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Abstract

Optical imaging with voltage-sensitive dyes (VSD imaging) can record neural activity over an area of several square centimeters with high
spatiotemporal resolution. The relative contributions of subthreshold and suprathreshold activity to the VSD signal are, however, poorly
understood, making it difficult to interpret the imaging result. This paper shows how the activity in a computational model of V1 can be
related to the VSD signal. The orientation tuning curve and the response time course in the model match those observed in VSD imaging,
suggesting that the model represents VSD signal accurately and can be used to link neural activity to it.
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1 Introduction

Optical imaging measures neural activity through the re-
flectance of cortical surface. Its main advantage is that it pro-
vides high spatial resolution over an area of several square
centimeters. Intrinsic optical imaging measures the change
of reflectance due to metabolic and hemodynamic responses
to the underlying electrical activity; it has been used to e.g.
identify the layout of the orientation map in V1 [1]. How-
ever, such intrinsic signals have limited temporal resolu-
tion. Optical imaging with voltage-sensitive dyes (VSD) is
a new technique that solves this problem, thus providing
high resolution in both time and space [2]. Voltage-sensitive
dyes measure electrical signals directly and the dye signal
therefore has temporal resolution in the millisecond range.
With careful monitoring and maintenance procedures, opti-
cal recording from the cortex of alert cats or monkeys can
be performed for many months [2]. It can therefore be used
to study brain activity even in complex behavioral tasks.

When voltage-sensitive dye solution is applied topically to
the brain, dye molecules penetrate the tissue and bind to
cellular membranes. These molecules transduce changes in
membrane voltage into changes in fluorescence. Early in
vitro studies showed that the dye signal is proportional to
membrane voltage [3, 4]. However, it is also proportional to
the surface area of the stained elements. Because the surface
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area of dendrites is much larger than that of cell bodies, dye
signal is likely to emphasize subthreshold synaptic activity
in dendritic arborizations. The relative contributions of the
subthreshold population activity and suprathreshold spiking
activity to the dye signal are unknown, making it difficult to
interpret the signal.

This paper shows how the activity in a computational model
of V1 can be related to the VSD signal. In particular, the
orientation tuning curve and the response time course in the
model match those measured in VSD imaging, suggesting
that the model represents VSD signal accurately and can be
used to link neural activity to it.

2 Computational Model

The computational model is based on the LISSOM model
(Laterally Interconnected Synergetically Self-Organizing
Map; [5, 6]), extended to include propagation delays in the
cortical connections and to output VSD signal.

LISSOM has been used extensively to understand how the
organization of the visual cortex emerges during develop-
ment through self-organization. In this model, V1 is a 2-
dimensional sheet of units representing vertical columns of
cells through the six layers of the biological cortex. Each
unit receives inputs from lower level units, as well as lateral
inputs from the units on the same sheet (Figure 1).
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Fig. 1. Architecture of the simplified LISSOM model. The
model is a hierarchy of sheets of neural units that represent the
retina and V1. Sample connections are indicated for a unit in V1.
The feedforward connections to a V1 unit form a local receptive
field on the retina. V1 units also have short-range lateral excita-
tory (small dotted circle) and long-range lateral inhibitory (large
dashed circle) connections.

For each input, the initial response or firing rate ηa(0) for
the V1 unit a is

ηa(0) = σ

(∑
r

χrAr,a

)
,

where σ is a piecewise linear sigmoid activation function
for the V1 map, χr is the activation of the retinal unit r, and
Ar,a is the afferent weight value that connects unit r to unit
a.

After the initial activation, V1 activity settles through short-
range excitatory and long-range inhibitory lateral interac-
tions:

ηa(t) = σ

(∑
r

χrAr,a +
∑

ρ

γρ

∑
â

ηâ(t− d(a, â))Lρâ,a

)
,

where the first term is the weighted sum of the activations
from the retina and the second term is the sum of lateral
signals arriving at unit a at time t. The label ρ in the second
term identifies the type of lateral connection weight L (E for
excitatory and I for inhibitory), and γρ is a constant scaling
factor for each ρ (negative for inhibitory connections). The
index â spans the whole V1 map. The delay function d(a, â)
models the propagation delay between V1 units a and â.

In the basic LISSOM model, d(a, â) = 1, which means that
all lateral signals from the previous time step reach unit a at
the same time. Although this is a valid abstraction at a larger
time scale, propagation delay actually affects how these sig-
nals modulate the response at the destination. For example,
modulations due to neighboring neurons are effective in the
early response and will continue to influence it, while neu-
rons that are further away have a later influence on the al-
ready modulated response. As a result, the approximation
that all lateral signals arrive at once is not accurate if high
temporal resolution is needed, as it is when modeling VSD
data.

Since the VSD signal is likely to emphasize subthreshold
synaptic activity, in order to account for VSD imaging data,
such activity needs to be measured in LISSOM as well. In-
puts smaller than the lower threshold of the sigmoid function
can be treated naturally as subthreshold activity; hence, the
weighted sum of presynaptic activity can be used to model
the VSD signal Va(t) of the activation ηa(t):

Va(t) =
∑

r

χrAr,a +
∑

ρ

γρ

∑
â

ηâ(t− d(a, â))Lρâ,a.

After the activity has settled, the connection weights of
each cortical unit are modified. Both the afferent and lateral
weights adapt according to the same biologically motivated
mechanism: the Hebb rule [7] with divisive postsynaptic
normalization:

w′
r,a =

wr,a + αXrηa∑
u(wu,a + αXuηa)

,

where wr,a is the current afferent or lateral connection
weight (A, LE , or LI ) from r to a, w′

r,a is the new weight,
α is the learning rate for each type of connection (αA for
afferent weights, αE for excitatory, and αI for inhibitory),
Xr is the presynaptic activity after settling (χ for afferent,
η for lateral), and ηa stands for the activity of unit a af-
ter settling. Afferent inputs, lateral excitatory inputs, and
lateral inhibitory inputs are normalized separately.

The LISSOM model extended with delayed lateral connec-
tions and subthreshold signal can be used to account for
VSD imaging data, as will be described next.

3 Experiment

A simulation was carried out to show that after self-
organization, the simulated VSD signal matched the bio-
logical data.

The retina had 36× 36 units, and V1 had 108× 108 units.
The receptive field radius of V1 was 6 and the excitatory and
inhibitory lateral connections radii were 4 and 13, respec-
tively. The weights of each connection types to a V1 unit
were initialized randomly and normalized to 1. The prop-
agation delay d between units a and â was made propor-
tional to the Euclidean distance on the map, i.e. d(a, â) =
1
2

√
(ax − âx)2 + (ay − ây)2, where (ax, ay) and (âx, ây)

are the coordinates of units a and â, respectively. Using a
smaller proportional factor, and hence a smaller delay, yields
similar results.

After 40, 000 presentations of elongated Gaussians (edges),
the model V1 self-organized to form a realistic orientation
map (Figure 2).

In order to verify that the temporal properties of this map
are valid, its behavior was compared with the optical imag-
ing data of Sharon and Grinvald [8]. In their experiment, the
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Fig. 2. Orientation map and sample connections after self-or-
ganization. The left plot shows the orientation preference map of
the model V1 after training, with color keys representing orien-
tations on the left. The right plot contains, from left to right, the
receptive field on the retina, excitatory lateral connections, and
inhibitory lateral connections of a sample V1 unit. The response
of this unit is used to compute the data in Figure 4. The results in
the above figures show that realistic orientation map can emerge
from the LISSOM model extended with propagation delays.

time course and the orientation tuning curve of the cat V2
in response to grating input were measured. Similarly with
the extended LISSOM model, long edges of different orien-
tations were presented in the receptive fields of a particular
group of nine neighboring V1 units that had similar orienta-
tion preference and their simulated VSD signals V (t) were
recorded over time. One major finding by Sharon and Grin-
vald was that the width of the tuning curve does not change
over the response period. The tuning curves of the model
V1 unit are plotted in Figure 3 at different time steps; they
show similar property.

Second, Sharon and Grinvald found that there is a decelera-
tion of the response shortly after response onset followed by
an acceleration. The deceleration is larger with the stimu-
lus that is orthogonal to the cell’s preferred orientation. The
model again produces similar result (Figure 4).

The biological origin of such change in acceleration is poorly
understood. A possible explanation suggested by the model
is that the initial response is due to the afferent input and the
deceleration and the subsequent acceleration result from the
interaction of excitatory and inhibitory lateral connections.
Since the two lateral connection types are normalized sepa-
rately, individual short-range excitatory connections usually
have larger weights than long-range inhibitory connections.
The net effect of the lateral inputs within the radius of ex-
citatory connections is therefore positive. Immediately after
the initial response, only a few such excitatory lateral inputs
arrive. The response therefore increases only a little, which
gives rise to the deceleration.

The initial suprathreshold response to the orthogonal orien-
tation is much smaller than the response to the preferred
orientation. Since the responses of the nearby units are sim-
ilar, the excitatory inputs are also smaller, resulting in the
observed larger deceleration with orthogonal inputs.

The acceleration afterward is due to two effects. First, within
the radius of excitatory connections, positive feedback loops
are formed between interconnected units. Second, as time
progresses, the area covered by lateral connections, and
therefore the number of excitatory inputs, increases quadrat-
ically. These two factors together accelerate the VSD signal.

Fig. 3. Average orientation tuning curve in VSD imaging and
the model. The left plot shows how the average orientation tuning
curve (i.e. response to different orientations) changes over time as
observed in VSD imaging, and the right plot shows the same data
for the model (average of nine units). The width of the tuning
curve does not change over time, suggesting that the VSD signal
is represented accurately for different orientations and times in the
model. (Left plot adapted from [8], with permission.)

Fig. 4. Time course of the response in VSD imaging and the
model. The left plot shows the time course of the optical signal
to a grating with preferred orientation (black) and the orthogonal
orientation (gray); the circles mark the deceleration-acceleration
notch. The right plot is the same time course of a model unit when
a long edge is presented, which also has the notch in the early
response. The reason for such a change in acceleration is unknown;
the model predicts that it arises because different numbers of lateral
inputs arrive at different times. (Left plot adapted from [8], with
permission.)

The response eventually saturates in the model because it is
bounded by the sigmoid function.

The acceleration in the orthogonal orientation is again
smaller than that of the preferred orientation, for two
reasons. First, as in the deceleration, the suprathreshold
response to the orthogonal orientation in the surrounding
units is small. The effects of the positive feedback loops are
therefore smaller. Second, lateral connections usually link
units that prefer the same orientation. The units that are
highly activated in this case (by the orthogonal orientation)
thus have a smaller influence on the response of the unit.

Lateral inhibition also becomes stronger over time because
of the increase in the area that it covers. The effect is slower,
however, because individual lateral inhibitory connections
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are usually longer and have smaller weights than those of
the lateral excitatory connections. Lateral inhibition there-
fore takes a longer time to deliver in the model. In the late
response, the inhibitory signals become strong enough to
counteract lateral excitation and the VSD signal decreases.

These results match the VSD data well, showing that the
model represents VSD signal accurately.

4 Conclusions

Optical imaging with VSD is an important neural recording
technique that offers high resolution both spatially and tem-
porally. There is, however, no direct relationship between
spiking activity and the VSD signal. This paper shows how
the activity in the computational model can be related to the
VSD signal. The orientation tuning curve and the response
time course in the model match those measured with VSD
imaging, suggesting that the model represents VSD signal
accurately and can be used to link neural activity to it. It
also gives a possible computational explanation for the ac-
celeration and deceleration observed in the time course of
the VSD signal.
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