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Abstract
The Temporal Convolution Machine (TCM) is a neural architecture for learning temporal sequences that generalizes

the Temporal Restricted Boltzmann Machine (TRBM). A convolution function is used to provide a trainable envelope
of time sensitivity in the bias terms. Gaussian and multi-Gaussian envelopes with trainable means and variances are
evaluated as particular instances of the TCM architecture. First, Gaussian and multi-Gaussian TCMs are shown to learn
a class of multi-modal distributions over synthetic binary spatiotemporal data better than comparable TRBM models.
Second, these networks are trained to recall digitized versions of baroque sonatas. In this task, a multi-Gaussian TCM
performs effective sequence mapping when the input sequence is partially hidden. The TCM is therefore a promising
approach to learning more complex temporal data than was previously possible.

1 Introduction

A major goal of artificial intelligence in general, and neural networks in particular, is to produce autonomous agents
that can perceive and respond adaptively to real-world situations. While great progress has been made in training
statistical models for analysis of static data in both generative and discriminative tasks, generation and recognition
of time sequences has proven difficult. Success in this area is crucial to developing autonomous agents that operate
in real-world, real-time tasks such as speech recognition, motion planning, and video and audio analysis. The most
commonly used tool in sequence modeling remains the Hidden Markov Model (HMM) [1], despite the fact that
HMMs require one unit per modeled state, making it prohibitively expensive to build large-scale temporal models
using HMMs. The Temporal Restricted Boltzmann Machine (TRBM) can represent componential states and is thus
exponentially less computationally intensive than an HMM with the same state space. However, while TRBM models
are comparatively stronger than most of their competitors, further improvements to their accuracy would enable wider
use in more real-world applications.

The difficulty with building statistical models of temporal data is in determining which data from the past is relevant.
One common approach is to use a fixed time window in combination with a static learning model, converting temporal
into spatial data. The window approach is insufficient because it cannot effectively account for the effect of information
outside of the window. The other common approach is to develop a Markov model where the current time step
of analysis depends exclusively on a fixed number of prior states. States that are outside the range of the Markov
assumption can still be taken into account through a set of hidden variables that will in theory propagate relevant
past information into future time steps for use when needed. TRBMs and Recurrent Neural Networks (RNNs) in
general fall into this category. It has however proven difficult to develop learning algorithms that can make effective
use of hidden variables to preserve state as necessary. The Temporal Convolution Machine (TCM) introduced in this
paper focuses instead on learning to pick out correlations with past states directly using adaptively delayed links. This
approach is shown in this paper to outperform TRBMs at the task of learning artificially generated spatiotemporal
distributions, a task that is a relevant abstraction of more concrete real-world tasks such as visual or audio analysis.
As a first example of such a task, TCMs are shown capable of reproducing a musical sequence, as well as mapping it
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to harmony. The TCM is therefore a promising approach to learning more complex temporal data than was previously
possible.

2 Foundations
This research is situated in the tradition of recurrent neural networks. Such networks with sufficient hidden elements
can theoretically represent most temporal sequences of interest. A variety of algorithms exist for constructing and
training recurrent neural networks, including Backpropagation Through Time [2], Long Short-Term Memory [3],
and, more recently, Echo State Networks (ESNs) [4]. Generative models approach the sequence learning problem
from an unsupervised rather than a supervised perspective (see e.g. [5],[6]). Among these, the TCM architecture
proposed in this paper is a generalization of the Temporal Restricted Boltzmann Machine (TRBM) [7], itself an
extension of the Restricted Boltzmann Machine (RBM) [8]. These models are based on undirected links, for which
an efficient algorithm for training accurate models exists. Directed graphical models for sequence learning have also
been explored, such as the Helmholtz Machine Through Time (HMTT) [9], but with less success. Models based on
RBMs have the advantage that they can be stacked to form deep networks; for the RBM, these stacks have been named
Deep Belief Nets (DBNs) [10]. The advantages of stacking are inherited by Temporal Convolution Machines, as will
be discussed in section 3.3.

2.1 Restricted Boltzmann Machine
The Restricted Boltzmann Machine (RBM) [8] is an undirected graphical model with nodes divided into two sets,
visible and hidden, subject to the restriction that nodes in the visible layer may only be connected to nodes in the
hidden layer and vice versa. An RBM has Boltzmann-distributed joint probability

P (V,H) = exp
(
V ·BV +H ·BH +HTWV

)
/Z, (1)

where V andH are (random) binary column vectors representing the state of the visible and hidden layers respectively,
BV and BH are bias vectors for the visible and hidden layers, W is a matrix of weights connecting the visible to the
hidden layer, and Z is a normalizing factor termed the partition function. The term inside the exponential is referred
to as the energy function of the distribution. Specifying the energy function specifies the model completely. When the
marginal probability of any individual node having state value 1 is computed, the result is a stochastic neuron with a
logistic activation function. In order to obtain a sample from the model, Monte Carlo methods such as Gibbs sampling
must typically be used.

RBMs are trained using gradient ascent on the maximum likelihood of the observed data. The gradient-based training
rule for selecting W given a data source P̃ (V ) and using 〈·〉 to represent an ensemble average is

∆W ∝
〈
HV T

〉
P (H|V )P̃ (V )

−
〈
HV T

〉
P (H,V )

. (2)

The bias terms are trained similarly. A difficulty arises from the term on the right in that it cannot be computed
directly but only estimated. Usually this estimation is accomplished by initializing V to the data generated by P̃ (V )
and using the posterior distributions in a Markov chain to reestimateH and V successively until equilibrium is reached.
Contrastive divergence (CD) can be used to reduce the number of sampling steps necessary [11]. CD estimates the
expected value

〈
HV T

〉
P (H,V )

by initializing the RBM with V drawn from P̃ , sampling H from the posterior and
then successively sampling V and H . In practice, it is more efficient to use the posterior probabilities in place of the
sampled values for V andH during training, but the sampled values and not the probabilities must be used during each
estimation step. CD is an approximate rule, but the performance improvement achieved by CD generally outweighs
any error introduced by using this method.

2.2 Temporal Restricted Boltzmann Machine
The Temporal Restricted Boltzmann Machine (TRBM) [7] extends the RBM with time-varying biases so that BH in
the RBM model above is replaced with

BHt = LHHt−1 +BH , (3)
where LH is a set of lateral weights at the hidden layer. A specially trained initial bias BH0 may also be used. The
total probability of a temporal process (Vt, Ht)t∈[0,...,T ] is

P (H,V ) =
T∏
t=1

P
(
Ht, Vt | Ht−1

0 , V t−1
0

)
· P (H0, V0) . (4)

Essentially, then, a TRBM introduces a separate RBM for each time step, one representing each of the posterior
distributions in the formula above. A problem arises when trying to sample from this model in that the product term
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above includes all time steps up to T . While one would like to obtain a sample from the model by sampling successive
posterior distributions, this procedure ignores the results of the future on the present via the distinct partition functions
at each time step. However, this procedure can still be used as a to obtain an approximate sample of P (V,H). This
approach is used throughout the experiments in this paper.

The basic TRBM architecture can be extended in several ways [7], e.g. by incorporating multiple time delays, by
adding time-varying biases on the visible nodes as well, and by encoding interactions with past visible states into
bHt . Slight modifications can also be made to the TRBM model that allow for exact inference [12]. Real-valued
deterministic neurons are substituted for the stochastic neurons in the hidden layer, with the caveat that standard
Boltzmann learning must be replaced with a variant of the Backpropagation Through Time algorithm. However, even
this solution can still require the network to learn a complex Markov sequence in the hidden layer.

3 Temporal Convolution Machines
The main problem with the TRBM is that hidden states must learn to encode intricate structures preserving relevant
features of the past. The approach taken in the Temporal Convolution Machine (TCM) is instead to make better
use of existing links by adding an adaptive sensitivity to prior states. Specifically, the TCM generalizes the TRBM by
allowing the time-varying bias of the underlying RBM to be a convolution of prior states with any function. In this way,
states in the TCM can depend directly upon arbitrarily distant past states. From a practical point of view, this effect can
only be used to go one or two dozen states into the past, and hidden states are still needed to remember relevant past
features. But the complexity that must be modeled in the hidden layer is nonetheless significantly reduced, resulting
in a stronger models with comparable numbers of parameters.

3.1 The TCM Formalism
Formally, a TCM defines time-varying biases for an RBM by

BHt = BH +
t−1∑
τ=0

FH
(
t− τ ; θH

)
Vτ +

t−1∑
τ=0

FLH
(
t− τ ; θLH

)
Hτ , and

BVt = BV +
t−1∑
τ=0

FV
(
t− τ ; θV

)
Hτ +

t−1∑
τ=0

FLV
(
t− τ ; θLV

)
Vτ , (5)

where F ∗ are matrix-valued functions of time parameterized by θ∗. The notation F ∗ will be used to refer to any one
of FH , FV , FLH , or FLV , and similarly for θ∗. The basic TRBM above would then be given by setting FLH (τ) =
δ1(τ)LH (where δ is the Kronecker delta) and setting the rest of the convolution functions to zero. The convolution
functions provide a high level of control and adaptability to the network, since these functions can themselves be
parameterized to obtain variable time sensitivities at individual nodes as needed.

The general purpose training rule for TCMs for a parameter θH of FH is then

∆θHt ∝
t−1∑
τ=0

[(
Ht − Ĥt

)
V Tτ

]
� ∂

∂θ
FH (t− τ) , (6)

where � represents componentwise multiplication of vectors or matrices, Ĥt is sampled from
P
(
Ht, Vt | V t−1

0 , Ht−1
0

)
, Ht is sampled from P

(
Ht | V t0 , Ht−1

0

)
P̃
(
Vt | V t−1

0 , Ht−1
0

)
, and similarly for Vt

and V̂t. The learning rule for a general parameter θ∗ of F ∗ is readily obtained by analogy from (6).

The class of TCMs is quite a large one. The convolution functions F ∗ can take whatever forms are found to be useful
or efficient. including those dependent on the prior states of the network. The approach taken here chooses convolution
functions with trainable but fixed forms, since these functions work reasonably well and utilize manageable numbers
of parameters.

3.2 A Gaussian TCM
A Gaussian TCM (G-TCM) can be formulated by choosing a convolution function with a kernel of Gaussian form,

F ∗ (τ) = W ∗
1

Σ∗
√

2π
exp

(
− 1

2Σ∗2
(τ −M∗)2

)
, (7)

where M∗ and Σ∗ are matrices containing the mean and variance respectively for each neural link, and all matrix
operations are assumed to be componentwise with τ expanded as necessary to a matrix of required dimension with all
entries equal to the scalar τ . The form of the convolution function is designed so that each link can detect correlations

3



at arbitrary time distance and can adjust the location and scale parameters to respond to temporal correlations. This
approach works because the form of F ∗ is smooth, unimodal, and nonzero wherever W ∗ is nonzero. This form is
intended for use when each link needs information from a particular time step or cluster of time steps at some fixed
time in the past. Ideally, for appropriate problems, the scale parameters Σ∗ will start out large and then gradually
become small as the location parameter M∗ becomes more accurate. Thus the G-TCM should be able to represent
certain problem classes better than a TRBM with sensitivity to a fixed number of prior time steps n, because the links
can look arbitrarily far into the past.

The drawback is that the G-TCM must look at all prior timesteps during training and during inference. While this is
a significant drawback for computer simulation, it is not necessarily the case that a physical implementation would be
overly slow or complex. Also, the sequence of prior states can be clipped as needed based on the particular parameters
of the G-TCM. A more serious problem is that the G-TCM can represent can only represent strictly positive or strictly
negative temporal correlations between each pair of nodes. Multiple Gaussian links can be used to fix this problem.

3.3 A Multi-Gaussian TCM
Rather than just having one time-delayed link, a Multi-Gaussian TCM (MG-TCM) allows a fixed number of Gaussian-
delayed links to each node. Thus both positive and negative correlations between two nodes are possible, depending
on the time variable. With K links, the convolution function for an MG-TCM is given by

F ∗ (τ) =
K∑
k=0

W ∗k
1

Σ∗k
√

2π
exp

(
− 1

2Σ∗k
2 (τ −M∗k )2

)
. (8)

An MG-TCM can represent much more complex relationships than a G-TCM, but it retains the same benefits as a
G-TCM such as smoothness and unimodality with respect to each parameter (though it is multimodal overall), with
the downside that the extra parameters impose an additional computational burden. As the experiments will show,
however, a MG-TCM can build a much more accurate probabilistic model than a G-TCM or a TRBM in certain cases.

3.4 Deep Stacked TCMs
As with Deep Belief Nets (DBNs) [10] and TRBMs [7], individual TCMs can be stacked to form deep networks. A
single TCM is trained first, and then the parameters of that TCM are frozen. A second TCM is trained using the output
of the first TCM as input. To simplify training, For the training in this paper, the neuron activation function on the first
TCM can be converted from stochastic neurons to threshold neurons based on the computed probability at each node;
this step stabilizes the sequences being presented to the next higher layer and was found experimentally to improve
the overall outcome. The stacking process can be continued as desired to obtain a deep stack of the desired depth. To
generate from a stacked model, one simply generates from the top TCM in the stack, and then propagates the visible
layer downward through the lower stacks (again using thresholded neurons in this research).

All the same benefits that stacking provides to DBNs and TRBMs accrue to TCMs as well, since a TCM is a general-
ization of these models. For instance, it can be shown that under certain conditions, the probabilistic model encoded
by the stack will more accurately model the training distribution. To achieve such accuracy, the initial distribution
encoded by each subsequent TCM needs to be the same as that of the stack previously trained, but in practice good
refinements can be trained without adhering strictly to this condition. The relevant theorems for RBMs and TRBMs
are discussed in detail in [7] and [10], and the results apply to TCMs as well.

4 Experiments
Two experiments were run in order to demonstrate the validity of the TCM model. The first experiment examines the
ability of the G-TCM and MG-TCM to learn randomized spatiotemporal distributions consisting of overlaid Gaussian
forms; the performance of these models is compared to TRBMs with one and three delay taps. The second experiment
examines the ability of an MG-TCN to learn real-world sequence mappings using baroque sonatas.

In training these networks, a momentum factor of 0.5 was used to average over the stochastic gradient to provide
faster and smoother convergence of the network parameters. As with TRBMs [7], the learning rate was increased
as the network performance improved. The need to increase the learning rate arises because the learning rules are
based on prediction errors, and as these errors are reduced by training, it becomes useful to amplify the error signal
so that the network moves more quickly towards a solution. Rather than doubling the learning rate at fixed intervals
as in [6], a variable learning rate was adopted dependent on the prediction error at the visible layer, given by ηt =
−
(

1
50

)
log (Eavg(t)), where Eavg(t) is a moving average computed from the bit error percentage for reconstruction of

the visible layer during the contrastive divergence step, initialized to 0.40 at the beginning of training.

The parameters for the TCMs were initialized as follows. All weights and biases were sampled independently from
a standard normal distribution. The location parameters M∗ for the Gaussians were sampled from a beta distribution
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Table 1: Mean Squared Error Rates for Various Models over Ten Trials

Trial 1 2 3 4 5 6 7 8 9 10 Avg
G-TCM .0540 .0265 .0964 .0248 .0231 .0356 .0462 .0291 .0450 .0284 .0414

MG-TCM .0070 .0047 .0106 .0074 .0135 .0157 .0078 .0080 .0090 .0099 .0094
1-TRBM .0555 .1588 .0697 .0743 .0517 .0964 .0298 .1033 .0582 .0519 .0750
3-TRBM .0358 .0357 .0252 .0491 .0159 .0361 .0630 .0660 .0314 .0888 .0447

with α = 2 and β = 5, multiplied by 10 to give location parameters in the range [0, 10] with greater emphasis on
location parameters closer to zero. The scale parameters Σ∗ were initialized to a fixed value of 3. These parameters
were optimized experimentally; the parameters of TRBMs used for comparison were optimized similarly. The TRBMs
were given delayed links laterally in the visible and hidden layers and between the visible and hidden layers. Finally,
the TCMs and TRBMs in these experiments did not have specially trained initial biases, since the networks performed
better at these tasks without a separate initial bias.

4.1 Learning Spatiotemporal Distributions
The first experiment demonstrates that G-TCMs and MG-TCMs can learn a model of spatiotemporal probability
distributions over binary-vector-valued processes. A 25 × 25 grid of probability values was generated to provide a
target distribution for learning. Each element in the grid represents the probability of observing the “on” state, 1, at a
particular neuron at a particular point in time independent of all other neurons and time steps.

The grids used in these experiments were generated by taking a composite of three two-dimensional unnormalized
pseudo-Gaussians over space and time according to the formula

p (t, s) = max
k=0,1,2

exp
(
−1

2
((t, s)− µk) Σ−1

k ((t, s)− µk)T
)
. (9)

The means µk were chosen to lie between 5 and 20 in each dimension, and the entries for the covariance matrices Σk
were constrained to be less than 5. In addition, the average probability mass over the grid points was constrained to
be between .06 and .20 to ensure a good balance of low and high probability points in the grid. Pseudo-Gaussians that
did not fit this constraint were discarded during the generation phase. In many cases, Σk was not positive semidefinite,
resulting in shapes with a hyperbolic rather than an elliptical, Gaussian form. These hyperbolic structures were used
to increase the variety of shapes to be modeled. The probability grids generated using this process have strong local
structure, but also can transition quickly from low to high probability areas (Figure 1, left side). These properties are
realistic for the types of problems G-TCMs should address (such as perception of motion or audio signals), and this
fact makes learning these distributions a good first test for the capabilities of G-TCMs.

Training data for the G-TCM was sampled from the probability grid independently at each learning step. The resulting
25 × 25 binary grid was presented to a G-TCM with 25 visible and 25 hidden nodes as 25 successive 25-bit vectors.
The G-TCM was trained with 5, 000 successive samples from the probability grid. The networks were trained online
using contrastive divergence, with elements from the sample being presented one time step at a time. After training,
50 samples were drawn from the G-TCM using Gibbs sampling with 100 iterations. Rather than taking the binary
values of the sample, the raw probabilities at the last step were used instead so that fewer samples were required; the
binary values were used at all steps during sampling, however. These sample probabilities were averaged to produce
an estimate of the probability distribution learned by the model, which can then be compared to the probability grid
used for training to obtain a visual and numeric representation of the error.

The first G-TCM was then frozen, and a stack of three G-TCMs was developed by successively training two more
G-TCMs using the same procedure. The results are shown in four heat map panels in Figure 1(a). The first panel is the
probability grid on which the network was trained. Lighter values are closer to zero; darker values are closer to one.
Time is laid out along the horizontal axis, while the vertical axis represents space. The second panel is the average
of 50 samples drawn from the first layer of the G-TCM. The third and fourth panels respectively show the averaged
samples drawn from the second and third layers of the stacked G-TCM. The one-layer G-TCM generally captures the
shape of the distribution, but not accurately. By the second layer, however, the stack of G-TCMs takes on a reasonable
representation of the distribution, which is then refined further by the third layer.

Models were subsequently trained for an MG-TCM with K = 3, a TRBM with a single delay tap, and a TRBM with
three delay taps (3-TRBM) in order to compare the learning performance of all four models on this problem. The
mean squared errors over ten separate trials on each are given in Table 1. The visual representations are perhaps most
revealing; an example of all four methods learning the same distribution is shown in Figure 1; the other nine trials
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(a) A Gaussian Temporal Convolution Network (G-TCM) learning a 25× 25 spatiotemporal distribution

(b) A Multi-Gaussian Temporal Convolution Network (MG-TCM) with three gaussian delay taps

(c) A Temporal Restricted Boltzmann Machine (TRBM) with a single delay tap

(d) A Temporal Restricted Boltzmann Machine (3-TRBM) with three delay taps

Figure 1: Testing the ability of a various temporal probabilistic models to learn a spatiotemporal distribution. These
panels represent a 25 × 25 binary distribution over space and time in which each cell is independent of the others.
The vertical axis is space, the horizontal axis is time, and the shading of each cell represents the probability of that
cell being in the “on” state, 1. The leftmost panel in each row contains the distribution being learned, generated as a
composition of three pseudo-Gaussians. The second through fourth panels are the distributions learned by each model
type. The second panel is generated from a single model, and the third and fourth panels add a second and third layer
of the same model type respectively to form a stacked probabilistic model. The MG-TCM model builds a substantially
closer model of the target distribution than the other approaches, the G-TCM is slightly better than the 3-TRBM, and
the TRBM is substantially weaker. The exact performance measures are given in Table 1.
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are generally comparable to those shown. The temporal striations visible in all the models seem to be a feature of the
Boltzmann machine at the base of all these architectures. Overall, each model except for the TRBM with only one
delay learned a reasonable model of the target distribution. The mean squared error rates show that the MG-TCM
performs substantially better than the others, with .0094 average error. The G-TCM comes in second at .0414, and the
TRBM with three delays achieves a close third at .0447. The TRBM with one delay came in last at .0750. A t-test
shows that all of these comparisons are statistically significant with p < .001.

4.2 Learning to Play Baroque
Music is a good test domain for structured temporal sequences. In this experiment, a stack of three MG-TCMs with
K = 5 was trained on digitized versions of five sonatas by baroque composer Domenico Scarlotti, namely, Sonatas No.
1, 20, 27, 159, and 531. These pieces were chosen because they exhibit strong counterpoint, nearly all notes have equal
duration and there are few complex rests or rhythms. These features make a good target for initial experimentation.

A binary sequence representing the sonatas was built based on a midi representation. The sonatas were first normalized
to the key of C major / A minor to simplify the task. Each time step was taken to represent a sixteenth note. A 128-bit
vector was used for each time step, one bit for each of 128 notes available in the midi format. The “note on” events of
the midi file were snapped to the closest time step, and the note contained in the event was marked to the “on” state,
1, in the bit vector for that time step. The first four measures (64 time steps) were taken from each of the sonatas.
Out of the 128 possible notes, only 51 actually occurred in these pieces, so the bit sequence was truncated to 51 x
64. The first MG-TCM in the stack was trained with 500 repetitions of each sonata. The second and third MG-TCMs
were trained with 250 repetitions. After training, the network was made deterministic by converting the stochastic
neurons to threshold units without changing any parameters. Despite this change, the network still has to be sampled
to equilibrium because of its undirected connections, but the outcome is deterministic and repeatable.

The resulting MG-TCM stack was tested by initializing the network with the first 16 time steps of each sonata, then
generating the last 48 time steps. Over the five sonatas, these steps were generated with an average bit error rate of
5.96%. The MG-TCM was evaluated further by clamping the correct values for the right-hand melody to the network
as input and reading off the left-hand harmony generated by the network with the upper half of the range clamped. In
this case, the network is performing a sequence mapping task, where given an input process xt (the right-hand melody)
the goal is to produce a corresponding output process yt = f (x0, . . . , xt) (the left-hand harmony). When run in this
fashion, the first layer of the MG-TCM gives an average bit error rate of 1.4% over the five sonatas. The MG-TCM
networks therefore proved to be highly robust in learning and mapping real-world sequential data.

5 Discussion and Future Work
The results show that TCMs improve the sequence-learning abilities of TRBMs significantly. Not only can several
sequences be reproduced probabilistically, but they can also be mapped to other sequences. The results of the last
experiment are particularly interesting because signal completion is an important issue in real-world problems. For
example, in real-world speech recognition, a pure speech signal is almost never encountered; the source signal almost
always needs to be separated from the background first, and sometimes background noise masks whole frequency
bands. Source separation and denoising are close relatives of the sequence mapping problem described above, which
makes the MG-TCM a promising starting point for developing complex applications.

The method can also be developed further. For instance, it would be worthwhile to search for convolution functions
with even more desirable characteristics than those presented in this paper. For example, convolution functions that can
be expressed using recurrent definitions could maintain a running sum rather than having to compute the convolution
separately at each time step. If recurrent functions with robust time-sensitivity envelopes could be found, a TCM based
on such functions would be much faster for training and use, though it is not immediately clear that such functions
exist.

Although the convolution functions explored in this research do not depend on past states, such an architecture (math-
ematically similar to TCMs) was proposed in [13] in the context of hierarchical Echo State Networks. The drawback
of such networks is that the number of connections is typically cubic in the size of the network, causing severe mem-
ory issues even for moderately sized networks. However, it may be possible to limit or constrain the form of such
a convolution so that it becomes computationally feasible, in which case TCMs with variable time envelopes during
inference could prove very powerful indeed.

6 Conclusion
Statistical modelling of temporal sequences is necessary in several important problems, including phoneme recog-
nition, real-time visual processing, and signals processing. The Temporal Convolution Machine provides a flexible
framework for developing gradient-based training algorithms for temporal generative models, based on recent ad-
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vances in Deep Belief Nets and Temporal Restricted Boltzmann Machines trained with contrastive divergence. The
Gaussian and Multi-Gaussian TCMs developed in this research were shown to build sharper temporal models than
comparable TRBMs because they can adaptively select their dependence on the past during training. In the future,
similar networks may be used to improve performance in many practical tasks requiring automated analysis of tempo-
ral data.
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