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Abstract Neural networks can be evolved to control robot manipulators in tasks like

target tracking and obstacle avoidance in complex environments. Neurocontrollers are

robust to noise and can be adapted to different environments and robot configura-

tions. In this paper, neurocontrollers were evolved to position the end effector of a

robot arm close to a target in three different environments: environments without

obstacles, environments with stationary obstacles, and environments with moving ob-

stacles. The evolved neurocontrollers perform qualitatively like inverse kinematic con-

trollers in environments with no obstacles and like path-planning controllers based on

Rapidly-exploring Random Trees in environments with obstacles. Unlike inverse kine-

matic controllers and path planners, the approach reliably generalizes to environments

with moving obstacles, making it possible to use it in natural environments.

Keywords neural networks, genetic algorithms

1 Introduction

A robot arm consists of a series of mechanical links that are connected by prismatic

or rotational joints. An end effector is connected to the end of the arm and used

to manipulate objects. Robot arms are used in industrial tasks such as assembling,

materials handling and packaging [4].

Traditional approaches in controlling robotic manipulators involve solving the in-

verse kinematic equations of the arm. The solutions are used to set the joint angles

or displacements in order to move the end effector close to a target [5]. One drawback

of this approach is that the controller applies only for a specific robot configuration
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and environment. If they change, e.g. one of the robot’s actuators becomes disabled

due to wear and tear, a new controller will have to be developed. For the same reason,

inverse kinematic controllers cannot be used to operate a robot manipulator in an en-

vironment with obstacles; it cannot take into account the positions of obstacles while

controlling the arm. Thus, inverse kinematic controllers are limited to environments

that are completely controlled and free of obstacles.

Extensive research has been conducted on designing robot arm controllers for en-

vironments with stationary obstacles [3,6,7,16]. In the standard approach, the entire

path of the robot arm is planned around obstacles ahead of time [3,5]. However, path

planning is computationally expensive because it requires evaluating many paths in

order to find one successful one. If the task or the environment changes, for exam-

ple if the obstacles move, the path planner must compute a new path. It is therefore

impractical to use path planning in environments with moving obstacles.

One potential solution is to use neural networks to control the arm. Neural net-

work controllers have been shown to be effective in several challenging tasks such as

board games, video games, pole balancing, robot control and vehicle control [1,7,10]. A

particularly effective method for constructing neurocontrollers is NEAT, or NeuroEvo-

lution of Augmenting Topologies [10]. In this paper, the NEAT method was used to

evolve neural network controllers that learn the dynamics of the robot arm and the

environment and learn to avoid both stationary and moving obstacles. Unlike previous

approaches, that focused on the end effector only [1,7], the NEAT controllers make

sure that no part of the arm touches the obstacles. While doing so, they position the

end effector close enough to a target position so that direct control methods can be

used to get to the target.

NEAT neurocontrollers were evolved in three different experiments. First, they

were evolved in environments without obstacles, demonstrating that neuroevolution

can solve the inverse kinematics of a robot arm. Second, controllers were evolved with

stationary obstacles to demonstrate that the approach works also in complex environ-

ments where inverse kinematic controllers cannot be applied. Third, they were evolved

in environments with moving obstacles where path-planning methods are not practical.

The evolved neurocontrollers could position the end effector on average to within

4.03 cm of a target in environments without obstacles, within 12.30 cm of targets with

stationary obstacles and within 13.39 cm of a target with moving obstacles. In each

case, the end effector is clear of obstacles and close enough to the target so that direct

control methods can be used to get to the target.

This result demonstrates that the evolved neurocontrollers effectively solved the

robot arm control task. Moreover, they can be used in dynamic environments (with

obstacles that move) where inverse kinematic controllers and path planners cannot.

They therefore make it possible to extend the domain of robotic manipulators from

artificially controlled environments to natural environments.

The rest of this paper is organized as follows. The next section summarizes existing

methods used to control a robot arm and their limitations and describes the NEAT

neuroevolution method. Section 3 describes the experiments conducted on a robot arm

simulator in detail. Experimental results are discussed and future work outlined in

Section 4.
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2 Background

Standard approaches to robot manipulator control involve designing controllers for

a specific robot arm configuration and a specific environment [4,5]. Controllers are

developed that solve the inverse kinematics of the arm. First, a visual observation of

a target object is translated into the desired position of the robot arm’s end effector

by using computer vision methods. The inverse kinematic controller is then used to

calculate the state that achieves the desired end effector position. The controller drives

the motors to position the end effector close to that target joint state [5].

Inverse kinematic controllers have been used to accomplish tasks such as arm po-

sitioning and target tracking. For example Feddema and Lee [2], used a self-tuning

adaptive controller for performing target tracking for a six-degree-of-freedom robot

arm with a camera attached to the end effector. Past image observations and past con-

trol inputs were used to determine the optimal control input that moved the camera

to track an object.

One drawback of using analytical controllers is that they are calibrated for specific

environments and robot arm configurations. If the robot configuration changes or the

environment changes the controller cannot be used and the inverse kinematics equations

have to be solved again.

These limitations can be overcome by using supervised learning methods to train

the controller. If the robot configuration changes, the controller has to be retrained

but this can be done with little human effort. Supervised learning algorithms require

a training set that demonstrates the correct robot joint states for different situations.

One way to generate training examples is to move the arm randomly while recording

the joint angles and end effector positions [18]. One limitation of this approach is that it

is difficult to generate training examples for complex behaviors like obstacle avoidance.

Obstacles can be taken into account through path planning. For example, Spong

and Vidyasagar [5], described an algorithm that uses attractive and repulsive potential

fields to generate a path that avoids obstacles. Henrich et al.,(1998) developed a path

planner based on the A∗ search algorithm in an implicitly represented configuration

space. Tian and Collins [16], used a genetic algorithm to optimize the parameters of a

trajectory for a planar two-link robot arm, Shibata et al. [9], used a similar approach to

optimize the path of a robot arm with six degrees of freedom. These implementations

show that path-planning in general is a successful approach. However it is computation-

ally expensive, which makes it difficult to use in real time. In particular, it is too slow

to be applied continuously when the robot is in an environment where the obstacles

are constantly changing, or moving.

For this reason methods have been developed based on neural network controllers.

Neural networks are fast, robust to noise, and can generalize even in non-linear envi-

ronments. For example, Moriarty and Miikkulainen [7] developed a method based on

the SANE genetic algorithm to evolve controllers for a three-degree-of-freedom robot

arm in a simulated environment with obstacles. This result demonstrated that neu-

rocontrollers could in principle use obstacle and target information from sensors to

effectively navigate around obstacles in real time. However, the obstacles were avoided

only at the end effector, and there was only a single stationary obstacle in one of twelve

positions. Scaling up this result to avoid obstacles with the entire arm, and further to

avoid obstacles that are moving, is a challenging task. In this paper, the NeuroEvolution

of Augmenting Topologies (NEAT) [10,11] method is used to evolve neurocontrollers

that meet this challenge. The NEAT method has previously been shown effective in
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challenging control tasks such as pole balancing, robot control, vehicle control, board

games and video games [10–12,14,15]. Many of these domains share features with the

obstacle avoidance task, suggesting that NEAT should be successful in this task as

well.

In NEAT, both the connection weights and the network topology of increasingly

complex neural networks are evolved to match the complexity of the problem. NEAT is

based on three fundamental principles: (1) a principled method of crossover of different

topologies, (2) protecting structural innovation through speciation, and (3) incremen-

tally growing networks from a minimal structure.

A genome in NEAT consists of node genes that specify whether the node is input,

output or hidden, and a list of connection genes that specify the input node, output

node, connection weight, whether the connection is enabled or not, and an innovation

number. Every time a new connection gene is created, a global innovation number is

incremented and assigned to the new connection. NEAT has two mutation operators:

add connection, where a single new connection gene is added to two previously un-

connected nodes, and add node, where an existing connection between two nodes is

disabled and replaced with two new connections (with the two old nodes connected to

the new node). Innovation numbers allow networks of different topologies to be com-

bined during crossover. During crossover the genomes of both parents are compared

and genes with the same innovation number are inherited by the offspring genome.

Genes that do not match are inherited from the fitter parent, or if the parents are of

equal fitness, from both parents randomly. Innovation numbers allow NEAT to perform

crossover without expensive topological analysis.

Adding nodes and connections initially decreases the fitness of the network, so

speciation is used to protect newly augmented networks. NEAT clusters individual

genomes into species so that individuals compete within their own species rather than

against the entire population. The distance measure of two genomes is computed as a

weighted sum of the average weight differences of matching genes and the number of

genes that do not match. Genomes are compared one at a time with a randomly chosen

member of the species from the previous generation and are placed into the species if

the distance measure is less than a threshold. Speciation protects structural innovation

by allowing individuals to compete within their own niches.

NEAT begins evolution with an initial population of networks with no hidden nodes

and weights that are randomly initialized. New structures are introduced as evolution

proceeds, and only networks with high fitness are used to generate new individuals for

the next generation. Mutation grows the structures to the complexity needed to solve

the problem. Such a process of starting minimally and complexifying as necessary

makes it possible to find solutions faster, and find more complex solutions [11,14].

NEAT should therefore be able to solve more complex versions of the robot arm control

task than has been possible before.

3 Experiments

Neural network controllers were evolved that could place the end effector of the simu-

lated OSCAR-6 robot arm near a target object in an environment that could contain

stationary or moving obstacles. Figure 1 shows the arm as seen in the Simderella 3.0

simulator [17].
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Fig. 1 A three-joint OSCAR-6 robot arm with six degrees of freedom, simulated using
Simderella [17]. Links 1, 2 and 3 are 46cm, 51cm and 50cm long. The joints between links 1
and 2, links 2 and 3, and link 3 and the end effector each have one degree of freedom, i.e. the
angle between them. Additionally, link 1, link 3 and the end effector can rotate around their
main axis for a total of six degrees of freedom. The neurocontrollers use range sensors along the
arm and the end effector to sense the obstacles and the target. The neurocontrollers’ outputs
are used to control the rotation of link 1 and the angles between links 1 and 2 and links 2 and
3; the other degrees of freedom are not used. The target is placed in the reachable space of
the robot arm, and the obstacle is centered around the midpoint of the line joining the end
effector and the target so that the robot has to avoid obstacles for every training example.

The first and second joints have one degree of freedom each while the third joint

and the end effector have two degrees of freedom. The neural networks were trained to

control three of these, i.e. the angle of rotation of the first link, and the angles between

links 1 and 2 and links 2 and 3. These three degrees of freedom were sufficient to allow

the controller to reach target positions in the space directly in front of it. Reducing

the degrees of freedom allowed neuroevolution to learn to solve the inverse kinematics

of the arm in a fewer number of generations.

The objective was to evolve neurocontrollers that could position the end effector

within 15 cm of a target, i.e. close enough so that the arm could thereafter be moved

directly to the target using a direct controller (e.g. one based on inverse kinematics).

This goal was achieved in three steps. First, neurocontrollers were trained to reach

the target in environments without any obstacles. Second, they were trained to do the

same in environments with stationary obstacles. Third, they were trained to do the

same with moving obstacles.

The target set was chosen so that all targets were within the robot’s reach space.

The obstacles were placed directly on the path between the end effector and the target

so that the neurocontroller would have to learn to move the arm around them. Per-

formance of the best neurocontrollers were compared with an inverse kinematic con-

troller for environments without obstacles and with a path-planning controller based

on Rapidly-Exploring Random trees (RRT; LaValle,1998).
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3.1 Learning to control the arm in an environment without obstacles

The objective of the first experiment was to evolve neurocontrollers that could solve

the inverse kinematics of the robot arm. The neural network is provided with sensor

inputs from the environment, which are then used to determine how to move the arm.

The inputs consist of:

– three joint angles that represent the current joint state;

– x, y and z positions of the target in absolute coordinates; and

– x, y and z positions of the target relative to the end effector.

The networks have four output neurons, three of which determine how much each

rotation or joint angle changes at each timestep. The angles are thresholded between

[−5, +5] degrees, which forces the neurocontroller to make several small joint rotations

towards the target. In preliminary work, this approach was found to be more effective

than specifying the final angle directly. The networks also have an output neuron that

controls whether or not to stop moving the robot. This representation was found to be

more effective than having to set all three joint angle rotations to zero degrees.

Each neural network evaluation starts by resetting the robot arm to a standard

initial configuration, as depicted in Figure 1. Each network is evaluated over a fixed

training set of 168 target positions uniformly randomly distributed within the robot’s

reach space. During each evaluation, the network is allowed to move the arm until

the network stops the arm by activating the stop neuron, or the number of timesteps

reaches 20.

The fitness function is computed as the percentage of distance the arm moved from

the initial starting point towards the target position. Percentage is used instead of

actual distance so that both near and far targets need to be learned.

Figure 2 depicts the fitness of the best network found at each generation, averaged

over ten runs. The fitness reaches 0.88, corresponding to an average distance of 3.79

cm from the target over the 168 position training set. Over a fixed uniformly randomly

distributed set of 168 test positions, the networks achieved an average distance of 4.03

cm from the target over the ten runs. In comparison, the inverse kinematic controller

is on average able to move the end effector to within 0.12 cm of the target over the

test set. However, the target distance of 4.03 cm is close enough so that the robot arm

can be directly controlled to move the end-effector to the target the rest of the way. In

other words, the neurocontroller effectively solved the inverse kinematics of the robot

arm.

3.2 Learning to control the arm in an environment with stationary obstacles

In the second experiment, the neural network controllers were trained to move the end

effector close to a target position while avoiding stationary obstacles.

The networks receive input from sensors along the robot arm, providing information

about the target and the obstacle. These sensors allow the neurocontroller to avoid

hitting the obstacle with the entire arm and not just its end effector. The inputs

consists of

– three joint angles that represent the current joint state;

– x, y and z positions of the target relative to the end effector;
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Fig. 2 Fitness of the best network found at each generation in an environment without ob-
stacles averaged over ten runs. The fitness of the starting network is low because it consists
of inputs connected directly to outputs with random weights. The fitness eventually reaches a
maximum of 0.88, meaning that the controller can position the end effector to within 3.79 cm
of a target on average over the training set, and 4.03 cm over the test set.

– x, y and z positions of the obstacle relative to the end effector;

– x, y and z positions of the obstacle relative to the midpoint of the second link; and

– x, y and z positions of the obstacle relative to the midpoint of the third link.

Each neural network evaluation starts from the same standard joint configuration.

Each network is evaluated over a fixed training set that consists of 96 target positions

uniformly randomly distributed in the robot’s reach space. The target is placed in one

of those positions and an obstacle is placed midway between the initial position of the

end effector and the target position. To get to the target, it is therefore necessary for

the controller to navigate around the obstacle.

During each evaluation the network is allowed to move the arm until the network

stops the arm, or the number of timesteps reaches 60, or the robot hits the obstacle.

The fitness function is the relative distance travelled towards the target, as in the

previous experiment. If any part of the arm hits the obstacle the network is assigned a

fitness of zero. This fitness function rewards networks that are able to navigate around

obstacles and move the end effector close to a target using an efficient path.

Figure 3 depicts the fitness of the best network found at each generation, averaged

over ten runs. The final fitness is 0.68 on average, which corresponds to a final target

distance of 11.12 cm over the training set, and 12.30 cm over the 96-position test

set (if the neurocontroller hit an obstacle, the initial distance is used in the average

calculation). This distance is again close enough to the target for a direct control

method to take care of the rest. On average the final controllers successfully navigate

around obstacles in 87.1 of 96 test cases. In other words, the neurocontroller is able to

avoid obstacles and still position the end effector close to a target.

An inverse kinematic controller cannot be used in environments with stationary

obstacles because it does not take into account the position of the obstacle. The final

evolved neurocontrollers were therefore compared with a path-planning controller. In

order to make it feasible for the path planner to avoid obstacles with the entire arm,

it was based on Rapidly-exploring Random Trees (RRT; LaVelle 1998). An RRT is

a data structure that allows searching nonconvex high-dimensional spaces efficiently.
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Fig. 3 Fitness of the best network found at each generation in an environment with stationary
obstacles, averaged over ten runs. The final network had a fitness of 0.68, corresponding to
a final distance of 11.12 cm over the training set and 12.30 cm over the test set. This result
demonstrates that neurocontrollers can be used to effectively control the arm in environments
with stationary obstacles.

With the RRT implementation in the Motion Strategy Library [19] the path planners

avoided stationary obstacles along the entire length of the arm while positioning the

arm close to a target.

An example case is shown in Figure 4. Both the neurocontroller and the RRT

controller are able to avoid the obstacle and position the arm close to the target. On

average the RRT controller gets the end effector to within 0.29 cm of a target over

the 96-position test set. The average final distance of the neurocontroller is somewhat

larger, although still practical. This approach is especially useful because the same ap-

proach, unlike the path-planning approach, can be used in more complex environments

with moving obstacles, as described in the next section.

3.3 Learning to control the arm in an environment with moving obstacles

In the third experiment, the neural network controllers were trained to move the end

effector close to a target position while avoiding a moving obstacle. The final neuro-

controllers in the previous experiment were used as a starting point for evolution.

The experimental setup is otherwise the same as before, except the obstacle moves

back and forth across the midpoint between the end effector and the for a distance

of 80 cm at a speed of 2.67 cm per timestep. The neurocontroller must learn to move

towards the target while the obstacle is not in the way.

Figure 5 depicts the average fitness of the best network found at each generation.

The final networks in the ten runs had an average fitness of 0.71, which represents a

final target distance of 12.29 cm over the training set and 13.39 cm over the 96-position

test set. The final neurocontrollers were able to avoid 82.9 of the 96 obstacles in the

test set on average.
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Fig. 4 An illustration of the path taken by the end effector in an environment with stationary
obstacles for a neurocontroller and a RRT controller. The obstacle is placed at the midpoint
of the line joining the starting position and the target position. (a) A 3D visualization of the
path. (b) Projection of the path in the xy plane, and (c) projection in the yz plane. The
neurocontroller was trained on target positions that were uniformly randomly distributed in
the robot arm’s reach space; it is able to generalize and position the effector close to the target
in this new case. In contrast, the RRT controller randomly explores the search space to find a
path that avoids the obstacle. The two controllers therefore take different paths to the target
while avoiding the obstacle.

In summary, the controller constructed through neuroevolution can avoid mov-

ing obstacles as well as stationary ones, which is a great advantage over traditional

methods. Neurocontrollers trained this way could potentially be used to control ma-

nipulators in complex natural environments, which is currently not practical in any

other way.
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Fig. 5 Fitness of the best network found at each generation in an environment with moving
obstacles, averaged over ten runs. The final network that was evolved had a fitness of 0.71 on on
average, positioning the end effector to less than 12.29 cm from a target in training and 13.39
cm from a target in testing while avoiding moving obstacles. This result demonstrates that
neurocontrollers can be used to effectively control the arm in complex natural environments.

4 Discussion and Future Work

The evolved neurocontrollers achieved qualitatively similar performance as the inverse

kinematic controller in environments without obstacles, and the path-planning con-

troller in environments with stationary obstacles. This result demonstrates that the

neurocontrollers learned the inverse kinematics of the robot arm and learned to effec-

tively use sensor information to get around obstacles.

The neurocontrollers can move the end effector to within 4.03 cm of the target in

an environment without obstacles, 12.30 cm with stationary obstacles, and 13.39 cm

with moving obstacles, without touching the obstacle with the end effector or the arm

thereof. In each case, the end position is close enough for direct controllers to take

over and do the rest; the networks have already performed the hard part of the task.

In particular, while path planners can be used to control the arm in environments

with stationary obstacles where there are no time constraints, to date there is no other

practical method to control it in an environment with moving obstacles. This result

demonstrates that the neurocontrollers could potentially be used to perform complex

tasks in the natural world in the future.

The neurocontrollers described in this paper do not change once they have been

evolved. It would be desirable to automatically detect changes in the robot arm con-

figuration or environment and adapt to it dynamically while the system is performing.

For example, the robot arm configuration may change if one of its actuators become

defective due to wear and tear, or the environment can change if new obstacles are

introduced.

One possible approach would be to use a self-teaching architecture similar to that

of Nolfi and Parisi [8]. In this architecture, the training input is provided by a separate

neural network that has the same sensor input as the neurocontrollers and is subject to

the same evolutionary process as the neurocontroller, but with a fitness function that

is designed to train the network to detect environmental changes. In the robot arm

application, the teaching network could recognize the configuration of the environment
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and robot and modify its outputs in order to train the neurocontroller to adapt to the

new environment. Evolving such adaptable neurocontrollers is an important direction

for future work.

5 Conclusion

Neurocontrollers were evolved for environments without obstacles to demonstrate that

the NEAT genetic algorithm can be used to learn the inverse kinematics of the robot

arm. In environments with stationary obstacles, the neurocontrollers’ performance was

qualitatively similar to that of path planning controllers. Furthermore, in environments

with moving obstacles, where path-planning methods are not practical, evolution was

able to find effective solutions. A robot arm controlled in this manner should therefore

be able to operate robustly in a natural environment with moving obstacles, which is

currently not otherwise possible.
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