
CoorSet: A Development Environment for Associatively
Coordinated Components

Kevin Kane and J. C. Browne

Department of Computer Sciences, The University of Texas at Austin
1 University Station C0500, Austin, TX 78712-0233 USA

{kane, browne}@cs.utexas.edu

Abstract. A development environment for applications specified in an extended
version of a previously developed coordination model based on associatively
broadcast interactions is presented. The previous associative broadcast
coordination model is extended to incorporate more complex specifications for
interactions including multiple message interactions and fault-tolerance by
replication. The runtime system is extended to facilitate construction and
application of distributed implementation of coordination systems. An interface
definition language based on the extended coordination model and a compiler
for the language are defined and described. Three example applications, a
generalized readers/writers problem including replication, a “greedy reuse”
algorithm and a distributed computation Google pageranks are presented.

1 Introduction

There has been little research on coordination models and languages based on
broadcast communication, despite the fact that many network intrinsically provide a
physical broadcast capability including such widely available systems as Ethernet,
FDDI, and wireless, and that broadcast enables consensus for asynchronous
communication [2].

There has also been, except for Linda-based [5] coordination models and
languages, relatively little experimental or systems-oriented research on application of
coordination models and languages. Experimental research is needed to establish a
basis for application of coordination models and languages and to add credibility to
the utility value of coordination models and languages. This paper extends previous
research on coordination models based on associative broadcast to a development
environment for implementation of coordinating systems of processes, illustrates its
applications and positions this research in the context of distributed and peer to peer
systems research.

The goal for the development environment is to facilitate experimental research
on broadcast-based coordination systems. The principal artifacts of the development
environment are: extensions to the previous associatively broadcast programming
model to facilitate experiments and applications, an interface definition language for

2 Kevin Kane and J. C. Browne

expressing associative interactions, a compiler for this interface definition language
and an environment for instantiating and executing coordinating systems of processes.

Broadcast enables coordination based on every process in an interacting set
locally maintaining common state necessary for collective decision procedures [1, 2].
Associative broadcast [3, 4] enables targeting of messages to processes in specific
states and enables each process to select the properties of messages it will receive.
Basing coordination on associative broadcast communication enables definition of
multiple dynamic coordination subsets in a set of processes. Separation of message
filtering from computation decreases the execution cost of coordination using
broadcast and allows for specialization to specific algorithm requirements.
Associative broadcast preserves anonymity similarly to tuple space based
coordination [5]. It enables transparent distribution and replication for fault-
tolerance. In summary, associative broadcast enables fully distributed and fully
symmetric coordination over dynamic sets of processes.

The next section summarizes the results from previous research on definition and
implementation of a coordination model based on associative broadcast. Section 3
sketches the extended coordination model. Section 4 discusses formulation of
algorithms as coordination systems in the extended coordination model. Section 5
sketches the CoorSet interface definition language and illustrates formulation of
algorithms and computations in the CoorSet coordination development environment
including discussion of definition of algorithms. Section 6 sketches the environment
for instantiating and executing systems of coordinating processes. Section 7 discusses
the implementation of our system. Section 8 gives related research and section 9
gives a summary and conclusions.

2 Associative Broadcast Coordination Model

A previous paper [6] reported a coordination model based on extending
communication by associative broadcast into a coordination model by extending
associative communication to associative interactions. This coordination model will
be referred to as Associatively Specified Interactions (ASI). ASI is a model of
coordination amongst a group of components. A component is a logically distinct
process executing on some host in a network. Components may coexist with other
components on the same physical host, or each may reside on a different host. The
ASI implementation of a component is one or more functions encapsulated by an
interface which implements the ASI interaction protocols. In the ASI protocols, a
target set specification travels with each message that is broadcast onto the network.
The target set is determined for each message by the recipients whose local state
satisfies the target specification. The sender does not know the membership of this
set, and does not necessarily ever discover it.

The state of a component is specified in the interface as a “profile,” which specifies
the visible current state of the component. Profiles are implemented as sets of
attribute/value pairs taken from the attribute domain of the component set that specify
a descriptive name [3] for the component. The target set for a message is determined
by a conditional expression called a “selector,” which is a predicate evaluated against

CoorSet: A Development Environment for Associatively Coordinated Components 3

the profile of each component. The message is broadcast throughout the network, but
is received only by those components for whose profiles the selector evaluates to true.
This allows targeting of messages to subsets of components that have a desired state,
without the sender knowing the membership of that set. All components in the
system configure their profiles and broadcast messages with selectors according to a
coordination protocol. Protocols implementing acknowledgements can be
implemented if needed for a given coordination problem.

3 Extended Associative Broadcast Coordination Model and
Programming Model

The previous associative broadcast coordination model has been extended into a
programming model which enables direct representation of complex interactions with
retention of separation of concerns. This model incorporates two additional features:
complex conditions for enabling execution of a component and replication for both
representation of SPMD parallelism and fault-tolerance.

The conditions for executing and action of a component commonly include receipt
of multiple messages. To maintain separation of concerns it is necessary to
incorporate this requirement into the coordination model.1 We introduce the concept
of a “firing rule” into the coordination model. A firing rule is a specification of the
set of messages which must be received to initiate any action of a component.
Additionally, since components may and often will have persistent state, there may be
precedence relations among possible enabling message sequences. These extensions
are accomplished by adding types to messages and incorporating a conditional
expression over message types and local state into the associative interface.

The definition of firing rules used in the extended coordination model is taken
from a data flow programming model [7], where rather than waiting on a single input,
a node in a data flow graph waits on multiple inputs, possibly in a particular order,
before becoming enabled for execution. Firing rules are specified with a Java-like
logical syntax. Specifying reception of either of two message types R, S is done with
a rule “R || S”. Reception of both of two message types is specified with a rule “R &&
S”. Reception of R followed by S is specified with a rule “R < S”. These rules can be
compounded and grouped with parentheses, such as “(R < S) || (R < T)”. The ‘<’
operator has the lowest precedence, followed by `||’, and `&&’ has the highest
precedence.

Replication is another feature that must be included in associative interaction
specifications to enable facile specification of parallelism and fault-tolerance. SPMD
parallelism can be readily implemented by replication of components. Replication of
functionality for fault-tolerance can be made transparent and synchronization-free
after initialization. If an initiating component starts several replicas of a given
component to insure success in an unreliable environment and each of the replicated

1 In the previous coordination model, if multiple messages were required to enable an action by

a component, the set of actions of the component had to include aggregation of these
messages in effect breaking separation of concerns.

4 Kevin Kane and J. C. Browne

components responses by associative broadcast then the initiating component can
safely proceed after the first successful result and set its profile to ignore the other
completions. A component can be replicated by adding an index attribute to its profile
and instantiating replicas in conformance to the index range. Once specified, a
component can be started an arbitrary number of times. The runtime system will
provide unique identifiers in a predictable way so replicas can alter their behavior, or
they can all execute in the same way depending on the needs of the application.

A component in the extended model is a 5-tuple (S, S0, P, A, R) where S is the
state machine which implements the rules for the protocol specification, and the rules
for profile and interface changes, S0 is the initial state, P is the profile of attributes and
attribute-value pairs, A is the list of accepted transactions (T, TA) where T is a firing
rule and TA is the argument signature, and R is the list of requested transactions (T, TA)
where T is a transaction type and TA is the argument signature. Section 5 illustrates
the concepts in the extended model in CoorSet language examples.

4 Algorithm Formulation

Most distributed algorithms explicitly or implicitly are formulated on the
assumption of central control. Coordination models, on the other hand, do not assume
central control. Development of algorithms and computations in coordination models
therefore requires a shift in development paradigm. Use of a coordination model
based on broadcast communication induces a further shift in development paradigm
since most distributed computations and coordination models are based on point to
point communication.2 There has been relatively little research in formulation of
distributed/parallel algorithms in broadcast models of computation [8].

The development paradigm for distributed algorithms formulated in associative
interactions is the integration of component composition and component interactions.
An algorithm is specified as coordination among a set of components. Composition
defines the structural relationships among components while coordination specifies
the behavior of the composed system. Associative interactions use the same
representation to specify both coordination and composition.

A coordination system is implementing an algorithm or computation is specified in
terms of a set of attributes in which the profiles and selectors are specified, a set of
components from which the algorithm or computation can be composed, a set of
protocols in which interactions are specified including message types, the selectors to
accompany each instance of a message type, the allowed sequences of messages and
the responses to each instance of a message type which is received, and a state
machine which implements the coordination protocols which are interfaced to each
process or component.

2 Linda-based coordination models [5] are the exceptions to this generalization.

CoorSet: A Development Environment for Associatively Coordinated Components 5

5 CoorSet Interface Definition Language

CoorSet is an interface definition language for specification of the behaviors of
components in terms of associative interactions. The CoorSet compiler generates
Java code to implement the coordination models for each component and a “main”
component that starts the application in the runtime system described in Section 6. In
the example that follows, components of the language that deal with details not
directly related to the interface structure have been omitted for clarity; for complete
details of the language, see [9].

component 5 {
 profile (“ReaderWriter”, (“EID”, 2),
 (“Status”, “initializing”))

 execute startUp

 accepts “RequestToRead” processRead ()
 accepts “RequestToWrite” processWrite (Object)

 rule “update_value < (update_done || Collision)” processUpdate

 requests “ReplyFromData” sendReply “Client” (Object)
 requests “update_value” attemptUpdate “ReaderWriter” (Object, Integer)
 requests “update_done” completeUpdate “ReaderWriter” (Integer)
 requests “Collision” updateCollide “ReaderWriter” (Integer)
}

Fig. 1. CoorSet definition of a replicated data object store.

5.1 Readers/Writers Algorithm In CoorSet

To demonstrate the language for describing components, we introduce a
generalized distributed readers/writers system implemented in CoorSet. The data
objects are replicated for fault-tolerance. Consistency is maintained across non-
malicious failures of components and/or runtime creation of additional replicas. This
generalized readers/writers problem is rather complex when programmed in
conventional distributed/parallel programming languages but is quite simple in
CoorSet. The readers/writers system consists of a set of reader/writer objects which
store a data item that is replicated across multiple independent stores, and a set of
client components which randomly invoke reads and writes of randomly selected data
items. Each reader/writer is a single component in the system. Each encapsulates and
stores a single replica of a single data item, provides reading and writing facilities to
clients, and implements a coordination protocol amongst all the other replicas of that

6 Kevin Kane and J. C. Browne

data item when a write is requested. Each replica’s profile contains the unique
identifier of the data object, and an index to indicate which replica it is. Each
reader/writer component keeps track of the version number of its data item, increasing
it each time an update is made. When two updates are attempted simultaneously,
meaning they are sent out with the same sequence number, they are said to “collide.”
When they do, they are aborted. Each then executes an exponential backoff algorithm
before attempting the update again with a new sequence number. A definition
fragment for the reader/writer component is given in Figure 1.

The “5” immediately following the “component” declaration specifies that five
instances will be started of a component which has an initial profile of three entries.
First, an ID attribute named ReaderWriter distinguishes it from other kinds of
components in the system, such as clients. Second, a valued attribute EID (for entry
identifier) indicates which data item this object contains. Here the entry identifier is
declared in the configuration file, implying that each data object’s replicas are
declared separately. Third, a valued attribute named Status with the value initializing.
This is the state of the component when it initially comes online, to show that it is not
yet operational, and needs to synchronize with whatever other data stores are already
in operation. This attribute later changes to values local processing, reading, and
writing to reflect the various states it is in when processing requests.

This component type accepts two message types, RequestToRead and
RequestToWrite. These requests are made by clients who want to read and write the
data item, respectively. In each case, reception of these messages causes execution of
the methods processRead and processWrite on the programmer-supplied
computational code (not shown), each of which takes the given parameter types.

The readers/writers component also implements a firing rule which first receives
an update_value message, and then an update_done message to indicate the update is
successful, or a collision to indicate two writes were attempted at the same time and
collided.

This component also requests four message types. ReplyFromData is the response
sent to clients in response to a request to read or write. It carries a single Object
parameter, which will contain a copy of the data item when read. Its default selector
of “Client” will be received by all clients, but when such a response is actually sent,
the selector will be refined to target only the requesting client. update_value,
update_done, and Collision are all sent during the various stages of consensus to
attempt an update of the data item, to signal the update is successful, or conversely,
when two attempted updates collide and must be aborted. Each takes the new
sequence number of the updated data, and for update_value, the new data value. Each
of these are by default targeted to all other data stores by the default selector
“ReaderWriter”. The optional execute line specifies a method on the programmer-
supplied class to execute immediately upon component start-up; if this line is absent,
the component just waits for incoming transactions upon starting.

For a simple performance study the data objects were replicated 2 and 4 times.
The number of processes reading and writing was varied up to 64, each on a separate
workstation on a network. The average number of messages was about Nx2.5 where
N is the number of data object replicas. Note that the performance of the algorithm is
almost independent of the number of readers and writers.

CoorSet: A Development Environment for Associatively Coordinated Components 7

5.2 Data Fitting Example

We now present a more complex example of distributed data fitting, motivated by
the concept of “greedy reuse” [10]. “Greedy reuse” uses execution of multiple,
perhaps redundant components, to ensure the success of a computation by
simultaneously executing multiple implementations of a required functionality when
it is not certain which implementation should be used. “Greedy reuse” is complex to
program in conventional distributed programming systems but simple as a
coordination language program. Consider an application that collects a set of data
points, and requires approximating them by a curve. There are many possible
approaches to data fitting. Consider for illustration a case where it is unclear simply
from the data set what method will yield a fit with certain properties required by the
application. Possible properties are a minimum of error, compactness of
representation, and smoothness of curve. It may be that the requirement is satisfied
only by a composition of fits.

Using associatively-coordinated components, several data fits can be executed
simultaneously by addressing a data set with a selector that matches to true for the
profiles of all data fitting components. The selector can be made more specific if only
certain types of fits are desired. This application has more obvious connections
between components as is common in more typical coordination models, and the
component which initiates the computation is separate from the one that receives the
result, to give a linear data flow as illustrated by Figure 2. There is no explicit link
between these components, and each circle in fact represents any number of
components of that type which may be operating when the request is made. These
links should be seen as dynamic, existing only as long as they are required.

Fig. 2. Data flow between components of the data fitter application.

8 Kevin Kane and J. C. Browne

Transparent replication and fault-tolerance is obtained by having several copies of
the same type of component running, and when the calling component receives all of
the results, it can compare them to choose the ones which meet the requirements, or
alternatively, those which are faulty. In an unreliable environment the initiating
component might choose to simultaneously execute multiple copies of another
component just to insure that a result is computed and successfully received with high
probability.

We have, for this illustration of concepts, implemented components that provide an
exact Lagrange interpolating polynomial fit, a least squares approximation, and a
natural cubic spline fit. Each component maintains a profile that identifies it as a data
fitting component for the purposes of addressing, as well as profile entries that allow
it to be addressed more directly when an application wants only a particular kind of
fitting.

The dynamic structure of associative broadcast allows an application to link to all
components available at the time a request is made, and to do so without explicit
knowledge of what components are available; simply the knowledge of the accepts
interfaces used by data fitting components is sufficient.

There are two possible system configurations for the components. The
components can be active as daemons on hosts in the broadcast network in which case
the initiating component is invoked on some hosts and discovery, linking and
execution proceeds as previously described. Alternatively, the components can be in
a file with the initiating component or in a library. In these latter cases the runtime
system will distribute the components to hosts in the broadcast network and start the
associative interaction runtime system.

Figure 3 contains the definition fragments for each of the types of components in
CoorSet. These interface definitions are used to create the initial configuration of the
component network. Some details have been omitted due to space constraints.

In this example, we have five types of components. In this case, three of each of
the fitter components is started, as indicated by the “3” after the “node” keyword, to
create replicated instances. There is only a single instance of the other components,
CurveRequestor and CurveCollector. The types of components are:

• CurveRequestor: A component that has collected some data set, and requires
it be fit to a curve. It does not accept any transactions, but makes a
“DataFit” request to all data fitting components by way of its selector.

• LagrangeModule: An exact Lagrange interpolating polynomial. Its initial
profile has one attribute called “DataFitter” to indicate that it is a data fitting
component, and a valued attribute called “Method” with a value of
“Lagrange” to specify the particular kind of data fitter it is. It accepts the
“FitData” request, and makes a “FitDataRespnse_Poly” request to send its
result.

• LeastSquaresModule: A least squares polynomial fitter. Its interface is
almost identical to that of the Lagrange module, except that its profile
reflects its being a Least Squares fitter, rather than a Lagrange interpolating
polynomial fitter.

• NatCubicModule: A natural cubic spline fitter. It accepts the same “FitData”
transaction, but responds with a “FitDataResponse_Spline” transaction,
which contains a spline rather than a single polynomial.

CoorSet: A Development Environment for Associatively Coordinated Components 9

• CurveCollector: A component that accepts the resulting curve fits from the
above components. Its default profile contains an attribute called
“CurveCollector,” which also is the default for selectors for the responses
from the above components.

There are also three types of requests for service:

component 1 {
 class CurveRequestor
 execute start
 requests "FitData" Request "DataFitter" (String, Double[], Double[], Integer)
}
component 3 {
 class LagrangeModule
 profile ("DataFitter", ("Method", "Lagrange"))
 accepts "FitData" processRequest (String, Double[], Double[], Integer)
 requests "FitDataResponse_Poly" sendResponse "CurveCollector"
 (String, Double[])
}
component 3 {
 class LeastSquaresModule
 profile ("DataFitter", ("Method", "LeastSquares"))
 accepts "FitData" processRequest (String, Double[], Double[], Integer)
 requests "FitDataResponse_Poly" sendResponse "CurveCollector"
 (String, Double[])
}
component 3 {
 class NatCubicModule
 profile ("DataFitter", ("Method", "NatCubicSpline"))
 accepts "FitData" processRequest (String, Double[], Double[], Integer)
 requests "FitDataResponse_Spline" sendResponse "CurveCollector"
 (String, Cubic[], Cubic[])
}
component 1 {
 class CurveCollector
 profile (“CurveCollector”)
 accepts "FitDataResponse_Poly" processPoly (String, Double[])
 accepts "FitDataResponse_Spline" processSpline (String, Cubic[], Cubic[])
}

Fig. 3. Initial configuration of data fitting in CoorSet

• FitData: A request for a data fit. This transaction has four parameters: the

first, a String, specifies a transaction identifier, so that multiple fits may be
requested and the responses can be connected with the appropriate request.
The next two parameters are arrays of Double values, representing the X and

10 Kevin Kane and J. C. Browne

Y coordinates of the data points. The final Integer parameter specifies the
maximum order of the polynomial, for polynomial fitters that can bound the
polynomial degree.

• FitDataResponse_Poly: A response to a data fitting request, containing a
polynomial fitting to the data. It carries a String with the transaction
identifier for which this is a fit, and an array of Double values representing
the polynomial coefficients.

• FitDataResponse_Spline: A response to a data fitting request, containing a
natural cubic spline fitting to the data. It also carries a String transaction
identifier, as well as two arrays of Cubic polynomials. The first is a
piecewise parameterized representation of the X coordinates of the spline,
and the second is a piecewise parameterized representation of the Y
coordinates.

5.3 Distributed Computation of Google Pageranks

The Google PageRank algorithm [31] is the computation of the eigenvectors of the
lowest eigenvalue of a matrix defined by the link structure of web pages. This
computation is readily formulated in asynchronous iteration [32]. We have
implemented a distributed, dynamic computation [27] of pageranks in CoorSet.
Documents which have url-like links are distributed across a set of hosts (which
model web servers.) coupled by a broadcast capability. The pageranks are computed
in place in the hosts. Pageranks are incrementally computed as documents are added
or deleted. A detailed discussion of the implementation of this algorithm is beyond
the scope of this paper. On a data set of 1000 documents running on eight processors
on a 100-megabit local area network, an average of 1846 messages were required to
converge, with an average running time of 68.6 seconds.

6 Runtime Functionality for CoorSet

The requirements for experimental research on distributed coordination systems in
CoorSet are: implementation of timed reliable asynchronous broadcast, configuration
and realization of coordination systems on distributed resources and a runtime system
which supports the extended associative interactions coordination model specified in
Section 3. This section defines and describes the capabilities for these three
requirements currently implemented for the CoorSet development environment.

A system for supporting experimental research on distributed systems needs the
following capabilities:

• Discovery of available hosts. A distributed launching system must be able to
find out what hosts are available to participate in the experiment.

• Request authentication. Any system of this type must ensure that only requests
with the proper security credentials are honored.

CoorSet: A Development Environment for Associatively Coordinated Components 11

• Filesystem independence. A distributed system should not assume a shared file
system. Therefore it is its responsibility to see that binaries are transported to the
execution sites when launching.

• Host independence. The system should handle the loading and execution of code
on a variety of architectures.

• Dynamic system structure. Such a system should allow dynamic structuring of
experiments, as these experiments will often involve joining and leaving protocols,
and fault tolerance.

The CoorSet development environment uses the “Component Starting Component”
(CSC) [14], an environment for launching Java components to configure and
instantiate coordination systems for execution on distributed resources. The CSC is
deployed on participating systems in a network. Once installed on a host in a network
it can stay resident indefinitely. A coordination system is initialized by multicasting a
solicitation for available hosts to discover CSCs without a priori knowledge of their
locations. After receiving service offers, the program initializing the coordination
system connects to an appropriate set of responding hosts, and then sends Java
bytecode data and startup instructions. The CSC loads the component and starts the
component in a different thread in its local Java Virtual Machine (JVM).
Communication is guarded by cryptographic signatures to prevent unauthorized use.
The CSC provides automated support for distributed systems research that does away
with the necessity of manually logging into a number of remote workstations to
launch the components of a system. The “main program” generated by the CoorSet
compiler consists of a number of instructions to a network of participating CSC units
to launch the components of the application across available hosts.

Once the CSC is installed on a network connected by timed asynchronous reliable
broadcast then distributed coordination systems can be instantiated in minutes or even
seconds. This allows a CoorSet program to be launched from a single point. The
runtime system assigns a unique index to each component, which allows components
of a like type to differentiate themselves. The runtime system assigns these in a
predictable manner based on the format of the configuration file. This allows
components running the same code to behave differently if so desired by choosing a
control path based on that identifier. This identifier can also be used in interactions
where a unique identifier is desired, such as for point-to-point communications, or
identities in an election, just to name a few.

The Associative Interactions runtime listens to broadcast messages on the
underlying network substrate, evaluates selectors, and forwards matching messages
upwards to the application. Data flow semantics are now supported with a component
of the run-time system that implements firing rules. Firing rule components inherit
standard code that listens to messages and waits for the rule to be satisfied. The
computational code connected to that rule is then executed.

Compound nodes inherit code that provides an event dispatcher for the accepts
interface, and a standard application programming interface (API) for runtime
modification of the profile, accepts and requests interfaces.

12 Kevin Kane and J. C. Browne

7 Implementation

The CoorSet language compiler, runtime system, and Component Starting
Component are implemented in Java. CoorSet executes either with an
implementation based on the Light-weight Reliable Multicast Protocol [11] that
operates on top of IP Multicast, or Scribe [12], a multicast overlay that runs on top of
the peer-to-peer Pastry [13] protocol. The latter implementation allows for
implementation over wide area distributed systems. The Associative Interface, a class
which mediates communication between the application and the network, listens on
the multicast socket and evaluates the selectors of incoming broadcasts as the
application invokes the message reception API. Matching messages are delivered,
and the rest are discarded.

The CoorSet compiler generates Java classes for each defined component type, and
a main program invoked to start the system. These generated classes use methods
provided by the programmer for the computational part of the component as well as
the CoorSet library.

The Component Starting Component is also written entirely in Java. When it
receives components to launch, they are launched in independent threads in the same
virtual machine. The Java Cryptographic Extensions (JCE), now a standard part of
the Java SDK, provide the cryptographic primitives for secure key generation,
signature generation, and signature verification for code bundles.

The broadcast model of communication allows greater efficiency of
communication on systems like Ethernet where broadcast is the norm, requiring small
numbers of messages to reach large numbers of recipients. In the data fitting example
in section 5.2, a single message is all that is required to request processing by all
available fitter units, instead of dispatching a separate message to each one. This
represents a savings when some or all of the units are in the same broadcast domain,
and invokes all units that are available, allowing for transparent replication of fitter
units. The invoker can compare results for consistency to guard against faulty units,
and choose the one that best satisfies a chosen metric amongst the various kinds of fits
available.

8 Related Research

The previous paper [6] positioned the associative broadcast based coordination
model in classification proposed by Papadopoulos and Arbab [15] and related it to
other coordination models and languages. Since this paper focuses on a development
environment for coordination systems in associative broadcast the related research is
that which enables development of applications as coordination systems including
languages, runtime systems and graphical specification environments.

CoorSet: A Development Environment for Associatively Coordinated Components 13

8.1 Runtime Systems

Runtime implementations of coordination models and peer to peer systems are
essential for experimental research on distributed implementations of coordination
systems. The most closely related research to the runtime system described herein is
Klava [16], which implements the Linda [5] model on top of an infrastructure that
supports mobile code in a distributed tuple space, including a facility for transporting
Java code across a network and starting it in a remote location.

Picco and Buschini [17] describe Linda in a Mobile Environment (LIME) that
uses the Linda tuple-space model, dividing the tuple-space amongst a number of
mobile agents. They extend the model by allowing the tuple space to contain classes,
and using it as the code basis for a class loading mechanism, instead of the local disk.

SPACETUB [18] is a simulation environment for Linda-style languages, rather
than an actual production environment. Each language is modeled in UML, and
interpreted by the modeled class whose methods are the primitives of the language
under consideration. Although intended to evaluate Linda-like languages,
SPACETUB itself could be used as a coordination language by agents directly
invoking SPACETUB’s primitives.

Peer-to-peer networks can be viewed as a special case of a coordination model,
where coordination is accomplished entirely on a set of agreed upon protocols for
interaction. In this way each has a well-defined interface and a method for interacting
with peers to request and provide services. The associative broadcast coordination
model can be viewed as a peer to peer system with protocols for discovery of services
and remote procedure calls. In peer-to-peer and associatively coordinated systems,
connections are ephemeral, and exist only so long as two components are actually
interacting. Although coordination models are commonly more structured than this,
those particular models are part of a subclass of all coordination models. In general, a
coordination model makes no such assumptions of communications medium, or the
nature of connections between components.

8.2 Coordination Languages

HOBS [28], a higher-order calculus for broadcasting systems, models many of
the important features of the bare Ethernet. It gives a calculus for reasoning about
broadcast systems, including using “filters” on incoming broadcasts. This system has
been implemented in the ML-descended language OCaml.

PiLar [19] is an architecture description language that uses the π-calculus to
describe its semantics. Each component is also abstracted with a series of exported
ports which can be connected to other ports in a strictly point-to-point fashion. PiLar
was originally created to describe software architectures, but it is shown that it can be
used as a coordination language, and an example of implementation of the Linda [5]
model is given.

Manifold [20] is a language which collects groups of components into manifolds
and encapsulates them into an independent process with its own virtual processor,
having its own set of external ports and interconnections amongst the encapsulated
members, and reactions to events and other changes in state of the members.

14 Kevin Kane and J. C. Browne

Components and manifolds are connected explicitly point-to-point, and once
constructed, the system remains static.

Law-Governed Linda (LGL) [25] extends Linda by introducing a controller for
each entity in the Linda network which mediates communication between the entity
and the shared tuplespace. It enforces a set of rules called the law of the system on
how entities read and write tuples. These rules are expressed in a predicate calculus
such as Prolog.

Coordination Contracts [26] express relationships between objects in a business
model. A contract between a number of partners represents an agreement that certain
invariants will always be maintained, and that actions of partners will be coordinated
with local actions. These actions are in the language itself, specifying what an object
will do when a guard condition is satisfied.

CoML [21] is an XML-based language that describes the interconnections
between a group of components implemented in a general-purpose language, for
components that operate in an interconnection platform such as CORBA, JavaBeans,
or .NET. It uses an event-driven model for communication, where there are event
sources that fire events when conditions are met, such as during state changes, event
sinks that react upon them, and event data. Components are composed by describing
their interfaces and explicit connections to other components. Connections are
changeable during runtime.

Linear Objects [29] are an integration of logic and object programming where the
“facts” in a knowledge base include methods defined by classes. Program clauses
may have multiple “heads” including references to these methods connected by an
operator closely related to logical disjunction. Generation of a search tree creates
references to the method signatures. Each step in generation of a search tree
corresponds to a restricted form of broadcasting an associatively addressed message.

A CoorSet program is equivalent to a parallel production rule program [30]
where both the rules and the object store are distributed. There are two object types: a
rule object type has some member variables and three methods, a condition evaluation
method, a conflict resolution method and an action execution method, a data object
type has some member variables and two methods, an access method and a
distribution method.

Web Services Flow Language (WSFL) [22] describes interactions amongst web
services in either a flow model, which illustrates a particular business process, or a
global model which describes how a set of web services interact without regard to a
particular application, but this language is geared specifically towards web services
specified in the Web Services Description Language (WSDL). Explicit connections
are made between service instances, and using web service interfaces. Grid services
[24] address the same idea as web services, but in the context of the computational
grid. Services here also use WSDL, but extend it to allow stateful services, discovery,
and use of the standard authorization mechanisms present in a grid.

WSFL’s successor, Business Process Execution Language for Web Services
(BPEL4WS) [23] describes relationships between business entities which use web
services for all interaction. It also allows the separate specification of public
protocols from private, internal protocols, further underscoring the need for
components to be viewed as black boxes with a well-defined observable behavior,
irrespective of how the internals work. This allows internal processes to be modified

CoorSet: A Development Environment for Associatively Coordinated Components 15

as needed, while still maintaining the same public behavior and protocols. It abstracts
web services-style interactions into “partner links.”

9 Summary and Future Research

The CoorSet development environment appears to provide a capability for readily
constructing applications in the extended associative interactions coordination model.
The CSC provides a capability for easily constructing and executing experiments.

Future research will focus on formulation and evaluation of algorithms and
applications in the CoorSet coordination model, development of an interactive
interface for composition of CoorSet programs, and upon providing a more flexible
and powerful security mechanism for the CSC.

Acknowledgements

This research was supported by the National Science Foundation under grant
number 0103725, “Performance-Driven Adaptive Software Design and Control.” We
also wish to express our gratitude to the reviewers who suggested additional related
work for our consideration, as well as future lines of research.

References

1. Dolev, D., Dwork, C., and Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM (1987) 34(1):77-97.

2. Turek, J. and Shasha, D.: The Many Faces of Consensus in Distributed Systems. Computer
(1992) 25(6):8-17.

3. Bayerdorffer, B.: Associative broadcast and the communication semantics of naming in
concurrent systems. Ph.D. dissertation, Department of Computer Sciences, The University
of Texas at Austin (1993).

4. Bayerdorffer, B.: Distributed computing with associative broadcast. Proceedings of the
Twenty-Eighth Hawaii International Conference on System Sciences (1995).

5. Gelertner, D.: Generative communication in Linda. ACM Trans. Prog. Lang. Sys., (1985)
7(1):80-112.

6. Browne, J. C., Kane, K. and Tian, H.: An associative broadcast based coordination model
for distributed processes. Proceedings of COORDINATION 2002, LNCS 2315, Springer-
Verlag (2002) 96-110.

7. Newton, P. and Browne, J. C.: The CODE 2.0 Graphical Parallel Programming Language.
Proceedings of the ACM International Conference on Supercomputing (1992) 167-177.

8. Dolev, D. and Malki, D.: On distributed algorithms in a broadcast domain. Proceedings of
ICALP (1993) 371-387.

9. Kane, K. “The CoorSet Interface Definition Language.” Preprint.
10. Mittermeir, R. and Wurfl, L.: Greedy Reuse: Architectural Considerations for Extending the

Reusability of Components.” Proceedings of SEKE’96, the Eighth International Conference
on Software Engineering and Knowledge Engineering (1996).

16 Kevin Kane and J. C. Browne

11. Liao, T.: Light-weight Reliable Multicast Protocol. INRIA Technical Report (1998),
http://webcanal.inria.fr/lrmp/lrmp_paper.ps

12. Rowstron, A., Kermarrec, A-M., Castro, M., and Druschel, P.: SCRIBE: The design of a
large-scale event notification infrastructure. NGC2001, UCL, London (2001).

13. Rowstron, A. and Druschel, P.: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany (2001) 329-350.

14. Kane, K. and Browne, J.C.: The Component Starting Component: an environment for
distributed systems and peer to peer research. Department of Computer Sciences Technical
Report TR-03-42, University of Texas at Austin (2003).

15. Papadopoulos, G. A. and Arbab, F.: Coordination Models and Languages. Advances in
Computers, v. 46, Academic Press, August 1998.

16. Bettini, L., De Nicola, R., and Pugliese, R.: Klava: a Java Framework for Distributed and
Mobile Applications. Software – Practice and Experience (2002) 32:1365-1394.

17. Picco, G. and Buschini, M.: Exploiting Transiently Shared Tuple Spaces for Location
Transparent Code Mobility. Proceedings of COORDINATION 2002, LNCS 2315, Springer-
Verlag (2002) 258-271.

18. Tolksdorf, R. and Rojec-Goldmann, G.: The SPACETUB Models and Framework.
Proceedings of COORDINATION 2002, LNCS 2315, Springer-Verlag (2002) 348-363.

19. Cuesta, C., de la Fuente, P., Barrio-Solórzano, M., and Beato, E.: Coordination in a
Reflective Architecture Description Language. Proceedings of COORDINATION 2002,
LNCS 2315, Springer-Verlag (2002) 141-148.

20.Arbab, F., Herman, I. and Spilling, P.: An overview of Manifold and its implementation.
Concurrency: Practice and Experience (1993) 5(1):23-70.

21. Birngruber, D.: CoML: Yet Another, But Simple Component Composition Language.
Proceedings of Workshop on Composition Languages (2001).

22.Leymann, F.: Web Services Flow Language (WSFL 1.0). http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

23.Thatte, S. (ed.): Specification: Business Process Execution Language for Web Services
Version 1.1. http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

24.The Globus Alliance: Open Grid Services Architecture. http://www.globus.org/ogsa/
25. Minsky, N. and Leichter, J.: Law-Governed Linda as a Coordination Model. Object-Based

Models and Languages for Concurrent Systems, LNCS 924, Springer-Verlag (1995) 125-
146.

26. Andrade, L. and Fiadeiro, J.: Interconnecting objects via contracts. UML'99 -- Beyond the
Standard, R.France and B.Rumpe (eds), LNCS 1723, Springer-Verlag (1999) 566-583.

27. Sankaralingam, K., Sethumadhavan, S. and Browne, J.C.: Distributed Pageranks for P2P
Systems” Proceedings of the Twelfth IEEE International Symposium on High Performance
Parallel and Distributed Systems (2003) 58-69.

28. Ostrovský, K.: Higher Order Broadcasting Systems. Thesis for the Degree of Licentiate of
Philosophy, Göteborg University (2002).

29. Andreoli, J-M. and Pareschi, R.: Linear Objects: Logical Processes with built-in Inheritance
Proceedings of 7th ICLP (1990) 495-510.

30.Wu, S. Y., Miranker, D. P., and Browne, J. C.: Decomposition Abstraction in Parallel Rule
Languages. IEEE Transactions on Parallel and Distributed Systems (1996) 7(11):1164-
1184.

31. Page, L., Brin, S., Motwani, R., and Winograd, T.: The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford Digital Library Technologies Project, 1998.

32. Chazan, D. and Miranker, W.: Chaotic relaxation. Linear Algebra Applications, 2 (1969)
199-222.

http://webcanal.inria.fr/lrmp/lrmp_paper.ps
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.globus.org/ogsa/

