
Evolving Obstacle Avoidance Behavior in a Robot Arm

David E. Moriarty and Risto Miikkulainen

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

moriarty,risto@cs.utexas.edu

Abstract

Existing approaches for learning to control a ro-
bot arm rely on supervised methods where correct
behavior is explicitly given. It is di�cult to learn
to avoid obstacles using such methods, however,
because examples of obstacle avoidance behavior
are hard to generate. This paper presents an al-
ternative approach that evolves neural network
controllers through genetic algorithms. No in-
put/output examples are necessary, since neuro-
evolution learns from a single performance meas-
urement over the entire task of grasping an ob-
ject. The approach is tested in a simulation of the
OSCAR-6 robot arm which receives both visual
and sensory input. Neural networks evolved to
e�ectively avoid obstacles at various locations to
reach random target locations.

1 Introduction

Many industrial tasks such as assembly, packaging, and
processing rely heavily on the manipulation and trans-
portation of small components. Robot arms can auto-
mate many of these processes and improve the cost e�-
ciency of the operation. To be as e�ective as their human
counterparts, robot arms normally use vision systems
based on one or more cameras to identify and locate the
target objects (Feddema and Lee 1990; Papanikolopoulos
and Khosla 1993; van der Smagt 1995; Weiss et al. 1987;
Wijesoma et al. 1993).
Vision-based robot arm control is a very complex task

that requires mapping the information of the target and
obstacle locations to the joint rotations that position the
hand near the target. This task in commonly known as
hand-eye coordination. Because it is di�cult to specify
such a mapping by hand, many researchers have applied
machine learning techniques to learn the control strategy.
The resulting policies are often much more robust than
manually-designed, �xed policies.
One particularly successful approach to control learn-

ing is neuro-control (Baker and Farrell 1992; Werbos
1992) or using a neural network to learn to imple-
ment the control policy. Most approaches to robot arm

neuro-control learn hand-eye coordination through su-
pervised training methods such as backpropagation or
conjugate gradient descent (Kawato 1990; Miller 1989;
van der Smagt 1995; Werbos 1992). Supervised learn-
ing, however, requires training examples that demon-
strate correct mappings from input to output. Train-
ing examples are normally generated by ailing the arm
while recording joint movements and �nal arm positions
(Werbos 1992). The supervised approach is su�cient for
learning basic hand-eye coordination in domains with un-
restricted movement, however, in uncertain or obstacle-
�lled domains the supervised approach fails. The main
problem is that in the supervised training the arm is al-
ways moved to the target location in a single joint ro-
tation. In domains with obstacles, this is not always
possible because the arm must move around an obstacle.
Explicitly generating the necessary intermediate joint po-
sitions is extremely di�cult and requires signi�cant do-
main knowledge (Lumelsky 1987). Without such know-
ledge, it is not possible to learn obstacle avoidance be-
haviors through supervised methods.

This paper presents an alternative learning control
system that evolves neural networks through genetic al-
gorithms. Neuro-evolution does not require explicit
training examples and learns multiple joint rotations
implicitly through evolution. The evolutionary search
is guided by a single �tness evaluation over the entire
task, which may involve multiple skills such as avoiding
obstacles and reaching the target. Neuro-evolution can
thus form network controllers that can adapt in uncertain
environments.

Evolving neuro-control was tested in a sophisticated
robot arm simulation of the OSCAR-6 anthromoporphic
robot. The evolution was based on the Hierarch-
ical SANE system (Moriarty and Miikkulainen 1996a,
1996b). Networks were evolved to maneuver the arm to
random target locations while avoiding obstacles. Given
both camera-based visual and infrared sensory input,
the networks learned to e�ectively combine both target
reaching and obstacle avoidance strategies. The current
experiments detect obstacle collisions only in the robot's
hand; future experiments will extend the control policy

In From Animals to Animats: Proceedings of the Fourth International Conference on Simulation of Adaptive
Behavior (SAB-96). Cape Cod, MA.



to avoid obstacles with the full arm.
The body of this paper is organized as follows. The

next section summarizes the existing methods for learn-
ing robot arm control in neural networks and describes
their limitations. Section 3 motivates the use of neuro-
evolution, and section 4 describes the implementation of
the Hierarchical SANE system to evolve hand-eye co-
ordination and obstacle avoidance in the OSCAR-6 ro-
bot. Section 5 describes the experiments conducted in
an OSCAR-6 simulator and summarizes the main res-
ults. Enhancements to the simulator and applications to
real robot arms are outlined in section 6, followed by our
conclusions in the �nal section.

2 Learning to Manipulate a Robot Arm

Several methods have been proposed for learning robot
arm control in neural networks (Kawato 1990; Kuper-
stein 1991; Miller 1989; van der Smagt 1995; Walter et al.
1991). Each of these methods is based on supervised
learning from a corpus of input/output examples that
demonstrate correct behavior. During training, the net-
work is presented inputs from the database and its output
is compared to the desired output. Errors are calculated
according to the di�erences, and modi�cations are made
to the network's weights based on some variant of the
backpropagation algorithm. In any supervised learning
application, it is crucial that the training corpus contains
a good representative sample of the desired behavior.
The most common approach for generating training

examples is to ail the arm and record the resulting joint
and hand positions (Werbos 1992). For example, if the

joints are initially in position ~J and a random rotation ~R
results in hand position ~H, a training example of the form
Input : ~J; ~H;Output : ~R can be constructed. This ex-
ample reects the correct rotation to reach target position
~H from joint position ~J . Given a su�cient database of
such examples, a neural network can learn to approxim-
ate the inverse kinematics necessary to translate between
the camera-based visual and joint spaces.
A major limitation of generating training examples by

\ailing" is that it only applies to situations where the
target can be reached in a single joint rotation. It can-
not demonstrate more general behavior such as reach-
ing while simultaneously avoiding obstacles, where a se-
quence of rotations are necessary. For example, when
an obstacle is placed between the arm and the target,
the arm cannot take a direct path, but must instead
make several moves around the obstacle. Random arm
movement would never produce a su�cient training ex-
ample for this situation, since there is no single rotation
that can reach the target. To produce such behavior us-
ing a supervised learning approach, training examples
must demonstrate movement to intermediate arm pos-
itions (e.g. above the block). It is unclear how such
examples could be generated without a path-planning al-

gorithm (Lumelsky 1987), which requires signi�cant do-
main knowledge of the robot and its environment.
An alternative to supervised learning is to use a rein-

forcement learning method, such as Q-learning (Watkins
and Dayan 1992) or genetic algorithms (Goldberg 1989),
to form the control policy. In reinforcement learning, no
input/output examples are required, and thus no path
planning algorithms are necessary to generate intermedi-
ate arm positions. Agents learn from signals that provide
some measure of performance and which may be de-
livered after a sequence of decisions have been made.
Since reinforcement signals take into account several con-
trol decisions at once, appropriate credit can be assigned
to the intermediate joint rotations that are necessary to
reach the �nal target position. Reinforcement learn-
ing can thus integrate sophisticated behaviors such as
obstacle avoidance into a robot arm control policy.
Since arti�cial evolution of neural networks has been

shown competitive and in many cases more e�cient
than other reinforcement learning methods (Moriarty and
Miikkulainen 1996a; Whitley et al. 1993), the approach
in this paper is based on neuro-evolution as the reinforce-
ment learning method.

3 Evolving Neuro-Controllers

Recently there has been much interest in evolving neural
networks with genetic algorithms in control tasks (Cli�
et al. 1993; Moriarty and Miikkulainen 1996a; Nol� et al.
1994; Whitley et al. 1993; Yamauchi and Beer 1993).
Genetic algorithms (Holland 1975; Goldberg 1989) are
global search techniques patterned after Darwin's theory
of natural evolution. Numerous potential solutions are
encoded in strings, called chromosomes, and evaluated
in a speci�c task. Substrings, or genes, of the best solu-
tions are then combined to form new solutions, which
are inserted into the population. Each iteration of the
genetic algorithm consists of solution evaluation and re-
combination and is called a generation. The idea is that
structures that led to good solutions in previous gener-
ations can be combined to form even better solutions in
subsequent generations.
Since genetic algorithms do not require explicit credit

assignment to individual actions, they belong to the gen-
eral class of reinforcement learning algorithms. In genetic
algorithms, the only feedback that is required is a gen-
eral measure of pro�ciency for each potential solution.
Credit assignment for each action is made implicitly,
since poor solutions generally choose poor individual ac-
tions. Thus, which individual actions are most respons-
ible for a good/poor solution is irrelevant to the genetic
algorithm, because by selecting against poor solutions,
evolution will automatically select against poor actions.
In neuro-evolution, the solutions take the form of neural

networks. Properties such as weights and connections are
encoded in chromosomes, which are evolved by the ge-



netic algorithm. Neuro-evolution o�ers many important
advantages to robotic arm control over supervised meth-
ods. First, it operates using only the overall performance
of the neural network controllers as a guide. If avoiding
obstacles is a necessary component of good performance,
the genetic algorithm will select for networks that can
avoid obstacles. No input/output examples are neces-
sary, and thus neuro-evolution is not constrained by the
inability to generate training examples. Second, neuro-
evolution can be applied with very little a priori inform-
ation. Knowledge of the robot arm dynamics, the arm's
environment, or the components of the visual system is
not necessary as they are in path-planning algorithms.
Neuro-evolution evolves this knowledge through experi-
ence and tailors it's control policy to meet the speci�c
demands of the domain.

4 A Neuro-Evolution Implementation for
Robot Arm Control

This section describes a neuro-evolution algorithm and
architecture for controlling the OSCAR-6 robot arm.
Figure 1 shows a picture of an OSCAR robot. The
current implementation is designed for evolution in a
simulation model and then application to the real robot
arm. Future work will study evolution directly with the
OSCAR robot.

The network controller receives both camera-based
visual and infrared sensory input representing the loc-
ation of the target and the distance from obstacles, and
must resolve a series of joint rotations to position the
hand at a target location. The hardware speci�cations
and algorithms used to generate the input are independ-
ent of the learning system and are considered given. For
descriptions of camera-based vision and infrared sensors
in robot manipulators, see (Lumelsky 1987; Papaniko-
lopoulos and Khosla 1993; Sanderson and Weiss 1983;
van der Smagt 1995; Wijesoma et al.1993). The focus of
this paper is how to automatically integrate the sensory
information into an e�ective control policy.

4.1 Primary and Secondary Control Networks

The task of reaching a target can be seen as a compos-
ite of two basic movements. First, the robot arm must
make several large joint rotations to get within a certain
proximity of the target object. Such rotations often in-
volve detecting and avoiding obstacles in the arm's path.
Second, the robot arm must make smaller, more precise
movements to position the end e�ector within grasping
distance of the target object. This observation leads to an
e�cient design of a neuro-evolution system, where con-
trol is divided between two networks. The �rst, called the
primary network, positions the arm near the target, while
the secondary network makes the smaller movements to
reach the target object.

Figure 1: The OSCAR-6 robot arm. OSCAR is designed for

pick-and-place tasks and has been applied in several indus-

trial settings. The arm contains 6 total joints and a camera

mounted in the end e�ector.

When a task is initiated, the primary network moves
the arm until it speci�es that the arm should be stopped
or it exceeds a prespeci�ed maximum number of joint
rotations. There is no �xed proximity boundary for the
primary network; its goal is to \get as close as it can".
It is possible to evolve primary networks to complete the
entire task, however, because of the diminishing returns
of late evolution, it is often more advantageous to ac-
cept a certain level of pro�ciency and begin a new search
for secondary networks. Since the secondary networks
start relatively close to the target, there is normally little
need for an obstacle avoidance strategy. Thus, any of the
existing supervised approaches can generate e�ective sec-
ondary networks. Secondary networks are evolved in this
paper to demonstrate that neuro-evolution can solve the
entire task. Evolving the secondary networks also gener-
ates obstacle avoidance behavior for situations where the
primary network leaves the arm very close to an obstacle.

4.2 Network Architectures

Each neural network controller (primary and secondary)
contains 9 input, 16 hidden, and 7 output units (�gure 2).
The input units correspond to the x, y, and z relative dis-
tances of the hand to the target and six directional prox-
imity sensors located on the hand that sense obstacles in
the negative and positive x, y, and z directions. In other
words, they sense obstacles in back of, in front of, to the
left of, to the right of, above, and below the end e�ector.
They have a 10 cm range and return the absolute dis-
tance to the obstacle. If no obstacle is currently within
the sensor range, the activation is 10.0.

Each joint's rotation is determined by two unique out-
put units. The �rst unit is linear and the sign of its total



Rotation

of Joint 1

Rotation

Rotation

of Joint 2

of Joint 3

Stop Arm

Relative Distance X

Relative Distance Y

Relative Distance Z

Front Sensor (+ X)

Back Sensor (- X)

Left Sensor (+ Y)

Right Sensor (- Y)

Above Sensor (+ Z)

Below Sensor (- Z)

Input Layer Output Layer

Figure 2: The architecture of the neural network controller

for the OSCAR-6 robot. The dark arrows indicate activation

propagation from the input to hidden layer and hidden layer

to output layer. The connections and weights between the

hidden layer and the input and output layers are evolved by

the genetic algorithm.

activation speci�es the direction of rotation. The second
output unit is sigmoidal and speci�es the magnitude of
rotation. Dividing the output function this way makes it
easier for hidden units to control a speci�c function, such
as the direction of rotation of a particular joint. In the
primary network, the magnitude output units are normal-
ized between 0.0 and 5.0, limiting each joint rotation to
[-5,+5] degrees. This forces the primary network to make
several small joint rotations to reach the target, which al-
lows it to more e�ectively sense and avoid obstacles in
the arm's path. In the secondary network, the rotation is
normalized between 0.0 and 1.0 to allow for �ne move-
ments near the target.

When the joint rotations are small, it is not necessary
to take into account a large magnitude of distance from
the target object. Such information can only interfere
with the next local movement. Thus, it is very useful
to \cap" the camera-based visual input units at 10.0 cm,
such that if the target object is further away than 10.0 cm
in any direction, the corresponding input unit receives an
activation of only +/- 10.0.

A �nal threshold output unit is included as an over-
ride unit that can prevent movement regardless of the
activations of the other output units. If the activation of
the override unit is positive, the arm is not moved. If
it is negative, the joint rotations are made based on the
other output units. Without the override unit, stopping
the arm would require setting the activation of the three
sigmoidal units to exactly 0.0. Since genetic algorithms

do not make systematic, small weight changes, it is very
di�cult to evolve neurons to compute such exact values.
The override unit allows networks to easily stop the arm
when it is su�ciently close to the target.

4.3 The Genetic Algorithm

The Hierarchical SANE (Symbiotic, Adaptive Neuro-
Evolution) system was used to form the hidden layer
connections in the neuro-control networks. SANE1 was
designed as a fast, e�cient genetic algorithm for build-
ing neural networks in domains where it is not possible
to generate training data for normal supervised learning.
Symbiotic evolution has been evaluated in several tasks
including the standard pole-balancing benchmark where
it outperformed existing neuro-evolution and reinforce-
ment learning approaches (Moriarty and Miikkulainen
1996a).

In contrast to standard neuro-evolution algorithms
that evolve a population of neural networks, in SANE
two separate populations are evolved: a population of
neurons and a population of network blueprints. The
neuron population provides e�cient evaluation of the ge-
netic building blocks, while the population of blueprints
learns e�ective combinations of these building blocks.

Each individual in the blueprint population consists
of a set of pointers to individuals in the neuron popula-
tion. During each generation, networks are constructed
by combining the hidden neurons speci�ed in the blue-
prints. Each blueprint receives a �tness according to
how well the corresponding network performs in the task.
Each neuron receives a �tness according to how well the
top �ve networks in which it participates perform in the
task. A very aggressive genetic selection and recombin-
ation strategy is used to quickly build new structures in
both the neuron and blueprint populations (see (Moriarty
and Miikkulainen 1996b) for details).

SANE o�ers two important advantages over other
neuro-evolution approaches. First, it maintains diverse
populations. Because several di�erent types of neurons
are necessary to build an e�ective neural network, there
is inherent evolutionary pressure to form neurons that
perform di�erent functions. Diversity allows recombin-
ation operators (crossover) to continue to generate new
neural structures even in prolonged evolution, which en-
sures that the solution space will be explored e�ciently.
Second, SANE decomposes the search for solutions into
a search for partial solutions. Instead of searching for
complete networks all at once, solutions to smaller prob-
lems (good neurons) are evolved, which can be combined
to form an e�ective full solution (a network).

1For the remainder of the paper, the name SANE will refer to
the hierarchical version described in (Moriarty and Miikkulainen
1996b)



3

1

2

Figure 3: The Simderella simulation of the OSCAR robot.

The numbers indicate the joints which are to be controlled.

5 Evaluation

5.1 Experimental Setup

The Simderella 2.0 package written by van der Smagt
(1994) was used as the robot arm simulator in these ex-
periments. Simderella is a simulation of the OSCAR-6
anthromoporphic arm, and van der Smagt (1995) has re-
ported that controllers that performwell in Simderella ex-
hibit very similar performance when applied to OSCAR.
Figure 3 illustrates the Simderella robot. Our eventual
goal is to demonstrate evolved neuro-controllers in a real
robot arm, however, currently simulationmodels are suf-
�cient to test the viability of our approach.

Obstacles were introduced in the Simderella environ-
ment in the form of \boxes". Figure 4 shows the twelve
di�erent obstacle placements used in the simulations.
During each trial, which consists of a sequence of moves
to reach a target, one of the boxes is occupied by an
obstacle. If the end e�ector moves into an occupied box,
the trial ends, and the last position before the collision is
used as the �nal position for �tness evaluation. This
obstacle scheme is fairly primitive, since obstacles al-
ways have the same size and there is no check if the rest
of the arm (besides the hand) violates an occupied box.
However, the task is still quite di�cult and, to our know-
ledge, no existing supervised learning approach can learn
the intermediate joint rotations without signi�cant a pri-
ori information about the size, shape, and location of the
obstacles.

Each neural network evaluation begins with random,
but legal, joint positions and a random target position.
The target and hand are never started within an obstacle.
The same reach space as van der Smagt (1995) is em-
ployed, where targets are placed within a 180 degree ro-
tation of the �rst joint. A total of 450 target positions
were created and separated into a 400 position training
set and a 50 position test set. During evolution, a tar-
get position is randomly selected from the training set

Figure 4: The 12 obstacle placements in the robot simulator.

Each box is 30� 30� 30 centimeters. During any trial, one

box is �lled with an obstacle.

before each network evaluation. During each trial, a net-
work is allowed to move the arm until one of the following
conditions occur:

1. The network stops the arm.

2. The network places the arm in an illegal position (e.g.
hits the oor).

3. The network hits an obstacle.

4. The number of moves exceeds 40.

The score for each trial is computed as the percentage
of distance that the arm covered from its initial starting
point to the target position. For example, if the arm
started 120 cm from the target and its �nal position
is 20 cm from the target, the network receives a score
of (120 � 20)=120 = 0:83. The percentage of distance
covered, instead of the absolute �nal distance, provides
a fairer comparison between a network that receives a
close target and a network that receives a distant tar-
get. Each network is evaluated over a single randomly
selected target.
A population of 1600 neurons and 200 network blue-

prints are evolved by SANE. The �rst stage of evolu-
tion consists of only primary networks. The population
is evolved for 200 generations, and the best network of
each generation is tested over the 50 target test set. The
overall best network is then �xed as the primary net-
work, and the secondary network evolution begins from
a random population.

5.2 Results

Figure 5 shows the performance of the primary networks
per generation averaged over 10 simulations. The graph
plots the average �nal distance of the best neural net-
work found at or before each generation. On average, a
network capable of moving the arm within an average of
10 cm was found within the �rst 100 generations.



0

10

20

30

40

50

60

70

80

0 50 100 150 200

cm

Generation

Figure 5: Evolution of primary networks. The average dis-

tance from the targets is plotted for the best network found

so far at each generation. The curve is an average over 10

simulations; in each simulation, the distances were averaged

over 50 randomly placed targets.

0

1

2

3

4

5

6

7

0 20 40 60 80 100

cm

Generation

Figure 6: Evolution of secondary networks. The distance per

generation is plotted, averaged over 50 trials and 10 simula-

tions. In each simulation, a di�erent primary network was

used.

Figure 6 shows the performance of the secondary net-
works per generation. Again, the graph presents an av-
erage of 10 simulations. In each simulation, the primary
network was taken from a di�erent primary evolution.
Within 80 generations, the secondary networks were able
to position the arm with an error of only 1 cm, which
is considered acceptable for most industrial applications
(van der Smagt 1995). Thus, in this task, the combin-
ation of the primary and secondary networks can e�ect-
ively control the robot arm to within industry standards.
It is di�cult to measure how e�ciently a network

avoids obstacles as a function of each generation, since
early networks do not hit many obstacles simply because
they do not move the arm very far. Thus, counting the
number of hits is a poor measure of obstacle avoidance.
A better metric is the percentage of trials in which the

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

%
 B

el
ow

 1
0 

cm

Generation

Figure 7: Evolution of obstacle avoidance behavior. The

percentage of trials within 10 cm per generation is plotted for

the primary network evolution.

primary network positions the arm within 10 cm of the
target object. To achieve a high percentage, the network
must contain a strong avoidance strategy coupled with
an e�ective target reaching ability. Figure 7 plots this
percentage for the best primary networks at each gen-
eration. On average, the best primary networks moved
within 10 cm of the target objects 98% of the time. When
collisions did occur, it was often not due to poor control
decisions. With only 6 proximity sensors, blind spots are
inevitable, and occasionally a nearby obstacle can not be
detected. Thus given more sensors, the primary networks
should encounter even fewer obstacles.

In order to discover how often it was necessary to
avoid obstacles, a manually-designed inverse-kinematics
controller2 was tested on the 50 position test set with
di�erent box con�gurations. On average, the �xed con-
troller, which takes the most direct path, hit obstacles in
11% of the trials. Since the best networks found in these
simulations hit obstacles in only 2% of the trials, we can
conclude that signi�cant avoidance strategies have been
evolved.

6 Future Work

The simple task described in this paper is already an im-
portant advancement in robot control, since it demon-
strates that it is possible to learn a general obstacle
avoidance strategy in a neuro-controller. However, the
obstacle task needs to be scaled up before neuro-evolution
can be claimed e�ective in real-world robot arm control.
The approach will be scaled up in two stages: �rst, the
obstacle task in the Simderella simulator will be exten-
ded to less regular obstacles and infrared sensors will be
placed along the robot arm to prevent collisions with the
entire arm. Second, the approach will be tested with a

2The controller is included as part of Simderella simulator



real robot arm. Simulation models are useful for evalu-
ating new control algorithms, but important issues such
as sensor noise and real-time control are often di�cult to
model. Thus, to truly validate our approach experiments
are needed using real hardware.

Experiments will examine the feasibility of evolving
neural network controllers directly with a real arm. Since
domain models are expensive to generate and require
signi�cant a priori knowledge, it is important to study
neuro-evolution as a model-free control system. While
SANE does contain a very fast genetic search engine, the
number of network evaluations currently required may
expend too much time in real hardware. Improvements
to the network architecture and �tness calculation may
signi�cantly reduce the number of evaluations. For ex-
ample, dividing each joint movement between two out-
put units (direction and magnitude) instead of one, res-
ulted in about half as many evaluations to reach the same
level of pro�ciency. In addition, much of our work will
continue to focus on methods for improving the general
e�ciency of a neuro-evolution search.

The neural controller described in this paper is a �xed
adaptive controller (Werbos 1992); once the controller is
evolved it does not change. However, it would be desir-
able to build a controller that can adapt online to take
advantage of domain speci�c information. Nol� and Par-
isi (1995) have developed a method where evolved neural
networks compute training signals for the the controller
after every activation. Such networks could be used as
online learning controllers by evolving the ability to ad-
just connection weights in response to the speci�c envir-
onment. Future work will study if evolved local learning
can create more robust neuro-controllers and help net-
works evolved in simulation adapt to real hardware.

7 Conclusion

In many industrial settings, it is crucial for a robot arm
to detect and avoid obstacles in the its path. Existing
methods for learning robot arm control, however, cannot
learn the intermediate joint rotations necessary to move
around an obstacle. By evolving neuro-controllers with
genetic algorithms, such rotations can be learned since
performance is evaluated over multiple control steps. Ex-
periments in a sophisticated simulation of the OSCAR-6
robot arm showed that neuro-evolution can e�ectively in-
tegrate both target reaching and obstacle avoidance into
a single control policy. Future experiments will examine
the application and scale-up potential of this approach to
real robot arms.

Acknowledgments

The authors would like to thank Patrick van der Smagt
for making his Simderella simulator available. The
Simderella software was developed by Patrick van der

Smagt and is supported by the Dutch Foundation for
Neural Networks. The OSCAR-6 robot is owned by the
Autonomous Systems Group at The University of Ams-
terdam. The picture of the OSCAR-6 robot is reprinted
with permission. This research was supported in part
by the National Science Foundation under grant #IRI-
9504317.

References

Baker, W. L., and Farrell, J. A. (1992). An introduction
to connectionist learning control systems. In Hand-
book of Intelligent Control, 35{63. New York: Van
Nostrand Reinhold.

Cli�, D., Harvey, I., and Husbands, P. (1993). Explor-
ations in evolutionary robotics. Adaptive Behavior,
2:73{110.

Feddema, J. T., and Lee, G. C. S. (1990). Adaptive im-
age feature prediction and control for visual tracking
with a hand-eye coordinated camera. IEEE Trans-
actions on Systems, Man, and Cybernetics, 20(5).

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Reading, MA:
Addison-Wesley.

Holland, J. H. (1975). Adaptation in Natural and Arti-
�cial Systems: An Introductory Analysis with Ap-
plications to Biology, Control and Arti�cial Intel-
ligence. Ann Arbor, MI: University of Michigan
Press.

Kawato, M. (1990). Computational schemes and neural
network models for formation and control of multi-
joint arm trajectory. In Neural Networks for Con-
trol. Cambridge, MA: MIT Press.

Kuperstein, M. (1991). INFANT neural controller for
adaptive sensory-motor coordination. Neural Net-
works, 4(2).

Lumelsky, V. J. (1987). Algorithmic and complexity is-
sues of robot motion in an uncertain environment.
Journal of Complexity, 3:146{182.

Miller, W. T. (1989). Real-time application of neural net-
works for sensor-based control of robots with vision.
IEEE Transactions on Systems, Man, and Cyber-
netics, 19(4):825{831.

Moriarty, D. E., and Miikkulainen, R. (1996a). E�cient
reinforcement learning through symbiotic evolution.
Machine Learning, 22:11{32.

Moriarty, D. E., and Miikkulainen, R. (1996b). Hier-
archical evolution of neural networks. Technical Re-
port AI96-242, Department of Computer Science,
The University of Texas at Austin.

Nol�, S., Floreano, D., Miglino, O., and Mondada, F.
(1994). How to evolve autonomous robots: Di�er-



ent approaches in evolutionary robotics. In Arti�cial
Life IV. Cambridge, MA.

Nol�, S., and Parisi, D. (1995). Learning to adapt to
changing environments in evolving neural networks.
Technical Report 95-15, Department of Neural Sys-
tems and Arti�cial Life, Institute of Psychology,
CNR - Rome.

Papanikolopoulos, N. P., and Khosla, P. K. (1993). Ad-
aptive robotic visual tracking: Theory and experi-
ments. IEEE Transactions on Automatic Control,
38(3):429{444.

Sanderson, A. C., and Weiss, L. E. (1983). Adaptive
visual servo control of robots. In Pugh, A., editor,
Robot Vision, 107{116. New York: Springer-Verlag.

van der Smagt, P. (1994). Simderella: A robot simulator
for neuro-controller design. Neurocomputing, 6(2).

van der Smagt, P. (1995). Visual Robot Arm Guidance
using Neural Networks. PhD thesis, The University
of Amsterdam, Amsterdam, The Netherlands.

Walter, J. A., Martinez, T. M., and Schulten, K. J.
(1991). Industrial robot learns visuo-motor coordin-
ation by means of neural-gas network. In Kohonen,
T., editor, Art��cial Neural Networks, vol. 1. Ams-
terdam.

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning.
Machine Learning, 8(3):279{292.

Weiss, L. E., Sanderson, A. C., and Neumann, C. P.
(1987). Dynamic sensor-based control of robots with
visual feedback. Journal of Robotics and Automa-
tion, RA-3.

Werbos, P. J. (1992). Neurocontrol and supervised learn-
ing: An overview and evaluation. In Handbook of In-
telligent Control, 65{89. New York: Van Nostrand
Reinhold.

Whitley, D., Dominic, S., Das, R., and Anderson, C. W.
(1993). Genetic reinforcement learning for neuro-
control problems. Machine Learning, 13:259{284.

Wijesoma, S. W., Wolfe, D. F. H., and Richards,
R. J. (1993). Eye-to-hand coordination for vision-
guided robot control applications. The International
Journal of Robotics Research, 12(1):65{78.

Yamauchi, B. M., and Beer, R. D. (1993). Sequential
behavior and learning in evolved dynamical neural
networks. Adaptive Behavior, 2:219{246.


