
Efficient Evolution of Neural Network Topologies

Kenneth O. Stanley and Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
kstanley, risto@cs.utexas.edu

Abstract

Neuroevolution, i.e. evolving artificial neural networks
with genetic algorithms, has been highly effective in rein-
forcement learning tasks, particularly those with hidden
state information. An important question in neuroevolu-
tion is how to gain an advantage from evolving neural net-
work topologies along with weights. We present a method,
NeuroEvolution of Augmenting Topologies (NEAT) that
outperforms the best fixed-topology methods on a challeng-
ing benchmark reinforcement learning task. We claim that
the increased efficiency is due to (1) employing a principled
method of crossover of different topologies, (2) protecting
structural innovation using speciation, and (3) incremen-
tally growing from minimal structure. We test this claim
through a series of ablation studies that demonstrate that
each component is necessary to the system as a whole and
to each other. What results is significantly faster learning.
NEAT is also an important contribution to GAs because
it shows how it is possible for evolution to both optimize
and complexify solutions simultaneously, making it possible
to evolve increasingly complex solutions over time, thereby
strengthening the analogy with biological evolution.

I. INTRODUCTION
Neuroevolution (NE), the artificial evolution of neural net-
works using genetic algorithms, has shown great promise
in reinforcement learning tasks. NE outperforms standard
reinforcement learning methods in many benchmark tasks
[6, 10, 11]. Neural networks are a good class of decision
making systems to evolve because they are capable of repre-
senting solutions to many different kinds of problems, and the
mapping from genotype to phenotype is generally efficient.
NE is particularly well suited to reinforcement learning tasks
because NE does not require supervision.

A major question in NE is how to gain an advantage from
evolving topology in addition to connection weights. On one
hand, evolving topology might overcomplicate the search. On
the other, it can also save time by finding the right number of
hidden neurons for a particular problem automatically [7].

A previous study showed that fixed-topology NE can out-
perform a topology-evolving system on the benchmark dou-
ble pole balancing task [6]. This finding is important because
pole balancing has been a benchmark task in NE and rein-
forcement learning for over 30 years [1, 6, 7, 9], and dou-
ble pole balancing is challenging to even the best of modern

methods. Doing well at this important benchmark suggests
that a method will do well in other tasks as well. Whether
Topology and Weight Evolving Artificial Neural Networks
(TWEANNs) can enhance the performance of NE remains
an open question.

In this article, we aim to show that evolving topology can
indeed increase performance. We present a new TWEANN,
NeuroEvolution of Augmenting Topologies (NEAT), that sig-
nificantly outperforms the fixed-topology NE method that
currently takes the fewest evaluations on the double pole
balancing task. We identify three major challenges for
TWEANNs and present solutions to each of them: (1) Is there
a genetic representation that allows disparate topologies to
crossover in a meaningful way? Our solution is to use his-
torical markings to line up genes with the same origin. (2)
How can topological innovation that needs a few generations
to optimize be protected so that it does not disappear from the
population prematurely? Our solution is to separate each in-
novation into a different species. (3) How can topologies be
minimized throughout evolution without the need for a spe-
cially contrived fitness function that measures complexity?
Our solution is to start from a minimal structure and grow
only when necessary. This paper establishes that each of our
solutions is necessary by showing that NE performance sig-
nificantly declines with the ablation of any of the major so-
lution components. Working together in NEAT these compo-
nents constitute a promising new approach to difficult rein-
forcement learning tasks.

We begin by describing the NEAT method, including re-
sults showing that NEAT is significantly faster than other NE
methods on the hardest pole balancing benchmark. We then
present ablation studies designed to explain NEAT’s perfor-
mance in terms of its components.

II. NEUROEVOLUTION OF AUGMENTING
TOPOLOGIES (NEAT)

A. Genetic Encoding
NEAT is designed specifically to address the three challenges
raised in the introduction. Each genome includes a list of
connection genes, each of which refers to two node genes be-
ing connected (figure 1). Each connection gene specifies the
in-node, the out-node, the weight of the connection, whether

To appear in Proceedings of the 2002 Congress on Evolutionary Computation (CEC ’02). Piscataway, NJ: IEEE

Node 1
Sensor
Input

Node 2
Sensor
Input

Node 3
Sensor
Input

Node 4
Hidden
Hidden

Node 5
Hidden
Output

In 1
Out 4
Weight 0.7
Enabled
Innov 1

In 2
Out 4
Weight 0.5
Enabled
Innov 3

In 2
Out 5
Weight 0.5
DISAB
Innov 4

In 3
Out 5
Weight 0.2
Enabled
Innov 5

In 4 In 5
Out 5 Out 4
Weight 0.4 Weight 0.6
Enabled Enabled
Innov 6 Innov 10

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3

4

5

Fig. 1. A genotype to phenotype mapping example. The third
gene is disabled, so the connection that it specifies (between
nodes 2 and 5) is not expressed in the phenotype.

1 2 3

4

5

1 2 3

4

5

1 2 3

4

5

1 2 3

4 6

5

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>5

2−>5

2−>5

2−>5

3−>5

3−>5

3−>5

3−>5

4−>5

4−>5

4−>5

4−>5

3−>4

3−>6 6−>5

DIS

DIS

DIS

DIS DIS

1

1

1

1

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Fig. 2. The two types of structural mutation in NEAT. Both
types, adding a connection and adding a node, are illustrated
with the genes above their phenotypes. The top number in each
genome is the innovation number of that gene. These numbers
identify the original historical ancestor of each gene, making it
possible to find matching genes during crossover. New genes are
assigned new increasingly higher numbers.

or not the connection gene is expressed (an enable bit), and
an innovation number, which allows finding corresponding
genes during crossover (as will be explained below). Al-
though the experiments in this paper evolve networks with
a single output, NEAT can evolve networks with any number
of inputs or outputs.

Mutation in NEAT can change both connection weights
and network structures. Connection weights mutate as in
any NE system, with each connection either perturbed or not.
Structural mutations, which expand the genome, occur in two
ways (figure 2). In the add connection mutation, a single new
connection gene is added connecting two previously uncon-
nected nodes. In the add node mutation an existing connec-
tion is split and the new node placed where the old connection

used to be. The old connection is disabled and two new con-
nections are added to the genome. This method of adding
nodes was chosen in order to integrate new nodes immedi-
ately into the network.

Through mutation, genomes of varying sizes are created,
sometimes with completely different connections specified at
the same positions. The next section explains how NEAT can
cross over such diverse genomes.

B. Tracking Genes through Historical Markings

In order to perform crossover, the system must be able to tell
which genes match up between any individuals in the popula-
tion. The key observation is that two genes that have the same
historical origin represent the same structure (although possi-
bly with different weights), since they were both derived from
the same ancestral gene from some point in the past. Thus,
all a system needs to do to know which genes line up with
which is to keep track of the historical origin of every gene in
the system.

Tracking the historical origins requires very little compu-
tation. Whenever a new gene appears (through structural mu-
tation), a global innovation number is incremented and as-
signed to that gene. The innovation numbers thus represent
a chronology of every gene in the system. As an example,
let us say the two mutations in figure 2 occurred one after
another in the system. The new connection gene created in
the first mutation is assigned the number

�
, and the two new

connection genes added during the new node mutation are
assigned the numbers � and � . In the future, whenever these
genomes crossover, the offspring will inherit the same inno-
vation numbers on each gene; innovation numbers are never
changed. Thus, the historical origin of every gene in the sys-
tem is known throughout evolution.

The historical markings give NEAT a powerful new capa-
bility, effectively solving the problem of competing conven-
tions for disparate topologies (the “Holy Grail” in neuroevo-
lution [14]). The system now knows exactly which genes
match up with which (figure 3). Genes that do not match are
either disjoint or excess, depending on whether they occur
within or outside the range of the other parent’s innovation
numbers. When crossing over, the genes in both genomes
with the same innovation numbers are lined up. Genes that
do not match are inherited from the more fit parent, or if they
are equally fit, from both parents randomly. This way, histor-
ical markings allow NEAT to perform crossover without the
need for expensive topological analysis.

The method of crossover presented here is notable for its
simplicity. Any two structures can be combined in a princi-
pled manner without the need for any topological analysis,
even though the problem appears to be a topology combina-
tion problem. By recasting the problem as a problem of his-
torical matching, it becomes tractable and significantly sim-
pler to solve.

1 2 3

4

5

1

1

2

2

3

3

4

4

5

5

6

6

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

2−>5

2−>5

2−>5

2−>5

2−>5

3−>5

3−>5

3−>5

4−>5

4−>5

4−>5

4−>5

4−>5

6−>4

6−>4

6−>4

1−>6

1−>6

1−>6

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

1

1

1

1

1

2

2

2

2

2

4

4

4

4

4

5

5

5

6

6

6

6

6

8

8

8

7

7

7

3

3

3

disjoint

disjoint

excessexcess

Parent1 Parent2

Parent2

Offspring

Parent1

Fig. 3. Matching up genomes for different network topologies
using innovation numbers. Although Parent 1 and Parent 2
look different, their innovation numbers (shown at the top of
each gene) tell us which genes match up with which without the
need for topological analysis.

C. Protecting Innovation through Speciation
Adding new structure to a network usually initially reduces
fitness. However, NEAT speciates the population, so that in-
dividuals compete primarily within their own niches instead
of with the population at large. This way, topological innova-
tions are protected and have time to optimize their structure
before they have to compete with other niches in the popu-
lation. Speciation is commonly used in multimodal function
optimization and in coevolution of modular systems, where
its main function is to preserve diversity [8, 12]. We bring the
idea to TWEANNs, where its main task is to protect innova-
tion.

Historical markings make it possible for the system to di-
vide the population into species based on topological simi-
larity. The number of excess and disjoint genes between a
pair of genomes is a natural measure of their compatibility.
The more disjoint two genomes are, the less evolutionary his-
tory they share, and thus the less compatible they are. There-
fore, we can measure the compatibility distance � of differ-
ent structures in NEAT as a simple linear combination of the
number of excess (�) and disjoint (�) genes, as well as the
average weight differences of matching genes (�):

���
	�
 ��

	�� �� 	���� ��� (1)

The coefficients 	�
 , 	�� , and 	�� adjust the importance of the
three factors, and the factor

�
, the number of genes in the

larger genome, normalizes for genome size.
The distance measure � allows us to speciate using a com-

patibility threshold ��� . Genomes are tested one at a time; if
a genome’s distance to a randomly chosen member of the
species is less than ��� , it is placed into this species. Each
genome is placed into the first species where this condition is
satisfied, so that no genome is in more than one species.

As the reproduction mechanism for NEAT, we use explicit
fitness sharing [4], where organisms in the same species must
share the fitness of their niche, making it difficult for any one
species to take over the population. The original fitnesses are
first adjusted by dividing by the number of individuals in the
species. Species then grow or shrink depending on whether
their average adjusted fitness is above or below the population
average:

���� �
������!
#" �$�

" % (2)

where
� � and

� �� are the old and the new number of indi-
viduals in species & , " �'� is the adjusted fitness of individual (
in species & , and " is the mean adjusted fitness in the entire
population. The best-performing) % of each species is ran-
domly mated to generate

� �� offspring, replacing the entire
population of the species. 1

D. Minimizing Dimensionality
TWEANN algorithms typically start with an initial popula-
tion of random topologies [2, 7, 21, 22]. Such topological
diversity must be introduced from the start because new struc-
ture frequently does not survive in these methods, which do
not protect innovation. However, it is not clear that such di-
versity is necessary or useful. A population of random topolo-
gies has a great deal of structure that has not withstood a sin-
gle fitness evaluation. Therefore, there is no way to know if
any of such structure is necessary. It is costly though because
the more connections a network contains, the higher the num-
ber of dimensions that need to be searched to optimize the
network. Therefore, with random topologies the algorithm
may waste a lot of effort by optimizing unnecessarily com-
plex structures.

In contrast, NEAT begins with a uniform population of net-
works with no hidden nodes. Because NEAT protects inno-
vation using speciation, it can start this way, minimally, and
grow new structure only as necessary. New structure is intro-
duced incrementally as structural mutations occur, and only
those structures survive that are found to be useful through
fitness evaluations. This way, NEAT searches through a min-
imal number of weight dimensions, significantly reducing the
number of generations necessary to find a solution.*

In rare cases when the fitness of the entire population does not
improve for more than 20 generations, only the top two species are
allowed to reproduce, refocusing the search into the most promising
spaces.

III. PERFORMANCE OF NEAT
A. Pole Balancing as a Benchmark Task

We demonstrate the efficacy of NEAT on the problem of bal-
ancing two poles simultaneously without giving velocity in-
puts to the network. This problem is a known benchmark
in the reinforcement learning literature, which makes it pos-
sible to compare NEAT to other methods. Pole balancing
has been used in RL and NE research for over 30 years
[1, 3, 6, 7, 9, 11, 15, 17–20]. It is also a good surrogate
for real problems, in part because pole balancing in fact is
a real task, and also because the difficulty can be adjusted.
We present the hardest such problem, balancing two pole si-
multaneously without velocities, in order to show that NEAT
performs well on a difficult task.

Two poles are connected to a moving cart by a hinge and
the neural network must apply force to the cart to keep the
poles balanced for as long as possible without going beyond
the boundaries of the track. The system state is defined by
the cart position (+) and velocity (,+), the first pole’s position
(-
) and angular velocity (,-
), and the second pole’s position
(- �) and angular velocity (,- �). Control is possible because
the poles have different lengths (0.1m and 1.0m in our exper-
iments) and respond differently to control inputs.

Taking away velocity information makes the task non-
Markovian. It is difficult because the network must estimate
an internal state in lieu of velocity, which requires recurrent
connections.

Gruau et al. [7] introduced a special fitness function for this
problem to prevent the system from solving the task simply
by moving the cart back and forth quickly to keep the poles
wiggling in the air. (Such a solution does not require com-
puting the missing velocities.) The fitness function penalizes
oscillations. Because the only NE methods that have solved
this task were evaluated using this special fitness function,
NEAT uses it on this task as well.

Under Gruau et al.’s criteria for a solution, the champion
of each generation is tested on generalization to make sure
it is robust. In addition to balancing both poles for 100,000
time steps, the winning controller must balance both poles
from 625 different initial states, each for 1,000 times steps.
In order to count as a solution, a network needs to generalize
to at least 200 of the 625 initial states.

B. Performance Comparison

A number of NE methods have solved the easier double pole
balancing with velocity information task.2 NE methods take
fewer evaluations than standard reinforcement learning meth-
ods such as Q-Learning on all levels of difficulty of pole bal-
ancing [6, 11]. Because double pole balancing without ve-
locity information is a significantly more difficult task, to our
.
In other work, NEAT took the fewest generations among 5 com-

peting NE methods to solve the easier double pole balancing with
velocity information benchmark task [16].

knowledge only two systems have been demonstrated able to
solve the problem so far. NEAT is compared to these two
systems: Cellular Encoding [CE; 4], and Enforced Subpopu-
lations [ESP; 3]. The success of CE was first attributed to its
ability to evolve structures. However, ESP, a fixed-topology
NE system, completed the task five times faster by restarting
with a random number of hidden nodes whenever stuck. Our
experiment aimed at showing that evolution of structure can
lead to better performance if done right.

The experiment used a population of 1,000 NEAT net-
works. ESP evaluated 1,000 networks per generation, while
CE needed a population of 16,384 networks to solve the prob-
lem. The top /1032 of each species reproduced. The coeffi-
cients for measuring compatibility were 	4
 �657�'0 , 	�� �657�'0 ,	�� �98:� 0 , and ; � �=<>� 0 . The probability of adding a new
node was 0.03, and the probability of adding a new link was
0.3. These parameters were chosen for their intuitive ap-
peal: It makes sense to add links significantly more often than
nodes, and we considered an average weight difference of 3.0
to be about as significant as one disjoint or excess gene. Per-
formance is robust to moderate variations in these values.

Method Evaluations No. Nets
CE 840,000 16,384
ESP 169,466 1,000
NEAT 33,184 1,000

Table 1. Performance Comparison. CE is Cellular Encoding of
Gruau et al. [7]. ESP is Enforced Subpopulations of Gomez
and Miikkulainen [6]. All results are averages over 20 simula-
tions. The standard deviation for NEAT is 21,790 evaluations.
Assuming similar variances for CE and ESP, all differences in
number of evaluations are significant (?A@CB7D BEBGF).

Table 1 shows that NEAT indeed takes 25 times fewer eval-
uations than Gruau’s original benchmark, showing that the
way in which structure is evolved has significant impact on
performance. NEAT is also 5 times faster than ESP, show-
ing that structure can indeed perform better than evolution of
fixed topologies.

IV. ABLATION STUDIES:
DECONSTRUCTING NEAT

We have argued that NEAT’s performance is due to historical
markings, speciation, and incremental growth from minimal
structure. In order to verify the contribution of each com-
ponent, we performed a series of ablation studies. We dis-
abled each component of NEAT separately and observed the
effect on performance. We did not ablate historical mark-
ings directly because every component of the system relies on
historical markings. Without historical markings, the system
cannot function. All other components were systematically
verified.

A. Experimental Setup
Ablations can have a significant detrimental effect on perfor-
mance, potentially to the point where the system cannot solve
the task at all. Therefore, we use an easier version of the pole

balancing problem for the ablation studies: double pole bal-
ancing with velocities. Because this task is significantly eas-
ier to solve, we used a smaller population of 150. A smaller
population is sufficient because less diversity is necessary to
search the solution space.

Method Evaluations Failure Rate
No-Growth NEAT 30,239 80%
Non-speciated NEAT 25,600 25%
Initial Random NEAT 23,033 5%
Full NEAT 3,578 0

Table 2. NEAT Ablations Summary. The table compares the
average number of evaluations for a solution in the double pole
balancing with velocities task (an easier task than that in Table
1). Results are averages over 20 runs, except full NEAT, which
is an average over 120 runs. Each ablation leads to a weaker
algorithm, showing that each component is necessary.

Table 2 shows the results of all the ablation studies, in
terms of average evaluations required to find a solution. The
main result is that the system performs significantly worse
(HJI=0:� 010:5) for every ablation. We will explain how each
ablation was performed and interpret the results.

B. No-growth Ablation

In order to make no-growth NEAT comparable to fixed-
topology NE, it was allowed to start with a fully-connected
hidden layer of 10 hidden units, the same number as in past
fixed-topology NE experiments [15, 19]. Without growth, the
system was only able to use weight differences to speciate the
population. Given 1,000 generations to find a solution, the
ablated system could only find a solution 20% of the time!
When it did find a solution, it took 8.5 times more evaluations
than full NEAT. Clearly, speciation and historical markings
alone do not account for full NEAT’s performance; growing
and complexifying solutions is a significant factor as well.

C. Initial Random Ablation

TWEANNs other than NEAT typically start with a random
population [2, 7, 21]. Whether starting minimally is an ad-
vantage was tested by starting NEAT with random topologies.
Each network in the initial population received between 1 and
10 hidden neurons with random connectivity (as implemented
by Pujol and Poli [13]). Random-starting NEAT was 7 times
slower than full NEAT on average. The random-starting sys-
tem also failed to find a solution within 1,000 generations
5% of the time. The result suggests that starting randomly
forces NE to search higher-dimensional spaces than neces-
sary, thereby wasting time. If topologies are to grow, they
should start out as small as possible.

D. Non-speciated Ablation
We have argued that speciation is important because it pro-
tects innovation and allows search to proceed in many differ-
ent spaces simultaneously. To test this claim, speciation was
ablated from the system. Because starting minimally without
speciation stifles innovation, the non-speciated NEAT must

Starting minimally

Growth Speciation

Historical Marking

Fig. 4. Dependencies among NEAT components. Strong inter-
dependencies can be identified among the different components
of NEAT.

be started with an initial random population in order to pro-
vide diversity. The resulting non-speciated NEAT was able
to find solutions, although it failed in 25% of the attempts.
When it found a solution, it was 7 times slower on average
than full NEAT.

The reason for the dramatic slowdown is that without spe-
ciation, the population quickly converges on whatever topol-
ogy happens to initially perform best. Thus, a lot of diver-
sity is drained immediately (within 10 generations). On aver-
age, this initially best-performing topology has about 5 hid-
den nodes. It is likely that the initial best-performing topol-
ogy has more connections than necessary to solve the task.
Thus, the population tends to converge to a relatively high-
dimensional search space, even though the smaller networks
in the initial population would have optimized faster. The
smaller networks just do not get a chance because being small
offers no immediate advantage in the initially random weight
space. This result shows that speciation is crucial for innova-
tion to be protected in a population of diverse topologies.

E. Ablations Summary
An important conclusion is that all of the parts of NEAT
contribute to its performance. No single component works
well without the aid of the other components (figure 4), and
they are all needed to utilize the power of topology evolution.
None of the system can work without historical markings be-
cause all of NEAT’s functions utilize historical markings. If
growth from minimal structure is removed, speciation can
no longer help NEAT find spaces with minimal dimensional-
ity. If speciation is removed, growth from minimal structures
cannot proceed because structural innovations do not survive.
When the system starts with a population of random topolo-
gies without speciation, the system quickly converges onto a
non-minimal topology that just happens to be one of the best
networks in the initial population. Thus, each component is
necessary to make NEAT work.

V. DISCUSSION
NEAT strengthens the analogy between GAs and natural evo-
lution by not only performing the optimizing function of evo-
lution, but also a complexifying function, allowing solutions
to become incrementally more complex at the same time as
they become more optimal.

A system that can add new structure to already-optimized
solutions has several potentially powerful properties. Speed

is one benefit. Smaller structures optimize faster, so the sys-
tem is able to optimize the minimal number of connections
necessary to obtain a solution. This benefit contrasts with the
goal of a minimal finished product [22]. Our results show
that the topology of the final solution is less important than
the topologies of the networks along the way. Each increase
in complexity resulting from new structure leads to a promis-
ing part of a higher dimensional space because most of the
existing structure is already optimized.

A second benefit of complexification is an additional way
to escape local optima. Not only can NEAT search the fit-
ness landscape with mating and mutation, but it can alter the
landscape itself with new structure. Thus, when a species in
NEAT is on a local optimum, it is possible that by adding a
new connection, a new dimension of freedom may open up,
leading to a path away from the local optimum.

A parallel can be drawn between structure evolution in
NEAT and incremental evolution [5, 19]. Incremental evo-
lution is a method used to train a system to solve harder tasks
than it normally could by training it on incrementally more
challenging tasks. The idea is that NE is likely to get stuck
on a local optimum when attempting to solve the harder task
directly. However, after solving the easier version of the task
first, the population is likely to be in a part of fitness space
closer to the solution to the harder task, allowing it to avoid
local optima. The difference between the incrementality of
adding structure and general incremental evolution is that
adding structure is automatic in NEAT whereas a sequence
of progressively harder tasks requires human design.

VI. CONCLUSION
NEAT incrementally elaborates structure in a stochastic man-
ner from a minimal starting point. Smaller structures opti-
mize faster, so NEAT is able to find solutions faster than other
neuroevolution methods. The ablation studies demonstrate
that historical markings, speciation, and incremental growth
from minimal structure are all integral components of effi-
cient evolution of network structure. NEAT strengthens the
analogy between GAs and natural evolution by both optimiz-
ing and complexifying solutions simultaneously.

ACKNOWLEDGMENTS
This research was supported in part by the NSF under grant
IIS-0083776 and by the Texas Higher Education Coordinat-
ing Board under grant ARP-003658-476-2001. Thanks to
Faustino Gomez for providing pole balancing code.

References
[1] C. W. Anderson. Learning to control an inverted pendulum

using neural networks. IEEE Control Systems Magazine, 9:
31–37, 1989.

[2] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evo-
lutionary algorithm that constructs recurrent neural networks.
IEEE Transactions on Neural Networks, 5:54–65, 1993.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuron-
like adaptive elements that can solve difficult learning control

problems. IEEE Transactions on Systems, Man, and Cyber-
netics, SMC-13:834–846, 1983.

[4] D. E. Goldberg and J. Richardson. Genetic algorithms with
sharing for multimodal function optimization. In J. J. Grefen-
stette, editor, Proceedings of the Second International Confer-
ence on Genetic Algorithms, pages 148–154. San Francisco,
CA: Morgan Kaufmann, 1987.

[5] F. Gomez and R. Miikkulainen. Incremental evolution of com-
plex general behavior. Adaptive Behavior, 5:317–342, 1997.

[6] F. Gomez and R. Miikkulainen. Solving non-Markovian con-
trol tasks with neuroevolution. In Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence, Den-
ver, CO, 1999. Morgan Kaufmann.

[7] F. Gruau, D. Whitley, and L. Pyeatt. A comparison between
cellular encoding and direct encoding for genetic neural net-
works. In John R. Koza, David E. Goldberg, David B. Fogel,
and Rick L. Riolo, editors, Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, pages 81–89, Cam-
bridge, MA, 1996. MIT Press.

[8] S. W. Mahfoud. Niching Methods for Genetic Algorithms.
PhD thesis, U. of Illinois at Urbana-Champaign, May 1995.

[9] D. Michie and R. A. Chambers. BOXES: An experiment in
adaptive control. In E. Dale and D. Michie, editors, Machine
Intelligence. Oliver and Boyd, Edinburgh, UK, 1968.

[10] D. E. Moriarty. Symbiotic Evolution of Neural Networks in Se-
quential Decision Tasks. PhD thesis, Department of Computer
Sciences, The University of Texas at Austin, 1997. Technical
Report UT-AI97-257.

[11] D. E. Moriarty and Risto Miikkulainen. Efficient reinforce-
ment learning through symbiotic evolution. Machine Learn-
ing, 22:11–32, 1996.

[12] M. A. Potter and K. A. De Jong. Evolving neural networks
with collaborative species. In Proceedings of the 1995 Sum-
mer Computer Simulation Conference, 1995.

[13] J. C. F. Pujol and R. Poli. Evolving the topology and the
weights of neural networks using a dual representation. Spe-
cial Issue on Evolutionary Learning of the Applied Intelli-
gence Journal, 8(1):73–84, January 1998.

[14] N. J Radcliffe. Genetic set recombination and its application
to neural network topology optimisation. Neural computing
and applications, 1(1):67–90, 1993.

[15] N. Saravanan and D. B. Fogel. Evolving neural control sys-
tems. IEEE Expert, pages 23–27, June 1995.

[16] K. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Tech. Report AI2001-290,
Dept. of Computer Sciences, The U. of Texas at Austin, 2001.

[17] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learn-
ing, 8(3):279–292, 1992.

[18] D. Whitley, S. Dominic, R. Das, and C. W. Anderson. Genetic
reinforcement learning for neurocontrol problems. Machine
Learning, 13:259–284, 1993.

[19] A. P. Wieland. Evolving neural network controllers for unsta-
ble systems. In Proceedings of the International Joint Con-
ference on Neural Networks (Seattle, WA), pages 667–673.
Piscataway, NJ: IEEE, 1991.

[20] A. P. Wieland. Evolving controls for unstable systems. In
David S. Touretzky, Jeffrey L. Elman, Terrence J. Sejnowski,
and Geoffrey E. Hinton, editors, Connectionist Models: Pro-
ceedings of the 1990 Summer School, pages 91–102. San Fran-
cisco, CA: Morgan Kaufmann, 1990.

[21] X. Yao. Evolving artificial neural networks. Proceedings of
the IEEE, 87(9):1423–1447, 1999.

[22] B. Zhang and H. Muhlenbein. Evolving optimal neural net-
works using genetic algorithms with Occam’s razor. Complex
Systems, 7:199–220, 1993.

