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Abstract

The hierarchical feature map system recognizes an input story as an instance of a particular script
by classifying it at three levels: scripts, tracks and role bindings. The recognition taxonomy, i.e. the
breakdown of each script into the tracks and roles, is extracted automatically and independently for
each script from examples of script instantiations in an unsupervised self-organizing process. The
process resembles human learning in that the di�erentiation of the most frequently encountered
scripts become gradually the most detailed. The resulting structure is a hierachical pyramid of fea-
ture maps. The hierarchy visualizes the taxonomy and the maps lay out the topology of each level.
The number of input lines and the self-organization time are considerably reduced compared to the
ordinary single-level feature mapping. The system can recognize incomplete stories and recover the
missing events. The taxonomy also serves as memory organization for script-based episodic mem-
ory. The maps assign a unique memory location for each script instantiation. The most salient
parts of the input data are separated and most resources are concentrated on representing them
accurately.

1 Introduction

According to script theory, people organize knowledge of everyday routines in the form of scripts
(Schank and Abelson, 1977). Scripts are schemata of often-encountered, stereotypical sequences of
events. Common knowledge of this kind makes it possible to e�ciently perform social tasks such as
visiting a restaurant, visiting a doctor, shopping at a supermarket, traveling by airplane, attending
a meeting, etc. People have hundreds, perhaps thousands of scripts at their disposal. Each script
divides further into di�erent variations, or tracks. For example, there is a fancy-restaurant track,
fast-food track and a co�ee-shop track for the restaurant script, with slightly di�erent events.

Script theory is attractive because it separates a fairly well de�ned, managable part of cogni-
tion. Scripts are intuitively plausible and well supported by experimental evidence (Bower et al.,
1979). They also provide a computational theory, similar in spirit to the frame theory of represen-
tation in arti�cial intelligence (Minsky, 1981). The basic idea behind both is schematic knowledge:
people organize knowledge about familiar objects, events and situations in terms of prototypes, or
schemata. A schema contains representation for common knowledge, shared by all instances, and a
number of slots which take di�erent values for di�erent instances. For example, a schema for a room
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RESTAURANT SCRIPT

FANCY-RESTAURANT TRACK

Causal Chain: Roles:

Entering Customer = John

Seating Restaurant = MaMaison

Ordering Food = lobster

Eating Taste = good

Paying Tip = big

Tipping
Leaving

Table 1: Representation of a script-based story as a causal chain and role bindings.

contains the common structure (walls, 
oor, ceiling, door), and slots for size, shape, furniture, etc.
A schema for a restaurant visit contains the common events (entering, seating, ordering, eating,
etc.) and slots for the restaurant, food, amount of the tip, etc. (table 1).

Knowledge of scripts is important in natural language understanding because it allows for
e�cient communication. In narrative texts, many details are left out, because they can easily be
�lled in by the reader using scriptal knowledge. For example, in reading

John went to fancy-restaurant. John asked the waiter for lobster. John left a

big tip.

the reader understands the last sentence by assuming the usual intermediate events in the
restaurant script: the waiter brought John the lobster, John ate the lobster, the lobster tasted
good, John paid the waiter, and John left a big tip (because the food was good). More complex
texts contain references to several scripts, and understanding requires recognizing and applying
several scripts at the same time. Scripts are used to connect the pieces of the text together, i.e.
they are tools in building a complete representation of the story.

In symbolic arti�cial intelligence a script is represented as a causal chain of events with a number
of open roles (table 1) (Schank and Abelson, 1977; Cullingford, 1978; DeJong, 1979; Dyer et al.,
1987). Applying this knowledge to a story requires identifying the relevant script and �lling in its
roles with the actual constituents of the story. Once the script has been recognized and the roles
have been instantiated, the sentences are matched against the events in the script. Events which
were not mentioned in the story but are part of the causal chain can be inferred, as well as certain
�llers of roles which were not speci�ed in the story. For example, in the above story it is plausible
to assume that John ate the lobster and the lobster tasted good.

The symbolic programs demonstrate the power of script theory in processing texts about ev-
eryday events. However, they do not address the question of where the scripts come from, i.e.
how the knowledge of scripts can be learned from the experience. In symbolic systems, the script
representations, their instantiation rules and inferences are hand-crafted with particular examples
in mind.

A number of connectionist models of script application have also been proposed. In these
models, the recognition of the appropriate script, its instantiation and inferences automatically
emerge from the input story representation in a distributed fashion. Connectionist mechanisms for
processing causal sequences (Golden, 1986), connecting multiple scripts (Sharkey et al., 1986), role
binding (Dolan and Dyer, 1987), and learning inferences from examples (Miikkulainen and Dyer,
1989b; Miikkulainen, 1990) have been presented. However, the script representations are still coded
in beforehand and remain �xed in these models.
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Figure 1: Story representation. A story is represented by a 360-dimensional vector of gray-scale values
between 0 and 1. It consists of 6 sentence case-role representations, each 6 � 10 = 60 -dimensional. This
particular story is an instance of fancy-restaurant track, with PERSON = John, FANCY-FOOD = lobster.

Scripts are regular event sequences, and it should be possible to learn these structures and their
hierarchical relationships from the experience. This is how people develop new schemata. Scripts
provide a means to organize experience.

The hierarchical feature map project has two main goals: (1) to show how the hierarchical
taxonomy of scripts, tracks and role bindings can be extracted from examples of script-based stories,
and (2) to show how the script taxonomy can serve as organization for the episodic memory. The
stories in our system are examples of scripts, i.e. instantiations of the event sequence with speci�c
role bindings. The taxonomy recognizes a story as an instance of a particular script, track and
role binding and assigns a unique memory location for it. Incomplete story representations are
automatically �lled in as they are recognized.

2 Story examples

The example stories in our experiments were instances of the restaurant, shopping and travel
scripts, each of which had three tracks, listed in the appendix. Two �llers (John, Mary) were used
to �ll the PERSON role in all tracks. In addition, the restaurant tracks had two �llers each for the
FOOD roles, shopping tracks had two �llers each for the ITEM roles and travel tracks two �llers each
for the DESTINATION roles. The actual input stories were generated by replacing the role names
with di�erent combinations of �llers. The script recognition system had to extract the hierarchical
taxonomy from the repeated presentation of the resulting 36 story examples.

Each story in the training set was represented by the concatenation of the case-role represen-
tations of its sentences (�gure 1). A case-role representation consists of assemblies of components,
with distributed patterns in the assemblies indicating the �llers of the surface-semantic roles of the
sentence (Hinton, 1981; Fillmore, 1968). The input for the feature map system thus consists of the
surface semantics of the sentences of the story.

The case-role representations were formed by a separate front end, the backpropagation-based
sentence parser network from the DISCERN system (Miikkulainen, 1990; Miikkulainen and Dyer,
1989b). This network reads an input sentence sequentially word by word and produces a case-
role representation as its output. The network also develops distributed representations for the
words while it is learning the case-role assignment task. The resulting representations re
ect the
regularities in the use of the words, and can be claimed to code the meanings of the words as well
(Miikkulainen and Dyer, 1989a).
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For each role, only a generic �ller representation (e.g. PERSON, FANCY-FOOD) was developed by
the sentence parser. Representations for the di�erent �ller instances (e.g. John, Mary, lobster,

steak) were formed from the generic representation by replacing the �rst component with 0.0
for one and 1.0 for the other �ller word. The purpose was to create two distinct instances with
approximately the same surface semantics (Miikkulainen and Dyer, 1989a; Miikkulainen and Dyer,
1989b; Miikkulainen, 1990).

The word representation consisted of 10 units and the case-role representation of 6 assemblies
(agent, act, location, recipient, patient-attribute and patient) (�gure 1). Each story had 6 events,
making the input vectors 6 � 6 � 10 = 360 -dimensional. The input vector dimension is �xed
because the number of input lines in the feature maps is �xed. This gives an upper bound to the
number of events in the scripts, although shorter scripts are possible. The remainder of the vector
is simply �lled with zero.

The system was trained with complete script instantiations which included all events. A taxon-
omy of complete stories developed as a result. However, the recognition process is robust enough
that only a few events need to be included to correctly classify a story. The representation for an
incomplete story is formed by the front end, which places the events in their proper position in the
input vector and �lls the missing events with 0.5, the neutral value.

The script recognition system is not dependent on this particular type of story representation.
The concatenation of event representations is perhaps the most straightforward approach. Another
possibility would be to compose the vector from assemblies specifying the script name, track name,
and the role bindings (Miikkulainen, 1990). It is essential, though, that the front end forms a
stationary representation of the event sequence, which can then be input to the feature maps.
Because the representation is not a sequence and is not explicitly causal, it can be said that the
system recognizes the script as a single conceptual structure.

3 Self-organizing feature maps

The story representations are high-dimensional vectors with complex similarity relationships. With
topological feature maps it is possible to lay out the representation space on a 2-D area so that the
similarities between stories become visible.

A 2-D topological feature map (Kohonen, 1982b; Kohonen, 1984) implements a topology-
preserving mapping from a high-dimensional input space onto a 2-D output space. The map
consists of an array of processing units, each with N weight parameters (�gure 2). The map takes
an N-dimensional vector as its input, and produces a localized pattern of activity as its output. In
other words, an input vector is mapped onto a location on the map.

Each processing unit receives the same input vector, and produces one output value. The
response is proportional to the similarity of the input vector and the unit's weight vector. The unit
with the largest output value constitutes the image of the input vector on the map. The weight
vectors are ordered in such a way that the output activity smoothly decreases with the distance
from the image unit, forming a localized response.

The ordering of the weight vectors retains the topology of the input space. This means roughly
that nearby vectors in the input space are mapped onto nearby units in the map. This is a very
useful property, since the complex similarity relationships of the high-dimensional input space
become visible on the map (�gure 3).

The organization of the map, i.e. the assignment of the weight vectors, is formed in an unsu-
pervised learning process (Kohonen, 1982a; Kohonen, 1982c; Kohonen, 1984; Ritter and Schulten,
1988). Input items are randomly drawn from the input distribution and presented to the network
one at a time (�gure 2). The weight vector of the image unit and each unit in its neighborhood are
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3-D input vector

Image of the input vector
(maximally responding unit)

2-D neighborhood

3-D input weight vector

Figure 2: A self-organizing feature map network. A mapping is formed from a 3-dimensional input
space onto a 2-dimensional network. The values of the input components, weights and the unit output are
indicated by gray-scale coding.
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Figure 3: Single-level mapping of script-based stories. The �rst letter of a label indicates the script
(R=restaurant, T=travel, S=shopping), the second letter stands for the track (F=fancy-restaurant,
C=coffee-shop-restaurant, S=fast-food-restaurant etc.), third letter for the main actor (J=John,
M=Mary), and the last for the two di�erent bindings of a track-speci�c role (see description of the data in the
appendix). Labels indicate the image of each story.
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changed towards the input vector, so that these units will produce an even stronger response to the
same input in the future. The parallelism of neighboring vectors is increased at each presentation,
a process which results in a global order.

The process starts with very large neighborhoods, i.e. weight vectors are changed in large
areas. This results in a gross ordering of the map. The size of the neighborhood decreases with
time, allowing the map to make �ner and �ner distinctions between items.

There are several alternatives for implementing the similarity metric, neighborhood selection,
and weight change. A biologically plausible process would be based on scalar products of the weight
and input vectors, lateral inhibition and redistribution of synaptic resources (Kohonen, 1982c;
Miikkulainen, 1987). These mechanisms can be abstracted and replaced with computationally more
e�cient ones without obscuring the process itself. The similarity can be measured by Euclidian
distance, the neighborhood consists of the circular area around the maximally responding unit,
and the weight changes are proportional to the Euclidian di�erence. More speci�cally, the weight
components of unit (i; j) in the map are changed according to

��ij;k =

(
�(t)[xk � �ij;k] if (i; j)�Nc(t)
0:0 otherwise

(1)

where �ij;k is the k:th component of the unit's weight vector, x is the input vector, Nc(t) is the
neighborhood around the maximally responding unit (shrinking with time), and �(t) as the gain
of the adaptation.

In the self-organizing process, the distribution of the weight vectors becomes an approximation of
the input vector distribution (Kohonen, 1982a; Kohonen, 1984). This means that the most frequent
areas of the input space are represented to greater detail, i.e. more units are allocated to represent
these inputs. The two dimensions of the map do not necessarily stand for any recognizable features
of the input space. The dimensions develop automatically to facilitate the best discrimination
between the input items.

Feature maps have several potentially useful properties for script recognition.

1. The classi�cation performed by a feature map is based on a large number of parameters
(the weight components), making it very robust. This suggests that incomplete or somewhat
unusual event sequences can be correctly recognized.

2. The map is continuous, and can represent items between established categories. In other
words, scripts can have soft boundaries.

3. The di�erences of the most frequent input items are magni�ed in the mapping, i.e. the
variations of the most common event sequences are more �nely discriminated.

4. The self-organizing process requires no supervision and makes no assumptions of the content
of the input stories. The properties of the stories which best distinguish between scripts and
their variations are determined automatically, and may be very di�erent for di�erent kinds
of scripts.

On the other hand, scripts are hierarchical representations. Each script class consists of a
number of tracks, and each track can be instantiated with di�erent role bindings. Hierarchical
feature maps can be used to make the hierarchical taxonomy explicit. The hierarchical architecture
also cuts down the number of redundant system parameters (input weights) and concentrates the
resources on the most salient aspects of the input data. The computationally intensive training is
speeded up by e�ectively dividing the task into hierarchical subgoals.
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Figure 4: Hierarchical feature mapping of script-based stories. The highest level is a single 2 � 2
map, where the scripts are mapped onto di�erent corners. The middle level consists of four 2 � 2 maps,
which display the tracks of each script. The sixteen 3� 3 maps at the lowest level map out the space of the
possible role bindings for each track. The organization was formed in 40 training epochs.

4 Hierarchical feature maps

4.1 System architecture

The self-organizing process produces a representation of the input space where the input data is
spread out spatially on e.g. a 2-dimensional sheet. The map represents most directly input spaces
which are continuous and unstructured. If the data is hierarchical, the map re
ects this through
topological order. For instance, the map of taxonomical data essentially displays the minimal
spanning tree of the data items, curved to �ll in the whole area of the map (Kohonen, 1982b). Or,
if we form a mapping of script-based stories, di�erent variations of the scripts are mapped near
each other (�gure 3). Knowing what the hierarchical taxonomy of the data is, it is easy to see that
the spatial layout of the map re
ects the taxonomy. However, it is hard to extract the taxonomy
from the map alone.

With hierarchical feature maps the taxonomy can be made explicit (�gure 4). The hierarchy
is a pyramid organized according to scripts, tracks and role-bindings. The highest level is a single
feature map, which lays out the di�erent script classes. Beneath each unit of this map there is
another feature map, which lays out the tracks within the script. At the bottom level, the di�erent
role bindings within each track are separated. The map hierarchy receives a story representation
as its input and classi�es it as an instance of a particular script, track and role binding, indicated
by the maximally responding units at each level of the hierarchy.

The highest-level map is laid out �rst in an ordinary self-organizing process. A small map size
forces the process to make only a gross, high-level classi�cation. A lower map in the structure
receives as its input only those input items which belong to the category represented by its parent
unit. In other words, the unit which \wins" the input item passes this item down to its submap.
The lower map forms a subcategorization of these input items, mapping the di�erences within the
script or the track. Each map displays topological order. This is most evident in the bottom level
maps, where the PERSON role is di�erentiated along one axis, while the other axis separates the
bindings of the other open role of the track. These dimensions were discovered by the mapping

itself, and they are di�erent for di�erent scripts.
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Figure 5: Hierarchical feature map architecture. Each unit independently determines the input lines
with the most variance among its input vectors, and passes a compressed vector down to its submap for a
more detailed mapping.

Input representations in a cognitive system often have some discrete structure, such as e.g.
role speci�c assemblies (Hinton, 1981; McClelland and Kawamoto, 1986; Miikkulainen and Dyer,
1989a). If the data is hierarchical, the items belonging to the same category have a number of
componets in common. These components can be dropped from the input to the next-level map
(�gure 5). The higher-level map acts as a �lter, (1) choosing the relevant items for each submap and
(2) compressing the representation of these items to the most relevant components before passing
them on for a more detailed mapping.

Each unit has to determine independently which of its input lines are the most signi�cant in
distinguishing between items of the category. It has to �nd the lines with the most variation between
the items it wins. These lines are di�erent for di�erent units. For example, a unit which stands for
the fancy-restaurant track of the restaurant script wins only items which have fancy-restaurant
as the location (�gure 6). The values on the input lines which code the location do not change
from one input to another (in our examples). On the other hand, the customer and food may be
di�erent in di�erent stories, and lines representing these roles have a lot of variation. These lines
alone are su�cient to determine the role bindings of the track, and they are therefore passed on to
the lowest-level map.

John's visit to Leone's (�gure 5). The top-level map receives the complete representation
vector and maps it onto the unit labeled REST. This unit compresses the vector by removing the
components whose values are the same in all restaurant stories (�gure 6). The representation now
consists of information which best distinguishes between the di�erent restaurant stories. The REST-
unit passes the compressed representation down to its submap, which classi�es it as an instance of
the fancy-restaurant track. Again, the FANCY-unit removes the components common to all fancy-
restaurant stories, and passes the highly compressed vector to its submap. The representation is
now limited to information about the role bindings, and it is mapped onto the unit representing
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Figure 6: Compression of the input lines. The �rst few components of the story representation are
shown. All stories mapped on the REST-unit share the act went, and these components can be dropped from
further mapping. All inputs mapped on the FANCY-unit have fancy-restaurant as the location, and these
components can be dropped. The input to the role level consists of only the �ller of the customer -role.

customer=John, food=lobster.

The system can correctly classify a story even if a number of events are missing (�lled with
0.5 in the representation). This is a consequence of the general redundancy of the system: the
incomplete input is still closest to the correct script, and is classi�ed as such.

4.2 Self-organization

In self-organizing a hierarchical feature map system, it is most e�cient to start the process at the
highest level, and include a lower level only when the higher level has become ordered. This way the
set of inputs to the lower level stays constant, and no work is wasted on inputs which will eventually
be classi�ed into another category. Self-organizing a hierarchy of small maps instead of a single
large one means dividing the classi�cation task into hierarchical subgoals, which is an e�cient way
to reduce complexity. A story representation is �rst classi�ed as an instance of a script, then as a
track within the script etc. Within the script (or track), only a subset of the input representation

needs to be examined to re�ne the classi�cation further. The relative di�erences between the items
are greater, making the self-organization easier.

In a single-level map all units need to receive the complete representations of all input items
(�gure 2). Modifying the weights is costly, because the initial neighborhood must cover almost the
entire map (Miikkulainen, 1987). In a hierarchical map system, the maps at lower levels receive
only small subsets of the original input lines, and the neighborhoods are always small because the
maps are small at all levels (�gure 5). This reduces the training time considerably.

Each unit determines its own compressed set of input lines during the last epoch before the
lower level is included. In our implementation, the lines of each unit were simply ordered with
respect to the variance over the inputs won during that epoch, and a �xed fraction ri was chosen
at each map level i (�gure 5). This means that usually only a few lines of the representation for
e.g. customer were passed on to the next level (the ones with the highest variance), not the whole
representation. Instead of a �xed fraction, a variance threshold could also be used, in which case
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the extent of the compression would adapt to the input data.

Of the 360 input lines to the �rst level, each script unit independently determined the 54 (15%)
lines with the highest variance, and passed them on to the second level. This compressed vector
consisted mostly of the di�erences in the order of events in the track, and of the most unique
events. Of these 54 lines, each second-level unit passed on 10 (20%) to the lowest level. These
lines consisted mainly of the �rst components of the �ller words (either 0.0 or 1.0), which best
di�erentiate between �llers.

The outcome of the self-organizing process is somewhat sensitive to the system parameters.
To obtain the three-level classi�cation into scripts, tracks and role bindings the maps must have
approximately the right size and each input story must be approximately as frequent in the input
data. If, for instance, the highest-level map is too large, or one of the script classes is far more
frequent than the others, the di�erent tracks may get separated already at the highest-level map.
Even if the parameter settings are not ideal, the script recognition works the same. The system uses

whatever architecture is given to establish the best classi�cation of the input data. The con�guration
parameters may need to be experimentally adjusted to achieve the desired semantics for the levels
of the hierarchy, but the function of the recognition system is fairly robust.

5 Reproducing stories

It is possible to reproduce the story from its representation in the feature maps. In the self-
organizing process the input weight vectors become approximations of the input vectors (Kohonen,
1982a; Kohonen, 1984). The weight vector at each unit represents an average of all stories mapped
on that unit. The weights on constant input lines accurately represent the constant components,
while the weights on the input lines with high variance represent averages. The high-variance lines
were passed down in the hierarchy for a more accurate mapping, and the di�erent values for these
components are accurately represented at the lower levels of the hierarchy. A complete and accurate
story representation can be retrieved by concatenating the accurate weights, i.e. weights on the
compressed input lines, of the image units at all levels (�gure 7).

This technique can be used to produce a full paraphrase of an incomplete story, i.e. to �ll in

the missing events. The story is �rst classi�ed as an instance of one of the stories known to the
system. As discussed above, the system can usually determine the correct script, track and role
binding even if number of events are missing. The weights for this classi�cation are then read out,
forming the full paraphrase. For example, the story

John went to fancy-restaurant. John asked the waiter for lobster. John left a

big tip.

is classi�ed as an instance of the restaurant script, fancy-restaurant track, with PERSON = John,
FANCY-FOOD = lobster. Concatenating the weights on the compressed input lines gives the full
instantiation of the script:

John went to a fancy-restaurant. Waiter seated John at a table. John asked the

waiter for lobster. John ate the good lobster. John paid the waiter. John left the

waiter a large tip.

Once the story has been recognized, the bindings are consistent and plausible in the weight rep-
resentation. In other words, the recognition system implements plausible script-based inferencing
(Dyer, in press).

The weight vector representations obtained from the di�erent levels of the hierarchy represent
di�erent levels of abstraction. A top-level unit stands for the skeleton of the script where the
di�erent tracks and role bindings have been averaged out. When the compressed top-level weights
are combined with the track-level weights, the track becomes established but the role bindings
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Figure 7: Reproducing stories. The complete story representation is obtained by concatenating the
weights on the compressed input lines at each level.

are still unspeci�ed. For example, in the place of the agent name (John or Mary) there is the
representation of the general agent (PERSON), which is an average of the two (�gure 7). The bindings
are �nally established when the lowest-level weights are combined with the representation.

The maps contain several units which are not images of any particular input item. These extra
units are needed in the self-organizing process to develop a meaningful topological organization of
the map. They constitute extra space that makes the mapping continuous. The weights on these
units represent stories which are combinations of the actual inputs that the system has seen. In
some cases they may be meaningful abstractions or generalizations, extracted from the similarities
of the items around them in the map. Such a unit between two script units, for example, can
represent uncertainty about the script class the incomplete input story belongs to. Some events
can be safely �lled in, and they are accurately represented in the weights of this unit. Others are
uncertain, and the corresponding weights represent averages of the di�erent possibilities. In many
cases though, the unlabeled units do not represent anything useful. A combination of e.g. the
airplane-travel script and the cake-baking script is not anything that occurs in real life. However,
in a system consisting of a large number of scripts, these scripts would probably be mapped on
di�erent areas in the map. The map tends to maximize continuity, and most unlabeled units lie
between scripts that are similar, and whose combinations are possible.

6 Episodic memory organization

The hierarchical feature maps form a recognition taxonomy for script-based stories. The taxonomy
can also be used to organize an episodic memory of these stories (Miikkulainen, 1990). Stories are
read in and memorized one at a time and can be retrieved with a partial cue.
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An ordinary feature map is a classi�er, mapping an input vector to a location on the map. A
trace feature map (Miikkulainen, 1990), in addition, creates a memory trace on that location. The
map remembers that at some point it received an input item that was classi�ed at that location.
Trace feature map mechanism is used at the bottom level of the map hierarchy to create a trace of
the story.

When a representation is stored in the episodic memory, the map hierarchy determines the
appropriate role binding map and the location on that map. The trace feature map mechanism
creates a memory trace at that location using lateral connections between units.

A story is retrieved from the memory by giving it a partial story representation as a cue. Unless
the cue is highly de�cient, the map hierarchy is able to recognize it as an instance of the correct
script and track, and form a reasonable guess about the role binding. The trace map mechanism
then determines whether an appropriate trace exists and settles into the accurate role binding if one
is found. The complete story representation is retrieved from the weight vectors of the maximally
responding units at the script, track, and role binding levels.

The episodic memory for the script-based stories has two requirements which are not met by
most neural network models of associative memory (Kohonen, 1984; Hop�eld, 1982):

1. A few representation components, i.e. the ones discriminating between the di�erent instances,
need to be stored and retrieved with extreme accuracy.

2. The representations need to be stored \one-shot", with only a single presentation, without
knowledge about additional traces to be stored.

The hierarchical feature maps employ abstractions to separate crucial information (instances,
mapped at the bottom level) from information which is more widely distributed and where accuracy
is not as critical (components common to the script and track, at higher levels). The maps assign
di�erent areas of the memory to di�erent items, making it possible to store them one-shot.

As was pointed out in (Schank and Abelson, 1977), people seem to make scripts out of all
regularities in everyday experiences, and in several levels of complexity, abstraction and extent.
The hierarchical feature map system can be seen as a general model of the episodic memory, similar
in spirit to the symbolic model of (Kolodner, 1983a; Kolodner, 1983b). Incoming experiences are
classi�ed in terms of their similarities to previous experiences (higher-level maps), and stored in
the memory in terms of their di�erences (bottom level maps). In doing so, the structure of the
memory also changes, and a�ects future classi�cation. The structure is extracted autonomically
from examples, and re
ects the moving statistical regularities in the data.

7 Discussion

With hierarchical feature maps, it is possible to recognize and represent a large number of di�erent
scripts, and the system determines automatically what is relevant for the taxonomy. The stories are
classi�ed into script classes, tracks, and di�erent role bindings based on the statistical similarities
in the input representations. The breakdown of each script is independent of the others. Tracks
and roles are developed which facilitate the best discrimination between the instantiations of the
script, and these are usually di�erent for di�erent scripts.

On the other hand, the classi�cation is purely statistical. There is no way to include semantic
information to guide the process, as in the supervised learning approach. All relevant information
must be included in the input vectors. Also, since the relevant roles are determined separately for
each script, the common roles end up being represented multiple times. Each script in our data
has a role for the main actor, but this role has to be mapped separately on every map at the lowest
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level. Half of each role map is dedicated to stories with John as the main actor, the other half with
Mary (�gure 4).

The self-organizing process resembles a human learner in building the script taxonomy. The
process begins by establishing a gross ordering of the input data, dividing the input into a few large
categories (Miikkulainen, 1987). The most prominent and regular event sequences are recognized
as the �rst rudimentary scripts. For example, the restaurant and shopping stories are �rst grouped
together, separate from the travel stories. These categories become gradually more re�ned, as more
attention is paid on the details. The more frequently a certain kind of input occurs in the input data,

the more of its details become signi�cant. The restaurant and shopping stories together are twice as
numerous as the travel stories, and what used to be di�erent variations of the shopping-restaurant
script eventually become scripts on their own right.

The number of units e.g. in the person-dimension at the bottom level maps poses an upper limit
on the number of di�erent person names the system can tell apart. However, the system need not
see all these names in the training data. If continuous ID values are used for the di�erent person
representations (in the above data, ID was the �rst unit in the representation, e.g. 0.0 for John
and 1.0 for Mary), a statistical sample is su�cient to form a continuous mapping of the possible
ID values. In other words, the whole space of possible �llers can be covered with limited training
data, but the resolution is limited by the number of units in the map.

The hierarchical feature map technique actually gives us a continuum of classi�cation systems.
At one extreme there is the single-level feature map, which produces a topological layout of the
input space. At the other extreme there is a hierarchy of two-unit maps, which forms a statistically
balanced divisive clustering tree of the input items: the inputs are �rst divided into two equally
large classes, each class is further divided into two parts etc.

The hierarchical feature mapping technique makes most sense when the input data is strongly
hierarchical, and the architecture of the system matches this hierarchy. In the extreme case of a
uniform distribution of independent continuous variables there is nothing to be gained by using
hierarchies. If enough is known about the structure of the input space, a hierarchical feature map

architecture can be chosen, which self-organizes to directly represent the hierarchical semantics of

the input space.

If the input data has enough structure, the reduction of the required input connections and the
speed-up of the self-organization can be quite dramatic. In the script recognition system, there were
4�360 = 1; 440 connections to the highest level, 16�54 = 864 to the second, and 144�10 = 1; 440
to the bottom level, a total of 3,744 input connections. A comparable single-level mapping (�gure 3)
with 144 units for the same data required 51,840 input connections. Self-organizing the single-level
mapping took about 9.5 hours on an HP 9000/350 workstation, while the hierarchical mapping
was complete in three minutes, a di�erence of two orders of magnitude. In this serial simulation,
one order of magnitude speed-up directly results from the one order of magnitude reduction in the
input connections. Another order of magnitude speed-up comes from the hierarchical subgoaling
approach, and applies to fully parallel implementations as well.

8 Future work

It might be possible to develop a mechanism for automatically adjusting the sizes of the maps or
the depth of the hierarchy according to the input data. Two di�erent inputs should always be
mapped onto di�erent units at the lowest level. This constraint could be used to self-organize the
system architecture, in addition to the current self-organization of the individual feature maps.

It would be desirable to develop a more general representation for the input stories. A large
number of units in the current representation are always blank, and the representation is extremely
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sensitive to the order and number of events. Instead of simple concatenations of a �xed number
of event representations, the system should be able to read sequences of event representations of
undetermined length. One possible approach is to use a feature map of events as a front end. The
events would be presented to this map sequentially, and would form a trajectory on the map. This
trajectory (i.e. the composite response pattern on the front end map) would form the input to the
script recognition system.

The primary function of the system is to build a taxonomy which allows recognizing a story as
an instance of a particular script, track and role binding. Higher-level systems such as a paraphraser
or a question answerer could be built based on this representation. It might be possible to extract
the information the self-organized system has found about the relevant tracks and roles, and use
this to automatically generate training data for supervised-learning based higher-level systems, thus
combining the advantages of both approaches.

9 Conclusion

The hierarchical feature map system shows how the hierarchical taxonomy of scripts, tracks and
role bindings can be extracted from experience, and how the taxonomy can be used to recognize
and �ll in incomplete instantiations of the script. Hierarchical feature maps also have a number of
properties which make them useful for memory organization: (1) the maps visualize the data very
nicely, with the hierarchy displaying the script taxonomy and the maps laying out the topology
at each level, (2) the maps are continuous and can represent items between established categories,
(3) variations of the most common inputs are more �nely discriminated and (4) the most salient
aspects of the input data are separated and most resources are concentrated on them.
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Appendix: Input stories

The data consisted of restaurant, shopping and travel scripts, with three tracks each. Each
track had two open roles. Two �llers (John, Mary) were used to �ll the PERSON role in all tracks.
The �llers for the other open role (FOOD, ITEM or DESTINATION) are listed next to the track name
below.

RESTAURANT SCRIPT

Fancy-restaurant track
FANCY-FOOD = lobster, steak

PERSON went to a fancy-restaurant.

Waiter seated PERSON at a table.

PERSON asked the waiter for FANCY-FOOD.

PERSON ate the good FANCY-FOOD.

PERSON paid the waiter.

PERSON left the waiter a large tip.

Co�ee-shop-restaurant track
COFFEE-FOOD = spaghetti, �sh

PERSON went to a coffee-shop-restaurant.

PERSON sat down at a table.

PERSON asked the waiter for COFFEE-FOOD.

PERSON ate the COFFEE-FOOD.

PERSON paid at the cashier.

PERSON left the coffee-shop-restaurant.

Fast-food-restaurant track
FAST-FOOD = hamburger, fries

PERSON went to a fast-food-restaurant.

PERSON waited in line for the cashier.

PERSON asked the cashier for FAST-FOOD.

PERSON paid the cashier.

PERSON ate the FAST-FOOD.

PERSON left the fast-food-restaurant.

SHOPPING SCRIPT

Clothing-shopping track
CLOTHING-ITEM = shoes, hat

PERSON went to a clothing-store.

PERSON looked for a CLOTHING-ITEM.

PERSON compared CLOTHING-ITEM prices.

PERSON tried a number of CLOTHING-ITEMs.

PERSON chose the best CLOTHING-ITEM.

PERSON paid at the cashier.

Electrical-shopping track
ELECTRICAL-ITEM = TV, radio
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PERSON went to an electrical-store.

PERSON asked the cashier for an ELECTRICAL-ITEM.

PERSON asked questions about the ELECTRICAL-ITEM.

PERSON compared ELECTRICAL-ITEM prices.

PERSON chose the best ELECTRICAL-ITEM.

PERSON paid the cashier.

Grocery-shopping track
GROCERY-ITEM = fruit, meat

PERSON went to a grocery-store.

PERSON chose a shopping-cart.

PERSON chose a number of GROCERY-ITEMs.

PERSON compared GROCERY-ITEM prices.

PERSON waited in line for the cashier.

PERSON paid the cashier.

TRAVEL SCRIPT

Airplane-travel track
PLANE-DESTINATION = JFK, DFW

PERSON checked-in at the airport.

PERSON waited for the boarding.

PERSON got-on the plane.

The plane took-off from the airport.

The plane arrived at the PLANE-DESTINATION.

PERSON got-off the plane.

Train-travel track
TRAIN-DESTINATION = NYC, DC

PERSON bought a ticket at the railway-station.

PERSON waited for the train.

PERSON got-on the train.

The conductor punched the ticket.

The train arrived at the TRAIN-DESTINATION.

PERSON got-off the train.

Bus-travel track
BUS-DESTINATION = town, beach

PERSON went to the bus-stop.

PERSON waited for the bus.

PERSON got-on the bus.

PERSON paid the driver.

The bus arrived at the BUS-DESTINATION.

PERSON got-off the bus.
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