1

B0
B1

B2

B3

D0

D1

D2
D3

E0

E2 E3

(a)

A1
A2
A3
A4
A5
A6

A0

A7
D0
D1
D4
D5
D2
D3
D6
D7

C0
C1
C4
C5
C2
C3
C6
C7

B0
B1
B4
B5
B2
B3
B6
B7

E0
E1
E2
E3

A

D

C

B

E

(b) (c) (d)

Figure 1: Capturing topology and cluster boundaries in a 2-D input space. (a) The input space
consists of 36 two-dimensional vectors uniformly distributed in the shaded regions. The vectors were labeled A
through E according to the region and numbered. A represents the separated cluster, B, C, and D the connected
arms, and E the area connecting B, C, and D. (b) The merge clustering representation. The tree structure has
captured the clusters in the data, but the overall topology of the data set is not apparent. (c) The self-organizing
map representation. The black dots indicate locations of the network's weight vectors after the map has been
organized. Lines indicate network connectivity. Although the map has captured the overall 2-D topology, its
connections span the cluster boundaries. Note also that nodes have been allocated to areas where there is no
input, representing the structure of the data set inaccurately. (d) A more desirable 2-D network visualization
that can be obtained with incremental grid growing. This network has 4 clusters: 3 are connected through a
small number of nodes, and the fourth is separate from the others.

dimensional cluster boundaries. The network is
strictly 2-dimensional, but incrementally adapts its
shape and connectivity to the structure of the data
set. The local and global structure of the input is au-
tomatically embedded in the 2-D drawing (�gure 1d).

The organization of the paper is as follows. After a
brief discussion of the self-organizing map, a detailed
description of the incremental grid growing algorithm
is presented. IGG is compared to other visualization
methods in a minimum spanning tree task. IGG is
then demonstrated in a large, real world semantic data
set. Finally, future possibilities for speeding up the
algorithm, tuning the parameters automatically, and
applying IGG to visualizing population genetics are
discussed.

2 INCREMENTAL GRID

GROWING

Following a brief review of the standard self-organizing
map algorithm, the incremental grid growing approach
is presented in this section. IGG incorporates the stan-
dard self-organizing process, but new techniques have
been added that allow the network structure to be dy-
namic and adaptive.

2.1 STANDARD SELF-ORGANIZING
MAPS

The self-organizing map (Kohonen 1989; Kohonen
1990) represents the topology of an N-dimensional in-
put space in a network of nodes, which is usually a
regular 2-D grid. Each node in the network has an

N-dimensional input weight vector. Vectors from the
input space are presented to the network and mapped
onto the node whose weight vector most closely re-
sembles the input. The weight vector is then modi�ed
so that its distance to the current input is reduced
by a �xed fraction. Similarly, the weight vectors of
the neighboring nodes in the network are modi�ed,
although by a smaller fraction. The size of the modi-
�cation neighborhood is reduced as organization pro-
gresses. In this way, the network learns to organize
its nodes to resemble closely the topology of the input
space. Note, however, that there is no opportunity for
the network to represent any cluster boundaries that
exist in the data. The neighborhood relations are set
a priori and remain �xed throughout the learning.

2.2 THE IGG ALGORITHM

The incremental grid growing algorithm is designed
to overcome the limitation of the �xed grid in self-
organizing maps. IGG embeds the cluster boundaries
directly in its 2-D network structure. IGG builds the
network incrementally, dynamically adapting its struc-
ture and connectivity according to the input data.

Initially, the grid consists of four connected nodes with
weight vectors chosen at random from the input space
(�gure 2a). The following three steps are then iterated:

1. Adapting the current grid to the input distribu-
tion through the self-organizing map process;

2. Adding new nodes to the perimeter of the grid
where the network is exhibiting a large errors in
representation (�gures 2a-d); and

3. Examining the vectors of neighboring nodes to de-
2



Error Node

(a)

(e)

Weight
vectors
close

Error

(c)

new

Error Node

new

(b)

(f)

new

Error
new

new

(d)

(h)

Weight
vectors
distant

(g)

Figure 2: Growing the map grid. Figure (a) shows
the initial structure after the �rst organization stage;
the boundary node with the highest error value is
marked. (b) New nodes are \grown" into any open
grid location that is an immediate neighbor of the error
node. (c) After organizing the new structure with the
standard self-organization process, a new error node is
found. (d) Again, new nodes are grown into any open
grid location that is an immediate neighbor of the error
node. (e) During self-organization of this new struc-
ture, the algorithm detects that the circled nodes have
developed weight vectors very close in Euclidean dis-
tance. (f) These \close" nodes are connected. (g) Af-
ter further organization, the algorithm discovers con-
nected neighboring nodes whose weight vectors occupy
distant areas of the input (i.e. the nodes have a large
Euclidean distance). (h) These \distant" nodes are
then disconnected in the grid.

termine whether a connection between the nodes
should be deleted from the map, or a new connec-
tion added (�gures 2e-h).

The core of the learning of IGG, therefore, consists
of the self-organizing map algorithm. The additional
techniques of growing new nodes and adding and delet-
ing connections allow the network to evolve a 2-D
structure that reects the relationships in the data.
These techniques are described in detail below.

2.2.1 Growing New Nodes

A boundary node is de�ned as any node in the grid
that has at least one directly neighboring position in
the 2-D grid space not yet occupied by a node. Each
boundary node in the current network maintains an
error valueE over each organizational pass. Whenever
an input vector is mapped onto a boundary node, the
square of the distance between the input vector and
the node's weight vector is added to the error value:

E(t) = E(t � 1) +
X
k

(xk � wk)
2; (1)

where E is the cumulative error, w the weight vector
of the winning unit, and x is the input vector.

Large cumulative error values occur at nodes that have
too many input vectors mapped onto them. Their
weight vectors fail to adequately represent all of the
input vectors in that area. Therefore, new nodes are
added to the grid in the areas that have high cumula-
tive error. New nodes are only added on the boundary,
so that the structure remains 2-D and drawable at all
times. During self-organization, these new nodes on
the perimeter develop weight vectors for those areas
of the input space that were previously inadequately
represented.

The new nodes are directly connected to the error
node. If any other directly neighboring grid spots are
occupied (as in �gure 2d), the new node's weight vector
is initialized to be the average value of all the neigh-
boring weight vectors:

wNEW;k = 1=n
X
i2N

wi;k; (2)

where wNEW;k is the kth component of the new unit's
weight vector and N is the set of the n neighboring
nodes of the new unit. Otherwise (as in �gure 2b),
the new node's weight vector is initialized so that the
weight vector of the error node is the average of the
new node's vector and the vectors of any already ex-
isting neighbors of the error node:

wERR;k = 1=(m+ 1)

 
wNEW;k +

X
i2M

wi;k

!
; (3)

where wERR;k is the kth component of the error node's
weight vector and M is the set of the m already exist-
ing neighbor units of the error node.

Because new nodes are added only to areas that need
them, each node in the structure always represents
some region of the input space that lies inside a clus-
ter. Therefore, node deletion is not necessary in in-
cremental grid growing. Also, because the algorithm
is incremental and locally adaptive, it is unlikely to
settle into a local minimum that would distort global
organization, such as a twist in the map.

3



A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1 2 3 4 5 6

1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 3 3 3 3 6 6 6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6

(a)

A EDCB

F

G

J

I

H LK M N O P Q R

T

S

V

U

Z

Y

X

W

654321

(b)

Figure 3: (a) The input vectors of Kohonen (1990). (b) The minimal spanning tree of the data.
The example was designed to illustrate the self-organizing map's capacity to represent the general topology of
hierarchical data. In this case, the minimal spanning tree is one relational description that happens to capture
the structure well.

2.2.2 Adding and Deleting Connections

Initially, the new nodes are connected to the structure
only through the high error node. During organiza-
tion, the new weight vectors may become similar to
the weight vectors of neighbors to which they are not
connected. In this case, a new connection is added
joining these nodes. An adjustable threshold parame-
ter is used to decide if such a new connection should be
grown. After each organizational pass, the similarity
metric (e.g. Euclidean distance) between unconnected
neighboring nodes is examined. If the value is below
the \connect" threshold, a connection is added (�g-
ures 2e-f). Similarly, a \disconnect" threshold is used
to determine if there are two nodes in the map that are
connected although they have evolved into separated
areas of the input space. Exceeding such a thresh-
old may indicate that a connection crosses a cluster
boundary, and should be deleted from the grid (�g-
ures 2g-h).

Adding nodes only at the perimeter ensures that the
map remains drawable at all times. The dynamic ad-
dition and deletion of connections allows the grid to
learn high-dimensional cluster boundaries in the in-
put, avoiding the limitation of standard self-organizing
maps. As a result, the grid-growing algorithm is a
exible, dynamic tool for discovering the structure of
complicated high-dimensional data.

3 COMPARISON USING

MINIMUM SPANNING TREE

DATA

To illustrate how the grid-growing algorithm di�ers
from the standard visualizationmethods such as merge
clustering and self-organizing maps, consider the min-
imum spanning tree example of Kohonen (1990). In
this example, the input consists of the 5-dimensional
vectors listed in �gure 3a. A super�cial look at the
input indicates that there are clusters of similar vec-
tors in the data, as well as topological relationships
between them. The high-dimensional topology of this

data set is di�cult to describe, but a minimum span-
ning tree is one 2-D structure that in this particular
case captures the hierarchical nature of the data quite
well.

Conventional 2-D visualizations fail to represent the
essential properties of the spanning tree. When merge
clustering is applied to this data set (�gure 4a), clus-
tering is apparent in the resulting tree. However, the
merge tree does not make the global and local rela-
tionships between elements clear. On the other hand,
the hexagonally connected self-organizing map learned
both the global and local topology of the data; how-
ever, it has no way of representing the cluster bound-
aries (�gure 4b). Both representations are therefore
incomplete.

The incremental grid growing algorithm applied to the
same data set results in a structure that captures both
the cluster boundaries and the topology of the data
(�gure 4c). The arms of the spanning tree are clus-
tered in delineated regions of the map. Also, the re-
lationships between the clusters are narrowly speci�ed
by the limited connectivity between clusters. In other
words, the algorithm has evolved a network that visu-
alizes the underlying structure in the data.

4 DEMONSTRATION USING REAL

WORLD SEMANTIC DATA

The spanning tree example is a good illustration of the
properties of visualization techniques, but it is still a
toy problem. Real world data is usually more chal-
lenging to visualize in 2-D. Each vector may contain
hundreds of features, and the data set may contain
thousands of such vectors. Very complex relation-
ships between data elements are possible. In addi-
tion, real world data sets often contain a signi�cant
amount of noise. Minimum spanning trees (and other
such simple structures) are usually insu�cient to rep-
resent the complicated relationships in unknown, high-
dimensional data.

Consider for example word semantics. The variety
4



A
B

C
D

E
F
G

H
I

J
K
L

M
N
S
T

U
V

Q
R

O
P
W
X

Y
Z

1
2
3
4

5
6

(a)

A

B C D E

F

G

H

I

J

K

M

N O

P

Q R Y Z

W

L T U

V

X

S

1

2

3

4

5 6

(b)

A B

C

D

E

F

G

H

I

J

K

L

M N

O

P Q

R

S

T

U V

W

X

Y

Z

1

2

3 4

5

6

(c)

Figure 4: 2-D representations of the spanning tree data. (a) The merge tree derived by the merge
clustering algorithm. Cluster boundaries are apparent in the structure, but the global and local topology is not.
(b) Map derived by the standard self-organizing algorithm (Kohonen 1990). The map is hexagonally connected.
The spanning tree structure is clearly present in the map; however, the full connectivity makes it di�cult to
extract exact neighborhood relations between units. (c) Map derived by the incremental grid growing algorithm.
The limited connectivity between clusters in the map closely resembles the structure of the spanning tree. This
map was produced using 4 organizational phases for each incremental structure. In phase 1, the best matching
unit was moved toward the input with an epsilon of 0.18 (epsbmu); the neighbors were moved by 0.13 (epsngb);
the structure was trained for 25 epochs (nepochs). In phase 2, epsbmu = 0.14, epsngb = 0.1, nepochs = 15. In
phase 3, epsbmu = 0.09, epsngb = 0.06, nepochs = 15. In phase 4, epsbmu = 0.05, epsngb = 0.02, nepochs = 15.
The neighborhood size was a function of the number of nodes in current structure. When there were as many
or fewer than 36 nodes in the map, the neighborhood size began at 1 at phase 1 and decreased to 0 by phase 4.
If there were greater than 36 nodes, the neighborhood began at 2 and decreased to 0. Connections were added
or deleted after phase 4: a connection was added between 2 nodes if their distance was less than 4.9 times the
average distance in the structure (tconnect). A connection was deleted if the distance between the two nodes
was more than 3.9 times the average distance in the map (tdelete). The parameter settings were determined
experimentally, and have thus far served as good starting points for all other IGG experiments.

5



and complexity of relationships between word mean-
ings overwhelms simple representation schemes. New
learning and representation methods are often demon-
strated using such semantic data (Miikkulainen 1993;
Ritter and Kohonen 1989; Sch�utze 1993; Scholtes
1993).

The demonstrate visualization with IGG, a high-
dimensional semantic data set was compiled from the
\Webster" online thesaurus. In this thesaurus, rela-
tionships among words are represented explicitly as
lists, where each list indicates a di�erent type of re-
lationship. However, only the most direct relations
between words are immediately apparent to the user.
Less obvious relationships require a search through all
the intervening lists. In an e�ort to visualize the global
structure of such semantic data, IGG was applied to a
subset of the thesaurus words.

In the online thesaurus, words appear in alphabeti-
cal order. Each word is accompanied by its part of
speech, de�nition and any idiomatic expressions it is
used in, along with its cross reference lists. The lists in-
clude synonyms, related words, contrasted words, and
antonyms. In order to apply IGG, feature vector rep-
resentations for the words were created based on the
cross-reference lists. The features are words, and each
main entry in the thesaurus is represented by a feature
vector indicating the presence or absence of each of the
words in its lists. A value of 1.0 for a feature indicates
that that word (feature) is present in the related list; a
value of -1.0 indicates that the feature appears in the
constrasted or antonym lists. A value of 0.0 indicates
that the two words are not directly related by their
lists.

For brevity, the example described here uses only verb
entries from the thesaurus. Synonyms have been col-
lapsed into single entries and single features. Also,
only those verbs that appear most often are repre-
sented in the input set, and only those verbs that are
used most often in the cross-reference lists are used as
features. The resulting data set contains 197 verbs,
each represented by 240 features. Because the data
source is obtained from the real world, and because a
very simple method for reducing its size was employed,
the data set is very noisy, and therefore rather di�cult
to describe and visualize.

The �nal grid derived by IGG is shown in �gure 5.
Semantic similarities have been captured in the 2-D
topology of the grid to the extent possible with this
data. Semantic dissimilarities are implicit in the map
boundaries. Note that although the vector represen-
tation scheme is very simple, the data is not synthetic
or contrived. The vectors were generated from the
straight text of the thesaurus, and the full data set
reduced only for brevity. The grid has captured the
relationships to the extent they exist in the reduced
set, and has placed the noise words in areas where
there are similar vectors.

In the top left arm of the map, verbs that connote a
retarding function are clustered (e.g. hamper, ward,
suppress, stultify). This arm merges into into the top
central arm, which contains verbs suggesting deteriora-
tion (deteriorate, weaken, depreciate). This arm joins
an area that contains words implying lessening (de-
crease, wither). This area in turn blends into the top
right arm, which contains words connoting a decreas-
ing or removal function (fall, droop, slip, retire). The
bottom two arms contain words that have more pos-
itive connotations. The bottom right contains words
suggesting increase (skyrocket, raise, increase). This
area merges into an area connoting improvement and
promotion (improve, speed, help). To the left, this
area blends with an arm connoting accumulation or
gathering (absorb, group, heap, accumulate). In the
central area connecting the more positive arms with
the more negative arms, there is a gradation of mean-
ing from bottom to top: urge, incite, o�end, attack,
overwhelm, shatter, maim, revolt, demur. The gather-
ing region also merges into the negative region: handle,
keep, monopolize, dictate, demand, overwhelm.

Two other arms are present in the grid, contain-
ing words that do not support the general positive-
negative gradation. On the left, words that imply giv-
ing (distribute, grant) blend with words that suggest
giving in (lose, fawn). These in turn merge into the
more negative areas of the grid (spain, yield, decay).
On the right, words that connote success and encour-
agement (coax, succeed, reach, push) blend with words
connoting support (base, correct, stabilize). This area
in turn gradually blends with the positive region (in-
cite, urge, assert).

The thesaurus data demonstrates the ability of IGG to
represent complicated high-dimensional data, which is
often both incomplete and noisy. To the extent possi-
ble, the network has learned the structure present in
the input. The results support the idea that IGG can
be used as a visualization tool for very complicated,
unknown data.

5 DISCUSSION AND FUTURE

WORK

Because of its adaptive and exible nature, the incre-
mental grid-growing algorithm is a potentially power-
ful tool for visualizing the structure of unknown high-
dimensional data. An important question to consider
is whether it will scale up to larger tasks. Because the
central organizing step is based on the standard self-
organizing algorithm, which spends most of its time
computing the Euclidean distance between every net-
work node and every input vector for tens of epochs,
the algorithm's time complexity can be combinatorial
in the number of inputs, number of dimensions, and
network size.

6



Figure 5: The reduced Webster's thesaurus verb set. The full verb set contains 1477 1477-dimensional
vectors; here it has been reduced to 197 240-dimensional vectors for clarity. In the online thesaurus text, only
direct relations between words are explicitly represented, and looser relationships must be deduced by chasing
word entries. The grid encodes semantic similarities as well as semantic boundaries. The simulation parameters
were otherwise the same is in the minimum spanning tree example (�gure 4c), except nepochs for the 4 phases
were 10, 6, 6, and 4, and tconnect was 2.8 and tdelete = 3.3.

7



Little can be done about the properties of the in-
put, but the running time can be reduced to linear
in the network size by making the search for the clos-
est weight vector for each more local. By searching
only a small neighborhood around the node that was
closest to the current input in the previous epoch, the
search time becomes constant for all epochs, regardless
of the current network size. This optimization is pos-
sible because the network fully learns the input space
during each organizational phase, making only a local
search necessary. As an example, in our implementa-
tion, we saw a speedup factor of 7 when the search was
localized to a 1 � 1 neighborhood of the map. (The
computation time on the reduced verbs set went from
approximately 2 hours on an IBM RS6000 to 20 min-
utes). This is a promising result, and indicates that
building very large maps should be tractable.

Future work on the algorithm will focus on �ne-tuning
the implementation for e�ciency. Like any neural
net algorithm, incremental grid growing would bene�t
from a method for setting all organization and growth
parameters automatically. Because the algorithm is
incremental, it may accomodate dynamic parameter
tuning based on statistical properties of the interme-
diate structures. Such a technique would add another
dimension of exibility to the algorithm, and is thus a
promising research direction. Another challenge facing
all SOM algorithms is the lack of an objective crite-
rion for determining how good the map is. It might
be possible to incorporate the stress metric used in
multidimensional scaling analysis into a SOM evalua-
tion measure. Additionally, future work will focus on
ways to represent the distances between clusters and
data items explicitly in the network, as in merge clus-
tering and multidimensional scaling. Also, IGG may
prove useful in combination with other dimensional-
ity reducing techniques, such as principal component
analysis or multidimensional scaling. PCA and MDS
can be �rst employed to �nd a good subspace repre-
sentation of the data set. If this sapce has more than
2 dimensions, incremental grid growing could then be
used to visualize it in 2-D.

Future application work will concentrate on discover-
ing the unknown structure of large high-dimensional
data sets. Speci�cally, the visualization of high-
dimensional genetics data acquired from human popu-
lations around the world is being investigated (Cavalli-
Sforza et al. 1994). IGG will also be applied to high-
dimensional linguistics data for the same populations
(Nichols 1992) for comparison. Clearly, the relation-
ships and interactions between human populations are
complex. Visualizing the relationships within and be-
tween genetic and linguistic clusters may aid in under-
standing the evolution and migration of populations.

6 CONCLUSION

The incremental grid-growing algorithm constructs
2-D drawable representations of arbitrarily complex
high-dimensional input distributions. The algorithm
addresses the shortcomings of popular visualization
tools. Self-organizing maps (like principal component
analysis and multidimensional scaling) capture contin-
uous high-dimensional topology, but cannot represent
discontinuities in the data. Merge clustering breaks
the input set into clusters, but does not illustrate the
internal cluster structure. The IGG algorithm can
extract and represent high-dimensional relationships
within and between clusters, and is capable of captur-
ing general tree and graph structures. Consequently,
it is a promising new tool for discovering relationships
in unknown, complex real-world data sets.

References

Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A.
(1994). The History and Geography of Human
Genes. Princeton, NJ: Princeton University Press.

Fritzke, B. (1991a). Let it grow|Self-organizing fea-
ture maps with problem dependent cell structure.
In Proceedings of the International Conference on
Arti�cial Neural Networks (Espoo, Finland), 403{
408. Amsterdam; New York: North-Holland.

Fritzke, B. (1991b). Unsupervised clustering with
growing cell structures. In Proceedings of the In-
ternational Joint Conference on Neural Networks
(Seattle, WA), vol. II, 531{536. Piscataway, NJ:
IEEE.

Fritzke, B. (1992). Wachsende Zellstrukturen|ein
selbstorganisierendes neuronales Netzwerkmodell.
PhD thesis, Technischen Fakult�at, Universit�at
Erlangen{N�urnberg, Erlangen, Germany.

Jockusch, S. (1990). A neural network which adapts its
structure to a given set of patterns. In Eckmiller,
R., Hartmann, G., and Hauske, G., editors, Paral-
lel Processing in Neural Systems and Computers,
169{172. Amsterdam; New York: North-Holland.

Kangas, J., Kohonen, T., and Laaksonen, J. (1990).
Variants of self-organizing maps. IEEE Transac-
tions on Neural Networks, 1:93{99.

Kohonen, T. (1989). Self-Organization and Associative
Memory. Berlin; Heidelberg; New York: Springer.
Third edition.

Kohonen, T. (1990). The self-organizing map. Pro-
ceedings of the IEEE, 78:1464{1480.

Martinetz, T. M., and Schulten, K. J. (1991). A \neu-
ral gas" network learns topologies. In Proceedings
of the International Conference on Arti�cial Neu-
ral Networks (Espoo, Finland), 397{402. Amster-
dam; New York: North-Holland.

8



Miikkulainen, R. (1993). Subsymbolic Natural Lan-
guage Processing: An Integrated Model of Scripts,
Lexicon, and Memory. Cambridge, MA: MIT
Press.

Nichols, J. (1992). Linguistic Diversity in Space and
Time. Chicago, IL: University of Chicago Press.

Ritter, H. J. (1991). Learning with the self-organizing
map. In Proceedings of the International Confer-
ence on Arti�cial Neural Networks (Espoo, Fin-
land), 379{384. Amsterdam; New York: North-
Holland.

Ritter, H. J., and Kohonen, T. (1989). Self-organizing
semantic maps. Biological Cybernetics, 61:241{
254.

Rodriques, J. S., and Almeida, L. B. (1990). Improv-
ing the learning speed in topological maps of pat-
terns. In Proceedings of the International Neu-
ral Networks Conference (Paris, France), 813{816.
Dordrecht; Boston: Kluwer.

Scholtes, J. C. (1993). Neural Networks in Natural
Language Processing and Information Retrieval.
PhD thesis, Universiteit van Amsterdam, Ams-
terdam, the Netherlands.

Sch�utze, H. (1993). Word space. In Giles, C. L., Han-
son, S. J., and Cowan, J. D., editors, Advances
in Neural Information Processing Systems 5. San
Mateo, CA: Morgan Kaufmann.

Xu, L., and Oja, E. (1990). Adding top-down ex-
pectation into the learning procedure of self-
organizing maps. In Proceedings of the Inter-
national Joint Conference on Neural Networks
(Washington, DC), vol. II, 531{534. Hillsdale, NJ:
Erlbaum.

9


