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Abstract

Technology-driven limitations will soon force micropro-
cessor chips to contain multiple processing cores, as the
scalability of individual cores peaks but transistor counts
continue to increase. To obtain best performance, flexi-
ble management of the on-chip resources, such as cache
memory and off-chip bandwidth, is needed. However,
control for the dynamic management of these on-chip
resources is difficult to design. In this paper, we pro-
pose a method for developing such a controller: evolving
a recurrent neural network using the Enforced Subpopu-
lations algorithm. The method is tested in a trace-based
simulation that measures dynamic assignation of a pool
of level-two cache banks to a set of processing cores. We
present results showing that, when the chip is controlled
by the neural network, we obtain a 18% performance
improvement over static cache partitioning.

1 Introduction

Scalability limitations on the performance growth of
conventional superscalar designs—due to growing on-
chip wire delays [1]-will make chips with many proces-
sors per chip nearly universal. These chip multiproces-
sors, or CMPs, have already started to emerge: IBM
will soon ship their Power4 processor [4], which has two
processing cores per die, and Compagq is developing an
eight-core chip called Piranha [2].

An open question is how the cache hierarchy and off-chip
interconnects will be designed as the number of cores on
a chip increases from two to eventually hundreds. It is
likely that each core will have a private level-one cache,
which will be small and tightly coupled to its processing
core. The level-two (L2) caches, however, will consume
much of the die, reducing the frequency with which pro-
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cessors must go off the chip for data. These L2 caches
will total tens (and eventually hundreds) of megabytes
in size, but will be distributed across the chip, and di-
vided into hundreds of physical banks.

In the simplest implementation, each core is assigned
its dedicated memory resources (i.e. some number of
L2 cache banks) at design time. However, such a static
assignment will render performance suboptimal, as dif-
ferent workloads have different memory requirements,
as well as resource needs that vary over time. For in-
stance, if job A is only using a small fraction of its L2
cache, and job B is memory bound, then performance
would be improved by dynamically assigning some of
the cache banks from job A’s processor to job B.

If a sufficiently effective (and low-overhead) mechanism
can be found to manage these resources adaptively in
response to the changing needs of the jobs running on
the individual cores, performance could be significantly
improved. Resources could be allocated to where they
contribute most to maximizing some desired measure
of overall chip performance (figure 1). The controller
would need to use the available CMP state information
to periodically re-assign cache banks to the cores and
minimize the number of L2 cache misses. accesses).

Unfortunately, the design of such a controller is chal-
lenging for the following reasons:

1. Conventional controllers need to implement an an-
alytic model, which may not accurately represent
the true behavior of the system, or it may be
too computationally intensive to produce resource
management recommendations in time. If inaccu-
rate, it is unclear a priori what effect a control
action will have on the future behavior of the sys-
tem.

2. The system has many competing dimensions
(power, reliability, application phase, workload
mix, memory bandwidth, cache size), posing a dif-
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Figure 1: Controlling a Chip Multiprocessor. The
controller receives measurements from the chip
at regular intervals and outputs a decision to
optimize the performance for some desired mode
of operation.

ficult challenge to a controller trying to find a lo-
cally optimal performance point while satisfying
other constraints.

3. The system may be non-Markov, making effective
decisions require more information that just the
current state of the chip.

In short, the problem exhibits the basic characteristics
of difficult reinforcement learning tasks—a sequence of
decisions have to be made without prior knowledge of
what action should be taken in each state to ensure
good long term performance. CMP resource manage-
ment is thus likely a good candidate for the application
of reinforcement learning techniques such as artificial
evolution.

In this paper, we propose a method for developing
a CMP controller to take a first step toward on-line
dynamic CMP resource management (just L2 cache
banks), using a neuroevolution algorithm called En-
forced Subpopulations (ESP). ESP is used to evolve a
neural network that controls the L2 cache size of each
individual processing core.

The paper is organized as follows: Section 2 pro-
vides general background on Neuroevolution. Sec-
tion 3 presents the ESP algorithm. Section 4 describes
the methodology for evolving the CMP controller and
presents experimental results. Finally, section 5 dis-
cusses avenues for future work in this area.

2 Neuroevolution

Neuroevolution (NE; see [10] for a comprehensive review
of research in evolutionary neural networks ) represents
a significant departure from conventional reinforcement
learning methods based on dynamic programming [9].
Instead of having a single agent learn a value-function

that indirectly represents its policy, NE searches the
space of policies directly using a Genetic Algorithm
(GA; [7]). A population of neural networks is encoded
into strings of weights called chromosomes that repre-
sent the genotype of each network. Following a process
analogous to natural evolution, each genotype is trans-
formed into its neural network phenotype and evaluated
on a given task to assess its fitness. Those networks
that receive high fitness are then mated by exchanging
genotype substrings to produce new networks. By mat-
ing only the most fit individuals, the hope is that the
favorable traits of both parents will be transmitted to
the offspring resulting in a higher-scoring individual.

GAs can rapidly locate high payoff regions of high-
dimensional search spaces, are less susceptible to local
minima than single solution methods, and work well on
problems where there is little domain knowledge. For
these reasons they are well suited for searching the space
of neural network parameters. Instead of training a net-
work by performing gradient-descent on an error sur-
face, the GA samples the space of networks and recom-
bines those that perform best on the task in question.

3 Enforced Subpopulations

Enforced Subpopulations (ESP; [5, 6]) is a neuroevolu-
tion method that extends the Symbiotic, Adaptive Neu-
roevolution algorithm (SANE; [8]) to tasks that require
memory. ESP and SANE differ from other NE methods
in that they evolve partial solutions or neurons instead
of complete networks, and a subset of these neurons are
put together to form a complete network. In contrast
to SANE, ESP makes use of explicit subtasks; a sepa-
rate subpopulation is allocated for each of the u units
in the network, and a neuron can only be recombined
with members of its own subpopulation (figure 2). This
way the neurons in each subpopulation can evolve in-
dependently and rapidly specialize into good network
sub-functions.

Evolution in ESP proceeds as follows:

1. Initialization. The number of hidden units u in
the networks that will be formed is specified and
u subpopulations of neuron chromosomes are cre-
ated. Each chromosome encodes the input, out-
put, and recurrent connection weights of a neuron
with a random string of real numbers.

2. Evaluation. A set of u neurons is selected ran-
domly, one from each subpopulation, and com-
bined to form a neural network. The network is
submitted to a trial in which it is evaluated on
the task and awarded a fitness score. The score
is added to the cumulative fitness of each neuron
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Figure 2: The Enforced Subpopulations (ESP)
Method. There is a subpopulation of neurons
for each hidden unit position in the recurrent
networks being evolved. Networks are formed
by randomly selecting one neuron from each
subpopulation, and then evaluated by measur-
ing their performance (fitness) in the task. The
best neurons are mated within each subpopula-
tion.

that participated in the network. This process is
repeated until each neuron has participated in an
average of e.g. 10 trials.

3. Recombination. The average fitness of each neu-
ron is calculated by dividing its cumulative fitness
by the number of trials in which it participated.
Neurons are then ranked by average fitness. Each
neuron in the top quartile is recombined with a
higher-ranking neuron using 1-point crossover and
mutation at low levels to create the offspring to
replace the lowest-ranking half of the population.

4. The Evaluation—-Recombination cycle is repeated
until a network that performs sufficiently well in
the task is found.

Evolving networks at the neuron level has proven to be a
very efficient method for solving reinforcement learning
tasks such as pole-balancing [6], robot arm control, and
game playing [8].

ESP extends the neuron-level evolution introduced in
SANE to tasks that require memory. Because neurons
are segregated into subpopulations they are guaranteed
to be combined with one member of each evolving spe-
cialization when networks are formed. This reduces the

noise in the measurement of neuron fitness and allows
recurrent connections between neurons to evolve reli-
ably.

The ability to evolve recurrent networks means that
ESP can solve tasks that demand more than a fixed re-
action to each sensory input (i.e. reactive behavior).
The solutions ESP generates can retain information
from previous inputs and use it to make decisions. This
property is essential for the CMP control task where the
instantaneous state of the chip does not provide enough
information about the behavior of jobs (e.g. memory
access patterns) to predict future states and make intel-
ligent decisions. By evolving recurrent networks, ESP
finds solutions that can identify features in a history of
CMP states to determine the underlying, hidden state
of the CMP that is critical to make the correct decision.

4 Evolving the CMP controller

This section describes the methodology for evolving the
CMP controller, and presents the results of our prelimi-
nary experiments. For this initial study, we restrict the
problem to that of evolving a recurrent neural network
to manage the L2 cache resources of a CMP with C
processing cores. The network must dynamically set the
size of each core’s L2 cache so that the total job through-
put of the chip is maximized. Because the cores execute
tasks that vary widely with respect to working-set size
and memory access behavior, the challenge for ESP is
to evolve a network then can accommodate the chang-
ing needs of the separate tasks so that cache misses are
minimized.

The following sections cover the three basics compo-
nents involved in applying ESP this problem: (1) the
choice of input and output representations for the net-
works, (2) the simulation environment that models the
behavior of the CMP, and (3) the evaluation function
that measures the relative quality of the interactions be-
tween (1) and (2). The results are presented in the final
subsection.

4.1 Network Representation

Figure 3 shows the representation used in our exper-
iments. The input layer receives the instructions per
cycle (IPC), L1 cache miss rate (L1m), and L2 cache
miss rate (L.2m) of each core {c;}$ ;. These three vari-
ables constitute the state of the chip that is observable
to the controller, and were chosen intuitively to be the
measurements most relevant to L2 cache resizing. Be-
cause the networks are recurrent, they also receive the
previous hidden layer activation as input, for a total
of 3C + u input units. The output layer has one unit
per core whose activation value is the amount of cache
desired for that core. All hidden and output units are
sigmoidal.
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Figure 3: CMP control network. The network has a
set of input units for each core, one unit for
each of the three performance measurements
(IPC,L1m,L2m). There is one output unit per
core. The activation of an output unit, indi-
cated by gray-level, corresponds to the amount
of L2 cache requested by that core.

To prevent the total amount of cache requested by a
network from exceeding the total cache available on the
chip (L2¢0tq1), the network output is post-processed by
normalizing the activations so that they add up to 1.
Because the output units produce continuous values,
the normalized activations are then quantized into the
number of different cache sizes available (see below).

4.2 Simulation Environment

Controllers were evolved in an approximation to the
CMP environment that relies on traces collected from
the SimpleScalar processor simulator [3]. A trace
is a sequence of measurements of processor variables
sampled at fixed intervals, and is a common way to
capture various characteristics of processor behavior.
A set of traces was generated for each of the fol-
lowing SPEC2000 benchmarks: art, equake, gcc,
gzip, parser, perlbmk, vpr, using their respective
reference working-sets. Each benchmark’s trace set
consists of one trace for each possible L2 cache size
s € § = {64K,128K,256K ... L2454, }, for a total of
7 x | S| traces. For convenience, traces are identified
by the naming scheme: T'<benchmark name><cache
size>. For example, T'gcc256 is the trace for the gcc
benchmark for a processor with 256K of L2 cache. All
traces recorded the IPC, L1m, and L2m of the simulated
processor every 10,000 instructions using the DEC Al-
pha 21264 processor configuration.

The traces provide a substitute for the actual CMP
for which a full simulator is not currently available.
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Figure 4: Trace environment. The CMP is ap-
proximated by several sets of traces, one for
each benchmark. There are as many traces ac-
tive during a network evaluation as there are
cores. There is one trace in each set for each of
the cache sizes. When the controller changes a
core’s cache size the trace environment switches
over to the appropriate trace.

By combining n traces we can approximate a CMP
with n processing cores. Taking the recorded values
(IPC,L1m,L2m) from the k-th entry in each of the n
traces gives the state that the CMP would be in after
10,000 x k instructions have been executed on each of
the cores.

The next section describes how the two components cov-
ered so far are combined to evolve the CMP controller.

4.3 Network Evaluation

Networks are evaluated by having them interact with
the trace-based environment for some fixed number of
control decisions. At the beginning of a network eval-
uation the environment is initialized by selecting a set
of C' benchmarks, and allocating an equal amount of L2
cache to each core (L2¢4t0:/C). Once initialized, the net-
work starts controlling the CMP by receiving the state
of the chip at time ¢ from the traces corresponding to
caches of size L24544;/C. The network then outputs its
cache allocation decision which affects the configuration
of the chip from ¢ until the next decision point at time
t + 1, 10,000 instructions later. The next state at ¢ + 1
then becomes the new input to the network and the
cycle is repeated.

In a real CMP, the reassignment of a cache bank from
core A to core B would cause the entire caches of A
and B to be unavailable for a significant number of cy-
cles while their data is being written back to memory.



In our simulation environment, we ignore this overhead
and simply reconfigure the chip by switching to the
trace corresponding to the new cache size (figure 4).
So, for instance, if the controller decides that core ci,
which is currently executing the gzip benchmark with a
256K cache, should have 512K, then the trace for ¢; will
switch from T'gcc256 to T'gecb12, and the controller will
receive values from T'gec512 at the next decision point.
The new trace is started at the same point as the old one
(i-e. the same number of instruction into the computa-
tion). When a trace runs out, the environment switches
to the trace of a different benchmark at the same cache
size (see trajectory of core C in figure 4). The evaluation
ends after some predefined number of cycles.

All of the experiments presents here were conducted us-
ing the following parameter settings.

Parameter | Value
Environment
cores (C) 4
caches sizes (|S]) 7 (64k..4M)
L2t0tal 4M
ESP
number of subpops | 10
size of subpops 100
mutation rate 30%

The values for ESP are a compromise between perfor-
mance (i.e. the quality of the solution) and the CPU
time required for the simulation. Larger values pro-
duced similar results with a linear increase in CPU time.

With 7 possible cache sizes available to each core and
7 benchmarks, a total of 49 traces were used to imple-
ment to environment. Each network was evaluated for
1 billion instructions (i.e. 100,000 decisions The fitness
of a network was the average IPC of the chip averaged
over the duration of the trial.

Although using this trace-based approach simplifies the
CMP environment somewhat, it should provide a good
first-approximation with which to evaluate the feasibil-
ity of actually applying ESP to a full-scale version of
this problem. Furthermore, if the CMP is reconfigured
using a much more efficient implementation where the
number of cache banks assigned to a core is changed
by increasing or decreasing the associativity of its total
cache, then our trace-based model more closely approx-
imates the true behavior of the chip.

4.4 Results

Five simulations were run on a 14-processor Sun Ul-
tra Enterprise 5500 for approximately 1000 generations
each. At the end of each evolution the fitness of the best
network was compared to a baseline performance value
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Figure 5: Control Behavior. Each plot shows the cache
size of one of the 4 cores over the course of 1
billion instructions.

that is the average IPC of the chip obtained when the
total amount of L2 cache on the chip is divided equally
among the cores. The networks showed an average im-
provement of 16% over the baseline.

Although a significant improvement, this measure of
performance is inadequate to determine how well the
networks are able to allocate cache resources in general.
The reason for this is that the networks were evaluated
in a single trial and, therefore, only tested in one set
of conditions. The danger with this approach is that
the networks will specialize to these particular condi-
tions and not capture much of the general behavior.
One way to avoid this is to evaluate each network in
many different contexts. That is, many trials in which
the set of benchmarks run by the CMP are chosen at
random. While a possible alternative in this case, time
constraints prevented the use these more costly, multi-
ple evaluations.

Instead, to measure how well the networks perform the
general task despite their limited exposure to the envi-
ronment, the best network from each of the 5 simula-
tions was submitted to a generalization test. The test
consists of 1000 trials where the network controls the
chip for 1 billion instructions under random initial con-
ditions. In each trial, the baseline performance was also
measured. Once all the trials were completed, the net-
work performance was compared to the baseline across
all trials. The result of this test showed that the net-
works still retained a 13% average performance advan-
tage over the baseline, and, perhaps more importantly,
the networks performed better than the baseline on ev-
ery trial. These tests show that although the networks
had very limited exposure to the task during evolution,
they were able to extract general competence to perform



well under novel circumstances.

Figure 5 shows the behavior of one of the best networks
over the course of 100,000 decisions. It is clear that the
different cores that are running different benchmarks
are being managed differently. Core c; stays almost
entirely at 64K while the others oscillate rapidly within
characteristic ranges. This oscillation is an artifact of
not imposing an overhead on cache re-sizing.

5 Discussion and Future Work

The results so far indicate that evolutionary neural net-
works can potentially provide significant improvement
over a simple equipartition of the L2 cache on a chip
with 4 cores. It remains to be seen whether it will scale
to larger architectures. Further studies will begin by in-
vestigating this scalability question, and comparing the
approach to other possible, heuristic methods.

The trace-based model currently ignores the following
characteristics of the CMP microarchitecture. (1) As
mentioned in the previous section, the absence of a
reconfiguration penalty allows the controller to “over-
manage” the resources with impunity, (2) it treats all
cache banks as if they are equidistant from each of the
core without accounting for the variability in cache ac-
cess latencies that exist due the physical layout of the
chip—some banks are necessarily further from a core
and require more cycles to access, and (3) to reduce the
number of traces in the model, the cache sizes available
to each core grow in powers of 2 (2" x 64K), instead of
linearly (n x 64K). This limits control to a relatively
coarse partitioning of the cache.

A model that incorporates these complexities will force
ESP to evolve controllers that are more reserved in their
resource management regime, favor cache banks that
reside at close proximity to the cores, and are able to
control resources at a finer granularity.

Once larger and more accurate simulations have been
conducted the viability this approach should be more
firmly understood. If further study proves encouraging,
the next step will be to start looking a hardware im-
plementation issues for the neural network controller.
For the controller to be useful it must produce timely
decisions, which means that it will likely need to be
implemented hardware. The cost of putting controller
on-chip will have to be weighed against the potential
performance improvement provided by this additional
hardware.
6 Conclusion

The approach to CMP control presented in this paper
is a first step toward the complex resource management
problem that will be critical as large-scale multiproces-
sor become widespread. Our initial results are promis-

ing, and the approach should be well suited the the
very high-dimensional state-space implied by multipro-
cessors with many dynamically adjustable parameters
and modes of operation.
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