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Abstract. A development environment for applications specified in an extended 
version of a previously developed coordination model based on associatively 
broadcast interactions is presented.  The previous associative broadcast 
coordination model is extended to incorporate more complex specifications for 
interactions including multiple message interactions and fault-tolerance by 
replication.  The runtime system is extended to facilitate construction and 
application of distributed implementation of coordination systems.  An interface 
definition language based on the extended coordination model and a compiler 
for the language are defined and described.  Three example applications, a 
generalized readers/writers problem including replication, a “greedy reuse” 
algorithm and a distributed computation Google pageranks are presented. 

1 Introduction 

There has been little research on coordination models and languages based on 
broadcast communication, despite the fact that many network intrinsically provide a 
physical broadcast capability including such widely available systems as Ethernet, 
FDDI, and wireless, and that broadcast enables consensus for asynchronous 
communication [2]. 

There has also been, except for Linda-based [5] coordination models and 
languages, relatively little experimental or systems-oriented research on application of 
coordination models and languages.  Experimental research is needed to establish a 
basis for application of coordination models and languages and to add credibility to 
the utility value of coordination models and languages. This paper extends previous 
research on coordination models based on associative broadcast to a development 
environment for implementation of coordinating systems of processes, illustrates its 
applications and positions this research in the context of distributed and peer to peer 
systems research.   

The goal for the development environment is to facilitate experimental research 
on broadcast-based coordination systems. The principal artifacts of the development 
environment are: extensions to the previous associatively broadcast programming 
model to facilitate experiments and applications, an interface definition language for 
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expressing associative interactions, a compiler for this interface definition language 
and an environment for instantiating and executing coordinating systems of processes. 

Broadcast enables coordination based on every process in an interacting set 
locally maintaining common state necessary for collective decision procedures [1, 2].  
Associative broadcast [3, 4] enables targeting of messages to processes in specific 
states and enables each process to select the properties of messages it will receive.  
Basing coordination on associative broadcast communication enables definition of 
multiple dynamic coordination subsets in a set of processes. Separation of message 
filtering from computation decreases the execution cost of coordination using 
broadcast and allows for specialization to specific algorithm requirements. 
Associative broadcast preserves anonymity similarly to tuple space based 
coordination [5].  It enables transparent distribution and replication for fault-
tolerance.  In summary, associative broadcast enables fully distributed and fully 
symmetric coordination over dynamic sets of processes.   

The next section summarizes the results from previous research on definition and 
implementation of a coordination model based on associative broadcast.  Section 3 
sketches the extended coordination model.  Section 4 discusses formulation of 
algorithms as coordination systems in the extended coordination model.  Section 5 
sketches the CoorSet interface definition language and illustrates formulation of 
algorithms and computations in the CoorSet coordination development environment 
including discussion of definition of algorithms.  Section 6 sketches the environment 
for instantiating and executing systems of coordinating processes.  Section 7 discusses 
the implementation of our system.  Section 8 gives related research and section 9 
gives a summary and conclusions. 

2 Associative Broadcast Coordination Model 

A previous paper [6] reported a coordination model based on extending 
communication by associative broadcast into a coordination model by extending 
associative communication to associative interactions.  This coordination model will 
be referred to as Associatively Specified Interactions (ASI). ASI is a model of 
coordination amongst a group of components.  A component is a logically distinct 
process executing on some host in a network.  Components may coexist with other 
components on the same physical host, or each may reside on a different host.  The 
ASI implementation of a component is one or more functions encapsulated by an 
interface which implements the ASI interaction protocols. In the ASI protocols, a 
target set specification travels with each message that is broadcast onto the network.  
The target set is determined for each message by the recipients whose local state 
satisfies the target specification.  The sender does not know the membership of this 
set, and does not necessarily ever discover it.  

The state of a component is specified in the interface as a “profile,” which specifies 
the visible current state of the component.  Profiles are implemented as sets of 
attribute/value pairs taken from the attribute domain of the component set that specify 
a descriptive name [3] for the component. The target set for a message is determined 
by a conditional expression called a “selector,” which is a predicate evaluated against 
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the profile of each component.  The message is broadcast throughout the network, but 
is received only by those components for whose profiles the selector evaluates to true.  
This allows targeting of messages to subsets of components that have a desired state, 
without the sender knowing the membership of that set.  All components in the 
system configure their profiles and broadcast messages with selectors according to a 
coordination protocol.  Protocols implementing acknowledgements can be 
implemented if needed for a given coordination problem.  

3 Extended Associative Broadcast Coordination Model and 
Programming Model 

The previous associative broadcast coordination model has been extended into a 
programming model which enables direct representation of complex interactions with 
retention of separation of concerns.  This model incorporates two additional features: 
complex conditions for enabling execution of a component and replication for both 
representation of SPMD parallelism and fault-tolerance.  

The conditions for executing and action of a component commonly include receipt 
of multiple messages.  To maintain separation of concerns it is necessary to 
incorporate this requirement into the coordination model.1  We introduce the concept 
of a “firing rule” into the coordination model.  A firing rule is a specification of the 
set of messages which must be received to initiate any action of a component.  
Additionally, since components may and often will have persistent state, there may be 
precedence relations among possible enabling message sequences.  These extensions 
are accomplished by adding types to messages and incorporating a conditional 
expression over message types and local state into the associative interface. 

The definition of firing rules used in the extended coordination model is taken 
from a data flow programming model [7], where rather than waiting on a single input, 
a node in a data flow graph waits on multiple inputs, possibly in a particular order, 
before becoming enabled for execution.  Firing rules are specified with a Java-like 
logical syntax.  Specifying reception of either of two message types R, S is done with 
a rule “R || S”. Reception of both of two message types is specified with a rule “R && 
S”. Reception of R followed by S is specified with a rule “R < S”.  These rules can be 
compounded and grouped with parentheses, such as “(R < S) || (R < T)”.  The ‘<’ 
operator has the lowest precedence, followed by `||’, and `&&’ has the highest 
precedence. 

Replication is another feature that must be included in associative interaction 
specifications to enable facile specification of parallelism and fault-tolerance.  SPMD 
parallelism can be readily implemented by replication of components.  Replication of 
functionality for fault-tolerance can be made transparent and synchronization-free 
after initialization. If an initiating component starts several replicas of a given 
component to insure success in an unreliable environment and each of the replicated 

                                                           
1 In the previous coordination model, if multiple messages were required to enable an action by 

a component, the set of actions of the component had to include aggregation of these 
messages in effect breaking separation of concerns. 
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components responses by associative broadcast then the initiating component can 
safely proceed after the first successful result and set its profile to ignore the other 
completions. A component can be replicated by adding an index attribute to its profile 
and instantiating replicas in conformance to the index range.  Once specified, a 
component can be started an arbitrary number of times.  The runtime system will 
provide unique identifiers in a predictable way so replicas can alter their behavior, or 
they can all execute in the same way depending on the needs of the application. 

A component in the extended model is a 5-tuple (S, S0, P, A, R) where S is the 
state machine which implements the rules for the protocol specification, and the rules 
for profile and interface changes, S0 is the initial state, P is the profile of attributes and 
attribute-value pairs, A is the list of accepted transactions (T, TA) where T is a firing 
rule and TA is the argument signature, and R is the list of requested transactions (T, TA) 
where T is a transaction type and TA is the argument signature.  Section 5 illustrates 
the concepts in the extended model in CoorSet language examples. 

4 Algorithm Formulation 

Most distributed algorithms explicitly or implicitly are formulated on the 
assumption of central control.  Coordination models, on the other hand, do not assume 
central control.  Development of algorithms and computations in coordination models 
therefore requires a shift in development paradigm. Use of a coordination model 
based on broadcast communication induces a further shift in development paradigm 
since most distributed computations and coordination models are based on point to 
point communication.2   There has been relatively little research in formulation of 
distributed/parallel algorithms in broadcast models of computation [8]. 

The development paradigm for distributed algorithms formulated in associative 
interactions is the integration of component composition and component interactions.  
An algorithm is specified as coordination among a set of components.  Composition 
defines the structural relationships among components while coordination specifies 
the behavior of the composed system.  Associative interactions use the same 
representation to specify both coordination and composition. 

A coordination system is implementing an algorithm or computation is specified in 
terms of a set of attributes in which the profiles and selectors are specified, a set of 
components from which the algorithm or computation can be composed, a set of 
protocols in which interactions are specified including message types, the selectors to 
accompany each instance of a message type, the allowed sequences of messages and 
the responses to each instance of a message type which is received, and a state 
machine which implements the coordination protocols which are interfaced to each 
process or component.   

                                                           
2 Linda-based coordination models [5] are the exceptions to this generalization. 
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5 CoorSet Interface Definition Language 

CoorSet is an interface definition language for specification of the behaviors of 
components in terms of associative interactions.   The CoorSet compiler generates 
Java code to implement the coordination models for each component and a “main” 
component  that starts the application in the runtime system described in Section 6.  In 
the example that follows, components of the language that deal with details not 
directly related to the interface structure have been omitted for clarity; for complete 
details of the language, see [9]. 

component 5 { 
  profile (“ReaderWriter”, (“EID”, 2),  
           (“Status”, “initializing”)) 
 
  execute startUp 
 
  accepts “RequestToRead” processRead () 
  accepts “RequestToWrite” processWrite (Object) 
 
  rule “update_value < (update_done || Collision)” processUpdate 
 
  requests “ReplyFromData” sendReply “Client” (Object) 
  requests “update_value” attemptUpdate “ReaderWriter” (Object, Integer) 
  requests “update_done” completeUpdate “ReaderWriter” (Integer) 
  requests “Collision” updateCollide “ReaderWriter” (Integer) 
} 

Fig. 1. CoorSet definition of a replicated data object store. 

5.1 Readers/Writers Algorithm In CoorSet 

To demonstrate the language for describing components, we introduce a  
generalized distributed readers/writers system implemented in CoorSet.  The data 
objects are replicated for fault-tolerance. Consistency is maintained across non-
malicious failures of components and/or runtime creation of additional replicas. This 
generalized readers/writers problem is rather complex when programmed in 
conventional distributed/parallel programming languages but is quite simple in 
CoorSet. The readers/writers system consists of a set of reader/writer objects which 
store a data item that is replicated across multiple independent stores, and a set of 
client components which randomly invoke reads and writes of randomly selected data 
items.  Each reader/writer is a single component in the system.  Each encapsulates and 
stores a single replica of a single data item, provides reading and writing facilities to 
clients, and implements a coordination protocol amongst all the other replicas of that 
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data item when a write is requested.  Each replica’s profile contains the unique 
identifier of the data object, and an index to indicate which replica it is.  Each 
reader/writer component keeps track of the version number of its data item, increasing 
it each time an update is made.  When two updates are attempted simultaneously, 
meaning they are sent out with the same sequence number, they are said to “collide.”  
When they do, they are aborted.  Each then executes an exponential backoff algorithm 
before attempting the update again with a new sequence number.  A definition 
fragment for the reader/writer component is given in Figure 1. 

The “5” immediately following the “component” declaration specifies that five 
instances will be started of a component which has an initial profile of three entries.  
First, an ID attribute named ReaderWriter distinguishes it from other kinds of 
components in the system, such as clients.  Second, a valued attribute EID (for entry 
identifier) indicates which data item this object contains.  Here the entry identifier is 
declared in the configuration file, implying that each data object’s replicas are 
declared separately.  Third, a valued attribute named Status with the value initializing.  
This is the state of the component when it initially comes online, to show that it is not 
yet operational, and needs to synchronize with whatever other data stores are already 
in operation.  This attribute later changes to values local processing, reading, and 
writing to reflect the various states it is in when processing requests. 

This component type accepts two message types, RequestToRead and 
RequestToWrite.  These requests are made by clients who want to read and write the 
data item, respectively.  In each case, reception of these messages causes execution of 
the methods processRead and processWrite on the programmer-supplied 
computational code (not shown), each of which takes the given parameter types.   

The readers/writers component also implements a firing rule which first receives 
an update_value message, and then an update_done message to indicate the update is 
successful, or a collision to indicate two writes were attempted at the same time and 
collided. 

This component also requests four message types.  ReplyFromData is the response 
sent to clients in response to a request to read or write.  It carries a single Object 
parameter, which will contain a copy of the data item when read.  Its default selector 
of “Client” will be received by all clients, but when such a response is actually sent, 
the selector will be refined to target only the requesting client.  update_value, 
update_done, and Collision are all sent during the various stages of consensus to 
attempt an update of the data item, to signal the update is successful, or conversely, 
when two attempted updates collide and must be aborted.  Each takes the new 
sequence number of the updated data, and for update_value, the new data value.  Each 
of these are by default targeted to all other data stores by the default selector 
“ReaderWriter”.  The optional execute line specifies a method on the programmer-
supplied class to execute immediately upon component start-up; if this line is absent, 
the component just waits for incoming transactions upon starting. 

For a simple performance study the data objects were replicated 2 and 4 times.  
The number of processes reading and writing was varied  up to 64, each on a separate 
workstation on a network.  The average number of messages was about Nx2.5 where 
N is the number of data object replicas.  Note that the performance of the algorithm is 
almost independent of the number of readers and writers. 
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5.2 Data Fitting Example 

We now present a more complex example of distributed data fitting, motivated by 
the concept of “greedy reuse” [10].  “Greedy reuse” uses execution of multiple, 
perhaps redundant components, to ensure the success of a computation by 
simultaneously executing multiple implementations of a required functionality when 
it is not certain which implementation should be used. “Greedy reuse” is complex to 
program in conventional distributed programming systems but simple as a 
coordination language program.  Consider an application that collects a set of data 
points, and requires approximating them by a curve.  There are many possible 
approaches to data fitting. Consider for illustration a case where it is unclear simply 
from the data set what method will yield a fit with certain properties required by the 
application.  Possible properties are a minimum of error, compactness of 
representation, and smoothness of curve.  It may be that the requirement is satisfied 
only by a composition of fits. 

Using associatively-coordinated components, several data fits can be executed 
simultaneously by addressing a data set with a selector that matches to true for the 
profiles of all data fitting components.  The selector can be made more specific if only 
certain types of fits are desired.  This application has more obvious connections 
between components as is common in more typical coordination models, and the 
component which initiates the computation is separate from the one that receives the 
result, to give a linear data flow as illustrated by Figure 2.  There is no explicit link 
between these components, and each circle in fact represents any number of 
components of that type which may be operating when the request is made.  These 
links should be seen as dynamic, existing only as long as they are required. 

Fig. 2. Data flow between components of the data fitter application. 
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Transparent replication and fault-tolerance is obtained by having several copies of 
the same type of component running, and when the calling component receives all of 
the results, it can compare them to choose the ones which meet the requirements, or 
alternatively, those which are faulty.  In an unreliable environment the initiating 
component might choose to simultaneously execute multiple copies of another 
component just to insure that a result is computed and successfully received with high 
probability.   

We have, for this illustration of concepts, implemented components that provide an 
exact Lagrange interpolating polynomial fit, a least squares approximation, and a 
natural cubic spline fit.  Each component maintains a profile that identifies it as a data 
fitting component for the purposes of addressing, as well as profile entries that allow 
it to be addressed more directly when an application wants only a particular kind of 
fitting. 

The dynamic structure of associative broadcast allows an application to link to all 
components available at the time a request is made, and to do so without explicit 
knowledge of what components are available; simply the knowledge of the accepts 
interfaces used by data fitting components is sufficient.   

There are two possible system configurations for the components.  The 
components can be active as daemons on hosts in the broadcast network in which case 
the initiating component is invoked on some hosts and discovery, linking and 
execution proceeds as previously described.  Alternatively, the components can be in 
a file with the initiating component or in a library.  In these latter cases the runtime 
system will distribute the components to hosts in the broadcast network and start the 
associative interaction runtime system. 

Figure 3 contains the definition fragments for each of the types of components in 
CoorSet.  These interface definitions are used to create the initial configuration of the 
component network.  Some details have been omitted due to space constraints. 

In this example, we have five types of components.  In this case, three of each of 
the fitter components is started, as indicated by the “3” after the “node” keyword, to 
create replicated instances.  There is only a single instance of the other components, 
CurveRequestor and CurveCollector. The types of components are: 

• CurveRequestor: A component that has collected some data set, and requires 
it be fit to a curve.  It does not accept any transactions, but makes a 
“DataFit” request to all data fitting components by way of its selector.   

• LagrangeModule: An exact Lagrange interpolating polynomial. Its initial 
profile has one attribute called “DataFitter” to indicate that it is a data fitting 
component, and a valued attribute called “Method” with a value of 
“Lagrange” to specify the particular kind of data fitter it is.  It accepts the 
“FitData” request, and makes a “FitDataRespnse_Poly” request to send its 
result. 

• LeastSquaresModule: A least squares polynomial fitter.  Its interface is 
almost identical to that of the Lagrange module, except that its profile 
reflects its being a Least Squares fitter, rather than a Lagrange interpolating 
polynomial fitter.  

• NatCubicModule: A natural cubic spline fitter.  It accepts the same “FitData” 
transaction, but responds with a “FitDataResponse_Spline” transaction, 
which contains a spline rather than a single polynomial. 



CoorSet: A Development Environment for Associatively Coordinated Components      9 

• CurveCollector: A component that accepts the resulting curve fits from the 
above components.  Its default profile contains an attribute called 
“CurveCollector,” which also is the default for selectors for the responses 
from the above components.   

There are also three types of requests for service: 

component 1 { 
  class CurveRequestor 
  execute start 
  requests "FitData" Request "DataFitter" (String, Double[], Double[], Integer) 
} 
component 3 { 
  class LagrangeModule 
  profile ("DataFitter", ("Method", "Lagrange")) 
  accepts "FitData" processRequest (String, Double[], Double[], Integer) 
  requests "FitDataResponse_Poly" sendResponse "CurveCollector"  
               (String, Double[]) 
} 
component 3 { 
  class LeastSquaresModule 
  profile ("DataFitter", ("Method", "LeastSquares")) 
  accepts "FitData" processRequest (String, Double[], Double[], Integer) 
  requests "FitDataResponse_Poly" sendResponse "CurveCollector"  
                (String, Double[]) 
} 
component 3 { 
  class NatCubicModule 
  profile ("DataFitter", ("Method", "NatCubicSpline")) 
  accepts "FitData" processRequest (String, Double[], Double[], Integer) 
  requests "FitDataResponse_Spline" sendResponse "CurveCollector"  
               (String, Cubic[], Cubic[]) 
} 
component 1 { 
  class CurveCollector 
  profile (“CurveCollector”) 
  accepts "FitDataResponse_Poly" processPoly (String, Double[]) 
  accepts "FitDataResponse_Spline" processSpline (String, Cubic[], Cubic[]) 
} 

Fig. 3.   Initial configuration of data fitting in CoorSet 

• FitData: A request for a data fit.  This transaction has four parameters: the 

first, a String, specifies a transaction identifier, so that multiple fits may be 
requested and the responses can be connected with the appropriate request.  
The next two parameters are arrays of Double values, representing the X and 
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Y coordinates of the data points.  The final Integer parameter specifies the 
maximum order of the polynomial, for polynomial fitters that can bound the 
polynomial degree. 

• FitDataResponse_Poly: A response to a data fitting request, containing a 
polynomial fitting to the data. It carries a String with the transaction 
identifier for which this is a fit, and an array of Double values representing 
the polynomial coefficients. 

• FitDataResponse_Spline: A response to a data fitting request, containing a 
natural cubic spline fitting to the data.  It also carries a String transaction 
identifier, as well as two arrays of Cubic polynomials.  The first is a 
piecewise parameterized representation of the X coordinates of the spline, 
and the second is a piecewise parameterized representation of the Y 
coordinates. 

5.3 Distributed Computation of Google Pageranks 

The Google PageRank algorithm [31] is the computation of the eigenvectors of the 
lowest eigenvalue of a matrix defined by the link structure of web pages.  This 
computation is readily formulated in asynchronous iteration [32].  We have 
implemented a distributed, dynamic computation [27] of pageranks in CoorSet.  
Documents which have url-like links are distributed across a set of hosts (which 
model web servers.) coupled by a broadcast capability.  The pageranks are computed 
in place in the hosts.  Pageranks are incrementally computed as documents are added 
or deleted.   A detailed discussion of the implementation of this algorithm is beyond 
the scope of this paper.  On a data set of 1000 documents running on eight processors 
on a 100-megabit local area network, an average of 1846 messages were required to 
converge, with an average running time of 68.6 seconds. 

6 Runtime Functionality for CoorSet 

The requirements for experimental research on distributed coordination systems in 
CoorSet are: implementation of timed reliable asynchronous broadcast, configuration 
and realization of coordination systems on distributed resources and a runtime system 
which supports the extended associative interactions coordination model specified in 
Section 3.  This section defines and describes the capabilities for these three 
requirements currently implemented for the CoorSet development environment.  

A system for supporting experimental research on distributed systems needs the 
following capabilities: 

• Discovery of available hosts. A distributed launching system must be able to 
find out what hosts are available to participate in the experiment.  

• Request authentication. Any system of this type must ensure that only requests 
with the proper security credentials are honored.  
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• Filesystem independence. A distributed system should not assume a shared file 
system. Therefore it is its responsibility to see that binaries are transported to the 
execution sites when launching. 

• Host independence. The system should handle the loading and execution of code 
on a variety of architectures. 

• Dynamic system structure. Such a system should allow dynamic structuring of 
experiments, as these experiments will often involve joining and leaving protocols, 
and fault tolerance.  

The CoorSet development environment uses the “Component Starting Component” 
(CSC) [14], an environment for launching Java components to configure and 
instantiate coordination systems for execution on distributed resources. The CSC is 
deployed on participating systems in a network.  Once installed on a host in a network 
it can stay resident indefinitely. A coordination system is initialized by multicasting a 
solicitation for available hosts to discover CSCs without a priori knowledge of their 
locations. After receiving service offers, the program initializing the coordination 
system connects to an appropriate set of responding hosts, and then sends Java 
bytecode data and startup instructions. The CSC loads the component and starts the 
component in a different thread in its local Java Virtual Machine (JVM). 
Communication is guarded by cryptographic signatures to prevent unauthorized use.  
The CSC provides automated support for distributed systems research that does away 
with the necessity of manually logging into a number of remote workstations to 
launch the components of a system.  The “main program” generated by the CoorSet 
compiler consists of a number of instructions to a network of participating CSC units 
to launch the components of the application across available hosts. 

Once the CSC is installed on a network connected by timed asynchronous reliable 
broadcast then distributed coordination systems can be instantiated in minutes or even 
seconds. This allows a CoorSet program to be launched from a single point.  The 
runtime system assigns a unique index to each component, which allows components 
of a like type to differentiate themselves.  The runtime system assigns these in a 
predictable manner based on the format of the configuration file.  This allows 
components running the same code to behave differently if so desired by choosing a 
control path based on that identifier.  This identifier can also be used in interactions 
where a unique identifier is desired, such as for point-to-point communications, or 
identities in an election, just to name a few. 

The Associative Interactions runtime listens to broadcast messages on the 
underlying network substrate, evaluates selectors, and forwards matching messages 
upwards to the application.  Data flow semantics are now supported with a component 
of the run-time system that implements firing rules.  Firing rule components inherit 
standard code that listens to messages and waits for the rule to be satisfied.  The 
computational code connected to that rule is then executed. 

Compound nodes inherit code that provides an event dispatcher for the accepts 
interface, and a standard application programming interface (API) for runtime 
modification of the profile, accepts and requests interfaces. 
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7 Implementation 

The CoorSet language compiler, runtime system, and Component Starting 
Component are implemented in Java.  CoorSet executes either with an 
implementation based on the Light-weight Reliable Multicast Protocol [11] that 
operates on top of IP Multicast, or Scribe [12], a multicast overlay that runs on top of 
the peer-to-peer Pastry [13] protocol.  The latter implementation allows for 
implementation over wide area distributed systems.  The Associative Interface, a class 
which mediates communication between the application and the network, listens on 
the multicast socket and evaluates the selectors of incoming broadcasts as the 
application invokes the message reception API.  Matching messages are delivered, 
and the rest are discarded. 

The CoorSet compiler generates Java classes for each defined component type, and 
a main program invoked to start the system.  These generated classes use methods 
provided by the programmer for the computational part of the component as well as 
the CoorSet library. 

The Component Starting Component is also written entirely in Java.  When it 
receives components to launch, they are launched in independent threads in the same 
virtual machine.  The Java Cryptographic Extensions (JCE), now a standard part of 
the Java SDK, provide the cryptographic primitives for secure key generation, 
signature generation, and signature verification for code bundles. 

The broadcast model of communication allows greater efficiency of 
communication on systems like Ethernet where broadcast is the norm, requiring small 
numbers of messages to reach large numbers of recipients.  In the data fitting example 
in section 5.2, a single message is all that is required to request processing by all 
available fitter units, instead of dispatching a separate message to each one.  This 
represents a savings when some or all of the units are in the same broadcast domain, 
and invokes all units that are available, allowing for transparent replication of fitter 
units.  The invoker can compare results for consistency to guard against faulty units, 
and choose the one that best satisfies a chosen metric amongst the various kinds of fits 
available. 

8 Related Research 

The previous paper [6] positioned the associative broadcast based coordination 
model in classification proposed by Papadopoulos and Arbab [15] and related it to 
other coordination models and languages.  Since this paper focuses on a development 
environment for coordination systems in associative broadcast the related research is 
that which enables development of applications as coordination systems including 
languages, runtime systems and graphical specification environments.   
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8.1 Runtime Systems 

Runtime implementations of coordination models and peer to peer systems are 
essential for experimental research on distributed implementations of coordination 
systems.  The most closely related research to the runtime system described herein is 
Klava [16], which implements the Linda [5] model on top of an infrastructure that 
supports mobile code in a distributed tuple space, including a facility for transporting 
Java code across a network and starting it in a remote location. 

Picco and Buschini [17] describe Linda in a Mobile Environment (LIME) that 
uses the Linda tuple-space model, dividing the tuple-space amongst a number of 
mobile agents.  They extend the model by allowing the tuple space to contain classes, 
and using it as the code basis for a class loading mechanism, instead of the local disk. 

SPACETUB [18] is a simulation environment for Linda-style languages, rather 
than an actual production environment.  Each language is modeled in UML, and 
interpreted by the modeled class whose methods are the primitives of the language 
under consideration.  Although intended to evaluate Linda-like languages, 
SPACETUB itself could be used as a coordination language by agents directly 
invoking SPACETUB’s primitives. 

Peer-to-peer networks can be viewed as a special case of a coordination model, 
where coordination is accomplished entirely on a set of agreed upon protocols for 
interaction.  In this way each has a well-defined interface and a method for interacting 
with peers to request and provide services.  The associative broadcast coordination 
model can be viewed as a peer to peer system with protocols for discovery of services 
and remote procedure calls.   In peer-to-peer and associatively coordinated systems, 
connections are ephemeral, and exist only so long as two components are actually 
interacting.  Although coordination models are commonly more structured than this, 
those particular models are part of a subclass of all coordination models.  In general, a 
coordination model makes no such assumptions of communications medium, or the 
nature of connections between components. 

8.2 Coordination Languages 

HOBS [28], a higher-order calculus for broadcasting systems, models many of 
the important features of the bare Ethernet. It gives a calculus for reasoning about 
broadcast systems, including using “filters” on incoming broadcasts.  This system has 
been implemented in the ML-descended language OCaml.   

PiLar [19] is an architecture description language that uses the π-calculus to 
describe its semantics. Each component is also abstracted with a series of exported 
ports which can be connected to other ports in a strictly point-to-point fashion.  PiLar 
was originally created to describe software architectures, but it is shown that it can be 
used as a coordination language, and an example of implementation of the Linda [5] 
model is given. 

Manifold [20] is a language which collects groups of components into manifolds 
and encapsulates them into an independent process with its own virtual processor, 
having its own set of external ports and interconnections amongst the encapsulated 
members, and reactions to events and other changes in state of the members. 
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Components and manifolds are connected explicitly point-to-point, and once 
constructed, the system remains static. 

Law-Governed Linda (LGL) [25] extends Linda by introducing a controller for 
each entity in the Linda network which mediates communication between the entity 
and the shared tuplespace.  It enforces a set of rules called the law of the system on 
how entities read and write tuples.  These rules are expressed in a predicate calculus 
such as Prolog. 

Coordination Contracts [26] express relationships between objects in a business 
model.  A contract between a number of partners represents an agreement that certain 
invariants will always be maintained, and that actions of partners will be coordinated 
with local actions.  These actions are in the language itself, specifying what an object 
will do when a guard condition is satisfied. 

CoML [21] is an XML-based language that describes the interconnections 
between a group of components implemented in a general-purpose language, for 
components that operate in an interconnection platform such as CORBA, JavaBeans, 
or .NET.  It uses an event-driven model for communication, where there are event 
sources that fire events when conditions are met, such as during state changes, event 
sinks that react upon them, and event data.  Components are composed by describing 
their interfaces and explicit connections to other components.  Connections are 
changeable during runtime. 

Linear Objects [29] are an integration of logic and object programming where the 
“facts” in a knowledge base include methods defined by classes.  Program clauses 
may have multiple “heads” including references to these methods connected by an 
operator closely related to logical disjunction.  Generation of a search tree creates 
references to the method signatures.  Each step in generation of a search tree 
corresponds to a restricted form of broadcasting an associatively addressed message. 

A CoorSet program is equivalent to a parallel production rule program [30] 
where both the rules and the object store are distributed.  There are two object types: a 
rule object type has some member variables and three methods, a condition evaluation 
method, a conflict resolution method and an action execution method, a data object 
type has some member variables and two methods, an access method and a 
distribution method.  

Web Services Flow Language (WSFL) [22] describes interactions amongst web 
services in either a flow model, which illustrates a particular business process, or a 
global model which describes how a set of web services interact without regard to a 
particular application, but this language is geared specifically towards web services 
specified in the Web Services Description Language (WSDL).  Explicit connections 
are made between service instances, and using web service interfaces.  Grid services 
[24] address the same idea as web services, but in the context of the computational 
grid.  Services here also use WSDL, but extend it to allow stateful services, discovery, 
and use of the standard authorization mechanisms present in a grid. 

WSFL’s successor, Business Process Execution Language for Web Services 
(BPEL4WS) [23] describes relationships between business entities which use web 
services for all interaction.  It also allows the separate specification of public 
protocols from private, internal protocols, further underscoring the need for 
components to be viewed as black boxes with a well-defined observable behavior, 
irrespective of how the internals work.  This allows internal processes to be modified 
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as needed, while still maintaining the same public behavior and protocols.  It abstracts 
web services-style interactions into “partner links.” 

9 Summary and Future Research 

The CoorSet development environment appears to provide a capability for readily 
constructing applications in the extended associative interactions coordination model.  
The CSC provides a capability for easily constructing and executing experiments. 

Future research will focus on formulation and evaluation of algorithms and 
applications in the CoorSet coordination model, development of an interactive 
interface for composition of CoorSet programs, and upon providing a more flexible 
and powerful security mechanism for the CSC.   
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