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Abstract
It has been more than 40 years since the first studies of the secondary visual cortex (V2) were pub-

lished. However, no concrete hypothesis on how the receptive field of V2 neurons support general shape
processing has been proposed to date. Using a computational model that follows the principle of self-
organization, two hypotheses are advanced in this paper: (1) A typical V2 orientation-selective receptive
field contains a primary orientation and a secondary orientation component, forming a corner, a junction,
or a cross; (2) V2 columns with the same primary orientation form contiguous domains, divided into
subdomains that prefer different secondary orientations. The first hypothesis is consistent with existing
experimental evidence, and both hypotheses can be tested with current techniques in animals. In this
manner, computational modeling can be used to provide verifiable predictions that eventually allow us to
understand the role of V2 in visual processing.

1 Introduction
Representation of shape in the cortex is generally believed to be hierarchical (Felleman & Van Essen, 1991).
At the bottom lies the primary visual cortex (V1), which is the largest visual area and relatively well under-
stood (Hubel & Wiesel, 1959, 1962). V1 acts primarily as a local feature detector. As information travels up
in the hierarchy, receptive fields get larger and more complicated, and finally, in areas like IT, neurons are
selective to objects.

The major second stage of processing after V1 is the secondary visual cortex (V2), which is only slightly
smaller than V1 and located next to it in the cortex (Weller & Kaas, 1983; Felleman & Van Essen, 1991).
Studies of V2 have a long history (Hubel & Wiesel, 1965), beginning at about the same time as those of V1.
Despite this history, the receptive field properties of V2 neurons are largely unknown (Boynton & Hegdé,
2004).

Previous studies tried to address this question by using a set of artificial stimuli like contours, angles, and
circular patterns (Hegdé & Van Essen, 2000, 2003; Ito & Komatsu, 2004; Mahon & de Valois, 2001). These
studies showed that V2 neurons are selective to some of the patterns over the others in the set. However,
only limited conclusions can be drawn from such studies. The underlying preferred visual patterns of the
V2 neurons can be different from the set of stimuli used and it is difficult to find out if this is the case.
Reverse correlation methods based on single stage linear-nonlinear model of spike generation have been
successful in mapping the receptive fields in V1 (Jones & Palmer, 1987; DeAngelis, Ohzawa, & Freeman,
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1993; Ringach, 2004), but it is difficult to extend this model to multiple stages in order to study higher level
visual areas (Schwartz, Pillow, Rust, & Simoncelli, 2006). It is therefore difficult to determine the receptive
field properties by physiological methods alone.

The approach taken in this paper is to use a computational model with realistic constraints and natural
images as inputs to obtain verifiable predictions on the receptive field properties and organization of form
perception in V2. The main advantage of the computational approach over previous studies is that the
receptive fields can be directly determined from the afferent connections from V1. The model used in
this study is based on the LISSOM architecture (Laterally Interconnected Synergetically Self-Organizing
Map; Miikkulainen, Bednar, Choe, & Sirosh, 2005; Sirosh & Miikkulainen, 1994), which has been used
extensively to understand how the organization of V1 emerges during development through input-driven
self-organization. Extended to include V2, LISSOM developed realistic properties in both the model V1 and
V2, providing a foundation for predicting the receptive fields and organization in V2.

The LISSOM model predicts that a typical V2 receptive field contains a primary orientation and a sec-
ondary orientation component, forming a corner, a junction, or a cross, depending on their relative locations.
Results from two independent physiological studies (Anzai & Van Essen, 2001, 2002; Anzai, Van Essen,
Peng, & Hegdé, 2002; Ito & Komatsu, 2004) are consistent with this prediction. The model also predicts that
cortical columns that prefer the same primary orientation form contiguous domains in V2. Each orientation
domain is divided into subdomains that prefer different secondary orientations. These subdomains may span
all orientations, making each V2 orientation domain similar to the orientation hypercolumn in V1. Both
predictions can be verified in future physiological experiments using existing techniques. This research thus
demonstrates how computational modeling can be used to provide insights that eventually lead to deeper
understanding of visual processing in the brain.

2 Related Work
Previous computational models of V2 usually have hand-designed receptive fields and lateral connections
that are specific to the biological experiments being modeled. For example, to model contour integration
and perceptual grouping, receptive fields of collinear (Ross, Grossberg, & Mingolla, 2000) or curved lines
(wide corners; Neumann & Sepp, 1999) are used. In addition, a Gaussian weight profile can be used for the
V1-V2 projections to model surround suppression (Sullivan & de Sa, 2006). To explain why the response to
the same local edge depends on whether it belongs to the border of foreground or background, (i.e. border
ownership; Zhou, Friedman, & von der Heydt, 2000), a sophisticated lateral connection pattern can be
constructed. Each neuron excites those neurons that encode consistent border segments and inhibits those
that encode inconsistent ones (Zhaoping, 2005).

In some of these models the V2 receptive fields are learned from the inputs. However, the training
patterns are artificially constructed with a particular task in mind, e.g. they consist of corners (Taylor, Hartley,
& Taylor, 2005; Sit & Miikkulainen, 2006), rectangles (Grossberg & Williamson, 2001), letters (Deco &
Rolls, 2004), or single objects (Plebe, 2007).

While these models can explain a specific phenomenon, it is unclear how such specific connectivity can
arise in the cortex through visual experience, and whether it can support shape processing in general. In this
paper, natural images are used to train a joint V1 and V2 model with initially random connection weights.
After self-organization, the receptive fields and lateral connections reflect the statistics of natural images,
suggesting a biologically-plausible hypothesis on how the specific receptive fields and lateral connection
patterns can arise. Furthermore, they are constructed based on correlations in the input, not by demands of
any particular visual task, suggesting that they support shape processing in general.
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3 Computational Model
The computational model is based on the LISSOM architecture (Laterally Interconnected Synergetically
Self-Organizing Map; Miikkulainen et al., 2005; Sirosh & Miikkulainen, 1994), extended to include a neural
sheet for V2. LISSOM has been used extensively to understand how the organization of the primary visual
cortex emerges through self-organization during development. In this section, the model’s architecture,
activation functions of the units, and their learning rules are described.

3.1 Architecture of the Model
In LISSOM, cortical visual areas are two-dimensional sheets of units representing vertical columns of cells
through the six layers of the biological cortex. Each unit receives input from lower level units, as well as
lateral input from the units on the same sheet (Figure 1).

In the extended model, each V2 unit receives afferent input from V1 units, which in turn receive input
from two types of neurons in the LGN: ON-center and OFF-center. The LGN units receive input from a
small area of the retina, represented as an array of photoreceptor units. For simplicity, the ON and OFF
LGN channels are represented as two separate sheets. In addition to the excitatory afferent connections,
each cortical unit has reciprocal excitatory and inhibitory lateral connections with other units.

The long-range lateral connections are inhibitory in LISSOM, for two reasons. First, they model biologi-
cal lateral interactions with high-contrast inputs, i.e. inputs that have the strongest effect on self-organization.
Using high-contrast gratings of different sizes, Sceniak, Hawken, and Shapley (2001) found that the sur-
round influences tend to be excitatory locally but inhibitory at longer ranges in macaque V1. Inhibition from
surrounding line segments that have the same orientation as the center has also been observed in monkey
(Knierim & van Essen, 1992). Similar effects are seen in vitro in ferret (Weliky, Kandler, Fitzpatrick, &
Katz, 1995) and in cat (Hirsch & Gilbert, 1991) as well. Therefore, although most of the lateral connections
in the cortex are excitatory, inhibition seems to dominate under high-contrast input. Such an effect is likely
to be due to inhibitory interneurons that have high thresholds (Weliky et al., 1995; Angelucci et al., 2002;
Miikkulainen et al., 2005). This circuitry can be approximated by inhibitory long-range connections, as is
done in LISSOM. Second, long-range inhibition provides a local computational mechanism for competition,
which is essential for proper self-organization. The long-range inhibitory connections are therefore both
physiologically and computationally essential in order to model self-organization effectively.

3.2 Photoreceptor and LGN Activation
A single model photoreceptor is represented by a pixel in the input image. Since this study focuses on shape
processing, the current model is achromatic. The activation of the model photoreceptors therefore consists
of pixel values of gray-scale input images.

The connections from the model retina to the LGN units are fixed and chosen to approximate the re-
ceptive fields that have been measured in adult LGN cells, using a standard difference-of-Gaussians model
(Cai, DeAngelis, & Freeman, 1997; Rodieck, 1965; Tavazoie & Reid, 2000). First, the center of each LGN
receptive field is mapped to the location in the retina corresponding to the location of the LGN unit. This
mapping ensures that the LGN will have the same two-dimensional topographic organization as the retina.
Using that location as the center, the weights are then calculated from the difference of two normalized
Gaussians. More precisely, the weight Lxy,ab from photoreceptor (x,y) in the receptive field of an ON-center
unit (a,b) with center (xc,yc) is given by
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Figure 1: Architecture of the extended LISSOM model. The model is a hierarchy of sheets of neural units that
represent the retina, ON and OFF channels in LGN, V1, and V2. Sample connections are indicated for one unit in the
LGN channels and the model cortical areas. The LGN afferents form a local anatomical receptive field on the retina.
Neighboring LGN units have different but overlapping receptive fields. Similarly, V1 units have afferent projections
from the LGN sheets, and V2 units receive local input from units in V1. The afferent projections increase in size (not
drawn to scale) at each level. V1 and V2 units also have short-range lateral excitatory (dotted circle) and long-range
lateral inhibitory (dashed circle) connections. The receptive fields and long-range lateral connections in V2 are about
twice as large as those in V1, similar to those measured in monkey cortex (Amir et al., 1993).

Lxy,ab =
exp
(
− (x−xc)2+(y−yc)2

σ2
c

)
∑uv exp

(
− (u−xc)2+(v−yc)2

σ2
c

) − exp
(
− (x−xc)2+(y−yc)2

σ2
s

)
∑uv exp

(
− (u−xc)2+(v−yc)2

σ2
s

) ,

where σc determines the width of the central Gaussian and σs the width of the surround Gaussian. The
weights for an OFF-center unit are the negative of the ON-center weights.

The units in the ON and OFF channels of the LGN compute their responses as a squashed weighted
sum of activity in their receptive fields. More precisely, the response ξab of ON or OFF-center unit (a,b) is
calculated as

ξab = σ

(
∑
xy

χxyLxy,ab

)
,

where χxy is the activation of model photoreceptor (x,y) in the receptive field of (a,b), Lxy,ab is the afferent
weight from (x,y) to (a,b), and σ is a piecewise linear sigmoid activation function.

3.3 Cortical Activation
The cortical activation mechanism is similar to that of the LGN, but extended to include lateral interactions.
The total activation is computed by combining the afferent and lateral contributions. First, the afferent
stimulation s1i j of V1 unit (i, j) is calculated as a weighted sum of activations in its receptive fields on the
LGN:
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s1i j = γA

(
∑

ab∈ON
ξabA1ab,i j + ∑

ab∈OFF
ξabA1ab,i j

)
,

where ξab is the activation of neuron (a,b) in the receptive field of V1 unit (i, j) in the ON or OFF channels,
A1ab,i j is the corresponding afferent weight, and γA is a constant scaling factor. Variables that are specific to
V1 are indicated with the subscript 1, and those specific to V2 with subscript 2. The initial response or firing
rate of unit (i, j) is

η1i j(0) = σ(s1i j).

After the initial activation, V1 activity settles through short-range excitatory and long-range inhibitory
lateral interactions:

η1i j(t) = σ

(
s1i j + γE ∑

kl
η1kl(t−1)E1kl,i j − γI ∑

kl
η1kl(t−1)I1kl,i j

)
,

where η1kl(t−1) is the activity of another V1 unit (k, l) during the previous time step, E1kl,i j is the weight
of the excitatory lateral connection from that unit to unit (i, j), and I1kl,i j is the inhibitory connection weight.
All connection weights have positive values. The scaling factors γE and γI represent the relative strengths of
excitatory and inhibitory lateral interactions of the model.

For simplicity, V2 is activated after the response in V1 has settled, at time step t ′. Similarly to V1, the
activation η2mn of V2 unit (m,n) is defined as a sum of afferent and lateral contributions:

η2mn(t) = σ

(
γA ∑

kl
η1kl(t ′)A2kl,mn + γE ∑

pq
η2pq(t−1)E2pq,mn− γI ∑

pq
η2pq(t−1)I2pq,mn

)
,

where η1kl(t ′) is the settled response of the V1 unit (k, l), A2kl,mn is the corresponding afferent weight, and
E2pq,mn and I2pq,mn the excitatory and inhibitory lateral connection weights from V2 unit (p,q) to unit (m,n).

3.4 Learning
After the activity has settled, the connection weights of each cortical unit are modified. All the afferent and
lateral weights adapt according to the same biologically motivated mechanism: the Hebb rule (Hebb, 1949)
with divisive postsynaptic normalization:

w′
xy,i j =

wxy,i j +αXxyηki j

∑uv(wuv,i j +αXuvηki j)
,

where wxy,i j is the current afferent or lateral connection weight (either Ak, Ek, or Ik, k = 1,2) from (x,y) to
(i, j), w′

xy,i j is the new weight, α is the learning rate for each type of connection (αA for afferent weights, αE
for excitatory, and αI for inhibitory), Xxy is the presynaptic activity after settling (ξ for afferent in V1, η1 for
afferent in V2, η1 for lateral in V1, and η2 for lateral in V2), and ηki j stands for the activity of unit (i, j) of
visual area Vk after settling. Afferent inputs (in V1, both ON and OFF channels together), lateral excitatory
inputs, and lateral inhibitory inputs of each unit are normalized separately.
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Normalization prevents the weight values from increasing without bounds; this process corresponds to
redistributing the weights so that the sum of each weight type for each neuron remains constant. Such nor-
malization can be seen as an abstraction of neuronal regulatory processes (Bourgeois, Jastreboff, & Rakic,
1989; Hayes & Meyer, 1988a, 1988b; Murray, Sharma, & Edwards, 1982; Pallas & Finlay, 1991; Purves,
1988; Purves & Lichtman, 1985; Turrigiano, 1999). Normalization, however, does not prevent single con-
nections from dominating and effectively becoming the sole input to a unit. On the other hand, a cortical
neuron receives input from hundreds to thousands of other neurons. It is also very unlikely that the inputs
from a few neurons can completely determine the activity of a neuron. To enforce such a constraint in the
model, a parameter wlim is defined to limit the maximum attainable weight of individual cortical connec-
tions. When a weight exceeds wlim after normalization, it is set to wlim and the residue is distributed evenly
to all the other connections so that the total weight remains constant. In other words, 1/wlim is the mini-
mum number of active connections within a receptive field; this parameter prevents the receptive fields from
converging to an unrealistically low number of connections.

4 Simulations
The model was instantiated with parameter values constrained by biological data to simulate the development
of monkey V1 and V2. At each simulation iteration, natural images were presented on the model retina,
which resulted in the activation of the LGN, V1, and V2. The connection weights of the cortical units were
then adjusted according to the Hebb rule as described in the previous section. As a result, the cortical units
learned correlations in their inputs that were based on the statistics of natural images.

The sizes of the model areas and the extent of their connections are based on those in macaque monkey
at about 5◦ eccentricity. The model retina has 48×48 pixels, representing a visual area of about 4◦. In the
LGN, the widths of the center (σc) and surround (σs) Gaussians are 0.5 and 2.0, respectively. There are
192× 192 units in both the model V1 and V2. The receptive field radius of V1 is 5.5 units on the LGN,
corresponding to about 1◦ visual field. At 5◦ eccentricity, the lateral connections in V1 are about twice as
wide as the receptive fields (Angelucci et al., 2002), i.e. have a 44-unit radius. In the cortex, their average
radius is about 3mm (Angelucci et al., 2002), therefore 15 units in the model V1 and V2 correspond to about
1mm in the biological cortex. The two model cortical areas therefore correspond to about 13×13mm.

The receptive fields of V2 are about twice as large as those in V1 (Gattass, Gross, & Sandell, 1981;
Burkhalter & Van Essen, 1986), so the receptive field radius of a V2 unit is 44. The lateral connections
in V2 are about twice as long as in V1 (Amir et al., 1993), hence the radius of the long-range inhibitory
connections is 88 units. In both V1 and V2, the short-range excitatory connections have a radius of 1.5.

All weights are initialized randomly according to uniform distribution. The scaling factors for afferent
and excitatory lateral connections, γA and γE , are both 1, and γI = 2.5 for inhibitory lateral connections.
Small changes to these values yield roughly equivalent results. The number of time steps, t ′, that V1 response
stabilizes is found to be less than 9. The individual cortical afferent and inhibitory connection weights are
limited with wlim = 0.004; any value between 0.01 and 0.001 produces similar results.

The inputs consist of 13 images arbitrarily selected from a collection of natural scenes (Hateren &
Schaaf, 1998; Figure 2). Each of these images contains 768× 576 pixels. At each training iteration, a
48×48 region is selected randomly from one of the images and presented to the retina. The simulation was
run for 50,000 iterations, at which point self-organization had reached a dynamic equilibrium.
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Figure 2: The set of images used in the simulation. These images were randomly chosen from the still image collec-
tion of Hateren and Schaaf (1998). Each image has 768×576 pixels; regions of 48×48 pixels were randomly selected
from them to train the model. Such images represent the variety of features normally found in natural environment.

5 Results
Given the parameterization of the model, at the end of the simulation, the model is intended to represent
the cortical organization of an adult monkey. In this section, the orientation column structure, lateral con-
nectivity, and receptive field properties of the model V1 and V2 are analyzed and compared with those in
monkeys. Predictions are developed for future biological experiments in the next section.

5.1 Results in V1
In order for the V2 results to be meaningful, the model V1 must present biologically realistic input to it. The
model V1 orientation map, lateral connections, and receptive field properties are analyzed in this section and
verified with data from the macaque.

Figure 3 compares orientation maps from the model and macaque monkey, drawn to scale. The match is
very good: The sizes, shapes, and spacing of the orientation domains are similar, and both maps contain the
typical features found in animal maps, such as pinwheels and linear zones (Blasdel, 1992).

Figure 4 shows the afferent connections from the LGN, and the short-range excitatory and the long-range
inhibitory connections of four sample V1 units. The long-range lateral connections form patchy clusters and
mostly link units of similar orientation preference. More precisely, for the central 400 units in the model V1,
each separated by four units from its neighbors, 65%± 5% of the lateral connections link similar (±45◦)
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(a) (b)

Figure 3: Orientation maps in the model V1 and in the macaque monkey (color figure). (a) The orientation map of
the model V1 after self-organization. This map corresponds to a 13×13mm area of the cortex. Orientations are color-
coded, as shown on the left; the same coding will be used throughout the paper. Neighboring units often prefer similar
orientations, forming clusters on the map. The white circles and the rectangle identify an example pinwheel and a linear
zone, respectively. The small black squares located between the pinwheel and the linear zone indicate the locations of
the V1 units shown in Figure 4. (b) The orientation map of a macaque monkey over a 7×5mm region (Blasdel, 1992).
Its scale is the same as in (a) and a sample pinwheel and a linear zone are indicated. The color coding is different and is
shown on the right. The two maps have similar structures, suggesting the model V1 can be used as a realistic input for
self-organizing the model V2.

(a) (b)

(c) (d)

Figure 4: Connections of four sample V1 units (color figure). In each panel (from left to right), the afferent, lateral
excitatory, and lateral inhibitory connections of one of the units indicated by a black square in Figure 3a are shown. Blue
and orange in the afferent connections correspond to ON and OFF LGN cells, respectively. For lateral connections, the
same color code is used as in the orientation map (Figure 3a) to indicate the orientation preference of the source unit.
Connection strength is coded by intensity. (a) A V1 unit that prefers horizontal edges. (b) A V1 unit adjacent to (a),
which also prefers horizontal edges at the same visual field, but with a different phase. (c,d) Another pair of adjacent
V1 units: These units prefer a 135◦ orientation at different phases. The long-range lateral connections in these units are
patchy, linking units of similar orientation preference that are aligned to the unit’s preferred orientation. These results
are consistent with biological data (Malach et al., 1993; DeAngelis et al., 1999).
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(a) (b)

Figure 5: The orientation map and secondary orientation preferences in the model V2 (color figure). (a) The
orientation map of V2. In contrast to the smoothly changing orientation preferences in V1, the orientation preference
often changes abruptly and discontinuously in V2. The orientation domains are also larger than those in V1. These two
characteristics are consistent with measurements in the macaque (Hubel & Livingstone, 1987; Malach et al., 1994; Lu
& Roe, 2007). (b) The secondary orientation preference of each V2 unit. Units that have the same preference form
small clusters. Within a single orientation domain, there are usually several such clusters. The LISSOM model therefore
predicts that each orientation domain is a hypercolumn that contains different secondary orientations.

orientation domains. In macaque V1, lateral connections are also patchy (Livingstone & Hubel, 1984), and
70%± 10% of them link cells located in similar (±45◦) orientation domains (Malach et al., 1993). The
model V1 therefore has realistic lateral connection patterns.

Most of the V1 units are orientation-selective; those that are not (about 1%) are located primarily near
pinwheels and fractures. Adjacent V1 units that prefer similar orientations are often selective for different
phases (e.g. Figures 4a and 4b). Similarly, in the macaque, adjacent V1 cells of similar orientation preference
are found to be selective for different phases in the same visual space (DeAngelis et al., 1999; D. A. Pollen
& Ronner, 1981; Liu, Gaska, Jacobson, & Pollen, 1992). The model V1 therefore has realistic receptive
field organization.

Such a good agreement between the model and biological data suggests that the model V1 can provide
realistic input to the model V2 area.

5.2 Results in V2
In this section, the orientation map, the lateral connectivity, and the response properties of the model V2 are
analyzed and compared with biological data.

The orientation preference map of the model V2 plots, for each unit, the orientation of the full-field
sinusoidal grating that elicits the largest response from that unit (Figure 5a). Similar to the model V1, most
V2 units are orientation-selective and neighboring units often have similar receptive fields. The orientation
domains, however, are larger than those in V1, with abrupt changes of the preferred orientation. These
results agree with the findings so far (Hubel & Livingstone, 1987; Malach et al., 1994; Lu & Roe, 2007).

The long-range lateral connections of V2 units are patchy, with patches slightly bigger and their sepa-
ration wider than in V1 (Figure 6). These connections link units with similar orientation preference more
frequently than those with very different orientations. For the 400 units at the center, 58% of these connec-
tions target units of similar (±30◦) primary orientation preference. In macaque V2, the lateral connections
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(a)

(b)

Figure 6: Connections and preferred patterns of V2 units in the same orientation domain (color figure). Each
panel shows (from left to right) the afferent connections from V1, the inhibitory lateral connections from V2, and the
preferred pattern on the retina for one V2 unit. The preferred pattern is computed by the weighted sum of the stimuli
that maximally excite the V1 units with non-zero weights (as shown in the left panel). These stimuli are determined
separately for each V1 unit by fitting a line segment to the unit’s receptive field. For example, each of the V2 units in (a)
receive strong afferent connections from a V1 unit slightly to the right and below the center of V1. The receptive field
of that unit is displayed in the left panel of Figure 4d, showing that its preferred pattern is a line segment of about 135◦.
As a result, all the V2 units shown in (a) belong to the same orientation domain that prefers about 135◦. Arrows indicate
where each of these units are in V2. At different locations within the orientation domain, in addition to the primary
orientation, a unit can also have a different secondary orientation within its receptive field. The top left, bottom left,
and bottom right units have a near vertical, 45◦, and horizontal secondary orientation preferences at different locations,
forming a corner, a junction, and a cross, respectively. There are also some less common cases: The middle left unit has
an extra third orientation preference and the top right unit does not have a secondary orientation preference at all. (b)
V2 units within a different orientation domain, showing a similar structure of secondary orientation preferences. The
afferent and lateral connectivity patterns match those found in monkeys (Malach et al., 1994; Anzai & Van Essen, 2001,
2002; Anzai et al., 2002). The preferred patterns (corner, junction, and cross) and the existence of substructures within
V2 orientation domain are predictions of the LISSOM model.
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are patchy as well. These patches are about as large in V1 and in V2, while their separation is wider in V2
(Malach et al., 1994). Lateral connections in macaque V2 also tend to link patches with similar orientation
preference. More precisely, 50.3% of the lateral connections studied by Malach et al. (1994) link domains
of similar (±30◦) orientations. The results of the model V2 are therefore consistent with these data.

As in V1, such lateral connectivity may help in the grouping of contours. The larger receptive field
and longer lateral connections in V2 may result in groupings of bigger components, rather than short line
segments as in V1, to form simple shapes or borders between objects (Zhou et al., 2000).

To compare the response properties of the model with physiological studies of V2, the set of 128 gratings
and contours used by Hegdé and Van Essen (2000, 2003) were presented to the receptive fields of the 400
units located at the center of V2. Selectivity index, defined as 1− (Ravg/Rmax), where Ravg is the average
response to all the stimuli and Rmax is the response to the most effective stimulus, of these V2 units had an
average of 0.8, which is similar to the value of 0.69 found by Hegdé and Van Essen (2003). A major finding
of Hegdé and Van Essen (2003) was that 84% of the V2 cells have a higher selectivity for contours than
gratings, although the average response is significantly larger for contours than gratings in only 24% of the
cells. These results are also comparable in our model: 70% of the V2 units are more selective for contours,
while 39% of the units have a larger average response to contours than gratings.

In a related study based on the same set of stimuli (Hegdé & Van Essen, 2000), 39% of the V2 cells
responded better to sinusoidal gratings than to hyperbolic, concentric, and radial gratings. Among the differ-
ent contours, bar and acute angle (≈ 45◦) were the best stimuli for 16% and 17% of the cells, respectively.
The model V2 has similar preferences: 52% of the units prefer sinusoidal gratings to other types of gratings,
while 23% prefer the bar, and 29% prefer the acute angle. In a similar study, Ito and Komatsu (2004) mea-
sured the response of V2 cells to corners of different angles and orientations. The proportion of the cells
that preferred sharp angle (30◦), wide angle (60◦−150◦), and straight bar were 43.1%, 40.5%, and 16.3%,
respectively. The model has a similar distribution: 34%, 47%, and 19%.

The properties of the model V1 and V2 after self-organization are therefore consistent with biological
data, suggesting the model is a valid representation of these two cortical areas. The model can then be
analyzed in more detail to gain insight into properties that have not yet been studied experimentally, as will
be done next.

6 Predictions of the Model
In this section, predictions of the model on the preferred visual patterns and organization within the orienta-
tion domains of V2 are discussed.

6.1 Preferred Visual Patterns of V2
Each model V2 unit receives strong input from a group of V1 units that have the same orientation preference
as that V2 unit (Figure 6). In addition, many V2 units also receive an extra but weaker secondary orientation
input from V1 at a subregion within the receptive field, which may overlap the primary orientation in visual
space. A typical model V2 receptive field therefore contains two orientation components with different
strengths.

As shown in Figure 6, it is possible to predict the preferred visual pattern of a V2 unit based on the
patterns that maximally excite the afferent V1 units and the associated connection weights. The preferred
patterns for 100 sample V2 units were obtained this way and shown in Figure 7. To illustrate the variety
of preferred stimuli, each unit in the figure is located 10 units apart (which corresponds to a separation of
about 0.7mm in the cortex) in the central area of the V2 network. The patterns have different orientations
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Figure 7: The preferred stimuli of different V2 units. The preferred patterns usually combine two different orien-
tations, resulting in a corner, a junction, or a cross. There are also long lines formed by collinear edges of the same
orientation, although they are less common. The patterns constitute the model’s prediction of the preferred stimuli for
orientation-selective V2 neurons.

and sizes, but in general the primary and secondary orientations together represent corner, junction, or cross
in the visual field, depending on their relative locations.

This prediction is supported by the results of two independent studies in monkeys. First, discrete subre-
gions within V2 receptive fields have been shown to prefer different orientations (Anzai & Van Essen, 2001,
2002; Anzai et al., 2002). This result suggests that the V2 neurons studied preferred more complicated
patterns than straight lines: The model predicts that a combination of two different orientations constitutes
such a preferred pattern.

Second, as described in the previous section, V2 neurons in macaque responded selectively to corners of
different orientations and angles (Ito & Komatsu, 2004). This result is consistent with the preferred patterns
of the model V2. Most of the corner-selective neurons in the empirical study also responded to a straight
line with at least half of the response to the preferred corner. This result also agrees with the model, where
the proportion of connection weights that represent the primary orientation is 0.6±0.07.

12



6.2 Organization Within V2 Orientation Domain
An important observation on the model V2 is that within each orientation domain, there are units that have
different secondary preferred orientations (Figure 6). These secondary orientations are shown systematically
in Figure 5b. Throughout the map, units with the same secondary orientation preference form small clusters,
or subdomains. Within a single orientation domain, there are usually several such clusters, suggesting that a
substructure exists within the orientation domains.

Due to constraints on computation time and memory, the simulation had a limited resolution and it was
not possible to study the substructure of the orientation domains further. However, based on the properties
of the self-organizing model, it is likely that a larger simulation would result in many more subdomains than
is visible in the current model. Further, they would be likely to be organized continuously into a secondary
orientation map for each orientation domain. These predictions have not yet been studied in biology, but it
can be verified with existing physiological techniques, e.g. by optical imaging.

7 Discussion
Using biologically grounded sizes for the receptive fields and lateral connections in the model, realistic
orientation map and connectivity emerges in the model V1 through self-organization. Previous LISSOM-
based models did not have such a direct correspondence of the sizes to their biological counterparts, making
comparison and verification with experimental data difficult.

The model was extended to include V2, again imposing constraints from biological data. With the same
principle of self-organization, an orientation map that matches physiological results developed: Orientation
domains are larger in V2 and the changes of the preferred orientation are more abrupt (Hubel & Livingstone,
1987). The lateral connection patterns are patchy with individual patch size similar to V1, while the separa-
tion between the patches is larger in V2, matching biological data (Malach et al., 1994). The model V2 also
has similar response statistics to the experimental data when different kinds of stimuli are presented (Hegdé
& Van Essen, 2000, 2003; Ito & Komatsu, 2004). These results suggest that realistic connections in V2 can
develop based on the same principles of self-organization as V1, providing a foundation for predicting other
unknown but important properties of V2.

The main contribution of this paper is to provide two such verifiable predictions. First, most orientation-
selective V2 receptive fields actually consist of two different orientations, thus forming selectivity of corners,
junctions, or crosses. This prediction provides an explanation for the observations that some V2 receptive
fields tune to different orientations (Anzai & Van Essen, 2001, 2002; Anzai et al., 2002), and that some V2
neurons are selective to both oriented lines and angles (Ito & Komatsu, 2004).

Second, the model predicts that each V2 orientation domain consists of subdomains of many different
orientations. No direct evidence exists at this point for or against this idea: It is a prediction that arises from
the self-organizing nature of the model. It can, however, be verified using current physiological techniques,
e.g. optical imaging. The existence of different subdomains may also explain why the orientation domains
are larger than those in V1, which is an open question at this point.

The prediction on the organization of orientation domains in V2 can also explain conflicting observations
in the studies of feedback connections in V1 using tracers: In some studies, feedback from V2 was found to
target V1 neurons of similar orientations (Shmuel et al., 2005; Angelucci, Schiessl, Nowak, & McLoughlin,
2003), while in another study no such preference was found (Stettler, Das, Bennett, & Gilbert, 2002). Be-
cause reciprocal connections are very common in the cortex, if the injection site of the tracer covers several
subdomains, the tracer will show up in many domains of different orientations in V1. On the other hand,
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if the injection site is located within a single subdomain, then a strong preference to the same orientation
should be seen in V1.

Simple cells in V1 are crucial for shape processing, especially when the precise positions of the edges
are important. The model V1 and the results presented in this paper are therefore based on simple cells
only. However, V1 complex cells also project to V2 neurons. To determine how complex cells would affect
the results, the simulation was repeated with simulated complex cells. A model V1 that contained only
simple cells was first trained as in the original experiment to obtain the organization of orientation domains
in V1. The receptive field of each unit was then replicated three times, with a 90◦,180◦, and 270◦ phase
shift orthogonal to the preferred orientation of the unit. Each unit therefore had four receptive fields that
preferred the same orientation, but at different phases. Complex cell response of a unit was then modeled
using the energy model (Adelson & Bergen, 1985; D. Pollen & Ronner, 1983) by summing the square of
the responses from each of the four receptive fields. The model V2 was trained using the complex cell
response of V1. Interestingly, the results of V2 did not change: The preferred visual patterns still consisted
of two different orientations, and there were different secondary orientation subdomains within orientation
domains. The interpretation of the preferred patterns in V2 with complex cells as inputs is a little different
from the simple-cell simulation, however, because the complex cell response is phase-invariant: +, >, and
L evoke similar responses in a V2 unit that prefers vertical and horizontal orientations. Nonetheless, this
result shows that the predictions about V2 are robust and do not depend on the type of V1 cells that project
to it.

One potential confound of the prediction about V2 receptive fields is that since V2 is smaller than V1,
there may not be enough neurons in V2 to encode all the combinations of two different orientations. How-
ever, it may not be necessary to represent every combination of two orientations equally in the cortex.
Combinations that occur rarely or are less useful for shape processing may be left out or encoded by fewer
neurons. In fact, the results by Hegdé and Van Essen (2000, 2003) and Ito and Komatsu (2004) suggest
that there are more V2 neurons that prefer small angles. Interestingly, as shown in the previous section, the
model V2 also has the same preference, suggesting such biased representation originates from the statistics
of natural images. Similarly, the orientations of the angles need not be represented equally, thus further re-
ducing the number of neurons required. Note that even when combinations are absent or poorly represented
in V2, they may still be accurately processed in higher visual areas. Many of these areas also have inputs
from V1 that represents such orientations. Such filling-in may be one of the reasons why V1 projects to
many high level areas directly (Felleman & Van Essen, 1991): commonly seen patterns are represented and
processed more efficiently, while information of novel and rare patterns is still available to higher level areas
that can process these patterns.

The model presented in this paper is simplified in the sense that it does not include feedback connections;
such connections may also play a role in how receptive fields emerge during self-organization. In an extended
version of LISSOM with feedback and smaller model V1 and V2 (Sit & Miikkulainen, 2006), V1 units
formed receptive fields and an orientation map that were similar to those described in this paper. This
result suggests that at least in lower visual areas, receptive fields can be driven mainly by a bottom-up
process and may not be affected significantly by feedback connections. It is likely, however, that in higher
areas the organization is more affected by what matters to the animal, and less by what exists in the visual
environment. Such a change might be seen at the level of object representations although it is difficult to
show at this point. However, combinations of self-organization and reinforcement learning have already
been shown to be useful in robotic vision tasks (Chaput, 2004; Provost, Kuipers, & Miikkulainen, 2006).
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8 Future Work
Because the receptive fields in the model are learned from the vast variety of structures contained in the
natural input images, it is likely that they are general enough to be useful for shape processing. On the
other hand, a shape is composed of several elements, and to perceive it as a whole, these elements have
to be put together in some later stage in the brain. In particular, junctions and corners formed by two
different orientation are crucial features for shape recognition (Biederman, 1987). It will therefore be useful
to have neurons selective to them so that higher level areas can build more complicated receptive fields using
these features as components. The prediction on the preferred patterns of V2 in this paper implies that such
selectivity takes place in V2; how these patterns support shape processing in later stages of visual processing
is an interesting direction for future work.

Since the focus of this paper is on receptive field properties for shape processing, other aspects like
direction selectivity, ocular dominance, and color vision were not included in the model. The basic LISSOM
model has recently been extended to show that a joint map of orientation, direction, and eye preference can
be developed by self-organization in V1 (Bednar & Miikkulainen, 2006). In another extension, red and green
photoreceptors have been included, and the model V1 self-organized to form realistic color and orientation
maps (Bednar, De Paula, & Miikkulainen, 2005). By combining these two extensions with the current model,
it may be possible to answer some interesting questions about V2. In particular, the thick, thin, and pale CO
stripes, believed to process motion, color, and form, respectively, have an orderly organization in which the
alternating thick and thin stripes are separated by pale stripes (Livingstone & Hubel, 1988; but see Sincich
& Horton, 2005). How does such an organization develop in V2? Moreover, lateral connections in V2 are
known to cross the stripes freely, thus linking neurons in different stripes (Levitt, Yoshioka, & Lund, 1994).
Is there a general pattern of these connections and what is it? Most importantly, is there a reason for such a
stripe organization and lateral connectivity in V2 for visual processing? Future studies using computational
models like LISSOM can lead to insights that eventually allow answering these questions.

9 Conclusions
The receptive field properties for form perception in V2 are largely unknown, despite its size and proximity
to V1 in the visual hierarchy. In this paper two predictions were developed, based on a computational
model with realistic constraints: (1) Orientation-selective V2 cells prefer patterns that are formed by two
edges of different orientations, such as a corner, junction, or cross; (2) Within each orientation domain in
V2, there are subdomains that prefer different orientations. The first prediction is consistent with existing
physiological results, while the second one novel; both predictions can be verified in animal studies with
current techniques. These results demonstrate how computational models can be used to provide guidelines
to experiments that may lead to a better understanding of the visual processing circuitry in the brain.
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