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Abstract. This paper presents a programming model, an interface definition 
language (P-COM2) and a compiler that composes parallel and distributed 
programs from independently written components. P-COM2 specifications 
incorporate information on behaviors and implementations of components to 
enable qualification of components for effectiveness in specific application 
instances and execution environments. The programming model targets 
development of families of related programs. One objective is to be able to 
compose programs which are near-optimal for given application instances and 
execution environments. Component-oriented development is motivated for 
parallel and distributed computations. The programming model is defined and 
described and illustrated with a simple example.  The compilation process is 
briefly defined and described. Experience with one more complex application, 
a generalized fast multipole solver is sketched including performance data, 
some of which was surprising.  

1   Introduction 

This paper presents a language (P-COM2)1 and a compiler that composes parallel and 
distributed programs from independently written components and illustrates their application. 
P-COM2 is an interface definition language which incorporates information on behaviors and 
implementations of components to enable qualification of components for effectiveness in 
specific application instances and execution environments. The general strategy is somewhat 
similar to composition of programs in the Web Services paradigm but the goals are quite 
different.  A component is a serial program which is encapsulated by an associative interface 
[8,11] which specifies the properties of the component. The composition implemented by the 
compiler is based on matching of associative interfaces and generates as final output either an 
MPI program or multi-threaded code for a shared memory multi-processor. The CODE [26] 
parallel programming system is used as an intermediate language and is the immediate target 
language of the compositional compiler. 

Component-oriented software development is one of the most active and significant threads 
of research in software engineering [1,10,15,29]. There are many motivations for raising the 
level of abstraction of program composition from individual statements to components with 
substantial semantics. It is often the case that there is a family of applications which can be 
generated from a modest number of appropriately-defined components. Optimization and 
adaptation for different execution environments is readily accomplished by creating and 
maintaining multiple versions of components rather than by direct modifications of complete 

                                                                 
1 P-COM2 stands for Parallel COMposition from COMponents. 



applications.  Programs generated and maintained as compositions of components are much 
more understandable and thus much more readily modifiable and maintainable. 

Even though there are additional benefits to component-oriented development in the 
distributed and parallel domain2, there has been relatively little research on component based 
programming in the context of high performance parallel and distributed programming. 
(Section  8 summarizes related work.) The execution environments for parallel programs are 
much more diverse than those for sequential programs.  It is often necessary to maintain 
multiple versions of parallel programs for different execution environments.  Program 
development by composition of components enables adaptation of parallel programs to 
different execution environments and optimization for different application instances by 
replacement of components. Adaptive control of parallel and distributed programs [3] is also 
enabled by replacement of components.  Management of adaptations such as degree of 
parallelism and load balancing are readily accomplished at the component level.   Parallelism is 
most often determined by the number of instances of a component which are executing in 
parallel (SPMD parallelism). The P-COM2 language and the compiler explicitly make 
provision for dynamic SPMD parallelism  It has also been found that viewing programs as 
compositions of components tends to lead to programs with better structuring and better 
performance even for sequential versions. 

P-COM2 approaches component-oriented development of parallel and distributed programs 
from a different perspective than most other projects.  The principal concerns and goals for the 
P-COM2 project have been to enable automation or at least partial automation of composition 
through a compiler, to develop a mechanism enabling runtime adaptation of parallel and 
distributed programs at the component level [3] and to enable performance-oriented, 
evolutionary development of parallel and distributed programs. This paper covers the first 
topic, compiler-implemented composition. The P-COM2 interface definition language 
incorporates information on component properties and behaviors as well as 
function/procedure/method interfaces including an implicit state machine to sequence 
invocations of components with internal state. Additionally the P-COM2 system targets 
development of families of programs with instances of the family targeting given application 
instances or given execution environments. 

The P-COM2 language and compiler have been used in implementing some substantial 
programs. One of the applications is to construct components and compose programs for 
solving linear equations using a fast multipole solver (FMM). The FMM code can be 
formulated in either a memory intensive or computation intensive formulation and at points in 
between.  It is complex to write a parameterized program spanning these options but they are 
readily composed from parameterized components. The compiler has also been applied in the 
composition of parallel method of lines (MOL) codes for solving time dependent partial 
differential equations. MOL also has a great number of possible configurations and runtime 
adaptations.   

The remainder of the paper is organized in the following way. Section 2 explains some 
terms and concepts used in the compiler. Next, the programming model, the language and the 
compilation process are described in section 3, 4, and 5 respectively. Then a simple program, a 
macro-parallel FFT algorithm [32], is used to introduce the programming model, the 
programming language (which is an interface definition language) and the compilation process 
in section 6. The components and compilation process and a short discussion of the FMM code 
is given in Section 7. Section 8 discusses related work in this area. The paper is concluded and 
some future directions are discussed in Section 9. 

                                                                 
2 CORBA, Web Services, etc. which are very much component-oriented development systems, are not 

commonly used for development of parallel or high performance applications. 



2   Definition of Terms and Concepts 

Domain Analysis: Domain analysis [5] identifies the components from which a family of 
programs in the domain can be constructed and identifies a set of attributes in which the 
properties and behaviors of the components can be defined.  It is usually the case that 
applications require components from multiple domains. 

 

Component: A component is one or more sequential computations, an interface which 
specifies the information used for selection and matching of components and a state machine 
which manages the interface, the interactions with other peers and the invocation of the 
sequential computations. An interaction, which may be initiated as an incoming message (or 
set of messages) or as an invocation of a transaction, will trigger an action which is associated 
with some state of the state machine.  The action may include execution of a sequential 
computation.  
 

Sequential Computation: A computation is a unit of work that implements some atomic 
functionality. A computation is a sequential program which refers only to its own local 
variables and its input variables. 
 

Associative Interface: An associative interface [8] encapsulates a component. It describes the 
behavior and functionality of a component. One of the most important properties of associative 
interfaces is that they enable differentiation among alternative implementations of the same 
component. These interfaces are called "associative" because selection and matching is similar 
to operations on content-addressable memories.  An associative interface consists of an accepts 
specification and a requests specification. 

 

Accepts Specification: An accepts interface specifies the set of interactions in which a 
component is willing to participate. The accepts interface for a component is a set of three-
tuples (profile, transaction, protocol). 

 

• A profile is a set of attribute/value pairs. Components have a priori agreement on the set of 
attributes and values which can appear on the accepts and requests interface of a 
component. 

• A transaction specification incorporates one or more function signatures including the data 
types, functionality and parameters of the unit of work to be executed and a state machine 
which manages the order of execution of the units of work. The state machine is defined in 
the form of conditional expressions over states and function signatures. A transaction can be 
enabled or disabled based on its current state and its current state can be used in runtime 
binding of the components. Multiple transactions controlled by the state machine can be 
used to represent complex interactions such as precedence of transactions, "and" 
relationships among transactions acting as a barrier and "or" relationships between 
transactions representing alternative ways of executing the component. 

• A protocol defines a sequence of simple interactions necessary to complete the interaction 
specified by the profile. The most basic protocol is data-flow (continuations), which is 
defined as executing the functionality of a component and transmitting the output to a 
successor defined by the selectors at that component without returning to the invoking 
component. More complex interaction protocols such as call-return and persistent 
transactions are planned but not yet implemented. 
 

Requests Specification: A requests interface specifies the set of interactions which a 
component must initiate if it is to complete the interactions it has agreed to accept. The 
requests interface is a set of three-tuples (selector, transaction, protocol). A component can 
have multiple tuples in its requests interface to implement its required functionality.  

 



• A selector is a conditional expression over the attributes of all the components in the 
domain. 

• Transaction specifications are similar to those for accepts specifications. 
• Protocol specifications are as given for accepts specifications. 

 

Start Component: A start component is a component that has at least one requests interface 
and no accepts interface. Every program requires a start component. There can be only one 
start component in a program which provides a starting point for the program. 
 

Stop Component: A stop component is a component that has at least one accepts interface and 
no requests interface. A stop component is also a requirement for termination of a program. 
There can be more than one stop component of a program denoting multiple ending points for 
the program. 

3   Programming Model 

The domain-based, component-oriented programming model targets development of a family 
of programs rather than a single program. The programming model has two phases: 
development of families of components and specification of instances from the family of 
programs which can be instantiated from the sets of components. 

3.1   Component Development 
 

The set of components which enables construction of a family of application programs may 
include components which utilize different algorithms for different problem instances or 
different implementation strategies for different execution environments.  A program for a 
given problem instance or given execution environment is composed from appropriate 
components by selecting desired properties for the components and the properties of the 
execution environment in the Start component. The steps for developing components are: 

 

a. Domain Analysis – Execute the necessary domain analyses.  It is usually the case that 
applications require components from multiple domains. 

b. Component Development – Specify and either design and implement or discover in 
existing libraries, the family of components identified in the domain analysis in an 
appropriate sequential procedural language. 

c. Encapsulate – Encapsulate the components in the P-COM2 interface definition language 
using the attributes identified in the domain analysis to specify associative interfaces 
for the components.  The interfaces must differentiate the components by identifying 
their properties in terms of the attributes defined in the domain analysis. 

3.2   Program Instance Development 
 

The steps in specifying a given instance of an application are: 
 

a. Analyze the problem instance and the target execution environment. Identify the 
attributes and attribute values which characterize the components desired for this 
problem instance and execution environment. 

b. Identify the components from which the application instance will be composed. If the 
needed components are not available then some additional implementations of 
components may be necessary together with an extension of the domain analysis. 

c. Identify the dependence graph of the application instance. The dependence graph is 
expressed in terms of the components identified. Specify the number of replications 
desired for parallelism and for fault-tolerance.  Incorporate these specifications into the 



component interfaces or as parameters in the Start component if parameterized 
parallelism has been incorporated into the component interfaces. 

d. Define a Start component which initializes the replication parameters, sets attribute 
values needed to ensure that the desired components are selected and matched. 

e. Define at least one Stop component. 

4   The Interface Definition Language- P-COM2 

The fundamental concepts underlying the interface definition language were given in Section 
2.  The syntax will be illustrated in the example in Section 6.  Here we discuss what is 
expressed in the interfaces specifiable in the language.   

The language is rooted on the domain analyses for the program family.  The domain 
analyses specify problem domain knowledge.  It is expected that an application developer 
should be able, once familiar with the concepts of domain analysis, to generate domain 
analyses for a family of codes in her/his area of expertise.  The associative interfaces define the 
behaviors of the components and will usually give properties of a given component's 
implementation of its functionality. Properties of desired implementations such as degree of 
parallelism for a given component are also specified in the associative interface as runtime 
determined parameters.  It is often desirable for a component to retain state across executions. 
There may be precedence or sequencing relations among the transactions implemented by a 
component.   Precedence and sequencing information is also specified in the interface as an 
implicit state machine implemented as a conditional expression over the states of the 
components and the transaction specifications. Finally, the protocol specification enables 
choice among interaction modes (Although only one is currently implemented). 

5   Compilation Process 

The conditional expression of a selector is a template which has slots for attribute names and 
values. The names and values are specified in the profiles of other components of the domain. 
Each attribute name in the selector expression of a component behaves as a variable. The 
attribute variables in a selector are instantiated with the values defined in the profile of another 
component. The profile and the selector are said to match when the instantiated conditional 
expression evaluates to true. 

The source program for the compilation process is a start component with a sequential 
computation which implements initialization for the program and a requests interface which 
specifies the components implementing the first steps of the computation and one or more 
libraries to search for components.  The libraries should include the components needed to 
compose a family of applications specified by a domain analysis.  The set of components 
which is composed to form a program is primarily dependent on the requests interface of the 
start component. 

The target language for the compilation process is a generalized data flow graph as defined 
in [26].  A node in this data flow graph consists of an initialization, a firing rule, a sequential 
computation and a routing rule for distribution of the outputs of the computation.  There are 
two special node types, a start node and a stop node.  Acceptable data flow graphs must begin 
with a start node and terminate on a stop node. 

The compilation process starts by parsing the associative interface of the start component. 
The compiler then searches a specified list of libraries for components whose accepts interface 
matches with the requests interface of the start component. The matching process is actually 
not much more than a sophisticated type matching.  If the matching between the selector of one 



component and the profile of another component is successful, the compiler tries to match the 
corresponding transactions of the requests and accepts interface. The transactions are said to 
match when all of the following conditions are true. 1) The name of the two transactions is the 
same. 2) The number of arguments of each of the two transactions is the same. 3) The data type 
of each argument in the requests transaction is the same as that of the corresponding argument 
in the accepts transaction. 4) The sequencing constraint given by the conditional expression in 
the accepts transaction specification (the state machine) is satisfied. Finally the protocol 
specifications must be consistent.  

When compilation of the start component is completed, it is converted into a start node [26] 
for the data flow graph which will represent the parallel program and each match of a requests 
interface to an accepts interface results in addition of a node to the data flow graph which is 
being incrementally constructed by the compilation process and an arc connecting the this new 
node to the node which is currently being processed by the compiler.  If there is a replication 
clause in a transaction specification then at runtime the specified number of replicas of the 
matched component are instantiated and linked with data flow arcs. This searching and 
matching process for the requests interface is applied recursively to each of the components 
that are in the matched set. The composition process stops when no more matching of 
interfaces is possible which will always occur with a Stop component since a Stop component 
has no requests interface. Compilation of a P-COM2 stop component results in generation of a 
stop node for the data flow graph.  The compiler will signal an error if a requests interface 
cannot be matched with an accepts interface of a desired component.  The data flow graph 
which has been generated is then compiled to a parallel program for a specific architecture by 
compilation processes implemented in the CODE [26] parallel programming system. 

6   Example Program 

This section presents an example program showing the complete process of developing a 
parallel program for the fast Fourier transformation (FFT) of a matrix in two dimensions from 
simple components.   The algorithm presented is an adaptation of Swarztrauber's 
multiprocessor FFT algorithm [32]. This problem is simple enough to cover in detail and 
illustrates many of the important concepts such as stateful components and precedence 
constraints. Given an N x M matrix of complex numbers where both N and M are powers of 2, 
we want to compute the 2D FFT of the complex matrix. This 2D FFT can be described in terms 
of 1D FFTs, which helps in parallelizing the algorithm. Let us assume that there are P available 
processors where P is also a power of 2. In this case the domain analysis is straightforward and 
is an analysis of the algorithm itself. The steps of the algorithm are following: 

 

a) Partitioning the matrix row wise (horizontally) into P submatrices, one for each 
processor. 

b) Sending these submatrices to each of the P processors for computation. The size of 
each the submatrix is N/P x M. 

c) Each processor performs a 1D FFT on every row of the submatrix that it received. 
d) Collecting these 1D FFT’s and then transposing the N x M matrix. The resulting 

matrix is of size M x N. 
e) Splitting the M x N matrix row wise into P submatrices. The size of each of the 

submatrix is M/P x N. 
f) Sending these submatrices to the each of the P processors for computation. 
g) Again each processor performs a 1-D FFT on every row of the submatrix that it 

received. 



h) Collecting all the submatrices from the P processors and transposing the M x N 
matrix to get an N x M matrix. The resulting N x M matrix is the 2D FFT of the 
original matrix. 

 

This simple analysis suggests that all of the instances of this algorithm can be created from 
composing instances of three components: a one-dimensional FFT component, a component 
which partitions and distributes matrices and a component which merges rows or columns to 
recover a matrix and which may optionally transpose the recovered matrix. Let us name the 
components as fft_row, distribute, and gather_transpose respectively. One could as well 
formulate the algorithm with separate components for merge and transpose but that could 
introduce additional communication.  Or the algorithm can use any 1D FFT algorithm to 
calculate the 2D FFT of the matrix.  Additionally the choice of implementation for 
transposition of an array may vary with execution environment. Note that each of the 
components above can be reused as each of them is actually used twice in the algorithm. These 
components could reasonably be expected to be found as "off the shelf" component which can 
be found and reused from linear algebra and fft libraries. Other than the above three 
components we need a component that will read/initialize the matrix and one component to 
print out the final result. Let us name the component as initialize and print. The component to 
read/initialize the array may be the Start component and the print component may be the Stop 
component.  The Start component will be written to specify the set of component instances 
which will be composed for a given data set and target execution environment. 

 

…… gather_transpose 

initialize 

distribute 

fft_row 

gather_transpose print 

distribute

… … fft_row 

 
Fig. 1. Data Flow Graph of 2D FFT Computation 

 

The depencence graph of the program in terms of these components is shown in Figure 1.  
This data flow graph suggests an optimization of creating a new component which combines 
the functions of distribute and gather_transpose.  This depending on the mapping of nodes to 
processors, could eliminate two transmissions of the large matrix.  As shown in Figure 1, 
parallelism can be achieved through the use of multiple fft_row components. Note that the 
gather_transpose component has to keep track of its state as it sends data to the distribute 
component on its first execution and to the print component after its second execution. 

Once we have identified the components, the next step is to complete the domain analysis 
by defining a list of attributes through which we can describe the functions, behaviors and 
implementations of a component and their instantiations.  When some service is required it is 
described in terms of the attributes in the format of accepts and requests interfaces. 

The two domains from which this computation is composed are the matrix and fft domains. 
There is a generic attribute "Domain" which is required for multi-domain problems.  The 
matrix domain has these distinct attributes: 

 

a) Function: an attribute of type string. Describes its function. 
b) Element_type: an attribute of type string. Describes the type information of the input 

matrix. 
c) Distribute_by_row: an attribute of type boolean. Describes whether the component 

partitions the matrix by row or by col. 
 

The fft domain has these attributes: 
 

a) Input: an attribute of type string. Describes the input structure. 



b) Element_type: an attribute of type string. Describes the type information of the input. 
c) Algorithm: an attribute of type string.  
d) Apply_per_row: an attribute of type boolean. Describes whether to apply the FFT 

function per row or per column. 
The completed domain analysis for the components is shown in Figure 2. Once the domain 

analysis is done, we encapsulate the components in associative interfaces using the attributes 
and transactions. 

As shown in Figure 3, the requests interface of the initialize component specifies that it 
needs a component that can distribute a matrix row-wise. The interface passes real and 
imaginary parts of the matrix, the dimension of the matrix and the total number of processors 
to the distribute component using the transaction specification. The data type mat2 is defined 
as a two dimensional array data type. 

 

 

Fft_row 
a) Domain: fft 
b) Input: matrix 
c) Element_type: complex 
d) Algorithm: 1d-fft  
e) Apply_per_row: true 

Gather_transpose 
a) Domain: matrix 
b) Function: gather 
c) Element_type: complex 
d) Combine_by_row: true 
e) Transpose: true 

Fig. 2. Domain Analysis of the Components 

Distribute 
 a) Domain: matrix 
 b) Function: distribute 
 c) Element_type: complex 
 d) Distribute_by_row: true 

Print 
a) Domain: print 
b) Input: matrix 
c) Element_type: complex 

 

Figure 4a shows the accepts interface of the distribute component. This distribute 
component assumes that the matrix which it partitions and distributes will be merged.  This is 
specified in Figure 4b.  The first selector interfaces to the gather_transpose component 
providing the size of each of the submatrices, the total number of submatrices to collect at the 
gather_transpose component and also state information which is needed in the gather_transpose 
component. The second selector in Figure 4b specifies that it needs p instances of the fft_row 
component and distributes the submatrices to each of the replicated components along with 
their size. The construct "index [p]" is used to specify that multiple copy of the fft_row 
component are needed. The construct "[]" with the transaction argument is used to transmit 
different data to different copies of component. For different transmission patterns, different 
constructs may be used in the language of the interface. Note that the number of instances of 
the fft_row component is determined at runtime. 

 

 
Fig. 3. Requests Interface of Initialize Component 

selector: 
  string domain == "matrix"; 
  string function == "distribute"; 
  string element_type == "complex"; 
  bool distribute_by_row == true; 
transaction: 
  int get_matrix(out mat2 grid_re,out mat2 grid_im, out  
                 int n, out int m, out int p); 
protocol: dataflow; 



 
Fig. 4a. Accepts Interface of distribute component 

profile: 
  string domain = "matrix"; 
  string function = "distribute"; 
  string element_type = "complex"; 
  bool distribute_by_row = true; 
transaction: 
  int get_matrix(in mat2 grid_re,in mat2 grid_im, in int n,  
                 in int m, in int p); 
protocol: dataflow; 

 

Figure 5a specifies that this implementation of fft_row component uses the "Cooley-Tukey" 
algorithm [13]. The fft_row component requires no knowledge of how many copies of itself are 
being used. From Figure 5b, we can see that the instance number of the fft_row component is 
passed to the gather_transpose component using the variable "me". 

Figure 6a illustrates the use of the ">" operator between the transactions to describe the 
precedence relationship between the transactions. The second transaction cannot execute until 
the first transaction is completed. The gather_transpose component collects the submatrices 
one by one through the second transaction in the interface.  P-COM2 incorporates precedence 
ordering operations sufficient to express simple state machines for management of interactions 
among components. 

 
Fig. 4b. Requests Interface of distribute component 

selector: 
  string domain == "matrix"; 
  string function == "gather";  
  string element_type == "complex"; 
  bool combine_by_row == true; 
  bool transpose == true; 
transaction: 
  int get_p(out int n/p, out int m, out int p,  
            out int state); 
protocol: dataflow; 
{selector: 
  string domain == "fft"; 
  string input == "matrix"; 
  string element_type == "complex"; 
  string algorithm == "Cooley-Tukey"; 
  bool apply_per_row == true; 
transaction: 
  int get_grid_n_m(out mat2 out_grid_re[],out mat2  
                   out_grid_im[], out int n/p, out int m); 
protocol: dataflow; 
}index [ p ] 

 

As shown in Figure 6b, the first requests interface of the gather_transpose component is 
used to connect to the distribute component. The second interface connects to the print 
component. The variable “state” is used to enable one of the transactions based on the current 
state of the gather_transpose component. 

 

 

Fig. 5a. Accepts Interface of Fft_row Component 

profile: 
  string domain = "fft"; 
  string input = "matrix"; 
  string element_type = "complex"; 
  string algorithm = "Cooley-Tukey"; 
  bool apply_per_row = true; 
transaction : 
  int get_grid_n_m(in mat2 grid_re,in mat2 grid_im,in int n,  
                   in int m); 
protocol: dataflow; 



 
Fig. 5b. Requests Interface of Fft_row Component 

selector: 
  string domain == "matrix"; 
  string function == "gather"; 
  string element_type == "complex"; 
  bool combine_by_row == true; 
  bool transpose == true; 
transaction: 
  int get_grid_n_m_inst(out mat2 out_grid_re,out mat2  

                 out_grid_im, out int me); 
protocol: dataflow; 

 
Fig. 6a. Accepts Interface of Gather_transpose Component 

profile: 
  string domain = "matrix"; 
  string function = "gather"; 
  string element_type = "complex"; 
  bool combine_by_row = true; 
  bool transpose = true; 
  transaction: 
  int get_p(in int n, in int m, in int p,in int state);  
   > 
  int get_grid_n_m_inst(in mat2 grid_re,in mat2 grid_im, 
                        in int inst); 
protocol: dataflow; 

 
Fig. 6b. Requests Interface of Gather_transpose Component 

selector: 
  string domain == "matrix"; 
  string function == "distribute"; 
  string element_type == "complex"; 
  bool distribute_by_row == true; 
transaction: 
  %{  state == 1, gathered == p }%  
  int get_matrix(out mat2 out_grid_re,out mat2 out_grid_im,  
                 out int m, out int n*p, out int p); 
protocol: dataflow; 
selector: 
  string domain == "print"; 
  string input == "matrix"; 
  string element_type == "complex"; 
transaction: 
  %{  state == 2, gathered == p }%  
  int get_grid_n_m(out mat2 out_grid_re,out mat2  
                   out_grid_im, out int m,out int n*p); 
protocol: dataflow; 

7   Case Study - A Generalized Fast Multipole Solver 

The Fast Multipole Method (FMM) [20,21], which solves the N-body electrostatics problems 
in O(N) rather than O(N2) operations, is central to fast computational strategies for particle 
simulations. The FMM is also useful for iterative solution of linear algebraic equations 
associated with approximate solution of integral equations. There the FMM is used for O(N) 
matrix-vector multiplication. In order to adapt the FMM for applications in fluid and solid 
mechanics, the classical electrostatics problem must be replaced with a generalized 
electrostatics problem [17,18].  Such problems involve vector and tensor valued charges, which 
means that one generalized electrostatics problem is equivalent to several classical 
electrostatics problems, which share the same geometry. In particular, FLEMS code [17] relies 



on the generalized electrostatics problem that is equivalent to 13 classical electrostatics 
problems. 

We have performed a domain analysis for the FMM for generalized (multiple charge type) 
electrostatics. For example, the FMM tree has certain attributes, such as its depth and its 
number of charges per cell and the application component has an attribute with values that 
select between classical and generalized electrostatics. For generalized electrostatics the 
number of charge types is an attribute. For each attribute, the analysis defines a range of legal 
values.  Components for a family of FMM codes for generalized electrostatics were derived 
from the FLEMS FMM implementation. These components were given associative interfaces 
that define their properties and behaviors and were annotated with domain attributes and 
architectural attributes. An instance of the component family can be specified by providing 
specific values for each attribute. An example of an attribute that would lead to different 
implementations is the number of charge types to be processed simultaneously. 

There are a family of space-computation tradeoffs which can be applied in the matrix-
structured formulation [30] of the FMM algorithm which can be chosen to optimize the code 
for a given execution environment and problem specification.  These include:  

• Simultaneous computation of cell potentials for multiple charge types. 
• Use of optimized library routines for vector-matrix multiply. 
• Use of optimized library routines for matrix-matrix multiply. 
• Loop interchange over the two outer loops to improve locality (Within a component). 
• Number of terms in the multipole expansion. 

There are many variants of these structures and interactions among them. The original 
FMM implementation in the FLEMS code is approximately 4500 lines in length with the logic 
distributed throughout the code.  Manual construction of optimized versions for even a modest 
number of execution environments would lead to rather complex code.  But a small number 
(eight) of  components characterized by the number of charges which are simultaneously 
computed and the number of terms in the multipole expansion suffice to realize an important 
subset of execution environment optimized codes. 
The FMM includes five translation theorems: 

• Particle charge to Multipole (P2M is applied at the finest partitioning level) 
• Multipole to Multipole (M2M is applied at all partitioning levels, from the finest to the 

coarsest) 
• Multipole to Local (M2L is applied at all partitioning levels) 
• Local to Local (L2L is applied at all partitioning levels, from the coarsest to the finest) 
• Local to Particle potential and forces (L2P is applied at the finest partitioning level) 
Two kinds of components are needed structure the FMM computation framework. The first 

category comes directly from the FMM algorithm. The five translation theorems, charges-to-
multipole, multipole-to-multipole, multipole-to-local, local-to-local, local-to-potential and 
force, and direct-interaction calculation belong to this category. The second category contains 
the communication components, distribute and collect which actually also derive from the 
FMM algorithm since they implement distribution and collection according to the interaction 
lists for each partition of the domain..  

The data flow graph for the FMM code for two processors is shown in Figure 7. 
 



  
Fig. 7. Data flow Graph of FMM code 

An extensive set of performance studies were made comparing the original and 
componentized sequential codes.  Preliminary results are reported [16] and a more detailed 
paper is in preparation.  The performance of the sequential componentized code, contrary to 
conventional wisdom, is up to 15 times faster than the original implementation which had itself 
been optimized by several generations of students and post-doctoral fellows.  This surprising 
result is largely due to specialization of functionality based on selection of optimal components 
and replacing loop implementations of matrix-matrix multiply by BLAS implementations of 
matrix-matrix multiply.  Table 1 shows a small sample of the performance data obtained. The 
data was taken on a Linux cluster of Pentium III’s at 1.8 Gigahertz and a 100MB Ethernet 
interconnect.  There are approximately half a million charges in this system.  There are two 
factors to be noted: (i) Speedup is near-linear for the small number of processors and (ii) the 
time increases less than linearly with the number of charge types due to the change due to 
optimizations local to components.   

Table 1. Performance data for tree depth of four. 
 

Number of 
Charge Types 

Run time on 
2 processors 

(Seconds) 

Run time on 
4 processors 

(Seconds) 

Run time on 
8 processors 

(Seconds) 
5 413.84 215.52 121.11 

12 561.53 305.50 254.14 
 

8   Related Research 

There has been relatively little research on component based programming in the context of 
parallel and distributed program. Darwin [25] is a composition and configuration language for 
parallel and distributed programs. Darwin uses a configuration script to compose programs 
from components. This composition process is effectively manual. In our approach, the 
composition information encapsulates the components themselves, as a result the compiler can 
choose the required component automatically. 



The component-based software development environment [23,28] of the SciRun project 
feature powerful graphical composition of data flow graphs of components which are compiled 
to parallel programs. H2O [31] is a component-oriented framework for composition of 
distributed programs based on web services. Triana [33] is a graphical development 
environment for composing distributed programs from components targeting peer to peer 
execution environments. The G2 [24] composes distributed parallel programs from web 
services through Microsoft .Net.  Armada [27] composes distributed/parallel programs 
specialized to data movement and filtering. 

The Common Component Architecture (CCA) project [6] is a major research and 
development project focused on composition of parallel programs from components. One 
primary goal of CCA is to enable composition of programs from components written in 
multiple languages. CCA has developed interface standards. The implementations of the CCA 
interface specifications are object-oriented. There are several tools, XCAT, [19] Ccaffeine [14] 
and BABEL [7,9] implementing the CCA interface specification system.  Component 
composition are either graphical or through scripts and make files. CCA components interact 
through two types of ports. The first type of port is the provides port. The provides port is an 
interface that components provide to other components. The second type of port is the uses 
port. It is an interface through which components connects with other components which they 
require. These port type exhibit some similarities to the accepts and requests transaction 
specifications. However, the details and implementations are quite different as we have focused 
on incorporation of the information necessary to enable composition by compilation. 

ArchJava [4] annotates ports with provides and requires methods which helps the 
programmer to better understand the dependency relations among components by exposing it 
to the programmer. The accepts and requests interface of a P-COM2 component incorporate 
signatures as do ArchJava provides and requires.  The accepts and requests interfaces also 
include profiles and precedence specification carrying semantic information and enabling 
automatic program composition. The attribute name/value pairs in profiles are used for both 
selecting and matching components thereby providing a semantics-based matching in addition 
to type checking of the matching interfaces. 

The use of associative interface has been reported earlier in the literature. Associative 
interface is used in one broadcast based coordination model [12]. This model uses run time 
composition, whereas our paper presents compile time composition. Associative interfaces 
have also been reported in composition of performance modeling [11]. 

9   Conclusion and Future Research 

This paper has presented a programming model, a programming system and a compiler for 
composing distributed and parallel programs from independently written components. The 
conceptual foundations are domain analysis, support for families of programs, integration and 
automation of discovery and linking and management of components with state. 

The component-based development method described and illustrated in this paper is not 
intended for development of small or "one-off" applications.  The investment of effort in 
domain model development and characterization and encapsulation of components is not trivial 
and these software engineering methods are not typically a part of the development process for 
high performance applications.  The target applications are those where several instances of an 
application are to be developed, where the application may need to be optimized for several 
different execution environments or where the application is expected to evolve over a 
substantial period of time.  In such cases the investment of effort in domain model 
development and characterization and encapsulation of components can be expected to show 



return.   That being said, the parallel programs which have been developed to demonstrate and 
evaluate the method show good performance and are readily evolvable. 

We are currently investigating the feasibility of combining runtime [12] and compile-time 
composition of associative interfaces. We plan to implement a hybrid graphical composition 
and compiler-based composition system.  We also plan to integrate the compositional compiler 
with the Broadway annotational compiler [22] to overcome the problem of "too many 
components."  Finally we are working on additional applications including an hp-adaptive 
finite element code. 
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