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Machine learning has proven useful for producing solutions to various problems, including
the creation of controllers for autonomous intelligent agents. However, the control requirements for
an intelligent agent sometimes go beyond the simple ability to complete a task, or even to complete
it efficiently: An agent must sometimes complete a task in style. For example, if an autonomous
intelligent agent is embedded in a game where it is visible to human observers, and plays a role that
evokes human intuitions about how that role should be fulfilled, then the agent must fulfill that role
in a manner that does not dispel the illusion of intelligence for the observers. Such visibly intelligent
behavior is a subset of general intelligent behavior: a subset that we must be able to provide if our
methods are to be adopted by the developers of games and simulators.

This dissertation continues the tradition of using neuroevolution to train artificial neural net-
works as controllers for agents embedded in strategy games or simulators, expanding that work to
address selected issues of visibly intelligent behavior. A test environment is created and used to
demonstrate that modified methods can create desirable behavioral traits such as flexibility, consis-
tency, and adherence to a doctrine, and suppress undesirable traits such as seemingly erratic behavior
and excessive predictability. These methods are designed to expand a program of work leading to-
ward adoption of neuroevolution by the commercial gaming industry, increasing player satisfaction
with their products, and perhaps helping to set AI forward as The Next Big Thing in that industry.
As the capabilities of research-grade machine learning converge with the needs of the commercial
gaming industry, work of this sort can be expected to expand into a broad and productive area of
research into the nature of intelligence and the behavior of autonomous agents.
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Chapter 1

Introduction

Autonomous intelligent agents provide a fertile field for research. They have utility in applications,
they challenge the capabilities of our approaches to machine intelligence, and they allow investiga-
tion into the nature of intelligence and behavior as abstractions apart from biological instances.

The video computer game industry is business on a grand scale. For a generation it has
driven improvements in the speed of desktop computers, and for almost that long it has driven
improvements in graphics technology. It may soon become a driver for progress in machine intelli-
gence as well, and with new application areas come new opportunities for research.

Thus there is a convergence of interest between research topics and commercial applica-
tions. If we wish to export machine intelligence technologies from the academic research lab to the
entertainment marketplace we will be faced with new research challenges, and our research must
provide new technologies to address those challenges.

Recent work has made progress at using artificial neural networks for agent controllers
in the rich state/action environments of strategy games. This dissertation extends that work to
the challenge of producing visibly intelligent behavior in autonomous agents controlled by neural
networks and embedded in such rich game environments.

1.1 Motivation

For many problems the manner of solution is irrelevant: like sausage, you only want to see the
end result. That applies to the work of software agents as well as humans. For instance, we have
agents to search the Web and process our mail, and may soon have Cyrano-bots to compose our love
letters. But the details of the workings of those systems are only of interest to their designers and
maintainers; users of such systems only need the end result, and if tempted by curiosity to watch its
creation, would have no intuitions about what they should expect to see, and likely as not would not
understand what they saw when they did look.

However, some software agents are meant to be seen, and meant to be seen operating in ways
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that are comprehensible to users of the system. For example, when intelligent agents are placed in
the artificial environment of a videogame or training simulator to interact with a human player or
trainee, they are often meant to be seen to interact, and are expected to display some comprehensible
behavior that makes sense to human players and trainees, who can then create intelligent responses
of their own.

In such cases the sausage-making of the software agents must be as good as the end product.
It is no longer sufficient for them to score well at a game or succeed at their goals in a simulation;
they must put on a good show along the way. Indeed, performing well by the ordinary metrics of
success may be contraindicated: games and simulators often have difficulty-level settings to help
beginners, and at the easier levels any computer-controlled rivals are intended to be less effective
at task performance. Yet they must still be seen to be intelligent while pursuing some less-effective
strategy – as if they were beginners as well.

Blind search and optimization methods such as genetic algorithms have been shown to be
effective at solving a large number of problems, including the challenge of training controllers
for autonomous intelligent agents. Sometimes these methods produce unexpected results, having
blindly discovered a solution that would never have occurred to a human expert. For many applica-
tions such surprises can be seen as delightful quirks, providing a bonus of amusement in addition to
an effective solution to the problem.

However, when the unexpected result is an unmotivated activity on the part of an au-
tonomous intelligent agent, what might otherwise be a delightful quirk becomes a spoiler of the
illusion of intelligence. It does not matter how well a simulated Elf performs at a simulated archery
contest, if it exhibits behaviors that violate human intuitions regarding how Elves should behave
while obtaining that level of performance. The challenge of creating a simulated Elf that scores
well at archery is supplemented by the new, equally important challenge of providing Elf-like be-
havior to be displayed during the bout – by whatever notion of “Elf-like” the game designer wishes
to pursue – and suppressing erratic, unmotivated behavior, even if it does not actually degrade the
Elf’s score in the bout or the broader context of the game.

Thus for environments where intelligent agents’ actions are subject to observation, and hu-
man observers hold strong intuitions about what sorts of behavior are and are not appropriate for
the agents, blind search and optimization for the agents’ behavior must be tempered by considera-
tions beyond raw optimization of task performance. The agents must be programmed or trained to
produce visibly intelligent behavior.

Visibly intelligent behavior, like intelligence in general, is difficult to define (see section
2.1). It can be seen as a subset of intelligent behavior in general, i.e. the subset that is observable
and evokes favorable judgements of appropriateness in the observers. Since the need for visibly
intelligent behavior is motivated by the need to appease observers’ intuitions, the concept is itself
to a great extent inherently intuitive. Moreover, what constitutes visibly intelligent behavior varies
with the context: behavior that is seen as intelligent in an Elvish archer may seem malapropos
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in a Dwarvish berserker, and vice versa. Thus for present purposes visibly intelligent behavior is
conceived as a list of desirable characteristics for a broad class of agents operating in observable
environments.

One such desideratum is self-consistency. A rigorous and rigid self-consistency is obtain-
able with even the simplest of control scripts. However, the appearance of intelligence will some-
times require a relative self-consistency. That is, an agent must be seen to “do the same thing”,
mutatis mutandis, as the context changes. Moreover, self-consistency must be tempered by flexibil-
ity. For individuals, a lack of flexibility can convert a single failure at a task into a endless stream
of failures; additionally, excessive predictability can often be exploited by a sufficiently intelligent
rival agent, such as a human opponent in a game. For teams, a lack of flexibility in individual
members can result in a gross lack of adaptivity at the team level: some of the team’s needs may
remain unsatisfied while the members uniformly and inflexibly service other requirements. Thus for
many types of agent, visibly intelligent behavior will require flexible self-consistency, an adaptive
trade-off between predictable and unpredictable behavior.

Another challenge for producing visibly intelligent behavior with machine learning methods
is the suppression of unmotivated actions that will be seen by observers as merely erratic. For rich
environments the possibilities for such behaviors are vast, and which of those possibilities might
actually be produced by a given run of a given machine learning method is unknowable. A cycle of
detecting and suppressing such behaviors by training and testing followed by tweaking the learning
parameters and/or programmatic constraints for a re-run is expensive in terms of both time and
human expertise. It will therefore be useful to develop machine learning methods that suppress
erratic behavior implicitly, by training agents to do the right thing, without requiring excessive
specification of what is and is not desirable.

This dissertation examines methods for encouraging or coercing the desirable characteristics
of visibly intelligent behavior while suppressing undesirable behavioral traits, with a focus on the
use of artificial neural networks as controllers for agents embedded in the rich environments of
strategy games or simulators. The work supplements similar efforts using different technologies in
different application areas.

1.2 Research Goals

The scripted intelligence of the agents embedded in the current generation of video games is gen-
erally unsatisfactory. The agents’ behavior tends to be single-minded and brittle; they focus on the
details that they were programmed to attend, often ignoring other important facets of the context,
which is difficult to capture in a script. They show little regard for teamwork, and little ability to
adapt to a changing situation.

There is a notion afoot in the AI-in-games research community that we can provide better
embedded intelligences by means of machine learning than the industry currently does by script-
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ing. Machine learning has the potential of capturing contexts and optimizing details of behavior
that are difficult to capture or optimize in hand-written scripts. All the more so, we hope, as the
simulated environments in games become richer and the number of possible contexts, the number
of opportunities for an agent to exploit, grows exponentially.

However, it can already be demonstrated that machine learning methods do not automati-
cally produce controllers that exhibit visibly intelligent behavior. Reinforcement methods such as
neuroevolution can produce interesting behavior in embedded agents, but some of that behavior is
interesting only for its malapropos nature. In principle it might be possible to constrain the results of
reinforcement learning by properly and exhaustively specifying the rewards for all possible behav-
iors in all possible contexts, but for increasingly rich environments such specifications are likely to
become as difficult as direct scripting is. We must, therefore, devise machine learning methods that
produce effective behavior in embedded agents, but also limit solutions to those that can provide a
visible display of intelligence while the agents are in action.

The goal of this research, therefore, is to create and examine methods for inducing visibly
intelligent behavior in agents trained by machine learning. Consideration is limited to autonomous
intelligent agents embedded in the rich environment of a strategy game or simulator, and controlled
by artificial neural networks that map their sensory inputs onto responses. The work is founded
on the popular methodology of using a genetic algorithm – neuroevolution – to train the controller
networks by reinforcement based on task performance. It builds on that foundation by examining
supplementary methods that produce various characteristics of visibly intelligent behavior in the
agents it produces.

1.3 Approach

The challenge of creating agents that display visibly intelligent behavior is approached here by
identifying important aspects of such behavior, creating a game where agents can be trained and
observed for the qualities of their behavior, and using the game as a test-bed for the ability to bring
out the desired behaviors by means of machine learning methods.

The selected target qualities are flexibility, adaptability, discipline, self-consistency, and a
lack of excessive predictability. Some of these qualities are in tension with one another, though not
mutually exclusive: all are needed for a convincing show of general intelligence in rich environ-
ments.

The test environment is a strategy game where agents can be embedded for training and
testing. The game requires learning agents to cooperate with one another while competing with
pre-programmed opponents. It was parameterized to require flexibility of behavior in the individual
agents and adaptability in the way they organize those behaviors for teamwork. A slight modifica-
tion to an off-the-shelf machine learning method was then used to induce those aspects of individual
and team behavior.
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However, success in that initial experiment revealed challenges regarding the other desired
qualities of behavior. The blind mechanism of machine learning brought out the high-level behav-
iors required for optimizing game scores, and even supported generalization of those behaviors to
modifications of the agents’ environment. Yet lower-level details of the learned behavior, when not
critical for optimizing the game score, proved to be erratic to the eye of human observers. They
lacked the appearance of discipline and self-consistently while – paradoxically – being fully deter-
ministic.

Therefore additional learning methods were applied to the same problem to modify the
quality of behavior. Human-generated examples of play were used to improve the show of discipline
and self-consistency in the trained agents, and a method was devised to allow a small amount of
randomness to be introduced into the agents’ behavior while minimizing the negative impact on
their task performance.

The result of the study is a suite of machine-learning techniques useful for training au-
tonomous intelligent agents for use in environments such as strategy games, where they are readily
observable in action, and human observers often have strong intuitions about what sorts of behavior
are and are not intelligent. The techniques under study induced the desired sort of behaviors in the
agents; the research shows that machine learning methods can create agents that display the visible
characteristics of intelligent behavior.

1.4 Overview of Dissertation

This dissertation divides naturally into three sections: introductory material (chapters 1-2), methods
and experiments (chapters 3-8), and summary material (chapters 9-10).

The current chapter has introduced the dissertation. Chapter 2 broadens the introduction
by providing background material that sets up a context for the new work, and explicates some of
the concepts necessary for understanding it.

The six chapters in the section on methods and experiments divide naturally into three sub-
sections. In the first, Chapter 3 introduces a strategy game called Legion II, which has been used
for all the following experiments, and explains its mechanics in detail. Then Chapter 4 provides
the details of the experimental discipline used for applying machine learning methods to the Legion
II game.

The two chapters in the next sub-section provide the key experiments for the dissertation.
Chapter 5 introduces a multi-agent control architecture that allows agents to adapt their behavior
in response to their context, without requiring additional training. Then Chapter 6 shows how
example-guided evolution can be used to refine the details of the agents’ behavior in ways that are
intended to satisfy the viewer, rather than to optimize game performance per se. These two chapters
illustrate how existing techniques can be used to induce flexibility and coherence – two key aspects
of visibly intelligent behavior – into the behavior of agents trained by machine learning.
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The two chapters in the third sub-section on methods and experiments introduce new tech-
niques for further refinements of the agents’ behavior. Chapter 7 examines a way to exploit any
symmetries in an agent, its sensors, and its environment when training examples are available, in or-
der to improve its task performance and self-consistency by the use of artificially generated training
examples. Then Chapter 8 introduces a training mechanism called stochastic sharpening, which
generates agent controllers that allow a controlled amount of randomization to be introduced into the
agents’ behavior, with minimal degradation of their task performance. These two chapters address
two competing requirements – self-consistency and a lack of excessive predictability – that arise
when intelligent agents are observed in a game context. The methods are also useful for improving
raw task performance under some training conditions.

The third major section of the dissertation analyzes and summarizes the experimental work.
Chapter 9 examines the implications of the experiments and outlines ways in which the effects can
be exploited or improved in future work. Finally, Chapter 10 recaps the dissertation’s contributions
and draws a high-level conclusion about the work it contains.
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Chapter 2

Foundations

This chapter provides background material necessary for comprehending the rest of the disserta-
tion, and establishes the broad context for the new work that the dissertation reports. Section 2.1
offers some conceptual background on the way AI research is done in practice, to show how the
goals of the dissertation fit in to that field. Then sections 2.2 and 2.3 provide background on au-
tonomous intelligent agents and prior research into game applications of AI. Sections 2.4-2.5 give
technical details about two technologies used in this dissertation, artificial neural networks and a
mechanism for training them known as neuroevolution. Finally, section 2.6 provides a typology of
the ways human biases can be used to guide the output of genetic algorithms, which will help with
understanding how the work in chapter 6 relates to other potential methods of doing the same thing.

2.1 Artificial Intelligence

This dissertation is concerned with a topic that falls under the broad and ill-defined concept of
Artificial Intelligence (AI). The “artificial” part is simple: the field is concerned with human artifacts
rather than naturally occurring intelligence. But the “intelligence” part is conceptually difficult.
Though some AI researchers with a philosophical bent offer and dispute definitions (e.g., Brooks
1991; Brooks et al. 1998; Fogel 1999), and textbook writers dutifully offer strawman definitions
and call attention to the difficulty of producing a definition that is both rigorous and satisfactory
(e.g., Rich and Knight 1991; Dean et al. 1995), for the most part the entire field of AI research,
broadly defined, operates under a tacit I know it when I see it charter. Thus the Turing test defines
intelligence operationally, by an appeal to human perception of intelligence, rather than offering a
definition by or an appeal to some formalism (Turing 1950).

For example, we tacitly assume that planning is an intelligent activity, so if we create a
system that can produce plans – however limited the context – we refer to it as an intelligent system.
Similarly, if a machine learning system can train a controller to balance a real or simulated inverted
pendulum, we tacitly assume that it is intelligent; if another system can train the controller faster,
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or train it better by some metric such as the power consumption required by the control policy, we
tacitly assume that it is more intelligent.

The point being made is that the research pursued in the various sub-fields that fall under the
broad umbrella of Artificial Intelligence – ALife, robotics, multi-agent systems, machine learning,
search, planning, etc. – is not for the most part driven by some formal or theoretical notion of
intelligence. Rather, we focus our research on things that are generally agreed to be interesting
problems. This fact is not offered as a critique, but as a simple observation: for the most part, our
criteria for success and progress are arbitrary.

That observation is necessary groundwork for understanding the goals of this dissertation.
Much of the work reported here does follow the conventions described above. Namely, a problem
has been selected that is interesting, difficult, and presumed to be relevant to intelligence, and meth-
ods are devised for optimizing the scores obtained by an obvious metric for the problem. However,
in certain places – particularly chapters 6 and 8 – the dissertation also emphasizes a new perspec-
tive on the problem, namely that poorer scores on an obvious performance metric can actually be
“better” results, when the focus shifts from the raw results of task performance to the observable
behavior of an artificially intelligent system in operation. That is, intelligence of the I know it when
I see it sort can involve a show of intelligence while in operation, as legitimately as it can involve the
production of a metrically superior outcome. In the absence of a rigorous and universally accepted
definition of ’intelligence’, intelligence lies to a great extent in the eye of the beholder.

Having called attention to this perspective, the remainder of this chapter introduces the fields
and technologies that establish important background for the new work reported in the following
chapters.

2.2 Autonomous Intelligent Agents

Agents are entities with sensors, actuators, and a controller that maps senses onto actions according
to some policy. An agent is considered to be autonomous if the controller operates at its own behest
rather than under the control of some other agency. It is often convenient to embed an agent’s
controller in a game or simulation engine for invocation as a callable routine at appropriate times,
and the resulting simulated autonomous agent is normally treated as a genuinely autonomous agent
without qualification.

Autonomous agents are categorized as either reactive or deliberative (Sycara 1998). The
controller for a reactive agent behaves as a function, in the mathematical sense of the term, mapping
senses onto actions in a one-to-one or many-to-one fashion. Various authors list varying desiderata
for deliberative agents, but the minimal requirement is that a deliberative agent must maintain an
internal state and consult it during its choice of actions. Thus the controllers for deliberative agents
implement relations rather than functions. The internal state consulted by a deliberative agent can
be properly viewed as a memory; the controller can update the state as a side effect of its choices of
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actions.
Multi-Agent Systems (MASs) arise when multiple autonomous agents operate in a shared

environment. The agents sense the common environment, though perhaps from different points
of view, and their activities change the state of the common environment. The agents in a MAS
can be cooperative, competitive, or a mixture of the two. For example, in the popular RoboCup
competition (Kitano et al. 1997) each agent will cooperate with its teammates while competing
against the opposing team.

Stone and Veloso (2000a) provide a general typology for MASs. The typology arranges
MASs along two primary axes: homogeneous vs. heterogeneous, and communicative vs. non-
communicative. For domains that require a division of labor among the team members it has become
common to create customized agents for each required task and then deploy a customized mixture
of such agents to satisfy the requirements of the task presented by the domain under study (e.g.,
Balch 1997, 1998; Haynes and Sen 1997; Yong and Miikkulainen 2001). Bryant and Miikkulainen
(2003) suggested a reversion to homogeneity with the Adaptive Team of Agents MAS architecture;
that architecture is re-presented and explored more thoroughly in chapter 5 of this dissertation.

When an agent’s controller operates a mechanical device such as a robot, the agent can be
said to be embodied, and we generally think of the entire software-hardware combination as the
agent. When a software-only autonomous agent operates in the virtual environment of an Artificial
Life (ALife) system or the simulated reality of a game, it can be said to be embedded in that envi-
ronment. If all of an embodied agents sensors are physically located on its body, or if a game or
simulator generates the sensory input an embedded agent as if its sensors were similarly localized,
the agent is said to be egocentric – its view of its world depends on its position within that world.
Egocentricity is often associated with perceptual limitations: just as an agent embodied as a robot
cannot see around corners, egocentric software agents embedded in a game or simulator are often
provided with only limited information about the state of the system.

Games are an important class of applications for embedded agents, as described in the fol-
lowing section.

2.3 Artificial Intelligence in Games

There is a long history of using games as a platform for AI research. Claude Shannon wrote on the
possible use of computers to play chess as early as 1950 (Shannon 1950), and by 1959, Samuel was
actually applying machine learning to train a checkers player (Samuel 1959). Since then interest
has been continuous and expansive, with notable milestones including the establishment of the
ongoing RoboCup competitions, the high-profile chess match between Garry Kasparov and Deep
Blue (Hamilton and Garber 1997), and more recently, the creation of two conferences dedicated to
the study of AI in games.

A rationale for the use of interactive computer games in AI research has been given by
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Laird and van Lent (2000). They list as motivations the richness of the simulated environments
in modern computer games and the associated breadth of competence required for the associated
AI, the relative cost effectiveness of using games rather than real-world hardware or custom-built
research environments, the economic need for AI solutions in the game industry, and the opportunity
to move academic AI out of the lab and into the hands of consumers. To these may be added the
safety benefit of working with games rather than systems that put health or wealth at hazard, and
– very importantly from the researcher’s perspective – the easily scalable complexity of the AI
challenge offered by games. Regarding the latter, it is useful to be able to simplify a system in order
to clarify a problem when progress is not being made, and useful to extend a system in scale or
complexity when progress is being made, rather than having to jump to a completely new problem.

In the history of game applications of AI, two concepts have emerged that underly the work
presented in this dissertation: the idea of the embedded game agent, i.e. autonomous intelligent
agents that “live in” the virtual environment provided by a game engine, and the idea of applying
machine learning to the problem of creating an AI system for a game.

Important early examples of AI for embedded game agents are ROG-O-MATIC (Maudlin
et al. 1984) and Pengi (Agre and Chapman 1987). ROG-O-MATIC was an expert system for con-
trolling an explorer in the seminal Rogue dungeon-exploration game. Though Rogue agents are
embedded, they are not egocentric; the game provides a “gods eye” view of the playing area. It
had minimal learning capabilities, limited to filling out tables with the attributes of the monsters it
encountered. In comparison to 15 expert players on multiple games, it ranked first in median game
score and seventh in highest game score. The authors critiqued it for its “single-minded” inflexibil-
ity: it took a greedy approach when faced with multiple opportunities or multiple threats, which is
often not a good approach to Rogue play.

Pengi was an agent for playing PengoTM , an arcade style game where bees chase a penguin in
an icehouse-like representation of Antarctica. Agre and Chapman (1987) presented their approach
as a sort of rebellion against the sort of planning systems that were then in vogue in AI research. The
game was too difficult for the planning methods available at the time; the authors cite complexity,
uncertainty, and the need for real-time decision making. So they replaced planning based on the
complete game state with immediate reactive responses to an egocentric view of the game. The AI
still bound game objects to schema variables, but the schemas were all relative to the penguin agent
rather than absolute. The ’theory’ in their title is a hypothesis for cognitive science: “Before and
beneath any activity of plan-following, life is a continual improvisation, a matter of deciding what
to do now based on how the world is now.” The result was a solution that played the game “badly, in
near real time”; it is nevertheless a landmark in the history of game applications of AI. The authors’
novel approach is still in vogue: the embedded agents described in this dissertation also have an
egocentric view of the world, and build up their higher-level behavior from a sequence of decisions
that are local in both space and time.

Much other work has been done with embedded game agents. Among arcade games there

10



have been treatments of Pac-ManTM (Gallagher and Ryan 2003) and Ms. Pac-ManTM (Lucas 2005).
Among sports games much work has been done with the agents embedded in the RoboCup simulator
(or embodied in actual robots, to similar effect) (Kitano et al. 1997). Additional work has been done
with simulators of the “dueling robots” genre (Stanley et al. 2003; Lucas 2004) and strategy games
(Agogino et al. 2000; Bryant and Miikkulainen 2003; Stanley et al. 2005a,c). Much of this work
follows the paradigm established by Agre and Chapman (1987) for their Pengi agent, though there
have been important innovations as well, such as the use of simulated sensors rather than schemas,
and provision for memory in the agents’ controllers.

Samuel’s work started a tradition of applying machine learning to boardgames. Popular tar-
gets include tic-tac-toe (Gardner 1962), checkers (English 2001; Fogel 2001), chess (Kendall and
Whitwell 2001; Fogel et al. 2005), backgammon (Tesauro and Sejnowski 1987; Tesauro 1994; Pol-
lack et al. 1996), Othello (Moriarty and Miikkulainen 1995b; Chong et al. 2003), and Go (Richards
et al. 1998; Lubberts and Miikkulainen 2001; Kendall et al. 2004; Stanley and Miikkulainen 2004b).
A survey of applications of machine learning to games through the year 2000 can be found in
Fürnkranz (2001).

More recently it has become common to apply machine learning to strategy games and other
genres that feature embedded agents; much of the work cited for those genres (above) consisted
of machine learning approaches to game AI. The work reported in this dissertation lies at that
intersection: an application of machine learning to the problem of controlling agents embedded in
a strategy game. The details are given in the following chapters.

It should be noted that the AI provide with commercial strategy games is almost entirely a
matter of scripting; developers do not seem to think that the AI stemming from academic research
is predictable enough for commercial use. They do occasionally use standard algorithms, such as
A* for pathfinding. But even then they tend to rely on simplifications, e.g. what is displayed to the
player is a continuous map is a cosmetic overlay over a set of predefined waypoints; AI-controlled
agents calculate their routes over a simple graph rather than a complex map. The net effect of
commercial style AI programming is that researchers disdain it as “not real AI” and many game
players disdain it as “not very intelligent”, if not an outright cheat. Therein lies both challenge and
opportunity for academic AI researchers: can research-quality AI techniques scale up to the scope
and complexity required for commercial strategy games, and produce behaviors in the embedded
agents that players will reckon to be genuinely intelligent?

The remaining sections of this chapter introduce technologies that have been found useful
in preliminary experiments with machine learning for embedded game agents, and which are used
for the new experiments reported in this dissertation.
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2.4 Artificial Neural Networks

The study of Artificial Neural Networks (ANNs) includes simulations of the behavior of biological
neurons and networks, but more commonly presents itself as merely a biologically inspired model
for computation. The most commonly encountered models for networks are aggregates of simple
models of biological neurons called perceptrons (Rosenblatt 1958). An overview of the operation
of biological neurons, and a general treatment of artificial neural networks and the methods used to
train them, can be found in standard textbooks on the topic such as Haykin (1994).

Biological neurons are non-linear computing devices. They are stimulated on the input
side by the release of neurotransmitters from other neurons, and they release neurotransmitters of
their own on the output side. The flow of neurotransmitters is not continuous; a neuron’s output
is normally quiescent. Over time the neurotransmitters received at the neuron’s inputs build up
the stimulation of an accumulator. When that stimulation reaches a critical threshold the neuron
“fires”, discharging the accumulator and emitting a brief pulse of neurotransmitters at its own output.
Thereafter its output returns to quiescence until sufficient additional stimulation is received at the
inputs, and even in the case of continuous stimulation there is a refractory period that may delay the
neuron’s ability to fire again. The refractory period introduces the non-linearity into the neuron’s
behavior: when the rate of receipt of neurotransmitters at its inputs is increased by a factor of n, the
rate of release of neurotransmitters at its output cannot always increase by the same factor.

The perceptron model does not operate with the “spiking” behavior of a real neuron. Instead,
it uses scalar inputs and outputs that can be loosely interpreted as the average firing rate of the neuron
of some period of time. As with a biological neuron, a perceptron can have more than one input, and
the inputs do not all contribute equally to the activation of the neuron even when subjected to the
same stimulus. This phenomenon is modelled in a perceptron by a vector of scalars that weight the
influence of each input. In operation the stimulation at the perceptron’s accumulator is calculated
as the dot product of the input signals (treated as a vector) and the vector of weights.

Non-linearity is introduced into the perceptron’s operation by applying a squashing function
to the scalar value of that dot product. The term “squashing” is a metaphor that arises from a plot
of the function; the most common squashing functions are approximately linear over some range
of inputs, but limited by upper and lower bounds for inputs outside that range (figure 2.1). Various
squashing functions are appropriate, but the logistic function is the most commonly used:

f(x) =
1

1 + exp(−x)
(2.1)

The value calculated by applying the squashing function to the dot product of the input and weight
vectors is the perceptron’s scalar output.

A perceptron is usually provided with a bias, which modifies the firing threshold of the
neuron it models. The bias is implemented as a scalar that is added to the dot product of the inputs
and weights before applying the squashing function; its effect, viewed graphically, is to shift the
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Figure 2.1: The logistic function. The logistic function (equation 2.1) is perhaps the most commonly used
squashing function for artificial neural networks. It is approximately linear around x = 0, but is “squashed”
so that higher and lower values of x are constrained to the range (0, 1).

plot of the squashing left or right on the graph, changing the output associated with any given input
activation. For pragmatic reasons the bias is usually implemented as a weight feeding an auxiliary
input with a fixed value of 1 or -1 into the accumulator with the external inputs.

Despite the nonlinearity of its computations, a perceptron has very limited computational
power. Its response is limited by a phenomenon called the linear separability of its inputs, and in
fact it cannot compute the XOR of two binary inputs (Minsky and Papert 1988).

However, when perceptrons are organized into networks that feed the outputs of some into
the inputs of others, the aggregate does not suffer the same limitations of computational power. It
can be shown that a simple network of two “layers” of perceptrons, with the external inputs fed into
all the perceptrons in the first layer and the outputs of those perceptrons used as the inputs for the
perceptrons in the second layer, can compute any continuous multivariate function to within any
desired accuracy (Cybenko 1989).

Such networks are called feed-forward networks, and their constituent perceptrons are called
neurons. They can be arranged in any number of layers. The final layer of neurons, whose output
activations give the value computed by the network, is called the output layer. All other layers are
called hidden layers. By an entrenched misnomer, the receptors for the external inputs are often
called the input layer, though there is not actually a layer of neurons there, and the first layer of
neurons is called a hidden layer, even though it is directly exposed to the inputs (figure 2.2).

Feed-forward networks calculate a function of their inputs. A vector of input activations
is used to calculate activations of the neurons in the first hidden layer, those activations are then
used to calculate the activations of the next layer, and so on, until the signal has been propagated
all the way through the output layer. The outputs of the neurons in that layer are a function, in the
mathematical sense, of the network’s inputs. If there is only a single neuron in the output layer then
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Figure 2.2: Feed-forward neural network. A feed-forward network calculates a function of an input vector
by passing the input through a layer of neurons via weighted connections, and then passing the activation
values of those neurons through another layer. The function calculated by the network depends on the weights
on the connections.

the network calculates a scalar value; otherwise it calculates a vector value.
A feed-forward network can be used as the controller for some types of autonomous agents.

If an agents sensory input can be represented as a vector of scalar values, and a network’s output
vector of scalar values can be interpreted as a control signal for the agent’s activators, then an
ANN can be used to map the agent’s senses onto its choice of actions. The use of a feed-forward
network results in a reactive agent. If a deliberative agent is required, a network can maintain
internal state by means of recurrent connections (e.g., Elman 1990). Such state serves as a memory,
and allows networks to be trained as controllers for non-Markovian control tasks (e.g., Gomez and
Miikkulainen 1999).

Recurrency may also be useful for some tasks that do not obviously require memory, be-
cause it increases the computational power of a network. It has been shown that a recurrent network
with rational numbers for its weights can be used to emulate a Universal Turing Machine, with the
usual caveat regarding the need for infinite storage (Siegelman and Sontag 1991).

Artificial neural networks are frequently misunderstood to be learning devices. While it is
true that they are almost always trained to some task rather than programmed by direct specification
of their weights, and though there is interest in networks that actively learn from experience rather
than being passively modified by a training algorithm (e.g., Stanley et al. 2003), they are properly
understood to be computing devices. As a class they represent a paradigm for computation, just as
do Turing machines, Von Neuman machines, and formal grammars.

However, training is an important issue when working with artificial neural networks. While
it is a commonplace to assign a homework problem that requires specifying an ANN that computes
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the XOR of two inputs, the specification of the weights needed for more complex tasks of pattern
classification, motor control, or sequential decision tasks such as game play, is for all practical
purposes impossible. Therefore a number of machine learning algorithms have been developed for
training artificial networks to perform a designated task. One specific class of learning algorithms
is reviewed in the next section.

Artificial neural networks are a popular implementation choice for agent controllers for
several reasons: they are a universal computing architecture (Cybenko 1989; Siegelmann and Sontag
1994), they are fast, they can be trained to generalize well (Montana and Davis 1989), and they are
tolerant of noise both during training (Bryant and Miikkulainen 2003; Gomez 2003) and during
operation after having been trained (Gomez 2003).

2.5 Neuroevolution with Enforced Sub-Populations

For many agent control tasks the correct input-output mappings for the agents’ controllers are not
known, so it is not possible to program them or train them with supervised learning methods. How-
ever, controllers such as artificial neural networks can be evolved to perform a task in its actual
context, discovering optimal mappings in the process. The use of a genetic algorithm to train an
artificial neural network is called neuroevolution. Surveys of the field can be found in Schaffer et al.
(1992) and Yao (1999).

A genetic algorithm (GA) is a biologically inspired reinforcement learning method that
“breeds” a population of candidate solutions to find higher-quality solutions (Holland 1975). It
works with a population of representations of solutions, often referred to metaphorically as DNA,
genes, or chromosomes. Representations and their associated solutions are also distinguished by
the biological terms genotype and phenotype. During evolution, representations are drawn from
the population and instantiated into actual solutions, which are then evaluated by some criterion
to obtain a scalar fitness score; the fitness score is used to determine whether the representation
contributes to the creation of new “child” solutions (figure 2.3).

Most genetic algorithms operate in iterative generations. During a generation a fitness score
is obtained for every representation, and then a new population is created from the current popula-
tion, and the cycle is repeated. The details of implementation vary widely, but in general most or all
of the population is replaced by new representations generated from the higher-scoring representa-
tions in the current population. Breeding mechanisms also vary widely, but most commonly they
operate by applying biologically inspired operations such as crossover and mutations to a pair of
solutions represented by vectors.

Neuroevolution is merely a special class of genetic algorithms. One distinguishing feature
of this class is that the solution produced by the GA is not a static object such a solution to an
instance of the Traveling Salesman Problem, but rather a software machine that is supposed to do
something, such as classify patterns or control an agent. Therefore the fitness evaluations operate
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Figure 2.3: Evolutionary life cycle. Genetic algorithms operate by manipulating a population of represen-
tations of solutions to some target problem. The representations are evaluated on the basis of the quality of
the solutions they specify. Those that score worst on that evaluation are usually discarded, and replaced by
new representations bred form those that scored better.

by testing how well a candidate solution performs at that designated task. If the solution is the
controller network for an autonomous intelligent agent, the fitness evaluation involves using the
network to control an agent in its target environment through a number of sense-response cycles,
and measuring how well the agent meets its goals in that environment (figure 2.4).

There are many different neuroevolutionary algorithms. Some only learn values for the
weights for a predefined network structure, and others learn structures as well as weight values. The
algorithm used for this dissertation, described below, learns weight values only.

When evolving weight values only, the simplest design for representations maps the net-
work’s weights onto a flat vector of floating point numbers via a canonical ordering. The design
allows easy transduction between representations and networks (in both directions), and the vector
representations can be directly subjected to breeding operations such as crossover. Mutations most
commonly take the form of small deltas added to the existing value for a weight, but a number of
other creative operations have been examined (Montana and Davis 1989).

One of the most empirically effective neuroevolutionary algorithms yet devised is neuroevo-
lution with enforced sub-populations (NE-ESP, or usually just ESP) (Gomez and Miikkulainen
1999; Gomez 2003). The basic concept behind ESP is that a each representation specifies only
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Figure 2.4: Neuroevolutionary life cycle. Neuroevolution is a special type of genetic algorithm that pro-
duces a trained artificial neural network as its output. That fact has implications for the way the candidate
solutions must be evaluated. For example, if the network is to be used as the controller for an agent in some
environment, the fitness evaluations are made by letting the candidate solutions actually control the agent in
the target environment long enough to measure how well it works.

a single neuron rather than an entire network, and a separate breeding population is maintained for
each neuron in the network.

Evaluations cannot be made on neurons in isolation, so the evaluations in ESP are done by
drawing one neuron at random from each sub-population, assembling them into a complete network,
evaluating the network as for any other neuroevolutionary algorithm, and ascribing that network’s
fitness score back to each of the individual neurons used to create it. When all the neurons in all
the populations have been evaluated, selection and breeding is done independently within each sub-
population. The fitness of an individual neuron depends not on its properties in isolation, but on
how well it works together with neurons from the other populations. Thus the neurons in the sub-
populations are subjected to cooperative coevolution (Potter and De Jong 1995; Moriarty 1997), and
as evolution progresses they converge as symbiotic species into functional niches that work together
in a network as a good solution to the target problem.
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ESP has to date been used only for evolving the weight values for a network of pre-specified
architecture. That is how it is used in all the experiments reported here, as described in section 4.2.2.

2.6 Human-Biased Genetic Algorithms

The design of every genetic algorithm incorporates some human biases, such as the choice of rep-
resentation, the specification of the fitness function, and the parameterization of the randomization
for the initial population of representations. If the solution to be discovered or optimized by the
GA is a controller there are usually additional human-generated biases, such as specification of the
controller’s inputs and outputs. If the solution is an artificial neural network there is a biasing choice
between the use of an algorithm that searches the weight space only vs. an algorithm that searches
the structure space as well, and in the former case the specific choice of network topologies adds
a further bias. Indeed, the basic decision to use a genetic algorithm will have some effect on the
solution obtained, in comparison to the use of some other machine learning algorithm.

Thus some amount of human-induced bias is unavoidable when using genetic algorithms.
However, it is useful to consider the class of GAs that deliberately invoke mechanisms for biasing
the learning process with human knowledge or intuitions in order to help them find a solution, or
steer them toward solutions with some specifically desired traits. We may refer to GAs that use such
mechanisms as human-biased genetic algorithms.

Human-biased genetic algorithms can be classified according to where the human biases are
inserted into the flow of the genetic algorithm. The resulting typology will be useful for clarifying
thinking on the topic, and may reveal opportunities for useful new biasing mechanisms.

The typology offered here divides the biasing mechanisms into three classes: population
tampering, solution tampering, and fitness tampering (figure 2.5). Population tampering involves
inserting or removing representations (genotypes) into/from the population by mechanisms other
than the conventional mechanisms necessary for all genetic algorithms. Solution tampering involves
modifying a solution (phenotype) or its associated representation, and allowing the modification
to replace or supplement the original in the ordinary flow of the evolutionary life cycle, so that a
representation reflecting the tampering enters the gene pool. Fitness tampering involves mechanisms
for ascribing a fitness to a solution other than what it would have obtained under ordinary fitness
evaluations, to promote some types of solutions over others. Examples of each class are readily
found, and are described in the following sections.

2.6.1 Population Tampering

A very direct method of population tampering is the Case-Injected Genetic Algorithm (CIGAR),
which inserts the representations of solutions directly into the evolutionary population, possibly
replacing low-fitness solutions already in the population (Louis and Miles 2005). A solution is
considered to be a “case”; for human biasing the cases are human-generated solutions, from which
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Figure 2.5: Typology of human-biased genetic algorithms. There are three basic classes of mechanisms
for using human biases to guide genetic algorithms: population tampering, solution tampering, and fitness
tampering.

representations are reverse engineered algorithmically for insertion into the population, or in princi-
ple a human could construct the representations directly. If the human-generated solutions are good,
in the sense of being rated with high fitness by the GA, genetic material from their representations
will spread throughout the population with high probability. Their use for human-generated biasing
is necessarily limited to applications where solutions or their representations are simple enough to
be constructed or discovered by humans. CIGARs have been used to create flight plans for simu-
lated ground-strike operations; the cases provided by human design are resource allocation tables,
from which the flight plans are derived automatically. The human bias allows the CIGAR to learn
more efficient flight plans, and even to avoid plans that are likely to result in an ambush (Louis and
Miles 2005).

Case injection is not strictly limited to the direct insertion of human-generated solutions
into an evolutionary population. For example, Louis and Miles (2005) also used a side archive of
good quality previously evolved solutions, from which some of the solutions were intermittently
returned to the breeding population. The mechanism did not inject human bias, because the deci-

19



sions to archive and release solutions were made algorithmically. However, the same mechanism
was invented independently by D’Silva et al. (2005) under the name milestoning, with the impor-
tant difference that the decisions to archive or release a solution were made directly by a human
rather than algorithmically. Thus a human observer could select evolved solutions with desirable
properties for archiving – including solutions not easily constructed by humans – and return them
to the breeding population later to re-introduce genetic material that had been bred out of the popu-
lation, or to prevent it from being bred out. D’Silva et al. (2005) used the milestoning mechanism
when evolving controllers for the NERO machine learning game, in order to ensure that desirable
behaviors discovered by the NERO agents early in training were not lost when new behaviors were
learned later.

The NERO game also provided another population-tampering mechanism called conver-
gence, which upon demand replaces an entire evolutionary breeding population with clones of an
evolutionary solution selected by a human player. Thus when the NERO agents have evolved to the
point where some are starting to show desirable behavior, the player can select the agent showing
the most desirable behavior and invoke convergence to immediately weed all other behaviors out
of the population. This convergence operation is an as-yet unpublished feature of the NERO game
(Stanley et al. 2005a; Gold 2005; Stanley et al. 2005c).

A final, obvious way of biasing evolutionary search is to start with a human-selected evolu-
tionary population rather than a randomly generated one. The population can be directly constructed
by humans, in which case this mechanism can be seen as mass case-injection, or it can be selected by
humans from the output of other learning algorithms, in which case the GA re-trains or re-optimizes
the solutions from the initial state established by the humans (e.g., Schultz and Grefenstette 1990,
1992; Ramsey and Grefenstette 1993).

2.6.2 Solution Tampering

Human decisions can also bias the result of a genetic algorithm by modifying individual solutions
rather than moving solutions into and out of the evolutionary population. This mechanism is called
solution tampering.

Lamarckian evolution (Lamarck 1809) is no longer thought to be an important mechanism
in biology (Wilkins 2006), but can easily be made to work in simulated systems (e.g, Grefenstette
1991; Schultz and Grefenstette 1992). The mechanism allows adaptations in a solution (phenotype)
to be reverse engineered back into its representation (genotype), which is returned to the breeding
population with the fitness rating of the adapted solution. (The difficulty in biology is the lack of a
general mechanism for reverse engineering the adaptations back into an organism’s DNA.) Lamar-
ckian evolution allows the insertion of human bias into a genetic algorithm by allowing human
influence on the adaptation process. For example, in chapter 6 below, Lamarckian neuroevolution
is used to incorporate the human bias by means of backpropagation on human-generated training
examples for the mechanism of phenotypic adaptation.
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Another mechanism for solution tampering is known as advice-taking, or simply advice
(Maclin and Shavlik 1996; Yong et al. 2005). Advice mechanisms construct partial solutions on
the basis of human-specified rules, integrate the partial solutions into one or more of the complete
but inferior solutions in the evolutionary population, and allow the modified solution(s) and their
associated representations to continue through the normal flow of the genetic algorithm. For exam-
ple, the advice system of Yong et al. (2005), derived from the earlier RATLE system (Maclin and
Shavlik 1996), allows human players to specify simple rules of behavior for the agents in the NERO
game, such as “if there is a wall close in front of you, turn 90◦ to the right”. The rule is converted
via KBANN (Towell and Shavlik 1994) into an artificial neural network that maps the relevant sen-
sory inputs onto the relevant motor outputs with the specified logic, and that network is integrated
with an existing solution from the evolutionary population as an appliqué. The mechanism allows
the NERO agents to learn the easily specified parts of their task quickly and in accord with human
notions of how the task should be managed, and if the advice is apropos the modification rapidly
spreads throughout the population. Notably, the system allows humans to inject expert knowledge
directly into genetic algorithms when a complete solution would be too difficult to specify.

2.6.3 Fitness Tampering

Fitness tampering methods are the third class of mechanisms for injecting human knowledge or
preferences into the evolutionary life cycle. It involves manipulating the relationship between a
solution and the fitness that is ascribed to it.

Baldwinian evolution (Baldwin 1896; Hinton and Nowlan 1987) is a mechanism somewhat
like Lamarckian evolution in that it involves adaptation in an organism (phenotype); the difference is
that the adaptations are not reverse engineered back into the organism’s DNA (genotype). Instead,
the adaptation – usually conceived of as learning – gives the organism a fitness advantage in its
own lifetime, increasing the probability that it will feed its genetic heritage back into the gene
pool. The evolutionary guidance it provides comes about because the adaptations in the phenotype
leverage partial adaptations in the genotype, increasing whatever fitness advantage they might offer.
The long-term effect is to reinforce those partial genotypic adaptations that can be augmented by
phenotypic adaptations, ultimately channeling evolution in the direction of the reinforcement.

For the purposes of genetic algorithms, Baldwinian evolution is like the Lamarckain evolu-
tion described above, except that the adaptations a solution (phenotype) undergoes are not reverse
engineered back into its representation (genotype). The solution is instantiated from its represen-
tation normally, and trained (adapted) as in a Lamarckian genetic algorithm, but after the fitness
evaluation the modified solution is discarded and the unmodified representation is fed back into the
gene pool – albeit with the fitness score obtained by the modified solution. Thus the net effect is
alter the actual fitness of the solution; it is therefore a form of fitness tampering rather than solution
tampering.

The most common form of fitness tampering – probably the most common form of human
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biasing in any of the tampering classes – is shaping. Shaping refers to training procedures that guide
the trainee toward some target behavior through a series of successive approximations. The term
and concept were introduced into the scientific literature by Skinner (1938), but the concept has long
been used in animal training – presumably since prehistoric times. The notion behind shaping is to
find solutions that are “close” to the desired solution in some conception of the solution space, and
then refine training to find new solutions that are closer yet. A typology of approaches to shaping
has been offered by Peterson et al. (2001), which can be stated in slightly modified form as: modify
the task, modify the environment, or modify the reward structure.1

Modifying the task usually involves learning a target behavior by stepwise approximation,
e.g. by modifying the relative lengths of the poles on the dual pole-balancing problem, which is
easy when the lengths are different but becomes progressively more difficult as the lengths become
more similar. Task shaping allows the difficult task to be learned in a series of small steps starting
from the easy task (Gomez and Miikkulainen 1997). Another example of modifying the task is
given by Perkins and Hayes (1996), who suggest that a complex task such as getting a robot to
dock at a battery charger is most easily learned by first training the robot to succeed from an easy
starting position and orientation and then iteratively retraining it from progressively more difficult
starting positions. Modification of the task is also an integral part of the NERO machine learning
game (Stanley et al. 2005c). The target task for the NERO agents is not even specified beyond the
implicit, abstract task of “learn effective behavior”; the player must define the tasks to be learned in
more detail, and shaping by task modification is explicitly recommended as a strategy of play.

Perkins and Hayes (1996) observe that modifying the task is the method that most closely
resembles the use of the term shaping in psychology. They also interpret modification of the task as
a matter of adapting previously learned policies. Taken broadly, that interpretation would include
all instances of re-training, re-tuning, and behavior transfer as instances of shaping. However, the
term is usually limited to situations where the intermediate steps are deliberately designed to lead
learners to a difficult solution not easily reached otherwise.2

Modifying the environment allows discovery of solutions that work in a simple or helpful
context, after which more precise or sophisticated solutions can be obtained by further learning in
a less obliging environment. One example is changing the height of the mountain in the mountain
car task (Randløv 2000); another is the NERO training environment, where enemies and obstacles
are added or relocated as training progresses, in order to help the agents acquire the desired tactical
skills (Stanley et al. 2005c) (figure 2.6).

1Peterson et al. (2001) offer “change the physics of the task” rather than “modify the environment”, which is offered
here as an umbrella case. Their narrower formulation leaves gaps in the typology, and still does not solve the problematic
nature of the typology mentioned in the text.

2But see Dorigo and Colombetti (1993) for an exception to that convention. Their method is very far removed from
the original notion described by the term “shaping”: they build up behaviors by programming or training modules and
then combining them, a mechanism similar to layered learning (Stone and Veloso 2000b), basis behaviors (Matarić 1995),
and mixture-of-expert models (Jacobs et al. 1991; Jordan and Jacobs 1992) – none of which are labeled as “shaping” by
their own authors.

22



�����
�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

Scenario 1: 1 enemy turret

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

	�	
	�	
	�	
	�	


�


�


�


�


�����
�����
�����
�����

Scenario 2: 2 enemy turrets


�
�


�
�


�
�


�
�


�����
�����
�����
�����

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
��������
���
���
���

���
���
���
���

Scenario 17: mobile turrets & obstacles Battle
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Figure 2.6: Environment shaping in the NERO game. The recommended method of training the simulated
combat robots in the NERO machine learning game is to progressively enrich the environment, in order to
encourage the acquisition of ever more sophisticated behavior.

Modifying the reward structure is the third class of shaping mechanisms. As with modifying
the task or environment, the goal is to guide discovery of difficult solutions via successive approx-
imations. In this case, solutions that are relatively far from the desired solution can be rewarded
out of proportion to their success until discovered, and then the reward can be adjusted to require a
more precise approximation to the desired solution. For genetic algorithms the reward structure is
the fitness function. The NERO game offers a notable example of modifying the fitness function,
which is manipulated very explicitly and in real time while observing the agents at their learning
task.

Interestingly, the NERO game utilizes all three classes of shaping: the task is modified as
the agents are sequentially trained toward increasingly sophisticated behaviors, the environment is
modified as objects are added to or moved around in the sandbox to encourage flexibility in the
learners, and the reward structure is modified by direct manipulation of the coefficients of the terms
in the fitness function via the “sliders” on the control panel (Stanley et al. 2005a,c).

The typology for shaping mechanisms is slightly problematic. For example, when Randløv
(2000) changes the height of the mountain for the mountain car task, is that a modification of the task
or a modification of the environment? The distinction seems to be more semantic than typological.
But in other cases the two categories are clearly distinct: in the NERO game the player explicitly
modifies both the target task and the environment where the task is learned, independently, as play
progresses.

A final important mechanism for fitness tampering is the interactive genetic algorithm,
wherein a human directly selects which candidate solutions should be bred to produce the next
generation of the evolutionary population. This mechanism is most commonly used for digital art
and music, where unquantifiable aesthetic considerations are paramount (e.g., Rowbottom 1998;
Biles 1994). The GenJam system for producing jazz solos has been successful enough that it is still
being developed and used for public performances, over a decade after its introduction (Biles 2006).
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2.6.4 Summary

This section has offered a high-level typology for mechanisms of inserting human biases into genetic
algorithms, and offers examples of each. Examination of the typology may reveal opportunities for
new mechanisms that can be exploited to good effect.

It should be noted that the three classes defined by the typology – and indeed most of the
specific mechanisms surveyed – are independent in their operation. Combinations are possible;
for example, the basic design of the NERO game is built around shaping (fitness tampering), but
Yong et al. (2005) adds advice-taking (solution tampering) to the system, without modifying the
use of shaping inherent in the design. It may be advantageous to explore other combinations of
mechanisms for incorporating human biases into genetic algorithms.
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Chapter 3

The Legion II Game

Legion II is a discrete-state strategy game designed as a test bed for studying the behavior of embed-
ded game agents. It requires a group of legions to defend a province of the Roman Empire against
the pillage of a steady influx of barbarians. The legions are the agents under study; they are trained
by the various machine learning methods described in chapters 4-8. The barbarians act according
to a preprogrammed policy, to serve as a foil for the legions.

The features and rules of the game are described in the next section. The sensors and con-
trollers for the barbarians are described in section 3.2, and the sensors and controllers for the legions
are described in section 3.3. The methods used to train the legions and the learning experiments done
in the Legion II environment are explained in chapters 4-8.

3.1 Game Objects and Rules of Play

Legion II provides challenges similar to those provided by other games and simulators currently
used for multi-agent learning research, and is expandable to provide more complex learning chal-
lenges as research progresses. In its current incarnation it is incrementally more complex than a
multi-predator / multi-prey game. It is conceptually similar to the pseudo-WarcraftTM simulator
used by Agogino et al. (2000), differing primarily in its focus on the predators rather than the prey,
and consequently in the details of scoring games. The correspondences between Legion II , pseudo-
Warcraft, and a multi-predator/multi-prey system are shown in table 3.1.

3.1.1 The Map

Legion II is played on a planar map. The map is tiled with hexagonal cells in order to quantize the
location and movement of objects in the game; in gaming jargon such cells are called hexes (singular
hex). For the experiments reported here the map itself is a large hexagonal area, with 21 cells along
its major diagonals, giving a total of 331 cells in the playing area. Several randomly selected map
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Legion II ∼ pseudo-Warcraft ∼ predator-prey
legion ≡ guard ≡ predator

barbarian ≡ peon ≡ prey
city ≈ mine N/A

Table 3.1: Approximate correspondence between experimental domains. The Legion II game is concep-
tually similar to domains that have been used in various other studies of multi-agent learning, including the
pseudo-Warcraft game of Agogino et al. (2000) and multi-agent instances of the predator-prey domain.

cells are distinguished as cities, and the remainder are considered to be farmland (figure 3.1).

The hex tiling imposes a six-fold radial symmetry on the map grid, defining the cardinal
directions NE, E, SE, SW, W, and NW. This six-fold symmetry, along with the quantization of
location imposed by the tiling, means that an agent’s atomic moves are restricted to a discrete choice
of jumps to one of the six cells adjacent to the agent’s current location, and that the atomic move
is always in one of the six cardinal directions. The motor control laws that play an important role
in many simulators are here abstracted away into that discrete choice between the discrete options.
This map structure has important consequences for the design of the sensors and controllers for the
agents in the game, which are described in detail below.

3.1.2 Units

There are two types of autonomous agents that can be placed on the map in a Legion II game:
legions and barbarians. In accordance with gaming jargon these mobile agents are called units
(singular unit) when no distinction needs to be made between the types.

Each unit is considered to be “in” some specific map cell at any time. A unit may move
according to the rules described below, but its moves occur as an atomic jump from the cell it
currently occupies to an adjacent one, not as continuous movement in Euclidean space.

Unless the graphic display has been disabled to speed up training or testing, the current
position of each unit is shown by a sprite on the game map. In accordance with the jargon of the
Civilization game genre, the sizes of the units are ambiguous. Thus the unit type called “a legion”
represents a body of legionnaires, but is shown graphically as only a pair of men behind large
rectangular shields. Similarly, the unit type called “a barbarian” represents a body of barbarians
operating as a warband, but is shown graphically as only a single individual with axe and shield
(figure 3.1).

The legions start the game already on the map, in randomly selected map cells. There are
no barbarians in play at the start of the game. Instead, barbarians enter at the rate of one per turn,
an a randomly selected unoccupied map cell.
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Figure 3.1: The Legion II game. A large hexagonal playing area is tiled with smaller hexagons in order to
quantize the positions of the game objects. Legions are shown iconically as close pairs of men ranked behind
large rectangular shields, and barbarians as individuals bearing an axe and a smaller round shield. Each icon
represents a large body of men, i.e. a legion or a warband. Cities are shown in white, with any occupant
superimposed. All non-city map cells are farmland, shown with a mottled pattern. The game is a test bed
for multi-agent learning methods, whereby the legions must learn to contest possession of the playing area
with the barbarians. (Animations of the Legion II game can be viewed at http://nn.cs.utexas.edu/
keyword?ATA.)

3.1.3 Game Play

Legion II is played in turns. At the beginning of each turn a new barbarian is placed at a random
location on the map. If the randomly generated location is already occupied by a unit, a new location
is generated. The search continues until a free location for the barbarian is found.

Thereafter, each legion is allowed to make a move, and then each barbarian in play makes
a move. A unit’s move can be an atomic jump to one of the six adjacent map cells, or it can elect
to remain stationary for the current turn. When all the units have made their moves the turn is
complete, and a new turn begins with the placement of another new barbarian. Play continues for a
pre-specified number of turns, 200 in all the experiments reported here.

All the units are autonomous; there is no virtual player that manipulates them as passive
objects. Whenever it is a unit’s turn to move, the game engine calculates the activation values for

27

http://nn.cs.utexas.edu/keyword?ATA
http://nn.cs.utexas.edu/keyword?ATA


that unit’s egocentric sensors, presents them to the unit’s controller, and implements the choice of
move signaled at the output of the unit’s controller. The sensors and controllers are described in full
detail below.

There are some restrictions on whether the move requested by a unit is actually allowed,
and the restrictions vary slightly between the legions and the barbarians. The general restrictions
are that only one unit may occupy any given map cell at a time, and no unit may ever move off the
edge of the playing area defined by the tiling.

If a legion requests moving into a map cell occupied by another legion, or requests a move
off the edge of the map, the game engine leaves the legion stationary for that turn instead. If the
legion requests moving into a map cell occupied by a barbarian, the game engine immediately
removes the barbarian from play and then moves the legion as requested. If the legion requests a
move into an unoccupied map cell, or requests to remain stationary for the current turn, the request
is immediately implemented by the game engine.

If a barbarian requests a move into a map cell occupied by either a legion or another bar-
barian, the game engine leaves it stationary for the current turn. (Notice that that does not allow a
barbarian to eliminate a legion from play the way a legion can eliminate a barbarian.) If the barbar-
ian requests a move off the edge of the map, the game engine consults the barbarian’s controller to
see what its second choice would have been. If that second choice is also off-map then the game
engine leaves the barbarian stationary for the current turn; otherwise, the secondary preference is
implemented. If the barbarian requests a move that is neither off-map nor into an occupied map cell,
or requests to remain stationary, the request is immediately implemented by the game engine.

Barbarians are given the second choice when they request a move off the map, because their
programming is very simple (as described below), and it is not desirable to leave them ‘stuck’ at the
edge of the map during a game. Legions do not get the second-chance benefit; they are expected to
learn to request useful moves.

3.1.4 Scoring the Game

The game score is computed as follows. The barbarians accumulate points for any pillaging they are
able to do, and the legions excel by minimizing the amount of points that the barbarians accumulate.
At the end of every game turn, each barbarian in play receives 100 points for pillage if it is in a
city, or only a single point otherwise. The points are totaled for all the barbarians each turn, and
accumulated over the course of the game. When a barbarian is eliminated no points are forfeited,
but that barbarian cannot contribute any further points to the total thereafter.

This scoring scheme was designed in order to meet one of the two major goals for this
research, namely forcing the legions to learn two distinct classes of behavior in order to minimize
the barbarian’s score, as described in chapter 5 below. Due to the expensive point value for the
cities, the legions must keep the barbarians out of them, which they can easily do by garrisoning
them. However, further optimization requires the legions assigned to garrison duty to actively pursue
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and destroy the barbarians in the countryside. If they fail to do so, a large number of barbarians will
accumulate in the countryside, and though each only scores one point of pillage per turn, their
cumulative aggregate is very damaging to the legions’ goal of minimizing the barbarian’s score.

In principle the legions might be able to minimize the pillage by neglecting to garrison the
cities and utilizing every legion to try to chase down the barbarians, but the random placement of the
incoming barbarians means that they can appear behind the legions, near any ungarrisoned cities,
and inflict several turns of the very expensive city pillaging before a legion arrives to clear them out.
The barbarian arrival rate was by design set high enough to ensure that the legions cannot mop them
up fast enough to risk leaving any cities ungarrisoned. Thus the legions must garrison the cities in
order to score well, and any improvement beyond what can be obtained by garrisoning the cities can
only come at the cost of learning a second mode of behavior, pursuing the barbarians.

For the purposes of reporting game scores the pillage points collected by the barbarians are
normalized to a scale of [0, 100], by calculating the maximum possible points and scaling the actual
points down according to the formula:

Scorereported = 100× Pointsactual/Pointspossible (3.1)

The result can be interpreted as a pillage rate, stated as a percentage of the expected amount of pil-
laging that would have been done in the absence of any legions to contest the barbarians’ activities.
Notice that according to this metric, lower scores are better, from the legion’s point of view.

In practice the legions are never able to drive the score to zero. This fact is due in part to
the vagaries of the starting conditions: if the random set-up places all the legions very distant from
a city and a barbarian is placed very near that city on the first turn, there is nothing the legions can
do to beat that barbarian into the city, no matter how well trained they are. However, a factor that
weighs in more heavily than that is the rapid rate of appearance of the barbarians vs. the finite speed
of the legions. Since the legions and barbarians move at the same speed, it is difficult for the legions
to chase down the barbarians that appear at arbitrary distances away. Moreover, as the legions thin
out the barbarians on the map the average distance between the remaining barbarians increases,
and it takes the legions longer to chase any additional barbarians down. Thus even for well-trained
legions the game settles down into a dynamic equilibrium between the rate of new barbarian arrivals
and the speed of the legions, yielding a steady-state density of barbarians on the map, and thus a
steady-state accumulation of pillage counts after the equilibrium is achieved.

3.2 Barbarian Sensors and Controllers

The legions are the only learning agents in the game, so the barbarians can use any simple pre-
programmed logic that poses a suitable threat to the legions’ interests. The barbarians’ basic design
calls for them to be attracted toward cities and repulsed from legions, with the attraction slightly
stronger than the repulsion, so that the barbarians will take some risks when an opportunity for
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pillaging a city presents itself. This behavior is implemented by algebraically combining two “mo-
tivation” vectors, one for the attraction and one for the repulsion:

Mfinal = Mcities + 0.9Mlegions (3.2)

Each vector consists of six floating point numbers, indicating the strength of the “desire” to move
in each of the six cardinal directions. The 0.9 factor is what makes the motivation to flee the legions
slightly weaker than the motivation to approach the cities. After the combination, the peak value in
Mfinal indicates which direction the barbarian most “wants” to move. In situations where a second
choice must be considered, the second-highest value inMfinal is used to select the direction instead.

The values in the two arrays are derived, directly or indirectly, from the activation values in a
simple sensor system. The barbarian’s sensor system consists of two sensor arrays, one that detects
cities and another that detects legions. Each array divides the world into six 60◦ non-overlapping
egocentric fields of view. The value sensed for each field is:

s =
∑

i

1
di

, (3.3)

where di is the distance to an object i of the correct type within that field of view. The distances are
measured in the hex-field equivalent of Manhattan distance, i.e. the length of the shortest path of
map cells from the viewer to the object, not counting the cell that the viewer itself is in (figure 3.2).

Due to the relatively small map, no limit is placed on the range of the sensors. If an object
is exactly on the boundary between two fields of view, the sensors report it as being in the field
clockwise from the boundary, from the perspective of the observing agent.

Notice that this sensor architecture obscures a great deal of detail about the environment.
It does not give specific object counts, distances, or directions, but rather only a general indication
of how much opportunity or threat the relevant class of objects presents in each of the six fields of
view.

Once these values have been calculated and loaded into the sensor arrays, the activations in
the array that senses cities can be used directly for the Mcities vector in equation 3.2. Mlegions can
be derived from the values in the array that senses legions by permuting the values in the array to
reverse their directional senses, i.e. the sensor activation for legions to the west can be used as the
motivation value for a move to the east, and similarly for the other five cardinal directions. After
the conversions from sensor activations to motivation vectors,Mfinal can be calculated and its peak
value identified to determine the requested direction for the current move.

There is no explicit mechanism to allow a barbarian to request remaining stationary for the
current turn. For simplicity the game engine examines a barbarian’s location at the start of its move
and leaves the barbarian stationary if it is already in a city. Otherwise the game engine calculates
the values to be loaded into the barbarian’s sensors, performs the numerical manipulations described
above, and implements the resulting move request if it is not prohibited by the rules described in
section 3.1.3.
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Figure 3.2: The barbarian’s sensor geometry. The solid black lines show the boundaries of the six sensory
fields of view for one barbarian near the northwest corner of the map. The boundaries emanate from the center
of the map cell occupied by the barbarian and out through its six corners. For simplicity, an object in a cell
split by a boundary is reckoned to be in the field to the clockwise of that boundary. For example, the city
straight to the north of the sensing barbarian is reported by the barbarian’s NE sensor, and ignored by its NW
sensor. The dashed white lines show the hexagonal Manhattan distances to the three legions in the SE field of
view of the sensing barbarian. These lines are traced from the center to center along a path of map cells, and
thus emanate through the sides of the hexagons rather than through the corners as the field boundaries do.

The resulting behavior, although simple, has the desired effect in the game. As suggested
by figure 3.2, barbarians will stream toward the cities to occupy them, or congregate around them if
the city is already occupied. Other barbarians will flee any roving legions, sometimes congregating
in clusters on the periphery of the map. The barbarians are quick to exploit any city that the legions
leave unguarded. They do, however, tend to get in each other’s way when a legion approaches a
crowd and they need to flee, resulting in many casualties, but that is perhaps an appropriate simula-
tion of the behavior of undisciplined barbarians on a pillaging raid.
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3.3 Legion Sensors and Controllers

Unlike the barbarians, the legions are required to learn an appropriate set of behaviors for their
gameplay. They are therefore provided with a more sophisticated, trainable control system. The
design includes a sensor system that provides more detail about the game state than the barbarians’
sensors do, plus an artificial neural network “brain” to map the sensor inputs onto a choice of actions.

3.3.1 The Legions’ Sensors

The legions are equipped with sensor systems that are conceptually similar to the barbarians’, but
enhanced in several ways. Unlike the barbarians, the legions have a sensor array for each type of
object in the game: cities, barbarians, and other legions. Also unlike the barbarians, each of those
sensor arrays are compound arrays consisting of two six-element sub-arrays plus one additional
element, rather than of only six elements total as for the barbarians.

An array’s two six-element sub-arrays are similar to the barbarians’ sensor arrays, except
that one only detects objects in adjacent map cells and the other only detects objects at greater
distances. For the first sub-array the game engine sets the array elements to 1.0 if there is an object
of the appropriate type in the adjacent map cell in the appropriate direction, and to 0.0 otherwise.

For the second sub-array the game engine assigns values to the elements slightly differently
from the way it assigns values to the barbarian’s sensors. First, it ignores objects at d = 1, since
those are detected by the short-range array described above. Second, since the distances used in the
calculations for this array are as a result always greater than one, it deducts one from the distances
used in the calculations, in order to increase the signal strength. That is, equation 3.3 used for the
barbarians becomes:

s =
∑

i

1
di − 1

, (3.4)

for objects i of the correct type and at a distance greater than one, within that field of view.
A third difference is that sensed objects near a boundary between two sensor fields are not

arbitrarily assigned to the field to the clockwise of the boundary. Instead, objects within 10◦ of the
boundary have their signal split between the two fields. The effective result is a set of 40◦ arcs of
unsplit signals alternating with 20◦ arcs of split signals, though the aggregations result in an array of
only six activation values. As with the barbarians’ sensors, there is no range limit on this long-range
sub-array.

The additional independent sensor element in a compound array detects objects in the le-
gion’s own map cell: if an object of the appropriate type is present the game engine sets the value
of this sensor to 1.0; otherwise it sets it to 0.0. However, a legion does not detect itself, and since
the rules prevent multiple units from occupying the same map cell, the only time this detect-local
sensor is activated in practice is when the legion occupies a city. In principle the detect-local sen-
sor could have been eliminated from the sensor arrays used to detect legions and barbarians, but
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Figure 3.3: The legions’ compound sensor architecture. The legions have three sensor arrays, one each
for cities, barbarians, and other legions. Each of those three arrays consists of three sub-arrays as shown
above. A single-element sub-array (left) detects objects colocated in the map cell that the legion occupies.
Two six-element sub-arrays detect objects in the six radial fields of view; one only detects adjacent objects,
and the other only detects objects farther away. These 13 elements of each of the three compound arrays
are concatenated to serve as a 39-element input activation for an artificial neural network that controls the
legion’s behavior (figure 3.4).

identical arrays were used for all object types in order to simplify the implementation, and to make
allowance for future game modifications that would allow “stacking” multiple units within a single
map cell.

The architecture of the compound sensors is shown in figure 3.3. The two sub-arrays contain
six elements each, corresponding to the six cardinal directions. Thus together with the additional
independent element, each array reports 13 floating point values≥ 0.0 whenever a sense is collected
from the environment. Since there is one compound sensor for each of the three types of game
object, a legion’s perception of the game state is represented by 39 floating point numbers.

3.3.2 The Legions’ Controller Network

A legion’s behavior is controlled by a feed-forward neural network. The network maps the legion’s
egocentric perception of the game state onto a choice of moves. Whenever it is a legion’s turn to
move, the game engine calculates the sensor values for the legion’s view of the current game state
and presents the resulting 39 floating point numbers to the input of the controller network. The
values are propagated through the network, and the activation pattern at the network’s output is
decoded to determine the legion’s choice of move for the current turn (figure 3.4).

The output layer of the networks consist of seven neurons, corresponding to the seven dis-
crete actions available to the legions. When the input activations have been propagated through the
network the activation pattern in the output layer is interpreted as an action unit coding, i.e. the ac-
tion corresponding to the output neuron with the highest activation level is taken to be the network’s
choice of action for the current turn.1

For all the experiments reported here, the controller network’s hidden layer consisted of 10
neurons. That size was determined experimentally, and found to work well with all the training
methods studied.

1A variant of this decoding scheme is introduced in chapter 8.
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Figure 3.4: The legions’ controller networks. During play the values obtained by a legion’s sensors are
propagated through an artificial neural network to create an activation pattern at the network’s output. This
pattern is then interpreted as a choice of one of the discrete actions available to the legion. When properly
trained, the network serves as the controller for the legion as an autonomous intelligent agent.

In addition to the input signal, each neuron in the controller networks is fed by a bias unit
with a fixed activation of +1.0 and a trainable weight to propagate the value into the neuron’s
accumulator. Recent authors commonly use −1.0, but the only difference is the sign that must be
learned for the afferent weights, and using the positive number allows a minor optimization of the
implementation.

3.3.3 Properties of the Legions’ Control Architecture

There are a number of important consequences of the adoption of this sensor/controller architecture
for the legions, which the reader may wish to keep in mind while reading about the methodologies
and experiments:

• The sensor readings are egocentric. For a given state of the game, each of the legions in play
will perceive the map differently, depending on their individual locations on the map.

• The sensors provide a lossy view of the map. The legions have a great deal of information
about their immediate neighborhood, but that is reduced to a fuzzy “feel” for the presence of
more distant objects.

• The legions must work with uninterpreted inputs. There is a semantic structure to the sensor
arrays, but that structure is not known to the legions: the sense values appear as a flat vector
of floating point numbers in their controller networks’ input layers. The significance of any
individual input or set of inputs, or of any correlations between inputs, is something the
legions must obtain via the learning process.
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• There is no explicit representation of goals. None of the network inputs, nor any other part
of the controller logic, provide a legion with any sort of objective. Coherent higher-level
behavior must be learned as a response to a sequence of inputs that vary over time.

• The legions do not have memory. The feed-forward controller networks do not allow for any
saved state, so the legions are not able to learn an internal representation for goals to make up
for the lack of externally specified goals. All actions are immediate reactive responses to the
environment.

These various requirements and restrictions conspire to present the legions with a very difficult chal-
lenge if they are to learn to behave intelligently. However, experience shows that properly trained
artificial neural networks excel at producing the appearance of purposeful intelligent behavior (e.g.,
Moriarty and Miikkulainen 1995a,b, 1996; Richards et al. 1997; Gomez and Miikkulainen 1998;
Agogino et al. 2000).
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Chapter 4

Experimental Methodology

This chapter describes the details of the methods used for training and testing in the various exper-
iments reported in chapters 5-8 below. Additional details that are only relevant to the experiments
reported in a given chapter are described in that chapter.

Section 4.1 provides details on the use of pseudo-random numbers in the experiments re-
ported in the following chapters, with a special view to their use in creating games with randomized
properties. Then chapters 4.2 and 4.3 explain important details about how training and testing were
done in the experiments described later. Finally, section 4.4 states the requirements for statistical
significance tests, and explains why they have been provided for some of the dissertation’s experi-
ments but not others.

4.1 Random Number Management

Random decisions based on the output of pseudo-random number generators were used for both
gameplay and the learning algorithms. This section describes issues raised by the use of a pseudo-
random number generator in the learning experiments, and explains how those issues were ad-
dressed.

4.1.1 Repeatable Streams of Pseudo-Random Numbers

Repeatability is a desirable property for experimental computer science, so for randomized algo-
rithms it is common to use a pseudo-random number generator rather than a genuine source of
randomness. That approach was used for all the experiments reported here. For simplicity, the
“pseudo-” will usually be dropped when discussing random numbers or random events, but it should
be understood that all numbers and events were generated with a pseudo-random number generator.

Repeated invocations of a random number generator over a single run of a program will
generate a stream of random numbers. Since the stream of numbers produced by a given generator
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starting in a given state is actually deterministic, it is repeatable. E.g., if a given implementation
of a random number generator is initialized with a seed of, say, 37, then it will always produce the
same stream of numbers thereafter. It is therefore useful to think of the initialization seed and any
other keys as a name for that deterministic stream of numbers. I.e., in the example above the ’37’
can be though of as a handle for that stream of numbers.

A genetic algorithm will consume very many random numbers if it runs for many genera-
tions and/or the breeding population is large. Due to the finite storage used to maintain a random
number generator’s internal state, any stream of pseudo-random numbers will eventually repeat. To
protect against any artifacts of the cyclic stream of numbers, the Mersene Twister (Matsumoto and
Nishimura 1998) was used as the random number generator for all the experiments reported here;
the Mersene Twister was designed to provide an extremely long cycle time. The Mersene Twister
allows a set of numeric keys to be used for initialization in addition to the seed. However, for all the
work reported here the default value of those keys was retained.

Since a random number generator is just a state variable and an algorithm for producing a
new number from a given state, it is possible for a program to manage independent streams of ran-
dom numbers by using separate variables to initialize and preserve their state. This mechanism was
used to generate repeatable games for the Legion II experiments, as described in the next section.

4.1.2 Repeatable Gameplay

When training or testing by means of dynamic gameplay rather than static examples, it is useful to
have a definition for the concept of “the same game”, e.g. to make comparative evaluations of the
performance of embedded game agents. However, games that are genuinely identical with respect
to the course of play are, in general, impossible to generate, if they involve embedded game agents
that learn: as the agents learn, their behavior will change, and the changed behavior will cause the
course of the game to vary from earlier plays. For example, if the legions in Legion II fail to garrison
the cities during the early stages of training, the barbarians will occupy the cities. But later during
training, when the legions learned to garrison the cities, the details of the barbarians’ behavior must
also change in response – i.e., the city will not be pillaged as before – even if there has been no
change to the starting state and the barbarians’ control policy.

It is therefore useful to have a pragmatic definition of “the same game” for experimental
work. Thus for Legion II two games are identified as “the same game” if they use the same starting
position for the cities and legions, and the same schedule for barbarian arrivals. The schedule for
arrivals includes both the time and the randomly selected position on the map. For all the games
reported here the barbarian arrivals were fixed at one per turn, so only their placement mattered for
identifying two games as being the same.

However, the randomized placement of the barbarians is not always repeatable: as described
in section 3.1.3, if the position selected for placing a new barbarian on the map is occupied, an
alternative randomly selected position is used instead, and the re-tries continue until an empty map
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cell is found. But as described above, changes to the legions’ behavior will result in different game
states at a given time in various instances of “the same game”, so a barbarian positioning during
one play of the game may not be possible in another run using a different controller for the legions.
Therefore, for pragmatic reasons, “the same game” is defined for Legion II to consider only the
first try for the positioning of arriving barbarians; the additional tries triggered by the unavoidable
divergences of the game start are not considered to make two games different.

In principle it is possible to store a given game by recording the start positions for the cities
and legions and the first-try placement positions for the barbarians. In practice it is easier to simply
regenerate a given game upon demand by reproducing the stream of random numbers used for all
the randomized placement decisions. All that is required is a state variable for the random number
generator, as distinct from any other generators in use for other purposes, and variables for storing
the generator’s internal state, e.g. the starting state for a given game that needs to be re-created
repeatedly.

However, it is essential to ensure that the same number of random numbers is consumed
each time a game or set of games is generated. Otherwise the repeated use of the stream will fall out
of synch with the original, and all following decisions based on the random numbers will be different
than before. Therefore the generator used to generate the stream of numbers that define the course of
a game was not used for any other purpose; separate generators (i.e., state variables) were provided
for other randomized activities such as the decisions that are made by the evolutionary algorithm.
A separate stream of numbers was also required for generating the re-try positions during barbarian
placement, since that mechanism does not consume the same number of random numbers when a
given game is replayed with different controllers for the legions.

The concept of “the same game” was used to create sets of games that were used repeatedly
during training and testing, as described below.

4.2 Training

The legions’ controllers were trained by two different base methods, neuroevolution and backprop-
agation. The details of the application of those methods are described in this section.

4.2.1 Stopping Criterion

Randomized learning algorithms such as neuroevolution do not always produce their best solution
at the end of a fixed-length run; the random modifications to the representations in an evolutionary
population can make the solutions worse as well as better. Likewise, supervised learning methods
such as backpropagation do not always produce their best solution at a fixed-length run, as over-
training may result in memorization of the training examples rather than a good general solution.
Therefore it is useful to have a mechanism for returning the best solution obtained at any time in the
course of a run.
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The commonly used mechanism is to evaluate candidate solutions periodically during train-
ing, and, if the top performer is better than any previously encountered during the run, to save that
top performer as the potential output of the learning algorithm. At the end of the run, the most
recently saved top performer is returned as the solution produced by the algorithm. The learning
algorithm still runs for some fixed number of iterations that the experimenter deems sufficient to
find a good solution, but that solution may be discovered at any time during the run.

The periodic evaluation is performed against a validation set. When generalization is de-
sired, the validation set must be independent of the training data; otherwise the algorithm will return
a solution that is biased toward the training data. For supervised learning, the validation set normally
takes the form of a reserved subset of the available training examples. However, when annotated
examples are not available, such as when using reinforcement learning to learn a motor control task
or a controller for an embedded game agent, the validation set can be a standardized set of example
problems. The definition of “the same game” in Legion II and an effective method for generating
multiple instances of a given game allows construction of a distinctive set of games to serve as the
validation set for Legion II learning tasks, and that is the mechanism used in all the experiments
reported here.

Therefore stopping was handled in the experiments by running the learning algorithms for
a period deemed to be “long enough”, and using the validation set mechanism to control which
candidate was actually returned as the result of a run. The validation set for Legion II was a set of
ten games, created and re-created by means of an dedicated random number generator as described
in the previous section. A set of ten games with independently generated starting positions and
barbarian placement positions was judged to be a sufficient evaluation for generalization; larger sets
adversely affect the run time of the evolutionary algorithm. The score for a controller’s validation
evaluation was defined as the average of the game scores obtained by play against the ten games of
the validation set.

For consistency, validation by means of gameplay was used for both neuroevolution and
backpropagation. Though backpropagation requires a set of annotated training examples for learn-
ing, when the trained network is to be used as the controller for an embedded game agent it can be
evaluated by gameplay. As a side benefit, the number of available training examples did not have to
be reduced by the reservation of a validation set.

When training with neuroevolution, an evaluation was made against the validation set at
the end of each generation. When training with backpropagation, the learning network was evalu-
ated against the validation set only after each ten iterations, so that the evaluation time would not
dominate the run time of the algorithm and extend it excessively.

For a given run of a training program, the same validation set was used at each evaluation
period. However, the validation set was created independently for each run. The idea is that each
run should represent an independent sample of the space of all possible runs, for a given parame-
terization of the learning algorithm. And though the random number generator initialization seeds
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are in fact passed to a randomized learning algorithm as parameters, they are only used to ensure
that independent runs get independent streams of numbers; the specific numbers that appear in the
stream are a model for a stream of genuinely random numbers, which are not considered to be
parameters of an algorithm.

Some of the experiments described in chapters 6-8 evaluate solutions on the basis of behav-
ioral properties other than their performance as measured by game scores. However, the performance-
based evaluations against the validation set were used to control the learning algorithm’s output even
when other properties were being studied; solutions were not biased toward those properties by the
validation mechanism.

4.2.2 Neuroevolution

Whenever the legions were trained by neuroevolution, the Enforced Sub-Populations (ESP) mech-
anism (Gomez and Miikkulainen 1999; Gomez 2003) was used. (See section 2.5.) Both the appli-
cation and the details of the ESP implementation were novel; ESP has previously been used only to
train fully recurrent networks for use as continuous-state controllers, e.g. for the inverted pendulum
problem and the similar application to a finless rocket (Gomez and Miikkulainen 2003). In Legion
II it is used for learning to make a discrete choice among the legions’ possible atomic actions.

For the Legion II experiments reported here, the controller networks were non-recurrent
feed-forward networks with a single hidden layer, as described in section 3.3.2 (figure 3.4). A sub-
population was used for each neuron, regardless of which layer it was in; the representations in
the populations held only the weights on the input side of the neurons (figure 4.1). In principle it
is not necessary to provide separate neurons for the output layer; an architecture more similar to
previous uses of ESP would have dispensed with those neurons and stored both the input and output
weights in the representations of the hidden-layer neurons. That is in fact the mechanism used in the
original Legion I experiments (Bryant and Miikkulainen 2003). However, the introduction of new
sub-populations for the output layer contributed to the improved scores in the experiments reported
here.

Fitness evaluations were obtained by playing the learners against randomly generated game
setups; the set of possible game setups is so large that none ever have to be reused. A different
sequence of training games was used for each independent run with a given parameterization in a
given experiment. For fair evaluations within a single run, every neuron was evaluated against the
same game (as defined above) before moving on to the next game.

When the ESP mechanism is used, the actual fitness of a network is ascribed to each neuron
used to construct it. As a result, the ascribed fitness is only an estimate of a neuron’s “true” fitness;
the “true” fitness is in fact ill-defined, since the neurons are only useful when associated with other
neurons in the other populations. However, a reasonable estimate of the fitness of a neuron given
that it will be used in a network with other neurons in the current populations can be obtained by
evaluating the neuron repeatedly, in networks comprised of one independently randomly selected
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Figure 4.1: Enforced Sub-Populations for the legions’ controllers. To apply the ESP method of neu-
roevolution for training the legions’ controllers, a separate breeding population was maintained for each of
the 17 neurons used in the controller network.

neuron from each sub-population.

Thus for all the neuroevolutionary learning experiments described here each neuron was
evaluated on three different games per generation, and the three resulting fitness ratings are averaged
to estimate the neuron’s fitness.. The associations of the neurons into networks were re-randomized
before each of the three games so that the averaged fitness ratings would reflect the quality of a
given neuron per se more than the quality of the other neurons it happened to be associated with in
the network. Each of the three evaluations used a different game setup, and all of the neurons were
evaluated on the same three games during the generation.

Since the training game setups differed continually from generation to generation, learning
progressed somewhat noisily: a neuron that performed well on the training games in one generation
might not perform well on the new training games of the following generation. However, neuroevo-
lution with ESP is robust even when evaluations are somewhat noisy, and the use of three games per
generation helped smooth the noise of the evaluations. The continually changing stream of train-
ing games from generation to generation required candidate solutions to generalize to novel game
setups, or else risk having their constituent neurons be weeded out of the breeding population; if
a network performed poorly on the game setup used during a given generation it received a poor
fitness score, regardless of how well it had performed during previous generations.

As described in section 4.2.1, an evaluation against the validation set was done at the end
of every generation. For ordinary evolutionary mechanisms the network that performed best on
that generation’s fitness evaluations would have been chosen for the run against the validation set.
However, the notion of “best network in the population” is ill-defined when the ESP mechanism is
used, so for the Legion II experiments a nominal best network was defined as the network composed
by taking the most fit neuron from each sub-population. It was that nominal best network that was
evaluated against the validation set at the end of each generation.

Breeding was done by a probabilistic method that strongly favored the most fit solutions,
but also allowed less fit solutions to contribute to the next generation with low probability. The

41



mechanism was as follows. When all the training evaluations for a generation were complete, the
storage for the representations of the solutions in each sub-population was sorted from most fit to
least fit, so that the most fit had the lowest index. Then each representation was replaced one at
a time, starting from the highest index. Two parents were selected with uniform probability over
the indices less than or equal to the index of the representation currently being replaced. I.e., that
representation or any more fit representation could be chosen as a parent. The two selections were
made independently, so that it was possible for the same representation to be used for both parents;
in such cases the child would differ from the parent only by mutations. Notice that the mechanism
always bred the most fit neuron with itself. Since the less fit representations were progressively
eliminated from the effective breeding pool, the more fit solutions had more opportunities to con-
tribute to the next population. Survey runs showed that this mechanism produced better results than
an elitist mechanism.

Once a pair of parents were selected they were bred with either 1-point or 2-point crossover,
with a 50% chance for each. Only one child was produced from the crossover; the remaining genetic
material was discarded. Each weight in the representation was then subjected to a mutation at a 10%
probability, independently determined. Mutations were implemented as a delta to the current weight
chosen from the exponential distribution with λ = 5.0 (equation 4.1), inverted to the negative delta
with a 50% chance.

f(x, λ) = λe−λx, x ≥ 0 (4.1)

The choice of λ reduced the mean of the distribution, and was chosen on the basis of survey exper-
iments. The deltas resulting from this distribution were small with high probability, but potentially
very large with a low probability. That distribution allowed mutations to support both fine tuning of
the weights and jumps to more distant regions of the solution space.

Training on the Legion II problem with neuroevolution appears to make progress asymptot-
ically. For the experiments reported here, evolution was allowed to continue for 5,000 generations,
well out on the flat of the learning curve, to ensure that comparisons and analyses were not made on
undertrained solutions.

4.2.3 Backpropagation

The experiments reported in chapters 6 and 7 trained networks with backpropagation (Rumelhart
et al. 1986b,a), either alone or in combination with neuroevolution. (See section 2.4.) When used
alone it presented few complications; supervised learning on human-generated examples reduces the
problem of training agent controllers to a Learning Classifier System problem, where each perceived
game state must be mapped onto an appropriate choice between the possible moves. The only
novelty in the application of backpropagation to the Legion II problem is the use of gameplay for
the validation evaluations in lieu of a static list of annotated examples, as described in section 4.2.1.

As with neuroevolution, training on the Legion II problem by backpropagation on human-
generated examples also appears to make asymptotic progress. Therefore when backpropagation
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was used alone it was allowed to continue for 20,000 iterations, which preliminary survey runs had
shown to put the solutions well out on the flat of the learning curve.

4.3 Testing

Each run of a learning algorithm returned a single neural network as its output. The networks
were saved to files for later testing with a separate program. The test program spilled various run-
time metrics to a file for analysis and plotting with the R statistical computing environment (R
Development Core Team 2004).

Tests of current performance were also conducted during the course of training, for the pro-
duction of learning curves. Tests are only made on those generations (for neuroevolution) or itera-
tions (for backpropagation) where the evaluation on the validation set produced a new top performer,
i.e. when measurable had been progress made. These were “side tests”; the learning algorithms ran
the tests and spilled the results to a file for later analysis, but did not make any training decisions on
the basis of the tests.

Whether during the learning run or afterward, tests were run on a set of games constructed
as the validation set was, but independent of both the validation set and the training games. As with
the validation evaluations, the evaluation score for this composite test was defined as the average of
the scores obtained on the individual games of the test set.

Unlike the validation set, the same test set was used for every independent run of every
learning algorithm, to ensure that any differences in the test metrics were the result of differences
in the solutions being examined rather than differences in the difficulty of independently generated
test sets. The training-time evaluations on the test set are not as frequent as the evaluations on
the validation set, so a larger test set could be used without unduly extending the run times of the
training algorithms. Also, it is essential that the test set be an accurate model of the set of possible
games. Therefore a set of 31 games was used; the significance of that choice is explained in the next
section.

The experiments reported in chapters 6, 7, and 8 had other goals that were best measured
by metrics other than the game scores. Those metrics and the associated tests are described at an
appropriate point in those chapters.

4.4 Note on Statistical Significance Tests

Parametric statistical tests such as the Student t-test require either that the samples being examined
be drawn from the normal distribution, or else that sufficiently many samples (i.e. 30) be used that
the sampling distribution of the mean of a sample is approximately normal (Pagano 1986). It is an
established fact that the performances of solutions obtained by training artificial neural networks
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do not distribute normally (Lawrence et al. 1997; Giles and Lawrence 1997). Therefore thirty
independent runs are required for statistical significance tests to be done.

When possible, thirty-one independent runs were used rather than thirty, so that a well-
defined median performer could be used for plotting as a “typical” outcome (e.g., figure 6.5). How-
ever, evolution using the play of complete games to compute fitness ratings is a very CPU-intensive
task, and there was not always enough CPU time available to carry out the necessary number of
runs using the desired number of generations and population size. Therefore statistical significance
tests were only done for those experiments where the required number of runs were obtained. The
number of runs differs between the experiments due to the differing availability of CPU time at the
time the various experiments were conducted. Whenever a sufficient number of runs was obtained,
the metrics of interest generated by the test program were evaluated for statistical significance at
the 95% confidence level (α = 0.05) using the Student t-test. That confidence level was chosen
because it is the norm in the social sciences (Pagano 1986); we may as well adopt it for studying
the behavior of embedded game agents as well.
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Chapter 5

Adaptive Teams of Agents

This chapter examines the need for flexibility and adaptability in agents when they must cooperate
as a team at a task that requires different activities by different individuals. A multi-agent archi-
tecture called the Adaptive Team of Agents (ATA) is proposed to meet that need, and its feasibility
is examined experimentally. Section 5.1 motivates and introduces the ATA architecture, and then
section 5.2 reports the experiments. Finally section 5.3 summarizes the findings regarding Adaptive
Teams of Agents.

5.1 Introduction

Multi-agent systems are a commonplace in social, political, and economic enterprises. Each of these
domains consists of multiple autonomous parties cooperating or competing at some task. Multi-
agent systems are often formalized for entertainment as well, with instances ranging from team
sports to computer games. Games have previously been identified as a possible “killer application”
for artificial intelligence (Laird and van Lent 2000), and a game involving multiple autonomous
agents is a suitable platform for research into multi-agent systems as well.

Multi-agent systems can be composed either of homogeneous agents or of heterogeneous
agents. Heterogeneous teams are often used for complex tasks (e.g., Balch 1998; Haynes and Sen
1997; Yong and Miikkulainen 2001). However, heterogeneous teams of sub-task specialists are
brittle: if one specialist fails then the whole team may fail at its task. Moreover, when the agents
in a team are programmed or trained for a pre-specified division of labor the team may perform
inefficiently if the size of the team changes – for example, if more agents are added to speed up the
task – or if the scope of the task changes dynamically.

For example, suppose you owned a team of ten reactor cleaning robots, and the optimal
division of labor for the cleaning task required two sprayers, seven scrubbers, and one pumper
(figure 5.1). If the individual robots were programmed or trained as sub-task specialists the team
would be brittle and lacking in flexibility. Brittle, because the failure of a single spraying robot
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Figure 5.1: The Adaptive Team of Agents. Left: A heterogeneous team of cleaning robots is trained or
programmed for sub-task specializations. Such a system is inflexible when the scope of the task changes,
and brittle if key specialists are unavailable. Right: An Adaptive Team of Agents provides every agent with
the capability of performing any of the necessary sub-tasks, and with a control policy that allows it to switch
between tasks at need. The resulting team is more flexible and less brittle than the heterogeneous team.

would reduce the entire team to half speed at the cleaning task, or the loss of the pumper robot
would cause the team to fail entirely. Inflexible, because if a client requested a 20% speed-up for
the task you would not be able to simply send in two more robots; you would have to add d20e%
more robots for each sub-task specialization, or four more robots rather than two.

An alternative approach is to use a team of homogeneous agents, each capable of adopt-
ing any role required by the team’s task, and capable of switching roles to optimize the team’s
performance in its current context. Such a multi-agent architecture is called an Adaptive Team of
Agents (ATA; Bryant and Miikkulainen 2003). An ATA is a homogeneous team that self-organizes
a division of labor in situ so that it behaves as if it were a heterogeneous team. If composed of
autonomous agents it must organize the division of labor without direction from a human operator,
and be able to change the division dynamically as conditions change.

An ATA is robust because there are no critical task specialists that cannot be replaced by
other members of the team; an ATA is flexible because individual agents can switch roles whenever
they observe that a sub-task is not receiving sufficient attention. If necessary, an agent can alternate
between roles continuously in order to ensure that sufficient progress is made on all sub-tasks. Thus
for many kinds of task an ATA could be successful even if there were fewer agents than the number
of roles demanded by the task.

Such adaptivity is often critical for autonomous agents embedded in games or simulators.
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For example, games in the CivilizationTM genre usually provide a “Settler” unit type that is capable
of various construction tasks and founding new cities. Play of the game requires a division of labor
among the settlers, and the details of the division vary with the number in play and the demands
of the growing civilization – e.g. the choice between founding more cities vs. constructing roads to
connect the existing cities. If the Settler units were heterogeneous, i.e. each recruited to perform
only one specific task, there would be a great loss of flexibility and a risk of complete loss of support
for a game strategy if all the Settlers of a given type were eliminated. But in fact the game offers
homogeneous Settlers, and human players switch them between tasks as needed. For embedded
autonomous Settlers that switching would have to be made by the Settlers themselves: an Adaptive
Team of Agents is required.

This chapter explores the Adaptive Team of Agents experimentally, with a finding that it
is possible to evolve an ATA with ANN controllers for a non-trivial strategy game. The game
application was described in the previous chapter; the next section describes the use of the game in
an ATA learning experiment, and examines the adaptive behavior of the evolved game agents.

5.2 Experimental Evaluation

ANN controllers for the legions in Legion II were trained using the base neuroevolutionary system
described in chapter 4. The game parameters were set to require a division of labor to perform well:
there were more legions than cities, the randomized placement of the barbarians and the 100:1 ratio
of pillage between the cities and countryside made it essential to garrison the cities, and the large
number of barbarians arriving over the course of the game made it essential to eliminate barbarians
in the countryside as well, if pillage was to be minimized. With one barbarian arriving per turn, the
count would ramp up from one to 200 over the course of a game in the absence of action by the
legions, providing an average of ∼100 pillage points per turn. With three cities each subject to an
additional 100 pillage points per turn, pillaging the countryside can amount to ∼1/4 of the worst
possible score. Thus the legionary ATA must take actions beyond simply garrisoning the cities in
order to minimize the pillage: a division of labor is required.

The following sections examine the results of the training experiment and the behavior pro-
duced in the legions.

5.2.1 Learning Performance

Hundreds of runs of neuroevolutionary learning on the Legion II problem, with a variety of learning
parameters and a number of changes to the game rules and network architecture since the initial re-
sults reported in Bryant and Miikkulainen (2003), have consistently performed well, where “well”
is defined fuzzily as “learns to bring the pillage rate substantially below the 25% threshold” ob-
tainable by a policy of static garrisons and no division of labor to support additional activity by the
spare legions. For the experiments reported here, eleven runs of the base learning method with the
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Figure 5.2: Performance on the test set. A boxplot shows the distribution of the performances of eleven
trained networks on the test set. The boxplot shows the median and quartiles of the scores and whiskers
show the extremes. Half the scores lie with the bounds of the box and a quarter lie within the range of each
whisker. The asymmetry indicates the degree of skew to the set of scores. Lower scores are better, and the
worst possible score is 100. A score of 25 is easily obtainable by learning to garrison the cities and take no
further actions to eliminate barbarians; each of the eleven solutions learned to reduce the scores substantially
below that threshold. Observation and additional metrics described below indicate that the improvement was
obtained by learning to perform as an Adaptive Team of Agents.

parameters described in section 4.2.2 produced a mean test score performance of 4.316. The scores
on the games in the test set show that all five runs produced controllers that allowed the legions to
reduce pillaging well below the 25% rate obtainable by garrisoning the cities and taking no further
actions against the barbarians (figure 5.2).

Notice that there is no a priori expectation that the legions will be able to completely sup-
press the pillaging. Since the warbands appear at random locations and move at the same speed
as the legions, it becomes increasingly difficult for the legions to eliminate them as their density
on the map decreases. Thus the performance of the legions is ultimately limited to an equilibrium
condition between the number of legions in play, the rate of appearance of the warbands, and the
size of the map.

As described in section 4.3, performance against the test set was also checked during training
so that learning progress can be examined. A typical learning curve is shown in figure 5.3. The
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Figure 5.3: A typical learning curve. The plot shows progress against the test set for the median performer
of the eleven training runs. At each generation when progress was made on a test against the validation set,
the nominal best network was also evaluated against the test set. The hatch marks at the bottom of the plot
identify those generations. The test scores for those generations are connected with lines to improve visibility.
The plot is not strictly monotonic because progress on the validation set does not strictly imply progress on
the test set.

learning curve familiar from many machine learning applications, though inverted because lower
scores are better, with fast initial learning tapering off into slower steady progress. Experience shows
that learning by neuroevolution on the Legion II problem appears to progress asymptotically. There
is no stair-step pattern to suggest that the legions’ two modes of behavior were learned sequentially;
observations confirm that the legions begin chasing barbarians even before they have learned to
garrison all the cities.

5.2.2 The Run-time Division of Labor

The behavior of the controller networks can be evaluated qualitatively by observing the real-time
animations of game play. In every case that has been observed, the legions begin the game with a
general rush toward the cities, but within a few turns negotiate a division of labor so that some of the
legions enter the cities and remain near the cities as garrisons while the others begin to chase down
barbarian warbands in the countryside. The only time the cities are not garrisoned promptly is when
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Figure 5.4: Learning progress. Two end-of-game screenshots show the legions’ performance before and
after training. Left: Before training the legions move haphazardly, drift to an edge of the map, or sit idle
throughout the game, thereby failing to garrison the cities and allowing large concentrations of barbarians
to accumulate in the countryside. Right: After training the legions have learned to split their behavior so
that three defend the three cities while the other two move to destroy most of the barbarians pillaging the
countryside. The desired adaptive behavior has been induced in the team.

two of them mask the third from the legions’ low-resolution sensors. However, even in those cases
the third city is garrisoned as soon as one of the roaming legions pursues a barbarian far enough to
one side to have a clear view of the third city so that it can “notice” that it is ungarrisoned. A feel
for these qualitative behaviors can be obtained by comparing end-of-game screenshots taken early
and late during a training run, as shown in figure 5.4. An animation of the trained legions’ behavior
can be found at http://nn.cs.utexas.edu/keyword?ATA.

The legions’ division of labor can can also be examined by the use of run-time metrics. The
test program was instrumented to record, after each legion’s move, how far away it was from the
nearest city. The results for playing the median performer among the eleven networks against the
first game in the test set are shown in figure 5.5. The plot clearly shows that after a brief period of
re-deploying from their random starting positions three of the legions remain very near the cities at
all times while two others rove freely. The rovers do approach the cities occasionally, since that is
where the barbarians primarily gather, but for most of the game they remain some distance away.

When a rover does approach a city there is sometimes a role swap with the current garrison,
but the 3:2 split is maintained even after such swaps. However, the legions show surprisingly per-
sistent long-term behavior for memoryless agents: the plot shows that legion #1 acts as a rover for
almost 3/4 of the game, and legion #2, after starting as a garrison and then swapping roles with a
rover, spends the final 7/8 of the game in that new role.

Careful examination of figure 5.5 reveals that the average distance from the legions on gar-
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Figure 5.5: Run-time division of labor. The plot shows the distance from each legion to its nearest city over
the course of a single game. The five legions start at random distances from the cities, but once some legion
has had time to reach each of the three cities the team settles into an organizational split of three garrisons and
two rovers. The legions sometimes swap roles when a rover approaches a garrisoned city, e.g. legions 3 and 4
just before turn 25. The numbering of the legions is arbitrary; they are identical except for the happenstance
of their starting positions. The lines have been smoothed by plotting the average of the values measured over
the previous ten turns.

rison duty to the nearest city is not actually zero as expected; in fact it hovers near 0.5. The movie
reveals that that arises from the details of the garrisons’ behavior: they oscillate in and out of the
cities continually. The smoothing on the plot shows the 0/1 alternations as the non-zero average.

The oscillations sometimes allow a barbarian to slip into a city for a single turn, but also
sometimes allow the elimination of barbarians that might have spent many turns pillaging the coun-
tryside otherwise. That trade-off between points lost and points gained was not biased enough to
cause neuroevolution to settle on a different, more sophisticated solution. The issue of apparently
erratic behavior in the details of the legions’ behavior is deferred to chapter 6.

5.2.3 Mid-game Reorganizations

The training problems were parameterized to require the legions to organize a division of labor at
the beginning of the game, and they successfully learned to do that. However, the motivation for
the ATA multi-agent architecture calls for teams that can reorganize whenever a change in circum-
stances requires it. For example, if the pumper robot in the motivating example breaks down, one
of the other robots should take over the task so that the team will not fail entirely. The legions in the
Legion II game should also be able to reorganize at need.

That necessary ability was examined by modifying the test program to support the addition
or removal of a city at the mid-point of the test games. When a city is added, the legions should
reorganize into a team of four garrisons and one rover, or when a city is removed they should
reorganize into a team of two garrisons and three rovers.
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Figure 5.6: Mid-game reorganization of the team (i). In a second test, play follows the pattern of the
previous test until turn 100, when a fourth city is added to the map. The team is forced to re-organize its
division of labor so that there are now four garrisons and only a single rover. The role swaps continue, but
they always leave four legions hovering near the cities. The lower distance from the rover to its nearest
city after the city is added is an artifact of the increased density of cities on the map. Legion 2 erroneously
abandons its city near the end of the game; see the text for the explanation.

The result of adding a city is shown in figure 5.6. The plot again shows the median-
performing controller’s behavior on the first game in the test set. Since the legions’ behavior is
deterministic and the game’s stochastic decisions are repeated, as described in section 4.1.2, the
game follows its original course exactly, up until the city is added at the mid-point of the game.
Thereafter the team can no longer afford to have two rovers, and the plot shows the resulting re-
organization. There are still role swaps in the second half of the game, but the swaps now always
maintain four garrisons and a single rover.

The average distance from the rover to the cities is lower in the second half of the game.
That is primarily an artifact of having more cities on the small map: regions that were once distant
from all the cities no longer are, so even without any change in behavior the rover is expected to
be nearer some city than before. A second cause is an indirect result of the change in the team’s
organization. With only one rover in the field, the legions are not able to eliminate the barbarians
as quickly as before, so during the second half of the game the concentration of barbarians on the
map builds up to a higher level than previously. Since they tend to crowd around the cities and the
roving legions tend to chase down the barbarians wherever they mass, the roving legion now has
more reason to operate close to the cities.

The plot shows legion #2 vacating the city it was garrisoning right at the end of the game.
That is also an artifact of the increased density of the barbarians on the map. In ordinary play the
trained legions are able to maintain a dynamic equilibrium between the rate of influx of the barbar-
ians and the rate they are eliminated; the denser the barbarians are on the map, the easier it is for the
rovers to catch some of them. However, when the add-city test causes one of the rovers to swap roles
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Figure 5.7: Mid-game reorganization of the team (ii). The mid-game reorganization experiment is re-
peated, except this time a city is removed from the map. That city had been garrisoned by legion 4, which
now finds itself far from the nearest city, and immediately adopts the role of a rover. (The steep ramp-up
of its nearest-city distance on the plot is an artifact of the smoothing; the change is actually instantaneous
when the city is suddenly removed from under the legion.) There is a role swap just before turn 150, but the
team consistently keeps two legions very near the two remaining cities, with the other three roving at various
distances.

to garrison duty, that equilibrium can no longer be maintained by the single remaining rover, and
the number of barbarians in play starts ramping up after the city has been added. Eventually their
number oversaturates the legions’ sensors – they have not seen such densities since early during
training – and the legions begin to behave erratically. However, until their sensory input diverges
far from what they were trained for, the legions exhibit the desired behavior.

The result of removing a city at the mid-point of a game is shown in figure 5.7. The play
proceeds as before until the city is removed at turn 100. At that point the legion formerly garrisoning
that city finds itself far away from any, but it adopts the roving behavior rather than sitting idle or
trying to crowd into one of the other cities, and it maintains that behavior for the remainder of the
game. There is a role swap between two of the other legions later, but the team is always left with
two legions hovering very near the cities on garrison duty, while the other three range over various
distances in pursuit of the barbarians.

5.3 Findings

The experiments show that the Adaptive Team of Agents is a feasible architecture for multi-agent
systems, and that ATAs can be created by neuroevolutionary methods. The legions learned the
desired variety of behavior, and the ability to organize a division of labor by individually adopting
an appropriate choice of behaviors. They also learned to swap roles without disrupting the required
organization of the team, both in the ordinary course of events and in response to a change in the
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scope of their task.
As described in section 5.1, such capabilities are essential for autonomous embedded game

agents. Games often provide multiple agents of some generic type – e.g. the Elvish Archer type in
the open source game The Battle for Wesnoth – which must as individuals pursue differing activities
that contribute to the success of the team rather than the individual. And those agents must be adap-
tive in their choice of activities, taking account of the observed game state, including the choices
being made by their peers. Yet the scripted behavior of agents in commercial and open source games
commonly fail at that requirement, making decisions that appear to take little account of context.
For example, in strategy games, even when the agents are not autonomous and a higher-level AI is
able to manipulate them according to some plan, individual agents are frequently observed to make
piecemeal attacks that are suicidal due to a lack of supporting actions by their peers. To a human
observer, such agents simply do not seem very intelligent. Appropriate machine learning meth-
ods should be able to take game intelligence beyond the brittleness, inflexibility, and narrowness
of scripted activity, and for many games or simulators the context-awareness and adaptivity of the
agents in an ATA will be a necessary part of any successful solution.

The Legion II ATA experiments also reveal a special challenge for the application of ma-
chine learning methods to agent behavior problems. The goal as understood by the machine learning
algorithm – e.g. minimizing pillage in the Legion II game – may be met with little or no regard for
the appearance of details of the learned behavior that make little difference to the goal implicit in
the training regimen. For example, the legions in the Legion II experiment learn to display visibly
intelligent behavior at a high level by choosing appropriate roles on the basis of context, but some
of the details of their behavior are not equally satisfactory. The garrisons’ “mindless” oscillations in
and out of their cities would likely be the subject of ridicule if seen in the behavior of the agents in a
commercial game. In principle such details of behavior could be addressed by careful specification
of the goals of the training regimen, such as an evolutionary reward function that penalizes undesir-
able behavior, but for applications as complex as a commercial game it may be as difficult to specify
an appropriate reward function as it would be to write a script that covers all situations adequately.
Therefore chapter 6 will explore an alternative, general approach to refining the behavior of agents
with evolved controllers.
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Chapter 6

Example-Guided Evolution

This chapter examines the feasibility of using human-generated examples of gameplay to guide evo-
lutionary learning to produce agents that behave in a manner similar to the way they were operated
by the human player. Section 6.1 motivates and explains the concept, and section 6.2 addresses
details of methodology specific to the use of example-guided evolution, beyond what has already
been addressed in chapter 4. Then sections 6.3 and 6.4 report sets of experiments using different
sets of human-generated examples reflecting two distinct behavioral doctrines. Finally, section 6.5
summarizes the findings regarding example-guided evolution.

6.1 Introduction

Chapter 5 illustrated training an Adaptive Team of Agents with neuroevolution; it also illustrated
the arbitrary nature of the solutions genetic algorithms can produce. In the solutions to the Legion
II problem obtained by evolution, the legions assigned to garrison duty oscillate in and out of their
cities “mindlessly”, i.e. there is no apparent motivation for the oscillating behavior. But since there
is no direct cost for that behavior, and little detriment to the game scores, evolution of the controller
does not weed the behavior out. Yet to a human observer the behavior does not seem appropriate
for a legion garrisoning a city. So the new challenge is: how do we inform the evolutionary process
with human notions of appropriateness?

In principle a more apropos behavior could be obtained by modifications to the evolutionary
fitness function, e.g. by charging a fitness cost for each move a legion makes during the course of
a game. However, when it is necessary to learn complex behavior it may be as difficult and time-
consuming to specify and tune the necessary collection of cost factors as it would be to directly
specify the desired behavior with a script or a collection of rules.

Therefore it is useful to consider other approaches, such as example-guided evolution.
Example-guided evolution retains the benefits of evolutionary search and optimization – delegat-
ing the construction of a solution to machines rather than to human analysts – while inducing the
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Figure 6.1: Indirect specification of a solution. If solution S is a controller that is too complex for direct
specification by a human analyst, it can be specified indirectly in terms of the sort of contextual decisions it
should make.

evolutionary result to be similar to a human-like solution specified relatively easily by means of
examples.

When the solution produced by a genetic algorithm takes the form of a complex object not
easily constructed by humans, such as a non-trivial artificial neural network, the genetic algorithm
cannot rely on case injection with directly specified solutions. However, if the complex solution is
an agent’s controller then it can be specified, partially and indirectly, by means of examples of the
behavior that it should produce (figure 6.1). If the agent is embedded in a game then such examples
can be created relatively easily by adding game controls that allow a human to operate the agent,
and a system for observing and recording the game state and the human’s decisions. Then each time
the human player uses the game controls to signal a decision, the observer records the game state
and the decision as a <state,action> tuple, which serves a a single example of play. The training
examples collected over the course of one or more games can then be used to guide evolution toward
a solution that behaves similarly (figure 6.2).
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Figure 6.2: Learning by observing in a game context. Human examples of play can be captured by writing
an observer into the game engine, and examples collected by the observer can be used to help train a controller
for a game agent.

When the controller is an artificial neural network that maps sensory inputs onto behavioral
outputs, then examples of the input-output mapping can be used to implement Lamarckian neu-
roevolution. Lamarckian evolution allows adaptation in a candidate solution (phenotype) during
its lifetime, i.e. before or during its fitness evaluation, reverse-engineers a modified representation
(genotype) from the adapted candidate solution, and replaces the original representation in the gene
pool with the modified representation, which is credited with the fitness resulting from the adapted
solution’s evaluation (figure 6.3). When examples of the desired input-output mapping are avail-
able, Lamarckian neuroevolution can be implemented by using a supervised learning method such
as backpropagation (Rumelhart et al. 1986b,a) for adaptation in the candidate solutions.

This chapter examines the application of that strategy of guided evolution to the Legion II
game. Lamarckian neuroevolution with adaptation via backpropagation is evaluated experimentally,
and is found to be capable of suppressing the garrisons’ undesired oscillating behavior. Additional
observations and metrics show that example-guided evolution produces agents that behave accord-
ing to distinctive doctrines, and that specific rules of behavior used to define those doctrines – only
implicit in the human-generated examples – are induced into the evolved controllers.

57



population
of

representations

S produces a stream
of contextual decisions

conditionally return to gene pool
(for Lamarckian NE, return the tuned network)

tune up,
then evaluate

environment

instantiate

S
(ANN)

human−generated examples
are isomorphic to S’s decisions

(use them to partially train S before evaluating)

Figure 6.3: Lamarckian neuroevolution. Lamarckian neuroevolution uses examples of desirable behavior
to tune a controller before its fitness evaluation, and returns a representation of the modified controller to the
gene pool. As a result, human notions of desirable behavior are incorporated into the output of the genetic
algorithm.

6.2 Methods

Examples of human play for the Legion II game were collected as described above, i.e. a user
interface was added to the game and the game engine was modified to record each human use of
the controls as an example of appropriate behavior. Since the legions’ controller networks must
learn to make decisions on the basis of their sensory inputs, the examples were recorded in terms
of the game state as it was seen via the legions’ sensors. Thus the <state,action> tuples used a
39-element floating point vector of egocentric sensory activations for the state, and a symbol for
one of the legion’s seven discrete choices – to remain stationary or move to one of the six adjacent
map cells – for the action (figure 6.4).

The author generated two separate sets of examples, each using a different doctrine to con-
strain the choice of actions for the legions. The doctrines are named Level Zero (L0) and and Level
One (L1), where doctrine Li requires a garrison to remain within distance i of the city it is guard-
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Figure 6.4: Training examples for the Legion II game. To train embedded game agents for the Legion II
game, the captured <state,action> tuples consist of the legion’s egocentric sensory perception of the game
state and the human’s choice of discrete actions for the legion. For example, if the human chooses to move
the legion at the upper right to the west when the map is in the game state shown, the built-in observer records
the 39-element pattern of the legion’s sensor activations and the discrete symbolic choice “West”.

ing. In addition, the doctrines only allow a garrison to leave its city to eliminate a barbarian within
range i; it must remain in the city if no such barbarian is present. The doctrines were formulated to
allow i > 1 as well, but due to the fuzziness of the legions’ sensors at distances greater than 1, no
experiments have been conducted with i > 1.

Since the barbarians move after the legions each turn, any barbarian that is as close to a
city as the garrison after that garrison’s move will be able to beat the garrison to the city and inflict
at least one turn of pillage on it. Thus in addition to the distance constraint the doctrines impose
a safety condition on the garrisons: regardless of i, a garrison must move directly back to its city
unless it can end its turn strictly nearer to the city than any barbarian.

Thus the L0 doctrine requires a garrison to remain fixed in its city, but the L1 doctrine allows
a garrison to move to any of the map cells adjacent to its city under appropriate circumstances.
Notice that all other constraints are trivially satisfied when a legion conforms to the distance limit of
the L0 doctrine, but not for doctrines with i > 0. An implicit constraint that arises from combining
the L1 doctrine with the safety condition is that a legion following the L1 doctrine can move out of
the city to eliminate a single adjacent barbarian, but is locked in the city when there are no adjacent
barbarians, or more than one.

Twelve example-generating games were played using each doctrine. The pseudo-random
numbers used by the game engine were marshaled to ensure that the same twelve game setups were
used when generating the two sets of examples. With five legions in play and 200 turns per game,
each game produced 1,000 examples. Since the legions were expected to behave as an Adaptive
Team of Agents, every example generated during a game was equally relevant for every legion,
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and thus for a given doctrine the examples collected from all five legions could be combined into a
single pool. The net result was two sets of 12,000 human-generated examples of play, with some
variety in the locations of the cities on the map within each set, and a single behavioral doctrine
used throughout each set.

One game’s examples from each set were reserved for testing, and the remaining 11,000
examples were used for Lamarckian neuroevolution, with backpropagation as the mechanism of
adaptation in the phenotypes. The network architecture and evolutionary training parameters from
the ATA learning experiment described in chapter 5 remained unchanged.

Use of the Lamarckian mechanism with neuroevolution is orthogonal to the use of the ESP
mechanism, so both were used together. With 5,000 generations of evolution and three fitness
evaluations per generation, there were 15,000 exposures to the training set for each member of the
population. Due to that large amount of training a relatively low backpropagation learning rate of
η = 0.001 was used.

For a constant-time mechanisms of phenotypic adaptation such as backpropagation, the
overall training time increases approximately linearly with the number of training examples used.
Moreover, there was concern that excessive training with backpropagation would disrupt conver-
gence in the co-evolution between the populations used by the ESP algorithm: since the neurons are
put into networks consisting of a random selection of peers, the gradient descent used by backpropa-
gation might pull the neuron’s weights toward very different solutions when the neuron participates
in the different networks. Therefore the training time and number of backpropagations were re-
duced by training on only a subset of the available examples each generation, and the results of
using different subset sizes were examined experimentally.

Subsets of sizes ranging from 5 to 5,000 examples were used. The full set of 11,000 training
examples for a given doctrine was subsetted by sampling. A random sample of the desired size was
selected and used to drive adaptation in all the members of the evolutionary population as they
were evaluated; the same subset was used once for each network to be evaluated. Thus since the
populations were evaluated three times per generation for ESP fitness averaging, three different
random subsets of the training examples were used each generation. The samples were selected
independently each time a new subset needed to be constructed.

Eleven training runs were started for each of ten subset sizes, for each of the two training
sets generated using the different behavioral doctrines. In a few cases only nine or ten of the eleven
runs ran to completion, due to circumstances unrelated to the learning algorithm. Since learning
appears to be asymptotic for applications of neuroevolution to the Legion II problem, evolution was
allowed to run for 5,000 generations in order to ensure that the training was well out on the flat of
the learning curve when it terminated (figure 6.5).
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Figure 6.5: Typical learning curve for Lamarckian neuroevolution. The solid line shows how game
scores varied by generation for Lamarckian neuroevolution using 5,000-example subsets of the 11,000 L0

examples for adaptations. (Lower scores are better.) Points are plotted to show the score on the test set
obtained on those generations where progress was made on the validation set, and the points are connected
with straight lines to improve visibility. The ticks below the curve identify those generations. The curve stops
at generation 2,886, as no progress was made after that on the 5,000 generation run. The dotted line shows
progress on the coarse behavioral metric described in section 6.3.1, below.

6.3 Results Using the L0 Training Examples

6.3.1 General Results

The application of Lamarckian neuroevolution to the Legion II problem using the L0 training ex-
amples can be evaluated by the performance of the resulting controller networks on the test set of
standard games, as was done for unguided evolution in chapter 5. The results for the various exam-
ple sample sizes are shown with box-and-whisker diagrams in figure 6.6. The salient feature of the
results is the discontinuity when the example sample size reached a few hundred: for the smaller
sample sizes the median test score hovered around four, but for the larger sample sizes it worsened
to around six.

However, our current focus is on behavior rather than on game performance per se. A
behavioral fidelity metric can be constructed by comparing how the trained controllers respond to a
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Figure 6.6: Game performance vs. L0 training examples used per generation. (Lower scores are better.)
When the number of randomly selected training examples used per generation of Lamarckian neuroevolution
is increased, the effect on the performance of the trained networks is not continuous. Rather, there is a sudden
jump to worse performance when more than a few hundred training examples are used per generation.

given situation with the way a human player using the same strategy actually did. For this purpose
the 1,000 human-generated examples of play reserved for testing as described in section 6.2 can
be treated as a classification problem: for a given game state and behavioral doctrine, what is the
correct action among the set of seven discrete possibilities? If the actions taken by the human player
while using a specific doctrine to generate a test set are considered “correct”, controllers with the
lowest classification error rates on that test set can be reckoned as being the most faithful to the
doctrine followed by the human player.

The results of testing the networks trained with various example sizes against this behavioral
similarity metric are shown with box-and-whisker diagrams in figure 6.7. Again, the salient feature
of the results is a sudden discontinuity when the sample size reached a few hundred. This time,
however, the jump was an improvement: for the smaller sample sizes the median classification error
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Figure 6.7: Behavioral similarity vs. L0 training examples used per generation. (Lower rates are better.)
As with the measured game scores, there is a sudden discontinuity in the behavior metric when more than
a few hundred training examples are used per generation. In this case the jump is to a far better class of
solutions.

rate fell in the range 65-80%, but for the larger sample sizes the rate fell to 14-19%.

The meaning of the common discontinuity in the two metrics – game scores and behavioral
similarity – can be understood when the metrics are plotted one against the other in a phase diagram
(figure 6.8). The locations in the phase space of the solutions obtained using various example
sample sizes are given by symbols at their mean values on the two axes. The locations for solutions
obtained by human play using the L0 doctrine, unguided evolution, and 20,000 iterations of simple
backpropagation on the full set of 11,000 L0 training examples are also shown for comparison.

The phase diagram reveals the discontinuities seen in figures 6.6 and 6.7 as symptoms of a
jump from solutions similar to those obtained by unguided evolution (i.e., nearby in the phase space)
to solutions similar to human play using the L0 doctrine. An immediate conclusion is that Lamar-
ckian neuroevolution using backpropagation for adaptations does not meet the goals of example-
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Figure 6.8: Performance-behavior phase diagram for L0 examples. When the mean game scores are
plotted against the mean values of the behavior metric, the mixed message of figures 6.6 and 6.7 is explained.
When too few training examples are used per generation (A-F), Lamarckian neuroevolution produces con-
trollers that behave and perform similarly to the controllers produced by unguided neuroevolution. When
sufficient examples are used (G-J), the resulting controllers behave and perform more similarly to the human
player. The game scores suffer with increasing behavioral fidelity because the L0 strategy simply is not as
effective as the strategy acquired by unguided evolution. The result of using backpropagation without evo-
lution is shown for comparison; it performs slightly better than the 5000-example Lamarckian method (J) on
the behavior metric, and a bit worse on the game scores.

guided evolution when an insufficient number of training examples is used. When too small an
example sample size is used for training, 200 or fewer for the Legion II application (A-F on the
phase plot), there are minor absolute improvements in the game scores – a move away from the
scores obtained by the human player – and very minor improvements in behavioral similarity. Both
trends generally increase with an increasing sample size, though not monotonically.

However, when a sufficiently large example size is used for training, 500 or more for the
Legion II application (G-J on the phase plot), the solutions not only operate nearer the human’s score
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Figure 6.9: Non-monotonic progress at example classification. The dotted line shows progress on the
classification-based behavioral metric as Lamarckian neuroevolution proceeds. (Lower is better.) Unlike the
relatively smooth progress on the run shown in figure 6.5, this run using a different seed for the random
number generator suffered from substantial and long-enduring deviations from monotonic improvement.

and behavior in the phase space, but further increases in the sample size generally move the solution
toward the human results on both metrics, albeit still somewhat noisily. It might be conjectured that
a sufficiently large number of examples would close the gap to within some arbitrarily small error
on each dimension.

However, the behavioral metric shows a fairly high mean classification error rate of 14.2%
even when the example sample size is 5,000 and evolution is allowed to continue for 5,000 gen-
erations. Nor could that error rate be substantially reduced by extended training on the full set of
11,000 training examples with backpropagation alone. Moreover, on some runs the improvements
on that metric diverge considerably from the expected noisy approximation to monotonicity (figure
6.9; cf. the more expected pattern of progress shown in figure 6.5).

There are several reasons for the difficulty of completely eliminating the classification errors
in the similarity metric. A count of overt errors in play resulting from habituation indicated that
about 1% of the human-generated examples were not actually correct according to the L0 doctrine.
Such errors not only introduce contradictions that make learning more difficult; they also virtually
guarantee a classification error whenever encountered in the test set.

65



However, that 1% only accounts for a small fraction of the 14.2% error rate. Additional
difficulties arise from the nature of the discrete tiling of the map with hexagons. When moving
between two points by jumping along adjacent tiles on the map there is an obvious and unique
shortest path only when those points are aligned on the grain of the tiling. But when the end
points are not aligned with the grain there can be several paths of equal length by the Manhattan
distance, and the human play was not constrained to follow any specific doctrine for choosing
between the equally efficient paths. When a zig-zag path is taken between the two points, the
sequences LRLRL... and RLRLR... may be equally appropriate, and if the controller chooses one
during the example classifications when in fact the human chose the other, the entire sequence of
classifications will be counted as erroneous.

Another factor, and a very important consideration when generating training examples for
embedded game agents, is that the human player’s view of the game state differed from the legions’
views, and the transformation from the one to the other when recording the examples may have
introduced aliases that left the controllers incapable of distinguishing why one move is appropriate
in one instance of the alias while another move is more appropriate in another instance. For that
reason, a deliberate attempt was made to avoid making decisions on the basis of privileged knowl-
edge during the creation of the examples. For example, as the legions have no sense of the game
time, the human player did not use end-game solutions that required knowledge of the number of
turns remaining. However, due to the nature of human cognition it is almost certain that the human
player used intermediate-term plans during play, such as “go over there and break up that crowd of
barbarians”, whereas the implementation if the game restricts the legions to decisions that are local
in time as well as space; higher-level behavior arises strictly from the concatenation of sequences
of localized decisions. The examples did not record any plans or intentions, and also reduced the
human’s full knowledge of the game state to the fuzzy view provided by the legions’ egocentric
sensors.

Thus while the similarity metric may be useful for quantifying behavior at a coarse scale –
e.g. to detect the large gap in behavioral similarity between the use of too few vs. sufficiently many
examples – more precise measurements of the details of behavior are also desirable. In the next
section more detailed metrics are used to measure conformity to the specific rules that define the L0

doctrine. Since those rules are mostly specified in terms of local conditions, the bigger problems
with the behavioral similarity metric are avoided.

6.3.2 Acquisition of Rules of Behavior

A movie of the Legion II game being played by legions controlled by networks trained with Lamar-
ckian neuroevolution using the L0 examples is available on line at the Legion II research archive,
http://nn.cs.utexas.edu/keyword?ATA. The movie shows that the legions learned to be-
have as an Adaptive Team of Agents by organizing themselves to garrison the three cities and use
the two remaining legions as rovers. It also shows that the legions behave according to the L0 doc-
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Figure 6.10: L0 behavior metric – garrison distance.
Above: Evolution guided by the L0 examples results in a con-
troller that locks the garrisons into their respective cities, re-
sulting in an average distance from city to garrison of zero.
The oscillating behavior of the legions trained by unguided
evolution is completely suppressed. Backpropagation without
evolution produces a similar result, but produces legions that
are slower to conform to the doctrine. (See detail at right.)
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trine with few errors; in particular, the garrisons’ “mindless” oscillations in and out of their cities
has been suppressed. In this section that qualitative assessment is supported by quantitative metrics.
The analysis is based on the solutions obtained with the 5,000-example sample size.

In chapter 5 the distance from a city to the nearest legion was used to show that legions did in
fact approach the cities and remain nearby after the ATA division of labor. For the solution obtained
by unguided evolution the in-and-out oscillations caused the average distance to hover a bit over 0.5.
However, if the correct division of labor is made and the garrisons observe the constraints of the L0

doctrine, the average distance should be zero after the division of labor is made and the garrisons
have had time to reach their respective cities. Therefore the distance measurements of chapter 5 were
repeated using legions controlled by a network trained by Lamarckian neuroevolution using the L0

examples for adaptation. The results are shown in figure 6.10, along with the original measurements
from the unguided solution for comparison. The plot shows that the distance, averaged over the three
cities, is brought down to zero early in the game and remains uniformly zero thereafter, as required
by the L0 doctrine. Backpropagation alone produces a similar result, but is slower to bring the
average down to zero, as shown in the detail of the plot.

Violations of doctrine Li can be reckoned as the number of times a city has no legion within
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Figure 6.11: L0 behavior metric – doctrine violations.
Above: The L0 doctrine is violated whenever there is no gar-
rison actually in a city. The plot shows the average number of
violations per turn; as expected for a controller that has learned
the L0 doctrine, the rate is brought down to zero after the gar-
risons have time to reach their cities. Backpropagation with-
out evolution produces a similar result, and in fact performs
slightly better than example-guided evolution by this metric,
early in the game. (See detail at right.) 0 10 20 30 40 50
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distance i. The average number of violations per turn for the L0 doctrine is shown in figure 6.11.
The L0 result is similar to the plot of the average distance metric in figure 6.10, since both should
be uniformly zero after the garrisons have moved into position. The successful acquisition of the L0

doctrine does in fact drive both to zero: the plots differ only in the units for the y-axis.
The average number of L0 violations accrued by the unguided solutions is shown for com-

parison. It hovers around 1.5 because the in-and-out oscillations mean that, on average, half of the
three cities are unoccupied at any given time. Learning the L0 doctrine requires suppression of the
oscillating behavior, after which both the average distance and the L0 doctrine violation count drop
to zero. Backpropagation produces a very similar result, bringing the violation count down toward
zero slightly faster during the first ten turns of the game.

Violations of the safety condition can be counted as well. Figure 6.12 shows the average
number of safety condition violations per turn. For garrisons conforming to the L0 doctrine, safety
violations are not possible after the garrisons have reached their cities, so the rate becomes trivially
zero as well.

The average number of safety violations accrued by the controllers trained by unguided
evolution is shown for comparison. It is non-zero, but still low because violations only occur when
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Figure 6.12: L0 behavior metric – safety condition vio-
lations. Above: The average number of safety condition vi-
olations, as defined in section 6.2, is plotted vs. game time.
Safety violations are impossible when a garrison remains in
its city, so successful learning of the L0 doctrine drives the
count to zero. There is a slight rise at the beginning of the
game because the randomly placed legions are still far from
the cities and some of the new randomly placed barbarians en-
ter at points nearer to the cities. The effect is eliminated as
the garrisons approach their cities. Backpropagation without
evolution produces a similar result, but the resulting legions
are slower to eliminate the violations by garrisoning the cities.
(See detail at right.)
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there is a barbarian nearby when a garrison leaves a city. The garrisons leave their cities about
half the time, but there is not always a barbarian nearby to threaten immediate pillage. Simple
backpropagation produces results similar to the guided evolution, though somewhat slower to bring
the violation rate down to zero, as shown in the detail of the plot.

For the legions trained by example-guided evolution using the L0 training examples, the
three metrics each reflect the consequences of learning to suppress the “mindless” oscillating be-
havior. The metrics confirm the qualitative assessment obtained by watching the movie: the method
successfully learns to suppress the oscillating behavior, and since the legions also still learn the
proper division of labor, ensuring that all the cities are garrisoned, the metrics are driven to the
values expected for the L0 behavior as a trivial consequence.

The next section analyses the results obtained by using the L1 training examples. The L1

behavior is more sophisticated, resulting in improved game scores, and the values for the metrics no
longer follow trivially.
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Figure 6.13: Game performance vs. L1 training examples used per generation. In contrast to the use
of the L0 training examples, there was no great discontinuity in the game scores as the example sample size
increased. (Cf. figure 6.6.)

6.4 Results Using the L1 Training Examples

6.4.1 General Results

The learning experiments described in section 6.3 were repeated using the L1 training examples.
The results, as measured by game scores, are shown in figure 6.13. In contrast with the experiments
using the L0 examples, there is no sudden discontinuity in the scores between the smaller and larger
example sample sizes, though there is a slight improvement in the scores when the larger sample
sizes are used.

When analyzed in terms of the coarse behavior metric there is no discontinuity, though there
is a strong shift in the measured value as the number of examples increases from 200 to 1000, and
slow continued improvement with increasing sample size thereafter (figure 6.14).
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Figure 6.14: Behavioral similarity vs. L1 training examples used per generation. As with training on
the L0 examples, there is a substantial discontinuity in the metric between the use of several hundred or more
training examples per generation, vs. the use of fewer examples. (Cf. figure 6.7.)

Thus on the phase diagram there is no longer a distinctive gap between the points plotted
for the lower vs. higher sample sizes; increasing the example sample size results in an almost linear
progression in the general direction of the point plotted for human play (figure 6.15; cf. figure 6.8).
The point plotted for simple backpropagation lies well to the side of that progression, due to its poor
performance on the game score metric.

The weakened distinction between the use of an insufficient number of training examples
per generation (A-E on the phase plot) and a sufficient number (F-J) is not entirely a matter of
reduced learning effectiveness. In comparison to the L0 doctrine, the deliberate in-and-out behavior
of garrisons operating under the L1 doctrine is more similar to the behavior acquired by unguided
evolution. Thus the unguided solutions show only a mean 54.8% classification error rate on the
L1 test set, as opposed to the 77.0% error rate on the L0 test set. In both cases the group of similar
solutions obtained when too few training examples are used are spread over a range of about 14% on
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Figure 6.15: Performance-behavior phase diagram for L1 examples. As for evolution guided by the L0

examples, solutions cluster in the phase space according to whether they use a clearly insufficient number
of training examples per generation (A-E) vs. a greater number (F-J). In contrast to the L0 solutions, greater
fidelity brings improved game scores, since the L1 doctrine is in fact a superior strategy. (Cf. figure 6.8.) The
result of using backpropagation without evolution is shown for comparison; it performs slightly better than
the 5000-example Lamarckian method (J) on the behavior metric, but somewhat worse on the game scores.

the behavioral metric, ranging downward from a point near the rate obtained by unguided evolution,
so there is a general leftward shift of those points on the phase diagram.

However, when sufficient examples are used the behavioral similarity error metric is only
reduced to the range 20-27%, rather than the 14-19% obtained when comparing the L0 learners
with the L0 test examples. But the general trend with increasing examples is in the right direction,
and it should be noted that the similarity metrics are made with comparisons to different test sets.
Moreover, the arguments for the coarse nature of the similarity metric stated in section 6.3.1 still
apply, so the acquisition of L1 behavior will be examined by the more detailed behavioral metrics
in the next section.
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Figure 6.16: L1 behavior metric – garrison distance.
Above: The L1 behavior reduces the average distance from
cities to their garrisons due to the suppression of the unmo-
tivated in-and-out oscillations, but does not reduce it to zero
because the L1 doctrine still allows the garrisons to leave
the cities under appropriate circumstances. Backpropagation
without evolution produces a similar result, but produces le-
gions that are slower to conform to the doctrine. (See detail at
right.) 0 10 20 30 40 50
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Meanwhile, the similarities between the L0 and L1 learning results suggest a conclusion
that learning suffers when an insufficient number of training examples is used, and that even after a
sufficient number is used to cause a jump from an area in the phase space near the results of unguided
evolution to an area nearer the target behavior, further increases in the number of examples used tend
to improve performance on the similarity metric.

6.4.2 Acquisition of Rules of Behavior

The controllers trained by Lamarckian neuroevolution guided by backpropagation on the L1 training
examples were tested on the detailed behavior metrics used for the L0 training in section 6.3.2, and
the results are given in this section. The plots are based on the solutions obtained with the 5,000-
example sample size.

The results of the distance-to-garrison metric are shown in figure 6.16. Unlike the L0 doc-
trine, the L1 doctrine is not expected to reduce the distance to zero, because the garrisons are allowed
to leave their cities under certain circumstances. The plot shows that the average distance is in fact
reduced well below the average for controllers trained by unguided evolution, from somewhat above
0.5 to around 0.2, after the division of labor and garrisoning of the cities. The number is reduced
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Figure 6.17: L1 behavior metric – doctrine violations.
Above: Most of the L1 doctrine violations in the unguided
solutions are eliminated by evolution guided by the L1 exam-
ples. Ideally they should be eliminated altogether; they are in
fact reduced to a very low rate. Backpropagation without evo-
lution produces a similar result, but produces legions that are
slower to conform to the doctrine. (See detail at right.)
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because the L1 doctrine only allows the garrisons to leave their cities to eliminate a barbarian, so
much of the in-and-out of the unguided solution is eliminated. Simple backpropagation provides
results very similar to example-guided evolution, though as shown in the detail of the plot, it is
somewhat slower at bringing the metric down.

The rate of L1 doctrine violations is shown in figure 6.17. L1 doctrine violations occur
whenever no legion is in or adjacent to a city. The rate is fairly low even for unguided evolution
(solid line), since in those solutions the garrisons oscillate in and out of their cities but rarely move
further away than an adjacent map cell. Evolution guided by the L1 training examples reduces the
violation rate still further. Though violations are not completely eliminated, after the division of
labor is accomplished and the garrisons have had time to reach their cities the average rate never
rises above 0.09 violations per turn (0.03 violations per city per turn). Simple backpropagation
again produces similar results, though it is also again a bit slower to pull the violation count down,
as shown by the detail of the plot.

The rate of safety condition violations for the controllers trained on the L1 examples is
shown in figure 6.18. Evolution guided by the L1 training examples reduces safety violations in
comparison to the results of unguided evolution because the legions learn not to leave their cities
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Figure 6.18: L1 behavior metric – safety condition vio-
lations. Above: Solutions obtained by guidance with the L1

training examples reduce the safety condition violations con-
siderably in comparison to the solutions obtained by unguided
evolution. Ideally they should be eliminated altogether; they
are in fact reduced to a very low rate. Backpropagation with-
out evolution produces a similar result, but again produces le-
gions that are slower to eliminate the violations. (See detail at
right.) 0 10 20 30 40 50
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in the presence of certain barbarian threats. After the initial division of labor and garrisoning of
the cities the error rate never exceeds 0.09 violations per turn (0.03 violations per city per turn).
Backpropagation again produces controllers that are slower to pull the violation count down.

A movie of the Legion II game being played by legions controlled by networks trained with
evolution guided by the L1 examples is also available on line at the Legion II research archive,
http://nn.cs.utexas.edu/keyword?ATA. Careful examination of the movie shows good
conformance to the L1 doctrine and the restrictions of the safety condition, e.g. garrisons can be
seen to remain locked into a city when there is more than one adjacent barbarian. (See section 6.2
for the effect of combining the L1 doctrine with the safety condition.) Significantly, such refined
details of behavior are only implicit in the training examples, but are acquired by the controllers
trained with example-guided evolution.

6.5 Findings

The experiments demonstrated that Lamarckian neuroevolution using backpropagation for adap-
tation is a feasible and effective mechanism for example-guided evolution. The use of human-
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generated examples guided evolution to solutions that behave visibly and quantitatively more like
the human player than the solutions produced by unguided evolution did. The guidance was ef-
fective to the extent of allowing the agents to learn rules of behavior that were only implicit in the
examples, and even the behavior required by a combination of the rules, which was only implicit in
the rules themselves.

The use of examples allowed suppression of undesirable behavior in the trained agents, such
as the “mindless” oscillating in and out of the cities by the garrisons trained by unguided evolution.
The use of different classes of examples allowed suppressing the undesired behavior in two different
ways: in one case the movement was suppressed altogether, but in the other it was suppressed only
in cases where there is no visible motivation.

The use of the different classes of examples also allowed the creation of agents that behave
with greater or lesser effectiveness when evaluated in terms of game scores. Importantly, the agents
obtaining the lower scores did not do so by abandoning visibly intelligent behavior, such as revert-
ing to the “mindless” oscillations or adopting other erratic traits; rather, they simply follow a less
effective strategy, and their behavior still makes sense to human observers while doing so.

Backpropagation, when used alone, produced behavioral results more similar to the results
obtained by example-guided evolution than to those obtained by unguided evolution. Generally,
after turn 50 the plots of the metrics are indistinguishable from the plots obtained for example-
guided evolution, though on most of the metrics the controllers trained by backpropagation were
slower to bring the metric down to the matching value. Moreover, the game scores obtained by
backpropagation were worse than those obtained by guided evolution – worse in the absolute sense,
and also worse on account of being farther away from the human score.
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Chapter 7

Exploiting Sensor Symmetries

This chapter examines a method for exploiting the existence of symmetries in the structure of an
embedded agent and its sensors. Once training examples have been introduced into the process of
training agent controllers (chapter 6), symmetrical transformations of those examples can be used to
create new artificial examples, and those examples can be used to improve learning. That idea is mo-
tivated and explained in detail in section 7.1. The section 7.2 reports on an experimental evaluation
of the concept, and section 7.3 summarizes the findings regarding exploiting the symmetries.

7.1 Introduction

Intelligent agents in games and simulators often operate in geometric environments subject to re-
flections and rotations. For example, a two dimensional map can be reflected across an explorer
agent or rotated about it, providing new and different but still reasonable maps. Similarly, the visi-
ble universe can be reflected or rotated on any of the three axes of a robotic construction worker in
deep space. A well trained general purpose agent for deployment in such environments should be
able to operate equally well in a given environment and its symmetric transformations. In general
it is desirable for intelligent agents to exhibit symmetrical behavior as well. That is, if the optimal
action in a given environment is to move to the left, then the optimal action in a mirror image of that
environment would be to move to the right.

Symmetry of behavior is desirable for two reasons. First, if a correct or optimal move can
be defined for a given context, failing to choose the symmetrical move in the symmetrical context
will be sub-optimal behavior, and will degrade an agent’s overall performance if it ever encounters
such a context. Second, if the agent operates in an environment observable by humans, such as a
game or a simulator, the humans will expect to see visibly intelligent behavior, i.e., they will expect
the agent to always do the right thing because it is smart, rather than intermittently doing the right
thing because it has been programmed or trained to manage only certain cases.

If an agent’s controller operates by mapping sensory inputs onto behavioral responses, the

77



desired symmetries can be identified by analyzing the structure of the agent and its sensors. For
example, if the agent and its sensors are both bilaterally symmetrical then it will be desirable for
the agent’s responses to be bilaterally symmetrical as well. However, if they are not symmetrical –
e.g. for a construction robot with a grip on one side and a tool on the other – then its optimal behavior
is asymmetrical. Thus the desired symmetry of behavior depends critically on the symmetry of the
agent and its sensors.

When an agent’s controller is directly programmed it is a straightforward task to ensure that
its behavior observes the desired symmetries. However, when a controller is trained by machine
learning there is in general no guarantee that it will learn symmetrical behavior. Thus the Legion II
controllers must learn their behavior with respect to each cardinal direction independently. There-
fore it is useful to devise machine learning methods that encourage behavioral invariants across
relevant symmetries in agents trained by those methods.

The Legion II game is a useful platform for testing the use of training examples generated
from symmetries, because it is a challenging learning task that offers multiple symmetries in the
structure of the learning agents, their sensors, and their environment. This chapter reports initial
results toward solving the symmetry challenge with supervised learning. A controller is trained for
the legions, which operate in an environment that supports multiple symmetries of reflection and
rotation. Human-generated examples of appropriate contextual behavior are used for the training,
and artificial examples are generated from the human examples to expose the learner to symmetrical
contexts and the appropriate symmetrical moves. This training mechanism addresses both of the
motivations for symmetrical behavioral invariants, i.e. it improves the agents’ task performance and
also provides measurable improvements in the symmetry of their behavior with respect to their
environment, even in environments not seen during training.

The methods used to exploit symmetries experimentally are described in the following sec-
tion, then the experimental results are explained in section 7.2. Findings are summarized in section
7.3.

7.2 Experimental Evaluation

7.2.1 Methods

Experiments were designed to test two hypotheses: first, that exploiting symmetric transformations
can broaden the range of experience made available to the agents during training, and thus result in
improved performance at their task; and second, that exploiting symmetric transformations during
training can make the agents’ response to environments not seen during training measurably more
consistent. These hypotheses were tested by training the legions’ controller networks with human-
generated examples, with or without supplementary examples created by reflecting and/or rotating
them, and then applying appropriate metrics to the trained legions’ performance and behavior during
runs against the test-set games.
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Figure 7.1: Sensor symmetries in the Legion II game.. The bilateral and radial symmetries of the legions’
sensors and the map grid make several invariant transformations possible. For example, if a legion senses
a certain game state and chooses to move west, then if it ever senses a game state that is an east-to-west
reflection of that state, it should choose to move east.

The Legion II sensor architecture allows reflections and rotations of the world about a
legion’s egocentric viewpoint (figure 7.1). The transformations can be represented by permutations
of the values in the sensors. For example, a north-south reflection can be implemented by swapping
the northwest (NW) sensor values with the southwest (SW), and the NE with the SE. Similarly, a
60◦ clockwise rotation can be implemented by moving the sensor values for the eastern (E) sector to
the southeastern (SE) sensor, for the SE to the SW, etc., all the way around the legion. The legions’
choices of action for a reflected or rotated sensory input can be reflected or rotated by the same
sort of swapping. For example, a 60◦ clockwise rotation would convert the choice of a NE move to
an E move. The option to remain stationary is not affected by reflections or rotations: if a legion
correctly chooses to remain stationary with a given sensory input, it should also remain stationary
for any reflection or rotation of that input.

The examples of human play using the L0 doctrine that were generated for the example-
guided evolution experiments (chapter 6) were re-used for the symmetry experiments. The legions
are still expected to behave as an Adaptive Team of Agents, so they are still coerced to have identical
control policies (chapter 5). Such uniform control means that all the examples recorded for the
various legions during play can be pooled into a single set for training a controller network: what is
correct for one legion is correct for all of them.

The supplementary artificial training examples were created by the training program at run
time, by permuting the fields in the human-generated examples as described above. Since the legions
in Legion II have no distinguished orientation, all the reflections were generated by flipping the
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Figure 7.2: Generating artificial examples with sensor permutations. A reflection or rotation of the
environment about a legion has the same effect as a permutation of its sensor inputs. Thus permutations
provide a simple mechanism for creating artificial examples that are as correct as the originals.

sensory input and choice of move from north to south. When both reflections and rotations were
used, the N-S reflection was applied to each rotation, to expand each original to a full set of twelve
isomorphic examples.

The four possibilities of using vs. not using reflections and/or rotations define four sets
of training examples. The choice between these sets defines four training methods for comparison.
The four methods were used to train the standard Legion II controller network with backpropagation
(Rumelhart et al. 1986a) on the examples. Training was repeated with from one to twelve games’
worth of examples for each method. Since gameplay was used for the validation and test sets, all of
the human-generated examples were available for use in the training set. On-line backpropagation
was applied for 20,000 iterations over the training set, to ensure that none of the networks were
undertrained, and the presentation order of the examples was reshuffled between each iteration.
An evaluation against the validation set was done every ten iterations. Due to the relatively large
number of examples available, the learning rate η was set to the relatively low value of 0.001.

Each differently parameterized training regime – method × number of games’ examples
used – was repeated 31 times with a different seeds for the random number generator, producing a set
of 31 networks trained by each parameterization. The 31 independent runs satisfy the requirement
of a sample size of at least 30 when using parametric statistical significance tests (Pagano 1986), so
statistical significance results are reported in this chapter.

The next two sections examine the effects of generated examples on learning, per the two
hypotheses set forward in section 7.1.
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Figure 7.3: Effect of generated examples on performance. Lines show the average test score for 31 runs
of each method vs. the number of example games used for training. (Lower scores are better.) Each game
provided 1,000 human-generated examples; reflections increased the number of examples to 2,000 per game,
rotations to 6,000, and both together to 12,000. All three symmetry-exploiting methods provided significant
improvement over the base method throughout the range of available examples, albeit by a diminishing
amount as more human examples were made available.

7.2.2 Effect on Performance

The first experiment illustrates the effect of adding artificially generated training examples on the
performance of the controller networks. Networks were trained by each of the four methods, on
from one to twelve games’ worth of examples. As described in chapter 6, each game provided 1,000
human-generated examples; however, he reflections and rotations greatly increased that number.

The results of the experiment, summarized in figure 7.3, show that an increase in the number
of example games generally improved learning when the human-generated examples alone were
used for training, although without strict monotonicity and with decreasing returns as more games
were used. The three methods using the artificially generated examples improved learning over the
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use of human examples alone, regardless of the number of games used; each of the three provided
statistically significant improvement at the 95% confidence level everywhere. The improvement
was very substantial when only a few example games were available, and the best performance
obtained anywhere was when both reflections and rotations were used with only five games’ worth
of examples.

Rotations alone provided almost as much improvement as reflections and rotations together
(figure 7.3), and at only half the training time, since it only increased the number of examples
per game to 6,000 rather than 12,000. Thus in some circumstances using rotations alone may be
an optimal trade-off between performance and training time. Reflections alone increased training
only to 2000 examples per game, 1/3 of what rotations alone provided, but with substantially less
improvement in performance when fewer than six example games were available (figure 7.3).

It is worthwhile to understand how much of the improved performance resulted from the
increased number of training examples provided by the reflections and rotations, vs. how much
resulted from the fact that the additional examples were reflections and rotations per se. A second
experiment examined this distinction by normalizing the number of examples used by each method.
For example, when a single example game was used in the first experiment, the human-example-
only method had access to 1,000 examples, but the method using both reflections and rotations had
access to 12 × 1,000 examples. For this second experiment the various methods were only allowed
access to the same number of examples, regardless of how many could be created by reflections and
rotations.

It was also necessary to control for the structural variety of the examples. Such variety arises
from the fact that each training game is played with a different random set-up – most importantly,
with randomized locations for the cities. In some games the cities are scattered, while in other games
they are placed near one another. This sort of variety is very beneficial to generalization: the games
in the test set may not be similar to any of the individual games in the human-generated training set,
but agents exposed to a greater variety of set-ups during training learn to manage previously unseen
situations better. Thus if the training example count is normalized to 12,000 by using the 12,000
human-generated examples from the twelve example games, to be compared against training with
the 12,000 examples generated by applying reflections and rotations to the 1,000 human-generated
examples from a single example game, the latter method will have less structural variety in its
training examples, and its generalization will suffer.

So the second experiment controlled for both count and structural variety by selecting ex-
amples at random, without replacement, from the full set of 12,000 human-generated examples
available for use. When the method of using human-generated examples alone selected n examples
at random, the method using reflections selected n/2 examples and doubled the count by reflecting,
the method using rotations selected bn/6c examples and multiplied the count by six by rotating,
and the method using both reflections and rotations selected bn/12c examples and multiplied the
count by twelve by reflecting and rotating. Since each method drew its randomly selected examples
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Figure 7.4: Effect of reflections and rotations on performance. Lines show the average test score for
31 runs of each method vs. the number of examples used for training, when the examples used by the four
methods were controlled for count and structural variety. The tight clustering of the performance curves
shows that most of the improvements obtained by using reflections and rotations in the first experiment
(figure 7.3) were the result of the increased number of training examples they provided, rather than being the
result of the use of reflections and rotations per se.

from the full set of the 12,000 available human-generated examples, each sampled the full struc-
tural variety of the examples. The reduced sample sizes for the methods that generate more artificial
examples normalized the counts, to within rounding errors.

The results of the experiment, shown in figure 7.4, show little difference in the performance
of the four methods when their training examples are controlled for count and structural variety.
Thus most of the improvements obtained in the first experiment were the result of the increased
number of training examples generated by the reflections and rotations, rather than by the fact that
the additional examples were reflections or rotations per se.
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7.2.3 Effect on Behavioral Consistency

Another pair of experiments revealed the effect of artificially generated examples on the detailed
behavior of the legions. As described in section 7.1, a perfectly trained legion will show behavior
that is invariant with respect to reflections and rotations. That is, if its sensory view of the world is
reflected and/or rotated, then its response will be reflected and/or rotated the same way.

Although legion controllers trained by machine learning techniques are not guaranteed to
provide perfect play, training them with reflected and/or rotated examples should make them behave
more consistently with respect to reflections and rotations of their sensory input. This consistency
can be measured when playing against the test set by generating reflections and rotations of the
sensory patterns actually encountered during the test games, and making a side test of how the
legions respond to those patterns. The responses are discarded after that test, so that they have no
effect on play. For each move in a test game a count is made of how many of the twelve possible
reflections and rotations result in a move that does not conform to the desired behavioral invariant.
Each such failure is counted as a consistency error, and at the end of the test a consistency error rate
can be calculated.

Since the perfect move for a legion is not actually known, the consistency errors are counted
by deviation from a majority vote. That is, for each reflection and/or rotation of a sensory input, a
move is obtained from the network and then un-reflected and/or un-rotated to produce an “absolute”
move. The 12 absolute moves are counted as votes, and the winner of the vote is treated as the
“correct” move for the current game state (Bryant 2006). When the response to the reflections and
rotations does not correspond to the same reflection or rotation of the “correct” move, it is counted
as a consistency error.

All of the networks already produced by the performance experiments described in the previ-
ous section were tested to examine the effect of the various training parameterizations on behavioral
consistency. The results, summarized in figure 7.5, show that the three methods using reflections
and rotations reduce consistency errors substantially in comparison to the base method of using only
the human-generated examples, regardless of how many example games are used. In every case the
improvements were statistically significant at the 95% confidence level. The best consistency was
obtained when both reflections and rotations were used, and as with the performance experiment
(figure 7.3), a local minimum was obtained when relatively few training games were used (six in
this case). The consistency error rate for this optimal method is approximately flat thereafter.

Again, it is worthwhile to understand how much of the reduced consistency error rate re-
sulted from the increased number of training examples provided by the reflections and rotations,
vs. how much resulted from the fact that the additional examples were reflections and rotations per
se. Thus the networks from the normalization experiment were also tested for behavioral consis-
tency. The results, shown in figure 7.6, show the familiar trend of improvement as the number of
training examples increases, but also show very substantial differences between the four methods,
even when their training examples are controlled for count and structural variety. Thus much of
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Figure 7.5: Effect of generated examples on consistency. Lines show the average consistency error rates
for 31 runs of each method, vs. the number of example games used for training. (Lower rates are better.) All
three symmetry-exploiting methods provided a significant improvement in consistency over the base method,
throughout the range of available examples.

the improvement in the consistency error rate in the uncontrolled experiment (figure 7.5) can be
attributed to the fact that the generated examples used reflections and/or rotations per se, rather than
simply resulting from the increased number of training examples.

7.3 Findings

The experiments show that training intelligent agents for games and simulators can benefit from the
extra examples artificially generated from reflections and rotations of available human-generated
examples. In accord with the hypotheses stated in section 7.2.1, the technique results in agents that
score better in the game and behave more consistently.

The improved performance scores were shown to result primarily from the increased num-
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Figure 7.6: Effect of reflections and rotations on consistency. Lines show the average consistency error
rates for 31 runs of each method vs. the number of examples used for training, when the examples used by
the four methods were controlled for count and structural variety. The substantial gaps between the lines
show that much of the improvement obtained by using reflections and rotations in the the third experiment
(figure 7.5) were the result of the use of reflections and rotations per se, rather than merely being a result of
the increased number of training examples they provided.

ber of training examples provided by the reflections and rotations, but the improved behavioral
consistency resulted largely from the fact that those examples were reflections and rotations per se.
In principle, reflections and rotations per se could improve performance scores as well, by provid-
ing a more systematic coverage of the input space. However, in Legion II , the base method already
provided over 80% consistency with respect to reflections and rotations when only a single game’s
examples were used for training (figure 7.5). The agents quickly learned the symmetries necessary
for the situations that had the most impact on their game scores. Further improvements in behav-
ioral consistency provided polish, but had no substantial impact on the scores. In other domains the
base coverage may be more idiosyncratic, so that reflections and rotations per se would significantly
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improve performance.
The combination of both reflections and rotations provided the best results throughout. That

method obtained its best performance and consistency when relatively few example games were
made available for training, five and six games respectively. This is a very promising result, because
it suggests that good training can be obtained without excessive human effort at generating exam-
ples. Rapid learning from relatively few examples will be important for training agents in a Machine
Learning Game (Stanley et al. 2005c) if the player trains game agents by example during the course
of the game, and for simulations where agents must be re-trained to adapt to changed environments,
doctrines, or opponent strategies. Future work will thus investigate whether rapid learning from
relatively few examples is seen in other applications, and also whether a greatly increased number
of human-generated examples will ever converge to the same optimum provided by the artificial
examples in these experiments.

The number of examples that can be generated from symmetries depends critically on the
sensor geometry of the agent being trained. The number of radial sensors may vary with the appli-
cation and implementation, providing a greater or lesser number of rotations. For example, the Cellz
game (Lucas 2004) uses an eight-way radial symmetry. But if radial sensors do not all encompass
equal arcs then rotations may not be possible at all. For example, the agents in the NERO video
game (Stanley et al. 2005c) also use “pie slice” sensors, but with narrower arcs to the front than to
the rear, in order to improve their frontal resolution. There is therefore no suitable invariant for the
rotation of the NERO agents’ sensors.

However, the NERO agents, and probably most mechanical robots as well, have a bilat-
eral symmetry that allows applying the behavioral invariant for reflections across their longitudinal
axis. The results presented in this chapter show that artificially generated examples provide signif-
icant training benefits even when only reflections are used, especially when relatively few human-
generated examples are available (figures 7.3 and 7.5). Thus the methods examined here should
prove useful even in situations with far more restrictive symmetries than in the Legion II game.
On the other hand, agents operating in three-dimensional environments, such as under water or in
outer space, may have a greater number of symmetries to be exploited, offering even greater ad-
vantage for these methods. Future work should also investigate the effect of exploiting symmetries
in boardgames with symmetrical boards, such as Go, where an external player-agent manipulates
passive playing pieces on the board.

Supervised learning is not always the best way to train agents for environments such as
the Legion II game; the methods described in previous chapters produced controller networks that
perform somewhat better than those produced by backpropagation in these experiments. However,
reflections and rotations are feasible when example-guided evolution is used, and work in progress
will evaluate the utility of doing so.
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Chapter 8

Managed Randomization of Behavior

This chapter introduces a method for introducing a controlled amount of randomness into an au-
tonomous agent’s behavior, with a modified training mechanism that allows a bias to the randomness
so that the negative effect of randomness on task performance is minimized. Section 8.1 motivates
and explains the ideas. Then section 8.2 reports their experimental evaluation. Finally, section 8.3
summarizes the findings regarding managed randomization of behavior.

8.1 Introduction

A very common problem with the behavior of computerized game opponents – the so-called game
AI – is that they are brittle because they are too predictable. With repeated play, players learn to
predict the behavior of the AI and take advantage of it. Such predictability takes much of the fun
out of the game; it becomes, as the saying goes, too much like shooting fish in a barrel.

A similar concern arises with simulations that are used for training humans, or as interactive
tools for investigating phenomena such as traffic or water management. If the AI-controlled agents
in such systems are fully predictable, the human trainees or investigators may simply learn to beat
the system rather than solve the intended problem. It is therefore desirable to have controllers for
embedded intelligent agents that allow them to behave stochastically, yet still intelligently, in both
games and simulators.

Neuroevolution with fitness determined by game play has been found useful in training
artificial neural networks as agent controllers in strategy games and simulators (Bryant and Miik-
kulainen 2003; Lucas 2004; Stanley and Miikkulainen 2004a; Stanley et al. 2005c). The designs of
these systems provide egocentric embedded agents, that is, agents that decide on their own actions
based on their own localized knowledge, rather than being moved around as passive game objects
by a simulated player. For egocentric agent behavior, an artificial neural network can be used to
map the agent’s sensory inputs onto a set of controller outputs, which are interpreted by the game
engine or simulator as the agent’s choice of action for the current time step.
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Figure 8.1: Output activations as confidence values. In these screenshots, a network’s output activations
are shown graphically, with a vertical white bar showing each neuron’s activation value on a scale of [0, 1]
and a symbolic code for the action-unit encoded interpretation beneath. Left: An output activation pattern
plausibly interpretable as confidence values, with a high confidence for output option W , substantially less
confidence for option SW , and no discernible level of confidence for any of the other options. Right: An
output activation pattern only dubiously interpretable as confidence values, since over half the options are
fully or near-fully activated. The network that produced these outputs was trained with deterministic winner-
take-all decoding, and did not develop activation behaviors suitable for interpretation as confidence values.

For discrete-state games and simulators the choice between the actions available to an agent
can be implemented in an artificial neural network with action unit coding. That is, with a lo-
calist encoding that associates each of the network’s outputs with a choice of one of the possible
discrete actions (figure 8.1). Whenever a decision must be made, the agent’s sensory inputs are
propagated through the network and the output unit with the highest resulting activation is taken to
be that agent’s decision for which action to take. This deterministic winner-take-all decoding of the
network’s outputs results in fully deterministic behavior for the agent.

The question then arises, can such a system be modified to provide stochastic behavior in an
agent, without degrading its performance excessively? A simple and intuitive solution is to interpret
the network’s outputs stochastically, treating the relative activation levels of the various outputs as
confidence values, i.e. indications of how strongly the network evaluates the corresponding action
as being appropriate for the current context (Renals and Morgan 1992). If an action is chosen with
confidence-weighted decoding, i.e. with probability proportional to the corresponding action unit’s
activation level, the network will provide stochastic behavior and the stochastic choices will be
biased toward the optimal, potentially minimizing any degradation of the agent’s performance.

However, it turns out that evolved networks do not automatically learn to represent con-
fidence values in their outputs. When training with the commonly used winner-take-all decoding
method described above, there is no penalty for secondary activations at inappropriate action units,
so evolution does not learn to suppress them. The network learns only what is useful in solving the
problem, and thus its behavior is constrained only by the specific algorithm used to detect the peak
output (figure 8.1). As a result, decoding the network’s activations stochastically, as if they were
confidence levels, severely degrades the agent’s performance (figure 8.2).

In this chapter a method is proposed for evolving networks to produce utility confidence
values in their outputs. That is, networks learn to produce patterns in their outputs such that the
relative activation levels of the various action units reflect the networks’ estimates of the relative
utility of the associated actions. The training method, called stochastic sharpening, discourages
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Figure 8.2: Effect of stochastic decoding during testing. Box-and-whisker plots show the median, quar-
tile, and extremum values obtained by testing 31 networks using deterministic winner-take-all decoding,
vs. testing the same networks using confidence-weighted stochastic decoding. (Lower test scores are better.)
The stochastic decoding greatly degrades the networks’ performance, suggesting that the patterns of output
activations do not accurately reflect confidence or expected utility for the various options.

spurious output activations by interpreting the network’s activation patterns as utility confidence
values whenever it is evaluated during training. Networks with inappropriate activations will thus
choose inappropriate actions more frequently than others, and consequently perform poorly on the
fitness evaluations during training. As a result they receive lower fitness scores, and are eventually
bred out of the population.

The rest of this chapter evaluates the concept of stochastic sharpening experimentally, and
examines how sharpened networks can be used to introduce a controlled amount of randomness into
the behavior of embedded game agents.
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Figure 8.3: Typical learning curves for neuroevolution with ordinary deterministic training and
stochastic sharpening. Learning progress is shown for the median performers of 31 runs of training with de-
terministic winner-take-all decoding and with stochastic sharpening. The plotted points are the average scores
on the test set for the nominal best network at various times during training. Since learning is noisy, points
are plotted only for the generations in which progress was made on the validation set, and then connected
to make the plot easier to interpret. Other than some noisiness early on, learning with stochastic sharpening
progresses similarly to learning with the deterministic winner-take-all method.

8.2 Experimental Evaluation

For evaluating stochastic sharpening experimentally two issues need to be studied: (a) its effect
on learning performance, and (b) its effect on interpreting output patterns as utility confidence val-
ues. These requirements were covered by training several networks with and without stochastic
sharpening and applying appropriate metrics to their performance during testing.

8.2.1 Learning with Stochastic Sharpening

Stochastic sharpening is implemented in neuroevolution by using confidence-weighted decoding
during training. That is, at each move during the training games a legion’s sensory inputs are prop-
agated through the controller network being evaluated to obtain a pattern of activations at the seven
action-unit outputs. Those activations are normalized so that their sum is 1.0, and the normalized
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value of each is treated as the probability that its associated action should be selected for the legion’s
current move. Thus the behavior of the legion – and ultimately the game score – depends on the
pattern of activations that the controller network produces, rather than on the peak activation alone.
Since a network’s evolutionary fitness is derived from the game score, evolution ultimately rewards
networks that produce “good” patterns and punishes networks that produce “bad” patterns, where
good patterns assign high probabilities to contextually appropriate moves and bad patterns assign
high probabilities to contextually inappropriate moves.

When stochastic sharpening is used with neuroevolution the fitness values are initially more
random due to the stochastic decoding of the poorly trained networks during evaluations, so learning
initially progressed with slightly more variation. However, neuroevolution learns well under noisy
fitness evaluations, and in the experiments training with stochastic sharpening rapidly converged
onto a learning curve very similar to what was seen for deterministic winner-take-all decoding
(figure 8.3).

The networks produced with stochastic sharpening ultimately converged to a performance
that was better by a small but statistically significant amount in comparison to those trained with
the base method. The 31 networks trained with deterministic winner-take-all decoding gave a mean
score of 4.439 on the test set; those trained with stochastic sharpening gave a mean score of 4.086
when tested with stochastic decoding and 4.092 when tested with deterministic winner-take all de-
coding (figure 8.4). In both cases the improvement over the deterministic training method was sta-
tistically significant at the 95% confidence level (p = 0.002 and p = 0.003, respectively). The mini-
mal variety in the performance of the sharpened networks under the two decoding methods suggests
that stochastic sharpening greatly suppressed the secondary output activations, so that confidence-
weighted stochastic decoding almost always picks the same action that the deterministic decoding
does.

Stochastic sharpening also reduced the variance in the performance of the networks by an
order of magnitude (figure 8.4). The performance of the 31 networks trained with deterministic
winner-take-all decoding had a test score variance of 0.378; those trained with stochastic sharp-
ening had a variance of 0.039 when tested with stochastic decoding and 0.051 when tested with
deterministic winner-take-all decoding. Reduced variance in the result of a learning algorithm is
useful because it increases the probability that a single run will perform near the expected value.
For commercial application to difficult problems, a large number of independent runs may not be
deemed feasible.

The randomness of a network tested with stochastic decoding can be defined as the percent-
age of the time that an output other than the peak activation is chosen. For networks trained with
stochastic sharpening and tested with confidence-weighted decoding, the randomness was continu-
ally reduced as training continued, even beyond the point where progress at learning the task had
flattened out (figure 8.5). This fact also suggests that stochastic sharpening suppresses secondary
activations in the networks, at least for the current application.
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Figure 8.4: Effect of stochastic sharpening on performance. Box-and-whisker plots show the perfor-
mance when using deterministic winner-take-all decoding for both training and testing (left) vs. using stochas-
tic sharpening for training and either stochastic or deterministic decoding during testing (center and right,
respectively). Stochastic sharpening improved the performance of the resulting networks and reduced the
variability of the result as well. It also caused the networks to suppress most secondary activations, so there is
little difference in the networks’ behavior whether stochastic or deterministic decoding is used during testing
(cf. figure 8.2; note the different scale on the y-axis).

8.2.2 Inducing Stochastic Behavior

An ε-greedy method (Sutton and Barto 1998) was used as a baseline method for comparison. Under
ε-greedy control, a parameter ε allows direct specification of the amount of randomness in an agent’s
behavior. With probability 1 − ε the controller’s output is decoded and applied in the ordinary
deterministic fashion; otherwise one of the other actions is chosen instead, selected randomly and
with equal probability for each possibility. Since the secondary activations of the deterministically
trained Legion II controller networks are not a useful guide for choosing among them (figure 8.2),
the unbiased random selection is a reasonable approach.
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Figure 8.5: Effect of training time on randomness. A behavioral randomness metric, averaged over the 31
training runs with stochastic sharpening, is plotted against training time. The randomness with confidence-
weighted stochastic decoding decreases as training progresses. The effect continues even after task-learning
has stalled out (cf. figure 8.3).

Testing the networks that had been trained with deterministic winner-take-all decoding, us-
ing ε-greedy decoding for the tests, revealed that task performance degraded at an approximately
constant rate as ε was increased over the range 0.00 ≤ ε ≤ 0.15. When the same method was
used for testing the networks trained with stochastic sharpening the same pattern was seen, though
the improved learning obtained by stochastic sharpening (figure 8.4) provided a constantly better
performance for all ε (figure 8.6).

However, the hypothesis that stochastic sharpening produces networks with useful utility
confidence values in their output activations suggests an alternative method of obtaining random
behavior. This method works like ε-greedy method, except that whenever an alternative action must
be selected it is chosen based on a confidence-weighted interpretation of the secondary output ac-
tivations. That is, the activation levels other than the peak are normalized so that they total to 1.0,
and then one is selected with probability proportional to the normalized values. When using this
method task performance degraded at only about half the rate of the ε-greedy method, as random-
ness was increased. The method allows significantly more randomness to be introduced into the
agents’ behavior before their game performance suffers excessively (figure 8.6). An observer no-
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Figure 8.6: Tradeoff between randomness and task performance. Coerced randomness using ε-greedy
decoding degrades game scores almost linearly as the amount of randomness increases over the range exam-
ined, regardless of which training method was used (solid and dashed lines). However, for networks trained
with stochastic sharpening, if the alternative moves are selected by a confidence-weighted choice between
the possibilities, the task performance score degrades far more slowly (dotted line).

tices the legions making sub-optimal moves slightly more often as the level of induced randomness
is increased, but there is no qualitative change in their behavior. (Animations of the randomized
behavior can be viewed at http://nn.cs.utexas.edu/keyword?ATA.)

8.3 Findings

The experiments show that it is possible to introduce stochastic behavior into game agents without
degrading their task performance excessively. Moreover, the stochastic sharpening used to train
the agents for stochastic behavior provided an absolute improvement in learning performance over
the conventional deterministic method; stochastic sharpening may be a useful technique even when
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training networks for deterministic use. The combination of stochastic sharpening with managed
randomization allows agents in the Legion II game to choose a non-optimal move about 5% of the
time and still perform as well as the fully deterministic agents trained by the conventional method.
Greater or lesser amounts of randomness can be obtained by a direct trade-off against the agents’
ability to perform their task well (figure 8.6).

The coerced-randomness method, when used with stochastic sharpening and confidence
weighted choice among alternative moves, provides the best trade-off options of the methods ex-
amined here. It is also flexible, since the randomness parameter is set at run time; no re-training
is required for changing the amount of randomness displayed by the agents. Indeed, the amount
of randomness can be adjusted during the course of a game or simulation, by simply changing the
current value of ε.

The improved learning performance for stochastic sharpening was an unexpected side ben-
efit. There are two reasons for the improvement. First, when stochastic sharpening is used, even
the peak output activations are somewhat low, whereas the deterministic method tends to produce
networks that saturate their outputs. Saturated outputs tend to generate a race condition among a
network’s weights during training, which is generally detrimental to learning. Stochastic sharpen-
ing pushes the network’s activations back away from the saturation point, and thus avoids the race
condition in tuning the weights. Second, the stochastic decoding used during training serves as a
self-guiding shaping mechanism (Skinner 1938; Peterson et al. 2001). That is, a partially trained
network does not have to maximize the correct output in order to perform well; it merely needs to
activate it enough to be selected with some probability. A partially trained network that does the
right thing sometimes may show a higher evolutionary fitness than a partially trained network that
stakes everything on being able to pick the right choice always.

It should be noted that stochastic sharpening does not depend on the choice of neuroevolu-
tionary algorithm; it relies only on the use of action-unit output codings. Thus it should be possible
to deploy stochastic sharpening as an add-on to neuroevolutionary methods other than ESP, such
as CMA-ES (Igel 2003) and NEAT (Stanley and Miikkulainen 2002). Indeed, it may be applicable
even apart from the use of artificial neural networks, so long as the decision engine can represent a
choice between discrete options with scalar utility confidence values.

In the future, methods must be developed for inducing stochastic behavior in games and
simulators that operate in continuous space and time, such as the NERO machine-learning strategy
game (Stanley et al. 2005c). Since controllers for those environments generally select by degree
– what angle or how fast – rather than selecting from among distinct options, operations in those
environments will provide a different sort of challenge for randomizing behavior intelligently.
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Chapter 9

Discussion and Future Directions

The previous chapters introduced and motivated the concept of visibly intelligent behavior, and
demonstrated mechanisms for inducing various aspects of such behavior by machine learning in a
test environment. This chapter offers a discussion of those experimental findings and their implica-
tions for our ability to generate visibly intelligent behavior in embedded game agents, and examines
the possibilities for follow-up work. Closely related work not covered in chapter 2 is also examined
here for contrasts with the new work.

9.1 Defining Visibly Intelligent Behavior

Section 1.1 defined visibly intelligent behavior as a subset of all intelligent behavior. A question
naturally arises: is fakery sufficient where visibly intelligent behavior is required, and should the
definition be modified to allow it? After all, if the motivation is to please the viewer, what difference
does what is really happening make?

To some extent the question is moot. As described in section 2.1, the notion of intelligence
is not easily defined, and research into artificial intelligence usually proceeds on an “I know it when
I see it” basis. In the absence of a formal definition for intelligence, it is difficult to draw a line
between “real” intelligence and fakery; sufficiently sophisticated fakery is indistinguishable from
genuine intelligence. Thus the quest for visibly intelligent behavior could be seen as an attempt to
pass a visual Turing test on a limited problem domain. That is, visible intelligence is achieved when
human observers cannot distinguish between an embedded autonomous artificial intelligence and a
passive playing piece that is moved by an unseen human player.

Thus in future work it may be useful to turn to observers for expectations and/or evaluations
of attempts to produce visibly intelligent behavior. For example, internet forums could be mined for
complaints about specific behavioral traits of the agents in published games, and the more common
complaints could be taken as signs of what observers expect to see in the behavior of intelligent
agents of similar types in similar environments. A human subjects experiment could then use a
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problem-specific visual Turing test to measure progress at producing visibly intelligent behavior;
a suite of such tests using varying problems would test for progress on machine learning methods
designed to produce such behavior.

Alternatively, visibly intelligent behavior could be assumed to correlate with a temptation
in observers to anthropomorphize what they see in an agent’s behavior. Under that assumption, a
human subjects test could expose observers to animations of autonomous agents in action, prompt
the observers to answer questions or provide a free-form description of what they saw, and examine
those responses for the frequency of anthropomorphizing terminology.

However, a researcher may prefer to pursue “real” intelligence rather than fakery, for philo-
sophical or aesthetic reasons. Under such personal motivations the distinction between intelligence
and fakery must also become a personal decision. For example, a programmed control that locked
the Legion II garrisons into their cities, except when allowed out by the rules of their tactical doc-
trine, would produce the intended effect, but might not be satisfying as “real” intelligence – espe-
cially for an approach that otherwise relies on machine learning to produce the controllers.

Moreover, as we attempt to produce more sophisticated behavior in more complex environ-
ments with artificial intelligence, the number of such behavioral patches needed to produce visibly
intelligent behavior is likely to grow large, and may become as difficult to specify completely and
correctly as scripted behavior is. The negative reactions of gamers to the observed behavior of ar-
tificially intelligent opponents in commercial games indicates that scripting has not been able to
provide a satisfactory degree of visible intelligence in practice, and there is no reason to suppose
that applying an arbitrary number of behavioral patches to some other control mechanism will ulti-
mately yield a more satisfactory result. The promise of machine learning is the ability to train agents
to appropriate behaviors without requiring excessively complex specifications. The “mindless” os-
cillating behavior produced in the ATA experiment (chapter 5) indicates that completely unbiased
learning mechanism will not always suffice, though it can be hoped that general learning mecha-
nisms such as example-guided evolution (chapter 6) can provide the necessary bias, and eliminate
the requirement for detailed specifications of behavior that are not portable between agents and
applications.

Additionally, example-guided learning uses human intuitions to address the problem of hu-
man intuitions: the examples are generated using human intuitions about how the agents should
behave, and if that behavior is properly induced by the learning system then the resulting agents
will meet humans’ intuitive expectations, to the extent that they are in mutual agreement. By map-
ping intuitions onto intuitions via the learning system, the labor-intensive and error-prone process
of specifying the details of behavior required for all possible contexts can be eliminated. Thus
further work must examine the challenge of learning such mappings for arbitrarily complex behav-
iors in arbitrarily complex environments, and games will continue to be a suitable platform for that
research.
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9.2 Adaptive Teams of Agents

The experiments reported in chapter 5 are an important demonstration of the capacity for flexibility
in individuals and adaptivity at the team level, without any requirement for additional training.
Balch (1998) has previously called attention to the robustness advantage of a homogeneous team
(no individual is ever “the” critical component), but found that the agents in a homogeneous team
interfere with one another in a foraging task. He found that homogeneous teams performed better
than heterogeneous teams at the foraging task, but his best robo-soccer an cooperative movement
teams were heterogeneous, and other researchers have found heterogeneous teams superior at other
tasks as well, e.g. Yong and Miikkulainen (2001) on the predator-prey task. Balch concludes that
the homogeneous team is superior on the foraging problem because it is essentially a single-agent
problem with multiple agents present and pursuing the same task. However, an adaptive team allows
retention of the advantages of a homogeneous team even on tasks that explicitly require a diversity
of behavior.

The Legion II agents learn in situ diversity despite their static homogeneity, because the
reward structure of the game demands it. Presumably any reinforcement method could learn such
adaptivity, though it would require an appropriate reward structure along with the sensory and rep-
resentational capabilities necessary for the task. Non-reinforcement methods should be able to learn
run-time adaptivity as well, e.g. by use of examples. (The backpropagation-only experiments re-
ported in Chapter 6 learned it quite well.)

Goldberg and Matarić (1997) addressed inter-robot interference on the foraging task by
imposing a dominance hierarchy on an otherwise homogeneous team, and using pack arbitration to
allow a dominant robot to preempt any interfering operation by a subordinate robot. The scheme
requires hand-coding of the arbitration, though it may be possible to code it in a reusable application-
independent way. However, it does not appear that pack arbitration will support adaptive diversity
of behavior beyond resolution of direct inter-agent interference. For the Legion II application, pack
arbitration could prevent two legions from attempting to garrison the same city if the game engine
did not already prevent it, but it would not cause the subordinate legion to adopt the role of a rover.

A more general solution to the problem of coordination in a team of homogeneous agents
is recursive agent modelling (Durfee 1995). Recursive agent modelling treats other agents as pre-
dictable elements of the environment, so that optimal actions can be selected on the basis of their
effect on cooperating agents. Presumably the agents in Legion II implicitly learn to predict the ac-
tions of their teammates given the current game state, to the extent that it helps them optimize their
behavior, but that conjecture has not yet been verified.

The primary issue for follow-up work on the ATA architecture is scaling; for application in
the current generation of commercial computer games, ATAs would need to scale to richer envi-
ronments, more choices of action, and larger maps. The richer environments will often involve the
existence of multiple ATAs on a single side. For example, section 5.1 mentioned that games in the
Civilization genre generally include a “Settler” unit type, and all the Settlers in play must operate
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as an adaptive team. However, they also include other unit types, such as legions, which are in play
at the same time and must also operate as adaptive teams – there is a need for garrisons and rovers
in those games too. Many of the unit types must cooperate closely, e.g. infantry and artillery or car-
avans and naval transport, so it will not be possible to train them in isolation. The most promising
option seems to be coevolution, with all the unit types in play together and learning to cooperate
adaptively with their own kind while cooperating with other types. Coevolution is a much studied
topic, but coevolving multiple ATAs will be an unprecedented challenge.

Richer environments will also demand more sophisticated sensor systems for the agents.
The ATAs in Legion II learned their task with only a very fuzzy representation of their environment,
but other domains can be expected to require more detailed representations. Most game environ-
ments will also require more sensor classes, so that the agents can distinguish the different unit
types among their allies and opponents. Thus it can be expected that scaling up to richer environ-
ments will require the use of larger input representations, with the resulting increased demands on
the learning methods. For example, if neural networks are used for the controllers, the number of
weights to be learned for the input layer will grow linearly with the number of sensor elements. If
that results in a need for a larger hidden layer, the growth will be superlinear.

Moreover, some domains will require representations for recursive symbolic relationships
such as “in” and “on”. Processing such relationships may require drawing on techniques developed
for natural language processing in artificial neural networks (Elman 1990; Miikkulainen 1996), or
inventing entirely new ones.

Scaling to more choices of action for the agents will have the same effect: larger, more com-
plex controllers, and more input-output relations to be learned during training. Further challenges
will arise for applications to continuous-state games and simulators. For most of those applications
the agents will need to learn to produce continuous-valued outputs for motor control, rather than a
simple choice between action units.

Even such a seemingly simple matter as scaling to larger maps will introduce new chal-
lenges. The legions in Legion II disperse themselves across the map suitably by self-organization,
but the map is relatively small. For very large maps it is not clear that simple self-organization will
provide the necessary dispersal if localized concentrations are required. Thus it may be necessary
to impose hierarchical control atop the adaptive team, with generals marshaling legions for the nec-
essary global pattern of dispersal, after which the localized dispersal and division of labor could
proceed as before.

It can therefore be expected that scaling the ATA architecture to the needs of commercial
applications will require and stimulate the invention of powerful new techniques for inducing so-
phisticated behavior in teams of autonomous intelligent agents.
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9.3 Example-Guided Evolution

Artificial Lamarckian evolution has been in use for some time, e.g. by Grefenstette (1991), Whitley
et al. (1993), and Ku et al. (2000). The distinction for the current work is the application: it is used
here to guide evolution to discover controllers that exhibit specifically desired behavioral traits,
rather than as a way of implementing life-time learning or simply helping evolution solve some
difficult task. The current work is also the first combination of Lamarckian neuroevolution with the
ESP mechanism.

There are two areas of recent work that are closely related to example-guided evolution, and
it is worth understanding the similarities and differences between them.
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Figure 9.1: CIGARs and hard-to-specify solutions. When solutions are of a form that can be constructed
by humans without too much difficulty, such as a static plan or resource allocation table, CIGARs can incor-
porate human-generated “cases” (representations of solutions) directly into the evolutionary population (left).
But when the solutions are excessively complex, such as an artificial neural network or other agent controller,
some indirect method of incorporating them must be used instead (right).

The most closely related work in terms of goals is the Case-Injected Genetic Algorithm
(CIGAR), a population-tampering mechanism described in section 2.6.1. The “cases” are in fact
examples; however, they are examples of complete solutions rather than examples of behavior. They
are therefore very convenient and direct mechanisms for steering evolution toward some desired
type of solution, but it is not feasible to use them when the necessary solution is a difficult-to-
specify object such as an ANN agent controller (figure 9.1). As a result, CIGARs have been used to
incorporate human guidance when creating relatively simple static objects (Louis and Miles 2005),
but not for complex agent controllers.

The advice-taking system of Yong et al. (2005), also described in section 2.6.1, is very
similar to the current work in its application and goals, though different in mechanism. It is used
to insert human solutions into an evolutionary population of game agents, and like example-guided
evolution it is a solution-tampering mechanism. The distinction is that it inserts explicit rules of
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behavior rather than guiding toward a complete set of behaviors by induction. In principle, advice-
taking systems could build up a complete set of behaviors rather efficiently by repeated application.
However, if a complete set of rules is easy to specify, a script or rule-based system would likely
be used rather than a genetic algorithm. Thus advice-taking is useful when machine learning is
needed for producing a complex, underspecified controller, but some clearly expressible details of
the controller’s target behavior are known. Notice that the use of advice is orthogonal to the use of
example-guided evolution, and there will likely be advantages to employing them together as we
apply evolutionary learning to increasingly complex games.

Advice has also been used to directly modify the value function approximator for on-line
reinforcement learning (Kuhlmann et al. 2004). In this system a rule-based advice unit modifies
the function approximator in real time to guide the agent’s learning. The advice unit tracks human-
specified rules of behavior, and whenever one of the rules “fires” the advice unit modifies an action’s
value up or down, depending on whether the rule recommended for or against that action. Appro-
priate advice speeds learning by adjusting the value function approximator to its ideal form more
quickly than can be done by exploration.

Once a decision has been made to use examples for agent training and the examples have
been collected, new options arise. A discrete-option controller like the one used to implement the
legions’ control policy can be seen as a simple pattern classifier. That opens up the possibility
of bringing the full weight of the field of learning classifier systems to bear on the problem. As an
example, Sammut et al. (1992) use behavioral cloning (Bain and Sammut 1999) to induce a decision
tree for controlling an airplane in a flight simulator, by applying C4.5 (Quinlan 1993) to 90,000
<state,action> tuples extracted from traces of human control. The same task is addressed by van
Lent and Laird (2001) using their rule-based KnoMic “Knowledge Mimic” system, which applies a
modified version of the Find-S algorithm (Mitchell 1997) to a trace of <state,action> tuples. Both
sets of authors found it necessary for a human expert to split the traces into segments according
to changing goals. It is not clear whether that requirement arose from an inherent difficulty of the
problem or from weaknesses in the power of the methods used. However, since both operate on the
same sort of data required by example-guided evolution, future comparisons will be straightforward.

Ng and Russell (2000) take an oblique route to the problem of instilling behavior. Their
inverse reinforcement learning methods induce the reward function implicit in example behavior.
From the reward function ordinary reinforcement learning methods can then be used for agent train-
ing, including methods that are not normally amenable to influence by examples. That opens the
possibility for including such methods in empirical comparisons. Discovering an implicit reward
function may also prove useful as a method for analyzing the tacit motivations for the example
behavior.

An extended overview of methods for learning from demonstrations in the robotics domain
is given in Nicolescu (2003).

The Legion II strategy game used for the experiments in this dissertation models only the
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coarsest aspects of behavior, e.g. whether to move and in which direction. A very different con-
sideration arises when creating artificial individuals for use as interactive characters or performers
in animations. Such individuals must show nuances of emotion, including appropriate prosodic
variations to verbal utterances, in order to be convincing to interacting or observing humans. Such
requirements have given rise to the field of believable agents which attempts to model such nuances
(e.g., Bates 1997; Hayes-Roth et al. 1999; Gratch and Marsella 2004, 2006; Johnson et al. 2002).
The requirements for strategic or tactical behavior and emotional behavior converge in the popular
genre of first person shooter games and similar training tools, so it will be useful to investigate in-
ducing coarse and nuanced behavior together. For sufficiently rich environments it may be difficult
to fully specify a mapping between game states and appropriate emotional responses, just as it is for
mapping between game states and strategic or tactical decisions, so at some point it may be useful
to rely on learning biased by human-generated examples to create emotionally believable agents.

Preliminary experiments have shown that for both backpropagation and example-guided
evolution the relation between game scores and example-classification errors is not linear as learn-
ing progresses. Example classifiers are ordinarily applied to static sets of examples, and their error
rate does not depend on the order of presentation of the examples. In contrast, discrete-state agent
controllers are “embedded classifiers” – that is, each classification generates a move that changes the
game state, and the changed game state influences what further inputs are presented for classifica-
tion. Thus it is possible that the learning requirements for embedded classifiers differ fundamentally
from the requirements for ordinary static classifiers. That hypothesis needs to be tested empirically,
and if there are in fact important differences, the quest for visibly intelligent behavior may open up
an entirely new side field of research.

Regardless of the learning technology used, deliberative agents will pose new challenges
for example-based training. It is straightforward for a game engine to capture the <state,action>

pairs of human moves, but it is not possible to capture the human’s internal state that influenced the
choice. Thus methods such as the implicit imitation of Price and Boutilier (2003), which assume
visibility of a mentor’s internal states rather than its actions, cannot be directly applied to human-
generated examples. Previously mentioned work such as Sammut et al. (1992) and van Lent and
Laird (2001) address the challenge of unrecorded internal states in the trainer by working with traces
of examples rather than sets of discrete examples. In principle traces will address the problem for
guided evolution as well, but for Lamarckian neuroevolution some method will need to be devised
to allow for the unrecorded internal states during the adaptation phase. It may be as simple as using
backpropagation through time (Werbos 1990), starting from a neutral internal state at the beginning
of each trace (e.g., with all the activations in a recurrent layer set to zero). Such methods will need
to be evaluated empirically.

Example-guided evolution was used in chapter 6 to impose discipline on the trained agents
and to demonstrate the ability to train them to distinctive doctrines, for better or worse. The im-
portance of that second capability cannot be overstated. In the traditions of artificial intelligence

103



research, improved task performance is almost universally taken to be a sign of more intelligence,
and therefore “better” (cf. section 2.1). However, for some real-world applications of embedded
game agents, worse is “better”. For example, games with AI opponents usually support several
difficulty levels. If the AI opponents are implemented as embedded autonomous agents, the re-
quirement for varying difficulties will remain in effect: it will be necessary to provide agents that
operate at different levels of task performance. The experiments in sections 6.3 and 6.4 show that
embedded agents can still display visibly intelligent behavior while pursuing an inferior plan or op-
erating under an inferior doctrine; that is precisely what is needed for games with embedded agents
and a selection of difficulty levels. Examples of play can be generated using doctrines that are ap-
propriate for the various difficulty levels, and separate controllers trained from each set. Then when
a player starts the game and selects a difficulty level, the game engine can select the appropriate
“brain” for use as the controller for the embedded agents.

There exists another potentially useful application of example-guided evolution: opponent
modelling. If an agent can collect examples of its opponents’ play, it can use example-guided evo-
lution to train models of the opponents – including human players! A deliberative agent could
generate such a model as a side-computation, and intermittently test it by comparing its predictions
to the opponents’ actual moves. When the model is deemed to be sufficiently accurate the deliber-
ative agent could use it to optimize its own behavior by predicting opponents’ responses to its own
various choices of action.

9.4 Exploiting Sensor Symmetries

Chapter 7 offered a method for exploiting symmetries in an agent’s structure and environment to
generate artificial training examples, and demonstrated by experiment that the method is useful. Yet
many questions immediately arise, and further experiments are needed to explore the extent of that
utility.

For example, by both of the metrics examined in chapter 7 the optimal result was obtained
when relatively few example games were used. Will that result obtain in other applications as well?
Will the advantages of using the artificial examples disappear when only a few more example games
become available, or will they always offer some advantage over using the original examples alone?
Will the artificial examples provide a similar benefit when used with example-guided evolution
rather than supervised learning, or will the noise inherent in evolutionary learning dominate any
advantages to using them? Only further experimentation can answer these questions.

Broader questions also arise. Are there other ways that symmetries of structure and envi-
ronment be exploited? Are there other useful mechanisms for creating artificial examples?

Regarding the former question, a structural approach to ensuring symmetry of behavior is
suggested by the work of Togelius and Lucas (2005). In that work the authors studied the use of
neuroevolution to train controllers for the game Cellz (Lucas 2004). Cellz is a sort of predator-
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prey or “dueling robot” game, where agents representing unicellular biological organisms compete
for resources and attempt to dominate the environment. Cellz is a continuous-state game, but is
otherwise somewhat like the Legion II game. In particular, the agents are equipped with radially
and rotationally symmetrical sensors, they see the world a fuzzy sense based on a

∑
i

1
di

sensing
system, and they are controlled by propagating the sensor values through an ANN controller.

The authors took note of the rotational symmetry of the sensor arrays, and exploited that
symmetry to reduce the number of input weights to be trained for the controller network. Their
system used convolutions of the sensory values fed into a reduced-size input layer; the convolutions
allowed the sensor values to be “stacked” at the smaller input without rendering the rotations of
a game state indistinguishable. Though their focus was on the opportunity for modularizing the
controller network to improve learning, their system has a side effect of preserving rotational sym-
metries in the activation values of the controller network’s hidden layer. That is, if the neurons in
the hidden layer are conceived as a ring rather than a line, a rotation of the environment produces
a rotation of the activation pattern in the hidden layer. It may be possible to exploit that effect to
help coerce rotationally symmetric behavior in an agent, even without the use of examples. Notice,
however, that that mechanism is completely orthogonal to the mechanism described in chapter 7, so
it is possible to use the two mechanisms together, if such proves to be useful. Thus further research
should examine the possibility of coercing behavioral symmetries architecturally, and determine
whether there is any benefit to be had from combining the two independent methods.

Symmetries have also been exploited by very different mechanisms. Fox and Long (1999)
used symmetry detection to trim the search space for a planner when applied to the Gripper and
Traveling Salesman problems. In a very different context, Ellman (1993) created abstract sym-
metries (and “approximate symmetries”) to allow pruning of large subsets of the solution space
in constraint satisfaction problems; such symmetries are not necessarily geometric. Zinkevich and
Balch (2001) used a more intuitive notion of symmetry, such as the reflection of a soccer field along
its midline, to speed reinforcement learning for Markov decision processes (MDPs); the authors
showed that a symmetric MDP necessarily also has a symmetric optimal value function, a symmet-
ric Q function, symmetric optimal actions, and a symmetric optimal policy.

These methods effectively reduce the number of states in some space of interest (solution
space or environment state space) by identifying two or more symmetric states as a single state.
This is the opposite of the operation that exploited symmetries in Chapter 7, which effectively split
a given state into a set of symmetric states. Various parties have suggested pursuing the former
operation to reduce the size of the problem state space in Legion II , e.g. by rotating a legion’s
egocentric sensor activations to a canonical orientation before selecting an action, but no effective
mechanism has yet been discovered. However, such a scheme has the potential of reducing the
size of the policy to be learned by the legions by a factor of twelve, so the challenge merits further
consideration.

Regarding the second question, whether other useful mechanisms for creating artificial ex-
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amples exist, more work also needs to be done. Artificially generated examples have recently be-
come a topic of interest in the field of learning classifier systems. In that field they are used to
increase the diversity of opinion in ensemble-based classifiers; as a result, the artificial examples do
not strictly have to be “correct” by some absolute standard. Thus they are usually estimated from
statistical models of the distribution of features in the training set, or chosen on an information-
theoretic basis. A brief survey of the use of such examples is given in Melville and Mooney (2004).
The use of such examples has not yet been investigated for its simple utility in expanding the num-
ber of examples available for training, as was seen for the artificially generated examples in chapter
7 (Melville 2006). The question of the utility of such “estimated” examples for training agent con-
trollers offers another avenue of research.

On a related note, the vote-counting mechanism used for identifying consistency errors in
chapter 7 suggests a method for using a single neural network as a “virtual” ensemble, by reflecting
and/or rotating its inputs and then applying the reverse transformation to its output. That mechanism
will guarantee absolute symmetry of input-output responses: for a given game state and any of its
reflections or rotations, the same 12 votes will be counted. However, it moves the extra processing
from the training epoch to the deployment epoch, and thus may be unsuitable for applications where
computation is a bottleneck. Investigation of the properties of this mechanism, called virtual bag-
ging because it constitutes bagging (Breiman 1994) with a virtual ensemble, is already underway
(Bryant 2006).

9.5 Managed Randomization of Behavior

Chapter 8 argued that some amount of stochasticity is essential for agents embedded in games or
simulators as competitors, or else game players and simulation users will be tempted to learn to
exploit the agents’ determinism instead of learning to address whatever problem the game or simu-
lator was designed to offer. An example mechanism was demonstrated, with stochastically decoded
neural networks providing a parameterized degree of randomness, and a modified mechanism for
training unit-action coded networks so that the randomized choices were optimized for minimal
degradation of task performance.

It was also pointed out in that chapter that the mechanism is not strictly limited to use with
artificial neural networks. Any controller that can specify utility confidence values in its output can
be decoded stochastically for a similar effect. If such a controller is trained by evolution, or probably
any mechanism of reinforcement learning, the method of stochastic sharpening can still be used for
the training. This immediately establishes an area for comparative experiments: other controller
technologies and other learning mechanisms can be compared for the effect on task performance
when they are used to introduce managed randomization into an agent’s controller.

Coerced randomization is used in on-line reinforcement learning as a way of ensuring con-
tinued exploration as an agent converges on a control policy; the ε-greedy method described in
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section 8.2.2 is a classic mechanism for doing this. An alternative approach is using softmax se-
lection, where a stochastic selection is made among all options, with a bias in favor of “preferred”
options. See Sutton and Barto (1998) for an overview of ε-greedy and softmax mechanisms.

The decoding method used during stochastic sharpening is a softmax mechanism, i.e. the
decoding rule selects among the actions with probabilities proportional to the associated output neu-
ron activation levels, i.e. to the utility confidence values (section 8.2.1). However, the method has
little utility as mechanism for coerced randomization, since in a well-trained network the sharpening
was so extreme that behavior varied very little from winner-take-all decoding applied to the same
network. In principle the amount of randomness provided by this mechanism can be controlled by
limiting the amount of sharpening, i.e. by reducing the amount of training. However, that strategy
introduces the Goldilocks problem of determining the “just right” amount of training to be used;
as with other softmax strategies such as decoding according to the Gibbs distribution, the strategy
replaces the intuitive and transparent ε parameter of the ε-greedy method with a less transparent
parameter, in this case the number of generations of training (Sutton and Barto 1998). Moreover,
when training was reduced enough to provide useful amounts of randomness, task performance
scores deteriorated far faster than the baseline ε-greedy method.

The method introduced in chapter 8 can be seen as a combination of ε-greedy and softmax
methods. With probability 1 − ε the peak activation is selected, just as for the ε-greedy strategy;
otherwise a biased softmax-style choice is made, but limited to a choice among the non-peak acti-
vations. The ε mechanism compensates for the possibility of extreme sharpening, and the softmax-
style mechanism biases the choice among the remaining alternatives.

The experiment in chapter 8 introduced stochastic behavior by randomized decoding of the
controller’s output. Entirely different mechanisms are also conceivable. For example, noise could
be added at a controller’s inputs (or hidden layer, if a neural network), and then the randomization
at the output would be the result of a principled amount of uncertainty about the state of the system
on the agent’s part. For deliberative agents, randomness could be added to the internal state instead.

An alternative approach would be to provide an agent with multiple independently trained
controllers that would not produce identical outputs for a given input, and select between the avail-
able controllers at random. That mechanism would reflect an agent’s random choice between com-
peting behavioral policies, each of which should specify a reasonable response to a given sensory
input, and thus might produce more nearly optimal responses than the stochastic decoding used in
chapter 8. Such a system has been used by Whiteson and Stone (2006) to encourage exploration in
a reinforcement learning system, using ε-greedy and softmax methods to select among the current
members of an evolutionary population during training. The method could be used to select between
distinct but fully trained controllers as well.

Since the agents in the Legion II experiments use reactive controllers the live in a sort of
“eternal present”, and so to some extent it makes sense to introduce randomness to their behavior on
a continual basis. However, when deliberative agents are used, their moment-to-moment decisions
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are derived from a history-dependent internal state as well as the present sensory inputs. That
internal state is conventionally interpreted as a memory, but it can also be interpreted as a plan –
however abstractly specified – because rewinding a game and changing the agent’s internal state at
some given time would likely result in a different sequence of decisions thereafter. Likewise, the
policy-switching system described above can be conceived as a plan-switching system, whether the
agents are deliberative or reactive. For such plan-based behavior systems it is no longer necessary
(and perhaps not desirable) to introduce the behavioral stochasticity on a moment-to-moment basis.
Instead, it would be possible to modulate behavior on an intermittent basis, by switching between
“plans” at random points in time. Such a mechanism might well yield more coherent, self-consistent
behavior on the agent’s part, but still provide a useful degree of unpredictability if a sufficient
number of sufficiently different “plans” are available.

It is a given that some amount of unpredictability is desirable for some applications of
intelligent agents, and if the application calls for visibly intelligent agents that unpredictability needs
to be obtained at minimal cost to other desirable traits such as discipline and self-consistency. Thus
the suggestions above, and others, need to be evaluated for their relative utility and analyzed for the
trade-offs they require. The challenge of producing useful amounts of principled randomness into
the behavior of autonomous agents may well evolve into an entire field of research.

It should be noted that neuroevolution with stochastic sharpening improved the task per-
formance of the controller networks even in the absence of stochastic decoding when deployed.
Stochastic sharpening is a simple mechanism, and its only requirement is the use of scalar utility
confidence outputs. Its use is orthogonal to most other details of the training mechanism; for exam-
ple, it could be used with NEAT or rtNEAT (Stanley and Miikkulainen 2002; Stanley et al. 2005b)
rather than the ESP mechanism. If the performance advantage it provided in the chapter 8 experi-
ments is seen with other learning methods and/or in other applications, stochastic sharpening will
find utility as a general purpose “piggyback method” in its own right.

9.6 Neuroevolution with ESP

The basic technologies used for creating visibly intelligent behavior in the preceding chapters also
merit further investigation, and any discoveries will immediate benefit other application areas as
well. In particular, two questions have arisen regarding the enforced sub-populations mechanism
for neuroevolution.

As described in section 4.2.2, it is conventional to smooth the noise of evaluations when
using ESP by evaluating each neuron several times per generation, associated in a network with a
different random selection of peers each time, and average the fitness obtained by the tests. How-
ever, fitness evaluations are always noisy when training networks for the Legion II game, because
different training games are used each generation. Some of the games may be more difficult than
others in an absolute sense, or different games may be difficult for different sets of partially trained
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neurons by pure luck. Yet neuroevolution with ESP learns solutions to the Legion II problem any-
way, suggesting that it is very tolerant of noise. So the question arises, are the repeated evaluations
per generation actually necessary, or advantageous? Preliminary experiments show that a single
evaluation is also effective, if allowed to run for more generations. Further research should inves-
tigate the possibility of an optimal trade-off between evaluations per generation and the number of
generations used, and whether such a trade-off would be universal or application-specific.

The second question regarding neuroevolution with ESP is whether its power derives from
the fact that each population evolves a single neuron as a functional unit, as commonly assumed, or
whether the mere fact that sub-populations are used provides the power. The temporary association
of neurons into a network can be seen as a “trial crossover”; unlike the crossovers used in conven-
tional genetic algorithms, the trial crossovers are defeasible. If the power of ESP derives from the
use of sub-populations per se rather than the fact that the sub-populations evolve individual neurons,
then it is possible that the optimal number of sub-populations does not match the number of neurons
in the network. Such possibilities need to be investigated, partly for a better understanding of how
ESP works, and partly for the possibility of discovering new optimization mechanisms.

It may be further observed that the mechanism of enforced sub-populations is a general con-
cept, independent of many of the other details of a genetic algorithm. Thus it may prove possible to
use it in conjunction with NEAT and rtNEAT (Stanley and Miikkulainen 2002; Stanley et al. 2005b)
or CMA-ES (Igel 2003), which are ESP’s major rivals for the currently most effective mechanism
for neuroevolution. It is possible that using enforced sub-populations with one of the other methods
will produce an even more powerful neuroevolutionary algorithm. Moreover, if it turns out that the
power of ESP lies in the use of sub-populations per se rather than the fact that the sub-populations
represent single neurons, then it is likely that ESP will prove useful to genetic algorithms in general,
not limited to neuroevolution.

9.7 Summary

This dissertation has focused on the concept of visibly intelligent behavior and the requirements it
imposes on certain types of agent applications, and has provided example solutions to a select set
of challenges that the concept offers when neural networks are used to control agents embedded
in a strategy game or simulator. However, the work has also raised a number of questions not yet
answered, and the example methods it has provided are subject to competition from alternative
mechanisms, whether existing or yet to be invented. The dissertation should therefore be seen as a
supplement to a broad and deep field of research, interesting in its own right, utile for commercial
applications, a challenge for our methods of learning and representation, and ripe with implications
for our understanding of natural and artificial intelligence.
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Chapter 10

Conclusion

The goal of this dissertation has been to lay a foundation for applications of neuroevolution to the
creation of autonomous intelligent agents, for contexts where the agents’ behavior is observable
and observers have strong intuitions about what sorts of behavior do and do not make sense for an
intelligent agent. That goal has been pursued experimentally – and successfully – by identifying
problems and opportunities of interest and finding or inventing methods that solve the problems and
exploit the opportunities.

This chapter offers a brief high-level summary of the work presented in the dissertation.
Section 10.1 itemizes the dissertation’s major contributions to our capabilities and understanding of
artificial intelligence and its application to the challenge of visibly intelligent behavior in embedded
game agents. Then section 10.2 completes the dissertation with a final statement of the importance
of this work.

10.1 Contributions

Visibly Intelligent Behavior
The dissertation calls attention to the importance of visibly intelligent behavior in embedded intel-
ligent agents for applications where their actions are observable and viewers have intuitions about
how those actions should be carried out. Recent work has made neuroevolution increasingly viable
as a technology for training agents to operate in the rich environments of strategy games and sim-
ulators, and this dissertation supplements that work with methods for inducing visibly intelligent
behavior in such agents.

The ability to produce embedded agents that display visibly intelligent behavior may open
the door for applications of research-grade artificial intelligence in commercial games, providing
favorable PR for AI research and an economic boost to the game industry. AI may well become The
Next Big Thing for that industry, spurring additional public interest in AI research.

The concept of visibly intelligent behavior has shaped the rest of the work presented in the
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dissertation, which supplements similarly motivated work by other researchers working with other
AI technologies and/or application areas.

Adaptive Teams of Agents
Flexibility is an important part of intelligence; the ability of an agent to adapt to circumstances is
perhaps the holy grail of AI research. Such adaptivity is an important competence for embedded
game agents, because the rich environment of a modern computer game presents the agents with
multiple competing demands and opportunities that change continually over the course of a game.

The Adaptive Team of Agents is a multi-agent architecture that approaches the challenge
of flexibility in a team by providing individual agents that are pre-trained to be adaptive. A team
responsible for multiple tasks does not have to be tailored for each possible distribution of those
tasks: an adaptive team can tailor itself in situ by exploiting the flexibility in the individual agents’
behavior. In observable environments such as games, an adaptive team can continue to meet the
team’s goals as the fortunes of the game turn, and will convince viewers that the individual agents
are behaving intelligently rather than programmatically.

Example-Guided Evolution
Genetic algorithms have proven to be a powerful method for solving problems of various types,
including training controllers for intelligent agents. However, genetic algorithms optimize blindly,
and sometimes produce odd results; that can be a problem when the oddness lies in the observable
behavior of an embedded agent.

It has previously been established that example-guided evolution can help solve a problem
better according to some conventional performance metric. This dissertation shows that it can also
improve performance according to other considerations, such as eliminating erratic behavior in
embedded agents trained by evolution, or causing such agents to show discipline in their behavior –
to act according to a recognizable doctrine with an appearance of intelligence, whether that doctrine
is more effective or less so.

Exploiting Sensor Symmetries
When machine learning is used to train the mapping between sense and response in an agent, the
responses to various reasonable transformations of the sensory inputs must often be learned inde-
pendently. Such independence can result in inconsistencies in an agent’s behavior. For example, an
agent may learn to respond optimally to a threat or opportunity to its left, but sub-optimally to the
same threat or opportunity to its right.

When examples are available to assist with an agent’s training, simple transformations of the
examples can be used to generate artificial examples that are every bit as legitimate as the originals.
Such artificial examples can improve the agent’s training by the mere fact of providing more train-
ing examples, and can also expose the agent-in-training to the transformational regularities of its
target environment, resulting in learned behaviors that are more consistent across those transforma-

111



tions. For embedded game agents such consistencies will be seen as signs of intelligence; observers
will not conclude that the agents respond properly only to specific situations that they have been
programmed or trained for.

Managed Randomization of Behavior
While self-consistency is a desideratum for most intelligent agents, excessive predictability in em-
bedded game agents can be seen as a defect. Game players soon learn to exploit excessive pre-
dictability in AI-controlled opponents, and thereafter gameplay becomes a dull, mechanistic opti-
mization problem – the illusion of competing against an intelligent opponent is dispelled.

When an agent’s higher-order behavior is built up from the concatenation of atomic actions,
some degree of unpredictability can be introduced by making the choice of atomic actions stochas-
tic. Ordinarily that might be expected to result in poor performance by the agent. However, training
methods such as stochastic sharpening can produce controllers that generate a utility confidence
rating for the various available actions; stochastic behavior can then be distributed according to
those ratings, resulting in less degradation of performance. For embedded game agents the reduced
predictability – reduced exploitability – of such stochastic behavior may provide advantages that
offset the divergence from the notionally optimal behavior, and the agents will no longer be seen as
mindless automatons.

Typology of Human-Biased Genetic Algorithms
A typology can clarify our thinking on a topic, reveal non-obvious similarities and differences,
and expose gaps in coverage. This dissertation provides a typology of mechanisms for introducing
human biases into the outcome of genetic algorithms. The typology can be expected to have a
positive influence on researchers who explore such mechanisms, by clarifying the context of their
work and inducing more regularity into their terminology. It can also be hoped that the typology
will reveal biasing opportunities that have not yet been exploited, inspiring new avenues of research
and providing powerful new mechanisms that can be applied to difficult problems – such as training
embedded game agents to exhibit visibly intelligent behavior.

10.2 Conclusion

The programmed artificial intelligence in modern computer games often leaves observers unsatis-
fied; the AI-in-games community thinks it will soon be able to produce better results with machine
learning. However, blind optimization will not always produce the desired result. When a game
features embedded intelligent agents whose actions are observable, players will expect them to
display behavior that is flexible, adaptive, disciplined, and self-consistent, though not excessively
predictable: such are the visible signs of intelligence. This dissertation lays a foundation for train-
ing agents that display such characteristics when using neuroevolution and related technologies for
applications to strategy games or simulators. As the capabilities of research-grade artificial intelli-
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gence converge with the needs of the commercial gaming industry, this foundation can be expected
to expand into a broad and productive area of research that supports a commercially important genre
of real-world applications.
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