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Abstract

John Searle’s Chinese Room argument
raises many important questions for tradi-
tional, symbolic Al, which none of the stan-
dard replies adequately refutes. Even so, the
argument does not necessarily imply that ma-
chines will never be truly able to think. Never-
theless, we must be willing to make some
changes to the foundations of traditional Al in
order to answer Searle’s questions satisfacto-
rily. This paper argues that if we constrain the
sorts of architectures we consider as ap-
propriate models of the mind other than the
brain, such that they resemble the physical
structure of the brain more closely, we gain
several desirable properties. It is possible that
these properties may help us solve the hard
problems of intentionality, qualia and con-
sciousness that Computational Functionalism
has so far not been able to address in satisfac-
tory ways.

Introduction

It may seem evident that if one is in basic
agreement with the points John Searle makes
with his Chinese Room Argument (1980, 1984),
that would be reason enough to abandon all at-
tempts at any form of what he calls strong Al.
After all, the whole argument is meant to dem-
onstrate the futility of endeavors in that direc-
tion. In this paper, | will attempt to show that
even if Searle is correct, there is hope for suc-
cess.

To begin, it is important to note that there
are really several different paradigms within
the area of Artificial Intelligence, whereas Searle
directly addresses only what he calls *“strong
Al” in his argument. Of the different areas, two
in particular (the symbolic and subsymbolic
paradigms) seem to fit his definition and thus

are possible targets of the Chinese Room Ar-
gument (CRA). The purpose of this paper is to
examine both of these styles of Al, differentiat-
ing them from other types, in order to deter-
mine whether they are different in ways that
can contribute significantly to the refutation of
Searle’s argument.

For its first few decades, the discipline of Ar-
tificial Intelligence was chiefly, if not exclu-
sively, devoted to the symbolic paradigm. This
is the sort of Al that everyone was doing when
Searle introduced the CRA. Most of its practi-
tioners have counted themselves as Computa-
tional or Al Functionalists in terms of their
philosophical affiliation. As such, they have
proffered various defenses against Searle’s ar-
gument. This is hardly surprising, since one of
the basic tenets of this philosophy is the idea
that we can best characterize the workings of
the mind as a series of operations performed on
formal symbol structures (Bechtel, 1988; Newell
1976). Adherence to this notion entails a high-
level view of the mind in the sense that it dis-
misses the function of individual neurons (and
even of neuronal structures) in the brain as be-
ing unnecessary to an understanding of cogni-
tive processes.

In the last ten to fifteen years, however, the
field of Al has seen the growth of connection-
ism as a major paradigm. Although there is
great variety in the aims and interests of con-
nectionists, just as there is among the propo-
nents of symbolic Al, there are many who are
specifically interested in biologically plausible
models of the brain and who feel that even our
present-day, admittedly crude models of neural
networks may give us new insight into the way
the mind works. When Searle introduced the
CRA, he was obviously targeting symbolic Al
(in particular, the work of Schank’s group at



Yale; see Schank and Riesbeck, 1981 for an
overview), so it is possible to hypothesize that
the CRA may not apply to the subsymbolic
paradigm. The proponents of the symbolic ap-
proach are quick to point out that connection-
ists still have not proved that it is possible in
practice to use artificial neural networks
(ANNSs) to model high-level cognitive functions
effectively. Nonetheless, this paper will be con-
cerned with defending connectionism from a
more theoretical, rather than a purely practical
point of view. What we would like to discover
is whether connectionism might be able to lead
us into new ways of thinking about the mind,
productive ways of modeling it and ultimately,
whether connectionist systems might be the key
to true thinking machines.

Different Sorts of Al

Before we can discuss the possibilities for Al,
we must first define exactly what our goals are.
As it turns out, various researchers have en-
tirely different aims. Some are not interested at
all in anything we might call cognitive plausi-
bility; their work lies more in the realm of engi-
neering than in the cognitive sciences. This is
the sort of work that the Department of Defense
often contracts and it is generally motivated by
a requirement for a very specific result in a very
limited domain. We call upon techniques from
Al simply because we cannot accomplish a par-
ticular goal with the ordinary algorithms that
we study in other areas of computer science,
such as systems or numerical programming.

Most people intuitively insist that intelli-
gence involves something more than a com-
puter blindly and deterministically executing a
program in which a programmer explicitly de-
fines the actions to be taken in each of several
(carefully limited) situations. Thus, in order to
accept that these programs exhibit something
we might call artificial intelligence, we shall
have to also accept that the modifier “artificial”
places very severe constraints on our normal
definition of intelligence. In some sense, this
seems consistent with the constraints of mean-
ing that are implied when we place “artificial”
in front of other nouns. Surely no one would
argue, for example, that there is any significant
relationship between an artificial flower and a

real flower other than its general physical
shape, nor that an artificial limb is a really satis-
factory replacement for a natural one. Since
work with such concrete and practical aims is in
no way concerned with human cognition, we
need consider it no further.

There is a second group of Al researchers
with a very different objective. As we shall see,
we can further subdivide even this group, but
for now, if we confine ourselves to consider
only their most general high-level goals, we can
temporarily put them all into a single category.
This group includes all those people whose aim
is to somehow emulate the workings of the hu-
man mind, whether it be with the intent of
simply gaining a better understanding of the
brain or with the intent of passing the Turing
test or with the much more ambitious desire to
eventual build the sorts of perfect androids that
are popular in science fiction movies or on fu-
turistic television programs.

As | noted, this latter group is not homoge-
neous. Searle would argue that those who rely
on computer simulations only as tool to better
understand the brain are not in the same cate-
gory as those wishing to simulate a mind in all
its aspects. | believe there are relatively few
people who truly belong to the former category
and who also consider their work part of Al.
Most of them work outside the field of
Computer Science and they are largely neuro-
scientists or psychologists. These are people
who are concerned with real, human intelli-
gence. As such, Searle would categorize their
work as “weak Al” and he explicitly exempts
them from his argument.

On the other side, we have a group of re-
searchers who are at least nominally the target
of the CRA. These are the people who really are
trying to lay the groundwork for the eventual
construction of something at least very similar
to a human mind, either in silicon or perhaps in
some other medium different from the human
brain. This paper argues that one can count
oneself in this group, but at the same time, be in
agreement with most of what Searle says in all
the variations of the CRA. This may seem para-
doxical, but the fact is that we can still subdi-
vide this second group once again.



On the one hand we have the proponents of
what Searle calls “strong Al”. His early defini-
tion of strong Al is this:

[T]he computer is not merely a tool in the
study of the mind; rather, the appropriately
programmed computer really is a mind, in
the sense that computers given the right
programs can be literally said to understand
and have other cognitive states (Searle
1980).

A decade later, he makes this definition more
concise, saying, “Strong Al claims that thinking
is merely the manipulation of formal symbols”
(1990). His American Philosophical Association
address goes on to further clarify the problems
that arise when symbolic manipulation forms
the entire basis for programs which purport to
think, claiming that since syntax is not defined
in terms of anything physical,

computation is not discovered in the phys-
ics, it is assigned to it. Certain physical phe-
nomena [presumably such as the patterns of
bits in registers and/or memory, in the case
of a von Neumann-type computer] are as-
signed or used or programmed or inter-
preted syntactically (1991).

From these remarks, it is clear that Searle’s
complaints are chiefly with the Computational
Functionalists or the adherents of traditional,
symbolic Al. Of course there are many standard
philosophical  criticisms of functionalism
(Bechtel, 1988, Churchland, 1986) and it is not
the aim of this paper to repeat them all here.
Still it is important to note that the foundation
of this school of thought is a complete reliance
on symbolic processing. These are people who
take Newell and Simon’s Physical Symbol Sys-
tem Hypothesis (1976) both extremely seriously
and very literally. The argument is that we can
reduce all intelligence in some way to the ma-
nipulation of symbolic tokens. In fact, many in
the field of Al seem to define intelligence as just
such manipulation. As a result, it follows that
intelligence can be realized in a wide range of
physical media.

There is yet one more style of research
within the field of artificial intelligence: the
relatively new school of connectionism. Before

we proceed with a discussion of this last para-
digm, | want to make it clear that there are all
sorts of people who use connectionist models
(in fields such as physics, mathematics and en-
gineering) who are merely seeking practical an-
swers to underspecified or intractable prob-
lems, just as there are in symbolic Al. No effort
is made in this sort of research to ensure bio-
logical plausibility; indeed, the learning algo-
rithms often come from formal disciplines such
as nonlinear optimization and statistical me-
chanics. For this reason, we are not particularly
concerned here with such work. On the other
hand, there is a large number of connectionists
whose interest is precisely the study of the way
the brain works and who see connectionism as
the most reasonable tool to carry out their in-
vestigations.

We must still exercise some care, however,
when we say that many connectionists use arti-
ficial neural networks as a tool to discover how
the brain might work, because quite often, they
cannot truly count themselves among the pro-
ponents of weak Al. On the contrary, many of
them see connectionism as the best hope for
creating intelligence in some sort of machine
other than the human brain. Although it is at
present far beyond our capabilities to build an
ANN of sufficient complexity to mimic the
brain, as far as we can tell, it is not impossible in
principle to do so. The idea is that if we could
implement such a network, we would have rea-
son to hope that it would “really be a mind," as
Searle says.

This sort of work is an attempt at something
we might more appropriately call “synthetic in-
telligence. We can make a distinction between
artificial and synthetic intelligence in the same
way we make a distinction between artificial
and synthetic rubies. An artificial ruby is not a
ruby at all and shares none of its chemical prop-
erties, while a synthetic ruby is truly a ruby.
The difference is simply that a synthetic ruby is
man-made in a laboratory, while a natural ruby
is not. Given that connectionist techniques con-
tinue to improve, providing truer models of
both neurons and neuronal structures, we
might appropriately consider a connectionist
success to be something more similar to syn-
thetic intelligence.



In the original version of the CRA, Searle
admits that he was not considering connection-
ist systems (hardly surprising since work in this
area was far from the mainstream in 1980).
Nevertheless, he claims that a variant of the ar-
gument applies equally to them (1990). He calls
this variation the Chinese Gym:

...[Consider] a hall containing many mono-
lingual, English speaking men. These men
would carry out the same operations as the
nodes and synapses in a connectionist archi-
tecture...and the outcome would be the
same as having one man manipulate sym-
bols according to a rule book. No one in the
gym speaks a word of Chinese, and there is
no way for the system as a whole to learn
the meanings of any Chinese words.

In fact, if we take the system in isolation,
Searle is right. This much alone does not
improve the situation encountered in the origi-
nal argument. Without a context, by which |
mean some sort of causal connections to the
world that allow the system to associate words
and concepts with their referents, the network
does not understand anything. Still, | find this
argument to be somewhat problematic. Searle
replaces the artificial neurons with men in a
gym and then points out that no one of these
men understands Chinese. If we map back now
to the neurons the men represent, the argument
seems to rest on the idea that to understand
Chinese, each individual neuron must under-
stand Chinese. This is not a realistic notion,
since we know that, as processors, biological
neurons are far too simple to understand a
natural language. If our neurons do not indi-
vidually understand language, then it is not fair
to demand that the individual men in the room
understand either. Thus, this part of the argu-
ment fails. The real problem with the Chinese
gym (and the reason that | agree that it is not a
system that understands) is that the system is
isolated from the environment. The words that
it processes have no referents and thus no se-
mantics. If we add real causal connections to
the system, in the form of transducers that serve
as its only input, and effectors that serve as its
only output, then we have the start of a
grounded system where semantics play a cru-

cial role. At this point, Searle’s argument cannot
stand.

Differentiating Connectionism and Symbolic Al

The Chinese Gym argument is not Searle’s
only reason for believing that connectionist sys-
tems are no more adequate for building a
thinking mind than are symbolic systems. De-
spite the parallel processing afforded by ANNs
(as well as by the brain), Searle points out that

Any function that can be computed on a
parallel machine can also be computed on a
serial machine...Computationally, serial and
parallel systems are equivalent...(1990).

Searle is not the only person to make this ob-
jection. Actually, it is quite common and has its
origins in proofs that all sorts of systems are
Turing-computable, connectionist models being
one such class. The idea is that if all these sys-
tems are able to compute the same things, there
can be no substantive difference between them.
This is what Smolensky calls the implementa-
tionalist view (1988). | will argue, as have many
others, that ANNSs provide us with something
besides Turing-computability.

Despite arguments to the contrary (such as
Smolensky’s), as recently as 1993, Marinov has
devoted an entire paper to defending the
proposition that there is no substantive differ-
ence between symbolic and connectionist mod-
els of cognition.

Marinov’s argument relies critically on com-
parison of one particular sort of ANN (those
using the back propagation learning rule) to a
variety of standard symbolic machine-learning
classification algorithms working on a single,
narrowly defined task. His first claim is that
such neural networks are strikingly unlike
anything we know about the brain. In this he is
correct, but since within the connectionist
community back propagation is only one of
many learning mechanisms (many others exist
that are lower level and closer to what little we
understand about how the brain learns), it
seems as unreasonable to condemn all of con-
nectionism on such a basis as it is to condemn
all machines on the basis of the poor perform-
ance of the first attempt at powered flight.



Marinov does not attack nor dismiss the idea
of biological plausibility as a desirable goal,
however, so it is fair to assume that he agrees
that this is indeed something worth seeking.
Unfortunately, it is at least as difficult to defend
the biological (or even the cognitive) plausibility
of the standard symbolic machine-learning al-
gorithms. Let us examine them to see why.

Machine-learning algorithms often use a
standard technique of building decision trees
based on some variation on the following gen-
eral scheme. The programmer chooses a set of
features, the values of which allow categoriza-
tion of various examples. Quite often the train-
ing set consists of positive and negative exam-
ples of a single class although they may also
represent two or more different classes. The
program computes the probability of an exam-
ple belonging to a particular class, which means
that it must see all the examples and count the
representatives of each class before it can begin
to categorize. The next step is to compute a
“gain” for each feature. Roughly speaking, this
number is a measure of how much closer we are
to being able to say that a particular example
belongs to a given class. Computing this term
involves a rather complicated summation of
probabilities and logarithms. The program
chooses the feature that gives us the largest
“gain” to be the root of the decision tree. The
process is repeated recursively for each feature
until the tree is complete.

There are several problems with this, from
the point of view of cognitive plausibility. First,
the features that allow categorization come
from outside the system. If we were to try to
relate this to human learning, it would be
something like telling someone learning the dif-
ference between a teacup and a mug that he or
she should look at the ratio between the circum-
ference of the bottom versus the circumference
at the top, the thickness of the china, the height
versus the width, and the size of the handle. In
other words, a great deal of knowledge is built
in from the beginning. The program need not
discover the features that are important, as is
generally the case for humans learning to cate-
gorize; they are given.

The second problem comes from the need to
see a representative number of positive and

negative examples before categorization can
begin. This would be tantamount to having to
discover the proportion of teacups in the world
that actually have the same size top and bottom
circumference, the proportion of mugs that has
a handle so small that at most one finger will fit
into it, etc., before we could begin to under-
stand the difference between the two. Obvi-
ously, this is not something that humans need
to do.

The third problem may only appear to be a
problem; that is, we may find out that we are
doing exactly what the machine-learning algo-
rithms do. Still, intuitively, it does not seem
quite right to have to solve a lot of complicated
equations in order to tell a teacup from a mug,
at least not explicitly. It is true that introspec-
tion can be a very bad indicator of what really
goes on in the brain, but if we can trust it at all,
then it appears that we choose features for cate-
gorization without so much formal mathemat-
ics. In fact, in the case of distinguishing types of
cups, it seems that processing is quite parallel.
We look at all the features of the example in
guestion and make a decision based on all the
information that our senses can give us.

Furthermore, the discussion above really
only addresses cognitive plausibility, saying
nothing of biology. Machine-learning tech-
niques tell us nothing about how the brain
might carry out these processes, whereas the
connectionist counterparts at least show that it
is possible for a large number of very simple
processors working in concert (such as neurons
in the brain) to learn to categorize.

A second major point that Marinov makes is
that it is a straightforward matter to convert the
decision trees that the machine-learning algo-
rithms induce into explicit production rules
which humans can easily understand and ap-
ply. In contrast, connectionist models store
knowledge in a distributed fashion which is
difficult, if not impossible to extract from the
trained network. Whether or not this is a disad-
vantage depends to some extent on the goals of
the categorization task. If the aim is to provide a
set of rules that will allow a human to distin-
guish a cup from a non-cup (to use Winston’s
famous example), then there is no contest;
machine-learning wins, hands down. On the



other hand, if our goal is to gain some under-
standing of the way that humans might distin-
guish members of a category from non-
members, the connectionist system may give us
a truer picture of the process. After all, it cer-
tainly doesn’t seem as if we use explicit rules to
figure out whether something is a cup or not. It
is actually more likely to be a much lower level
process, relying on visual perception and a fair
amount of parallel processing, leading to simple
object recognition. It seems odd that Marinov
should demand biological plausibility in one
breath, yet reject it in the next, if it turns out
that biology doesn’t produce the tidy results he
desires.

In his response to the Marinov article, Clark
(1993) makes some much more pointed distinc-
tions. As he says, although the machine-
learning algorithms can indeed employ micro-
features to induce decision trees, the researcher
predetermines what those microfeatures will
be."! We have already mentioned some of the
problems that this occasions. On the other hand,
ANNs that do not enjoy the benefits of specially
prepared input data discover useful microfea-
tures on their own. Quite often, they do not cor-
respond in any way to those that conscious
thought posits, although they produce distinc-
tions just as effectively. Since a great deal of
categorization is not the result of conscious de-
liberation, it is at least worth speculating that
perhaps the brain uses exactly such non-
intuitive sorts of features in classification tasks.
It seems plausible that they might, since the me-
chanics of processing in the brain bears more
physical resemblance to the processing that oc-
curs in ANNSs than that of symbolic programs.

Connectionist models have another strength
that Marinov ignores, but that Clark mentions.

'There are connectionist models that take advan-
tage of the same idea, hand encoding input to make
the learning task as fast and simple as possible. It is
interesting that a number of connectionists regard
these systems as a form of cheating, preferring to
concentrate research effort on developing new
learning algorithms, new models of “neural” units
and new automatic structuring techniques, rather
than to have to partially solve the problem before the
training ever begins.

This is their ability to interpolate and to take ad-
vantage of what are often called soft constraints
(see also Smolensky, 1988). Given that a net-
work is trained on data that includes example 11
(producing output O1) and example 12
(producing output O2), when presented with a
novel input I1.5 that lies between the two
trained inputs, it will produce an output O1.5
(or possibly O1.4 or 01.6). Now, of course it is
possible that such an output is in some way
nonsensical, but it is also a way for the network
to say, in effect, “well, it’'s something like 11, but
it’s also something like 12” Human beings seem
to learn new concepts in this way quite often,
using what people in educational psychology
call “cognitive hooks” upon which to build new
understanding. On the other hand, symbolic
systems are incapable of handling this sort of
input. A novel item either conforms to some-
thing it knows or it does not. The difference is
simply that connectionist systems are inherently
continuous, whereas symbolic systems are just
as inherently and unavoidably discrete.

Of course we admit that there are ways to
“fuzzify” knowledge representations in sym-
bolic systems, but they typically require the in-
troduction of some probabilistic measures, such
as certainty factors, which are difficult, if not
impossible to obtain accurately. With a connec-
tionist system, the probabilities are gathered
automatically and precisely as the system
learns. We may see this as a purely practical
problem for symbolic systems since we might
argue that we could simply use an ANN to
gather statistics and then pass them on to a
symbolic system. Since the connectionist system
can already make the correct decisions, the ad-
vantage to be gained would simply be increased
explanatory power. The symbolic system oper-
ates with a set of rules that we can print out
when a human user wants to know why the
system made the decision that it did. As ANNs
become more structured and more sophisti-
cated, it is possible that they will be able to give
rule-like explanations as well. In that case they
would have a great advantage over symbolic
systems, since they would not only be able to
give explanations of why they produced a cer-
tain output, they would also be more explana-
tory in terms of how the brain does what it does



and they would have no need to rely on an
outside system for any of its computation.

Another important way in which connection-
ist models differ from their symbolic counter-
parts is in the way they represent information.
As Clark points out, representations in connec-
tionist systems are distributed and superposi-
tional. There are several advantages to this sort
of representation. The first seems in some sense
to be a purely practical one; a distributed repre-
sentation makes it possible to store a great
many concepts in a relatively small space, since
each unit participates in the representation of
many different items. Still, this advantage is
somewhat more than simply a means to get
around having to buy computers with ever-
greater amounts of memory. The fact is that the
brain itself has a finite number of neurons, and
this is one means of explaining how it can store
so overwhelmingly many facts, procedures, and
episodic memories.

Not only that, but the distributed representa-
tion also automatically affords a content-
addressable, associative memory. This comes
“for free," and seems to be just the answer we
need for questions such as how it is that hu-
mans can so often bring just the right piece of
information immediately to the fore, with no
apparent search, or why it is that when we are
“thinking, musing or reasoning, one thought
reminds us of another” (Dellarosa, 1988).

We have also successfully used artificial neu-
ral networks to solve problems for which we
have no satisfactory algorithms, most notably
pattern-matching tasks. Handwriting recogni-
tion is one such area. To my knowledge, there is
no symbolic method to solve this problem and,
although the connectionist systems that we use
to perform this job are not perfect, they are at
least able to solve the problem to an extent ac-
ceptable for practical applications. Furthermore,
even humans sometimes have trouble recogniz-
ing non-standard handwriting. This is a case
where connectionist systems are definitely ca-
pable of doing something that we have not been
able to do with symbolic systems Turing
equivalence notwithstanding. In cases where
we know of no algorithm that can produce the
desired computation, ANNs can at least some
times give us the solution we require.

There is yet another crucial difference be-
tween connectionist and symbolic models
which is more important than any of the pre-
ceding arguments, since it represents an advan-
tage for which there is no equivalent in any
symbolic system: it is relatively straightfor-
ward to situate ANNSs in such a way as to give
them causal connections with the world.
Strangely enough, however, few researchers
have consciously taken advantage of this fea-
ture, even though this is the very thing that
saves us from having to throw in the towel,
even if we do believe that Searle is basically
right. The problem with most connectionist
models is that they treat the network as a “brain
in a vat,” unconnected from the world in which
it exists (whether it be the real world or a
simulated one, probably doesn’t much matter,
at least for purposes of early research). As Lak-
off put it in his reply to Smolensky’s target arti-
cle,

Smolensky’s discussion makes what | con-
sider a huge omission: the body. The neural
networks in the brain do not exist in isola-
tion: they are connected to the sensorimotor
system. For example, the neurons in a topo-
graphic map of the retina are not just firing
in isolation for the hell of it. They are firing
in response to retinal input, which is in turn
dependent on what is in front of one’s eyes.
An activation pattern in the topographic
map of the retina is therefore not merely a
meaningless mathematical object in some
dynamical system; it is meaningful...One
cannot just arbitrarily assign meaning to ac-
tivation patterns over neural networks that
are connected to the sensorimotor system.
The nature of the hookup to the body will
make such an activation pattern meaningful
and play a role in fixing its meaning (1988).

This is a direct reply to Searle’s main objec-
tion and it is a reply that | see as much more
difficult to refute than any that have gone be-
fore. In some ways, it is similar to the standard
replies, and it falls most squarely within the
spirit of the systems reply. Yet the systems re-
ply that | have seen defended so many times is
wrong; not for the reason that Searle gives, but
because the systems reply makes no require-
ment for causal connections with the environ-



ment within which a system functions. When it
is precisely that environment which provides
the input and which the output affects, the sys-
tem either survives and prospers because it
learns to understand the meaning of things and
events around it and respond in appropriate
ways, or it suffers and fails because it does not.

The reason that a connectionist model can
have this special property, whereas a symbolic
system cannot, is that inputs to a neural net-
work have a direct causal effect on the state of
the network; values on the input units deter-
mine the values throughout the system. To put
it another way, the network builds its own in-
ternal representations of things as an immediate
consequence of the input it receives. In this
sense, the semantics of the model are an integral
part of the system, and as such neither admit
nor require arbitrary outside interpretation.

This is very different from the situation we
find in symbolic systems. There, human users
impose all the meaning of the symbols that a
program manipulates by interpreting the output
in appropriate ways. The fact that | attach the
symbol ‘female to the property list of the sym-
bol ‘Mary, means nothing to the computer, but
when the program prints the symbols: “Mary is
a female,” it means something to a human ob-
server. Most of us (Searle, quite notably) are not
convinced that this constitutes understanding at
all. We ask that the symbols mean something to
the computer, in the same way that they mean
something to us. This is what Harnad calls the
symbol grounding problem (1990). He states the
problem in this way:

How can the semantic interpretation of a
formal symbol system be made intrinsic to
the system, rather than just parasitic on the
meanings in our heads? How can the
meanings of the meaningless symbol to-
kens, manipulated solely on the basis of
their shapes, be grounded in anything but
other meaningless symbols?

Recently, a number of researchers (including
Harnad himself, 1991) have begun an attempt to
solve this problem (Feldman, Lakoff, et. al.,
1990; Stolcke, 1990; Regier, 1991; Sopena, 1988,
Jefferson, Collins et. al., 1990; Pfeifer and Ver-
schure, 1991; Nenov, 1991). Without such a so-

lution, we can have no hope for an intentional
system. Tellingly, all of the researchers men-
tioned use neural networks as their tool of
choice. This is not simply a coincidence. By de-
sign, connectionist systems are uniquely capa-
ble of doing what the brain seems to do. First,
sensory neurons receive information directly
from the environment (or from other neurons,
in the case of recurrent networks). This input
then directly determines the activation state of
the rest of the network. In the case of object rec-
ognition, then, the perception of the object in-
duces a particular pattern of activation in the
network. This pattern is an internal representa-
tion of the object. The network can then attach a
symbol (i.e., a name, which is also instantiated
as a pattern of activation) to that internal repre-
sentation. In this fashion, the symbol is
grounded. It has meaning. Nothing but this
particular meaning produces this particular
pattern of activation. It is the object that directly
causes it. We are not free to impose arbitrary
interpretations on such representations; the rep-
resentation is a representation of one specific
thing and not of any other.

With the above points we have several sig-
nificant differences between the symbolic and
connectionist paradigms. It is important to rec-
ognize that they are differences in kind, proven
Turing equivalence notwithstanding. The last
point demonstrates that, despite the undisputed
fact that connectionist systems are still crude
and unsophisticated and that they are still weak
in practice, in principle at least, they provide a
crucial capability that symbolic systems cannot.
Turing computability implies only that if an
algorithm exists for a procedure that some
Turing machine equivalent can carry out that
computation. Obviously, since ANNs can
provide for grounded meanings and since
ANNSs are Turing equivalent, some Turing
machine can produce the same results, but
apparently, it can do so only by simulating an
ANN. This implies that ANNs have certain
functional capabilities that no other Turing
machine has. Although we have no algorithm
for enforcing that representations mean
something to a machine, we find that there is a
way to ensure that they do, if we would only



exploit it. It is unfortunate that even many con-
nectionists do not.

A Somewhat Different Functionalism

At least nominally, believing that it might be
possible to construct a synthetic mind implies
that one is a functionalist, since it also implies
that the actual medium is not a critical feature
of the properties that the mind possesses. Yet
when we look at the traditional definitions of
Computational Functionalism as a philosophical
stance, we see that “it views the mind as carry-
ing out formal operations on symbols encoded
within it” (Bechtel, 1988). This gives us a great
deal of latitude in terms of the sorts of machines
we have at our disposal for implementation of
the algorithms we hypothesize that the brain is
carrying out. Nevertheless, it may be wise to
give up some of that freedom, restricting our-
selves instead to using machines that are brain-
like in important ways (i.e., multiple, relatively
simple processors connected in significant and
complex ways). If we do, we also gain a certain
freedom in the sense that we no longer have to
restrict ourselves to purely algorithmic process-
ing. There is certainly no a priori reason for
specifying that functionalism concern itself
strictly with symbolic computation, nor for as-
suming that the architecture of the brain is im-
material to the sorts of things that it does. We
are still left with the notion that we can imple-
ment the functions of the mind in some medium
other than the brain, even if we have narrowed
the field of potential physical realizations of this
processing.

What else do we gain if we dispense with the
stipulation that all cognition is the result of for-
mal symbol manipulation and that we should
therefore model it as such? We can start with
the least controversial gains: those that are
admitted by those proponents of symbolic Al
whom Smolensky refers to as revisionists
(1988). Many people readily accept that we can
best model certain so-called low-level aspects of
cognition with correspondingly low-level con-
nectionist systems. These include such things as
olfactory, auditory and visual processing. It is
clear that this sort of sensory processing is
massively parallel in nature and that it deals
routinely with noisy and even contradictory

information. Perceptual systems must also have
methods of processing analog data. Since these
are precisely the specialties of ANNS, even
many hard-liners in the symbolic camp admit
that perhaps it is best to concede this part of the
field to the connectionists.

The parallel aspects of the brain are appar-
ently not confined to processing sensory infor-
mation, however, and it seems unwise to sug-
gest that the only explanatory power that con-
nectionist systems might have is in the realm of
these low-level processes. Indeed, there seem to
be many activities that go on in parallel which a
traditionalist would consider purely symbolic
processing. An example of such parallel activity
is the familiar phenomenon that occurs when
we cannot remember a given fact such as a
name, or solve a particular problem. We think
very hard about it at a conscious level without
success, but quite often, once we have aban-
doned the conscious mental search, the answer
comes to us, seemingly “out of the blue." Min-
sky hypothesizes that this might be the result of
demons that we set to work when we originally
come across the problem (1986, p. 274). This
might be a satisfactory high-level explanation,
but the question remains, what exactly are these
demons (other than programs) and how do they
go about their work in the subconscious while
we engage in unrelated mental activity at the
conscious level?

In general, we will need to explain high-level
processes in terms of lower-level ones. Since
what we know about the brain indicates that all
its activity consists of massively parallel neuro-
nal firing, it is obvious that at some point we
will need to explain how the activity of massive
numbers of relatively simple processors can ac-
count for all of cognition. It may turn out that
we cannot find any way that the brain could
implement certain high-level theories. We may
also discover that such an implementation is far
more complex and unnatural than that required
by a lower level, connectionist explanation. In
either case, we will have to admit that even
though our high-level explanations seem to ex-
plain mental activity, in the end, they are at best
speculative.



Even though it may be the case that we can
find symbolic, rule-like explanations for much
of mental processing or that we can identify fea-
tures that allow for effective categorization, it
does not necessarily follow that the brain uses
them in its own processing. Indeed, as we saw
above in the discussion of Marinov’s paper, a
connectionist system may do at least as good a
job of classification using features that are not
only counter-intuitive, but which are sometimes
completely opaque to conscious understanding.
Thus it would seem to be a mistake to assume
that the brain must do things (particularly those
things that we do unconsciously) in the way
that we can most easily describe. We can gen-
erally accept that introspection does not always
lead to correct theories of the mind.

The previous paragraph sounds suspiciously
like something the eliminative materialists
might suggest and indeed, they may turn out to
be right. On the other hand, there is so far no
reason to believe that all the explanations for
mental phenomena that cognitive science and
symbolic Al have theorized are wrong. It may
be that we will have to revise or replace at least
some of them. Still, the fact that connectionist
systems are Turing equivalent indicates that we
could find a way to implement many of these
theories in connectionist architectures, even
though several unsolved problems currently
stand in the way. That is not to say that follow-
ing the implementationalist path is the proper
thing to do, since we may find more explana-
tory theories by simply allowing ANNSs to find
their own ways of solving problems.

At the same time, there is one important ar-
gument against trying to reduce all of cognition
to rule-following behavior. Considering the
amount of attention that we must pay to the
procedure of much of conscious explicit rule-
following behavior and the care that we must
take to perform the correct steps accurately and
in the right order, it is difficult to explain how
such behavior can take place in the subcon-
scious with rules that we quite often cannot
even state. Laird, Newell and Rosenbloom
(1987) have proposed “chunking” as one possi-
ble solution to this problem and Anderson’s
Act* (1983) proposes the compilation of “macro-
operators” as a similar solution. The problem

with these models is that they assume an initial
phase of explicit reasoning, following equally
explicit symbolic rules as a prerequisite to
building more automatic means for solving
problems. Yet we find no evidence of such ex-
plicit behavior for much of what we do (using
our native language is a case in point), nor evi-
dence of explicit knowledge of the rules that we
might conceivably have used to “reason
through” the problem initially. It may be more
productive to proceed with the idea that these
“rules” are not at all like the symbolic rules that
a production system (for example) uses. It is
difficult to imagine exactly what these rules
might be like unless we are familiar with con-
nectionist systems, where we find that behavior
that we can describe with rules occurs routinely
without any rules in any sort of symbolic form
being present in the system. If it makes us more
comfortable, we can simply say that the “rules”
are distributed among the weights in the sys-
tem, just as the representations for other entities
are.

This is not to suggest that we should simply
discard all theories that rely on rule-following
behavior, without further ado. For one thing, it
is obvious that we at least seem to use explicit
algorithms for conscious problem-solving.
Thus, any theory of mind must be able to ex-
plain this phenomenon in some way. For this
reason, current, ongoing research on the vari-
able-binding problem in connectionist systems,
although still preliminary, is exceedingly impor-
tant (see Shastri and Ajjanagadde, 1993;
Smolensky, 1990), since as | mentioned above,
we will ultimately need to explain all such high-
level behavior in terms of the sorts of
processing that the physical brain can perform.
Furthermore, it may well be that for certain
purposes, the more transparent explanations
that explicit-rule based theories offer will be
more useful and easier to manipulate. Such
purposes would be ordinary folk-psychology
predictions of the behavior of our fellow human
beings and methods to deal with problematic
behavior such as learning disabilities, neuroses,
and antisocial behavior. It doesn’t seem helpful
in such cases to simply say, “well, Johnny’s
brain is just wired up wrong. Short of adjusting
all his synapses, there is nothing to be done!”
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Difficult Problems for Synthetic Intelligence

There are many mental phenomena that nei-
ther traditional Al nor Computational Func-
tionalism has been able to explain. Searle says
that there are basically four features of mental
phenomena that make the mind-brain problem
intractable: consciousness, intentionality, sub-
jectivity and mental causation (Searle, 1984).
These are the really hard problems for synthetic
intelligence, for Cognitive Science and for phi-
losophy in general. Some Computational Func-
tionalists (along with the eliminative material-
ists) have “solved” them by denying their exis-
tence to some extent or another; others have
presumed that a machine running the “right”
program would somehow produce them by
some as yet unspecified means. Still others are
satisfied with a purely behavioristic test of in-
telligence such as the Turing test, saying in es-
sence that whether a machine simulation of the
mind actually includes these features is imma-
terial, as long as the machine produces the ap-
propriate outputs.

Yet these problems do not seem so easy to
dismiss. Certainly, the average “man in the
street” feels that these are important aspects of
the mind, that they are at the heart of the “mark
of the mental” and that without them, we can-
not grant that a machine is truly intelligent. We
evidently must deal with these features in a
more constructive way if we are to satisfy our
most intuitive requirements for intelligence.

We have already seen part of a solution to
the problem of intentionality, when we consid-
ered the importance of connecting the system to
the environment. Nonetheless, we have not yet
solved the problem entirely. For one thing, at
best, merely adding causal connections between
machine-mind and world can only provide ref-
erents for concrete objects and events. Obvi-
ously, this does not take care of referents for
things that do not exist, although we might
reasonably surmise that many of these things
are composites of things that do exist (e.g., uni-
corns or Santa Claus). Forming such composites
is a strong point of connectionist systems which
excel at interpolation tasks. We cannot dispose
of other sorts of referents so easily. Many of the
things for which every natural language has

terms are simply not so concrete nor so compo-
sitional.

One major class of referents that belong to
this group are the referents for subjective sensa-
tions or internal mental states. All of our terms
for emotions, for example, fall into this cate-
gory. Notwithstanding the idea that we may
learn critical notions about such states as pain
from the behavior they produce, as Wittgen-
stein argues (1953); intuitively, our most inti-
mate understanding of the word “pain” comes
from personal experience of painful feelings.
We can make similar arguments for other
words that refer to internal states, whether they
be sensations or emotions. It is not at all clear
that we shall ever be able to make a machine
feel pain (or anything else for that matter), and
thus there may not be any way to ground such
terms. Yet it seems important to attempt to do
so, since such feelings apparently have causal
powers.

| have no easy answer to this problem, but I
do have some hope that we shall find an an-
swer. We are generally reluctant to grant that
single-celled organisms feel even primitive sen-
sations such as pain or even hunger (suppos-
edly unlearned responses, Rolls, 1990) and of
course it seems odd to imagine that they might
feel happy or jealous. It is less strange to think
about vertebrates feeling pain, although most
people are still not willing to attribute the full
range of human emotions to any animals other
than humans themselves. The difference seems
to be that as we observe more and more
evolved organisms, we can more easily imagine
that they are capable of an ever wider range of
feelings.

If there is anything to our intuitions and if it
is indeed the case that certain primitive emo-
tions are innate, rather than learned, then it
would seem that the most productive course to
follow would be the course of evolution. In the
absence of a fully explanatory theory of subjec-
tive sensation, the use of genetic algorithms
(Holland, 1975; Goldberg, 1989) may be our best
bet in an effort to produce artificial neural net-
works that function just as people do when they
experience a sensation such as pain. According
to theories extant in experimental psychology,
we learn more “sophisticated” emotions, such
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as fear, through the mediation of primary rein-
forcers such as pain (Rolls, 1990). If this is the
case, then there is some hope that if we can
achieve primitive internal states in an ANN
through evolutionary processes, then other
emotional states could follow through learning.

In some sense, this is not a completely satis-
factory solution, since it is possible to imagine
an embodied network that does “all the right
things” when it runs into a table at full speed,
for example, and yet which feels nothing, de-
spite all its sensors. It might indeed be possible
to use genetic algorithms to produce such ro-
bots, selectively reinforcing those networks that
avoid painful situations whenever possible and
which react in convincing ways (shouting and
nursing the injured part, for instance) when
avoidance is not possible. Still, we have no way
to tell if they really experience something sub-
jectively awful or if their reactions are purely
behavioristic. On the other hand, we have no
way to tell that about each other, either. If we
ask why we are the way we are, we have no
better answer than to say that in all probability
we are that way because evolution made us so.
If we use genetic algorithms to produce
(perhaps only part of) synthetic minds, our an-
swer to the question of why they behave the
way they do is exactly the same.

In a more positive vein, it is difficult to con-
ceive of an evolved ANN that would behave in
convincingly appropriate ways while respond-
ing to combinations of stimuli® and still not be
in some special state that we might reasonably
identify as a pain state. If pain is instantiated in
humans via particular brain states, then we are
at least close to an answer. Furthermore, if we
consider pain or other subjective experiences to
be particular mental states with causal efficacy
(i.e., able to cause other mental states to occur
or able to provoke physical reactions), then we
may identify the states produced in an artificial

?We can imagine a creature engaged in some in-
tensely pleasurable pursuit hardly noticing a mildly
painful experience while the same creature might
react violently to the same stimulus if it were already
tired, frustrated or otherwise stressed.

neural network’® as just such states. Another
way of looking at this is to ask what is happen-
ing in the brain of a human who feels something
in particular, such as pain. There are certain
physical changes that take place. For example,
there are changes in the concentrations of cer-
tain hormones and transmitters and the firing
rate of certain neurons changes (Rolls, 1990).
The exact meaning of all these changes is not
completely clear, but certainly, if an ANN were
to undergo similar changes of state (ignoring for
the moment hormonal changes; we can treat
changes in levels of transmitters as changes in
connection strength) in response to external or
internal stimuli, it would seem fair to surmise
that the network might actually be feeling
something. At least, it is definitely in a state that
is not normal and it has undergone the same
sorts of state changes that occur in the human
brain. If appropriate behavior accompanies
these state changes, then we have a reasonably
strong reason to believe that internal states
similar to our own exist. At the very least, the
system can now ground the word “pain” in its
more social meaning. Furthermore, an agent
capable of these state changes could understand
at least something of what others go through in
similar situations. If we were to expand our un-
derstanding of computers to include chemical
processes as well as electrical ones, and we
could show that the state changes are similar to
those of humans, the claim grows even
stronger. Whether evolutionary techniques can
actually produce these effects is an empirical
guestion.

With the last few paragraphs, | have outlined
some concrete ways to try at least to deal with
both intentionality and subjectivity, methods
that have no direct counterparts in purely sym-
bolic processing. According to Searle, we still
need to consider consciousness and mental cau-
sation. When he speaks of the latter, we can

*We must assume that the network in question is
specifically one that is evolved through genetic al-
gorithms and that we determine the fitness of such
networks on the basis of their appropriate reactions
to events that would cause particular subjective
internal states in humans. Of course this is a
behavioristic measure, but | see no other alternative.
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presume he is talking about various causal
powers of the mind. For instance, certain men-
tal states can lead to other mental states or to
motor action that has an effect on the environ-
ment. If this is all, then this is the easiest to at-
tain of the four properties. Since the states of
connectionist systems are by nature associative,
it is obvious that certain states would lead natu-
rally to other related states. This accounts for
internal causality. On the other hand, if an
ANN controls effectors as we have outlined
above, then surely we cannot deny that the ca-
pability exists for the state of the artificial mind
to alter facets of the environment.

Consciousness, is of course the most difficult
of all. It is of necessity the hardest problem, if
for no other reason than that we really don’t
have anything more than a vague intuitive no-
tion of what it is. Patricia Churchland (1986, p.
370) relates a surprising story of the famous
patient H.M. in which she notes that although
he can solve the Towers of Hanoi Puzzle, he
does not remember having done it before and
he does not realize that he has the skills neces-
sary to do it. It is, she says, “as though some
part of H.M.’s nervous system knows what he
is doing and has the relevant complex inten-
tions, but H.M. does not.” This seems extremely
odd to us because it flies in the face of our in-
tuitions about consciousness. How can we be
“aware” (at the level of the nervous system)
without being consciously aware? We talk
about dreams as being the product of the sub-
conscious mind, opposing it to the conscious
mind, and yet while we are dreaming it seems
very much like the sort of thing that our minds
do while we are conscious. Indeed, the brain
waves of dreaming subjects are very similar to
those produced by alert subjects and quite un-
like the brain waves produced in other states
(Shepherd, 1983). We can take it for granted
that, at least while we are alert, our brains are
doing many things in parallel, processing all
sorts of sensory information while we think
consciously about an upcoming beach vacation
or try to remember what else we needed at the
grocery store. Perhaps at the same time, we
have a nagging feeling that there is something
else important to which we really should be
attending. Indeed, we cannot “turn off” the

train of conscious thought as long as we are
awake, no matter how hard we try.

| suspect that consciousness has a great deal
to do with attention, or perhaps it even is iden-
tical to attention. To put it in terms of struc-
tured artificial neural networks, we can imagine
that we might have a connectionist system built
out of many interrelated “specialist” networks,
each of which performs specific tasks. Some of
these networks are gating networks that de-
termine which other networks can contribute
their outputs to some larger process or compu-
tation. We can imagine heterarchies of such
gating networks' that compete for dominance.
Emergency situations would take immediate
precedence, for example, while problem-solving
would involve gating the outputs of inference-
performing networks. These networks in turn
feed and are fed by an appropriate associative
memory module. It may be that our conscious
thought reduces to nothing more exotic than
this. If this is the case, then it appears quite
possible that we could account for conscious
thought via assemblies of ANNSs.

Conclusions

Clearly we face many problems and uncer-
tainties in the quest for a theory of mind. It is
possible that some of the things that seem so
hard are difficult simply because we are looking
at them in the wrong way. Since the human
brain is the only intelligent machine with which
we are familiar, it does seem unwise to try to
divorce intelligence from it completely and at-
tempt to study cognition with purely abstract
and formal methods. As the maxim goes in the
field of aesthetic design, “form follows func-
tion."” We know that evolution is a satisficer
rather than an optimizer, but it does seem
worth considering that the architecture of the
brain is the way it is for some good reason.

One problem for the field of Artificial Intelli-
gence is the way we go about designing our
programs. We do it (just as they teach us in our

‘Some systems like this exist already, with the
gating networks being trained to do their jobs along
with the other networks (e.g., see Jacobs, Jordan and
Barto, 1991; Jordan and Jacobs, 1993).
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first year programming courses) top-down. We
are trying to simulate very high-level mental
phenomena, but (ignoring what they teach us at
school), we never bother to decompose the
problem down to its low-level details. Of course
there is one very good reason for this. If we did
continue our design work down to the lowest
levels, there would undoubtedly be several gen-
erations of us who would never get out of the
design phase. That would mean several genera-
tions of researchers who would rarely have any
reason to publish papers, which would indeed
be a dire circumstance! Fortunately, there is a
simple alternative: we simply do not start up so
high. It is hard to imagine that we will be very
successful if we keep trying to set a high level
process on top of a void. In some sense, Marvin
Minsky’s late 60’s program for stacking blocks
did just that: it kept trying to place the top block
first (Minsky, 1989).

It seems likely that we will not only need to
think about the problems in more bottom-up
fashion (some might argue that this is a giant
step backwards), but we will probably have to
change our emphasis in terms of the tools we
use as well. Obviously, | think that we will
probably find it useful to increase our reliance
on neural networks; but | also believe that we
cannot afford to just keep using the very crude
models we have at present, but will have to
continue to refine them and find ways to make
them more realistic. Some work is already being
done in this respect, for example Nenov (1991)
has recently built a much more sophisticated
neural model of memory than anything we have
seen so far and is now working on biologically
inspired models of attentional mechanisms.
Shepherd et al. (1989) have similarly shown that
more realistic neural models of cortical pyrami-
dal neurons have significantly greater compu-
tational powers than the usual artificial neuron.
We may also need to rethink our ideas about
computers themselves, incorporating chemical
processes as well as electricity. | also believe
that it will be necessary for us to fall back on
less deterministic methods. After all, the human
brain was not built over the course of a few
months or years, nor was it designed first and
then implemented. My feeling is that we are not
likely to be able to do a great deal better than

Nature, and so | would guess that we will need
to let evolution play a large role in shaping the
architectures of mind that we employ. It is quite
likely that if we can succeed in using this sort of
tool to implement true synthetic intelligence, we
won’t end up with a copy of the human brain,
but that may be so much for the better, since if
we find that the exact structure of the brain is
not essential for intelligence, that in itself will
tell us a very great deal of what we would like
to know. It is my hope that we will not have to
go so far as to simulate a brain neuron for exact
neuron, but | am fairly certain that we do need
to begin at a level that is much closer to the
neuron than to the symbolic representation of
abstract ideas. Whether we succeed or not is
still very much an open question, but it seems
obvious that if we are to do so, we shall need to
avail ourselves of many of the solutions that
Nature has already derived.
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