Software Reuse by Specialization of
Generic Procedures through Views

Gordon S. Novak Jr. *

August 1, 1997

Copyright (©)1997 by IEEE.

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

This article appears in [EEE Transactions on Software Engineering, vol. 23, no. 7, July
1997.

Abstract

A generic procedure can be specialized, by compilation through views, to operate
directly on concrete data. A view is a computational mapping that describes how a
concrete type implements an abstract type. Clusters of related views are needed for
specialization of generic procedures that involve several types or several views of a
single type. A user interface that reasons about relationships between concrete types
and abstract types allows view clusters to be created easily. These techniques allow
rapid specialization of generic procedures for applications.

Index Terms — software reuse, view, generic algorithm, generic procedure, algorithm
specialization, partial evaluation, direct-manipulation editor, abstract data type.

1 Introduction

Reuse of software has the potential to reduce cost, increase the speed of software production,
and increase reliability. Facilitating the reuse of software could therefore be of great benefit.

*G. S. Novak, Jr. is with the Department of Computer Sciences, University of Texas, Austin, TX 78712.
An Automatic Programming Server demonstration of this software is available on the World Wide Web via
http://www.cs.utexas.edu/users/novak; running the demo requires X windows.

Rigid treatment of type matching presents a barrier to reuse. In most languages, the
types of arguments of a procedure call must match the types of parameters of the procedure.
For this reason, reuse is often found where type compatibility occurs naturally, i.e. where
the types are basic or are made compatible by the language (e.g. arrays of numbers).

A truly generic procedure should be reusable for any reasonable implementation of its
abstract types; a developer of a generic should be able to advertise “my program will work
with your data” without knowing what the user’s data representation will be. We seek reuse
without conformity to rigid standards. We envision two classes of users: developers, who
understand the details of abstract types and generic procedures, and users, programmers
who reuse the generics but need less expertise and understanding of details. Developers
produce libraries of abstract types and generics; by specializing the generics, users obtain
program modules for applications.

A view provides a mapping between a concrete type and an abstract type' in terms of
which a generic algorithm is written. Fig. 1 illustrates schematically that a view acts as
an interface adapter that makes the concrete type appear as the abstract type?. The view
provides a clean separation between the semantics of data (as represented by the abstract
type) and its implementation, so that the implementation is minimally constrained. Once
a view has been made, any generic procedure associated with the abstract type can be
automatically specialized for the concrete type, as shown in Fig. 2. In our implementation,
the specialized procedure is a Lisp function; if desired, it can be mechanically translated into
another language. Tools exist that make it easy to create views; a programmer can obtain a
specialized procedure to insert records into an AVL tree (185 lines of C) in a few minutes.

Data i i Procedure
) Generic
Data :] :] View b b Procedure

Figure 1: Interfacing with Strong Typing and with Views

'We consider an abstract type to be a set of basis variables and a set of generic procedures that are
written in terms of the basis variables.
2Goguen [18] and others have used a similar analogy and diagram.

Concrete Generic
Type Procedure

Y Y

Specialized

Compiler >

Y

View
Procedure

Figure 2: Specialization of Generic Procedure through View

This approach to reuse has several advantages:

1. It provides freedom to select the implementation of data; data need not be designed
ab initio to match the algorithms.

2. Several views of a data structure can correspond to different aspects of the data.

3. Several languages are supported. Lisp, C, C++, Java, or Pascal can be generated from
a single version of generic algorithms.

4. Tools simplify the specification of views and reduce the learning required to reuse
software.

5. Views can be used to automatically:

(a) specialize generic procedures from a library,
(b) instantiate a program framework from components,
(

translate data from one representation to another,

)

(c)

d) generate methods for object-oriented programming, and
)

(e) interface to programming tools for data display and editing.

This paper describes principles of views and specialization of generic algorithms, as well
as an implementation of these techniques using the GLISP language and compiler; GLISP
is a Lisp-based language with abstract data types.

Section 2 describes in conceptual terms how views provide mappings between concrete
types and abstract types. Section 3 describes the GLISP compiler and how views are used in
specializing generic algorithms. Section 4 discusses clusters of related views that are needed
to reuse generic algorithms that involve several types or several views of a type. Section 5
describes the program VIEWAS, which reasons about relations between concrete types and
abstract types and makes it easy to create view clusters. Section 6 describes higher-order
code and a generic algorithm for finding a convex hull that uses other generics and uses
several views of a single data structure. Section 7 describes use of views with object-oriented
programming. Section 8 surveys related work, and Section 9 presents conclusions.

2 Views

2.1 Computation as Isomorphism

It is useful to think of all computation as simulation or, more formally, as isomorphism.
This idea has a long history; for example, isomorphism is the basis of denotational semantics
[20]. Goguen [18] [19] describes views as isomorphisms, with mappings of unary and binary
operators. QOur views allow broader mappings between concrete and abstract types and
include algorithms as well as operators. We use isomorphism to introduce the use of views.

Preparata and Yeh [56] give a definition and diagram for isomorphism of semigroups:

Given two semigroups Gy = [5,0] and G = [T,%|, an invertible function
¢ S — T is said to be an isomorphism between (G; and Gy if, for every a

and bin S, @(aob) = p(a)*e(b) .

a i Qp p(a)
b ©(b)
a :3 b 1 w(a) * p(b)

Since ¢ is invertible, there is a computational relationship: a 0 b = = (¢(a) * (b)) . If
a o b is difficult to obtain directly, its value can be computed by encoding a and b using ¢,
performing the computation p(a) * ¢(b), and decoding or interpreting the result using the
inverse p~'. A diagram is said to commute [2] if the same result is obtained regardless of
which path between two points is followed, as shown in the diagram above.

2.2 Views as Isomorphisms

Reuse of generic algorithms through views corresponds to computation as isomorphism. The
concrete type corresponds to the left-hand side of an isomorphism diagram; the view maps
the concrete type to the abstract type. The generic algorithm corresponds to an operation on
the abstract type. By mapping from the concrete type to the abstract type, performing the
operation on the abstract type, and mapping back, the result of performing the algorithm on
the concrete type is obtained. However, instead of performing the view mapping explicitly

Concrete view Abstract Concrete

Type Type Type
Compilation,
Optimization
Generic — Specialized
Algorithm Algorithm
Concrete view ' Abstract Concrete
Result Result Result

Figure 3: Specializing a Generic

and materializing the abstract data, the mappings are folded into the generic algorithm to
produce a specialized version that operates directly on the concrete data (Fig. 3).

As an example, let concrete type pizza contain a value d that represents the diameter
of the (circular) pizza. Suppose abstract type circle assumes a radius value r. A view
from pizza to arcle will specify that r corresponds to d/2. A simple generic procedure
that calculates the area of a circle can then be specialized by compilation through the view.
Because the view mapping is folded into the generic algorithm and optimized, the specialized
algorithm operates directly on the original data and, in this case, does no extra computation
(Fig. 4). Code to reference d in data structure pizza is included in the specialized code.

. r=14 .
mzza circle mzza
Compilation,
Optimization
_ 2
area =T - r? = area—z-d
area area area

Figure 4: Example Specialization

2.3 Abstract Data Types and Views

An abstract type is an abstraction of a set of concrete types; it assumes an abstract record
containing a set of basis variables® and has a set of named generic procedures that are written
in terms of the basis variables.*

Any data structure that contains the basis variables, with the same names and types,
implements the abstract type. To maximize reuse, constraints on the implementation must
be minimized: it should be possible to specialize a generic procedure for any legitimate
implementation of its abstract type.

pizza-as-circle

pizza

diameter

1. 1T 71
radius /

Figure 5: Encapsulation of Concrete Type by View

A view encapsulates a concrete type and presents an external interface that consists of
the basis variables of the abstract type. Fig. 5 illustrates how view type pizza-as-circle
encapsulates pizza and presents an interface consisting of the radius of abstract type
circle. The radius is implemented by dividing field diameter of pizza by 2; other fields
of pizza are hidden. Code for this example is shown in the following section. In the general
case, the interface provides the ability to read and write each basis variable. A read or write
may be implemented as access to a variable of the concrete record or by a procedure that
emulates the read or write, using the concrete record as storage.®

A view implements an abstract type if it emulates a record containing the basis variables.
Emulation is expressed by two properties:

1. Storage: After a value z is stored into basis variable v, reference to v will yield z.

3Although it is not required, our abstract types usually specify a concrete record containing the basis
variables; this is useful as an example and for testing the generic procedures.

4This definition of abstract type is different from the algebraic description of abstract types [11] as a
collection of abstract sorts, procedure signatures, and axioms. In the algebraic approach, an abstract type
is described without regard to its implementation. In our approach, an abstract implementation is assumed
because the abstract type has generic procedures that implement operations.

5Views can be implemented in an object-oriented system by adapter or wrapper objects [16], where a
wrapper contains the concrete data, presents the interface of the abstract type, and translates messages
between the abstract and concrete types. Our views give the effect of wrappers without creating them.

2. Independence: 1If a reference to basis variable v yields the value z and a value is then
stored into some other basis variable w, a reference to v will still yield z.

These properties express the behavior expected of a record: stored values can be retrieved,
and storing into one field does not change the values of others.

If a view implements an abstract type exactly, as described by the storage and inde-
pendence properties, then any generic procedure will operate in the same way (produce the
same output and have the same side effects) when operating on the concrete data through
the view as it does when operating on a record consisting of the basis variables. That is, an
isomorphism holds between the abstract type and concrete type, and its diagram commutes.
This criterion is satisfied by the following variations of data:

1. Any record structure may be used to contain the variables. ©

2. Names of variables may differ from those of the abstract type: views provide name
translation, and the name spaces of the concrete and abstract types are distinct.

Some generics use only a subset of basis variables; only those that are used must be defined
in a view. An attempt to use an undefined basis variable is detected as an error.

A view in effect defines functions to compute basis variables from the concrete variables;
if a generic procedure is to “store into” basis variables, these functions must be invertible.
Simple functions can be inverted automatically by the compiler. For more complex cases, a
procedure can be defined to effect a store into a basis variable. The procedures required for
mathematical views may be somewhat complex: in the case of a polar vector (r,8), where
the abstract type is a Cartesian vector (z,y), an assignment to basis variable + must update
both r and 6 so that = will have the new value and y will be unchanged. A program MKV
(“make view”) [54] allows a user to specify mathematical views graphically by connecting
corresponding parts of the concrete type and a diagram associated with the abstract type;
MKYV uses symbolic algebra to derive view procedures from the correspondences.

For wider reuse, the storage and independence properties must be relaxed slightly. Even
a simple change of representation, such as division of the diameter value by 2 in the pizza
example, changes the point at which numerical overflow occurs; there could also be round-off
error. Significant changes of representation should be allowed, such as representing a vector
in polar coordinates (r,6) when the basis variables are in Cartesian coordinates (z,y). If
a polar vector is viewed as a Cartesian vector using transformations z = r - cos() and
y = r-sin(f), the mapping is not exact due to round-off error, nor is it one-to-one; however,
it 1s sufficiently accurate for many applications. Ultimately, the user of the system must
ensure that the chosen representation is sufficiently accurate.

In some cases, a user might want to specify a contents type and let the system define a
record using it, e.g. an AVL tree containing strings. This is easily done by substituting the
contents type into a prototype record definition with the view mappings predefined.

The next section describes how views are implemented and compiled in GLISP.

5This could include arrays, or sub-records reached by a fixed sequence of pointer traversals.

3 GLISP Language and Compiler

GLISP [46, 47, 48, 49] (“Generic Lisp”), a high-level language with abstract data types, is
compiled into Lisp; it has a language for describing data in Lisp and in other languages.

GLISP is described only briefly here; for more detail, see [49] and [46].

3.1 Data-independent Code

A GLISP type is analogous to a class in object-oriented programming (OOP); it specifies
a data structure and a set of methods. For each method, there is a name (selector) and a
definition as an expression or function. As in OOP, there is a hierarchy of types; methods
can be inherited from ancestor types. The methods of abstract types are generic procedures.

In most languages, the syntax of program code depends on the data structures used; this
prevents reuse of code for alternative implementations of data. GLISP uses a single Lisp-like
syntax. In Lisp, a function call is written inside parentheses: (sqrt x). A similar syntax
(feature object) is used in GLISP to access any feature of a data structure [49]:

1. If feature is the name of a field of the type of object, data access is compiled.
2. If feature is a method name (selector) of the type of object, the method call is compiled.

3. If feature is the name of a view of the type of object, the type of object is locally
changed to the view type.

4. If feature is a function name, the code is left unchanged.

5. Otherwise, a warning message is issued that feature is undefined.

This type-dependent compilation allows variations in data representation: the same code
can be used with data that is stored for one type but computed for another type. For
example, type circle can assume radius as a basis variable, while a pizza object can store
diameter and compute radius.

The GLISP compiler performs type inference as it compiles expressions. When the type
of an object is known at compile time, reference to a feature can be compiled as in-line code
or as a call to a specialized generic. Specialized code depends on the types of arguments
to the generic. Compilation by in-line expansion and specialization is recursive at compile
time and propagates types during the recursion; this is an important feature. Recursive
expansion allows a small amount of source code to expand into large output code; it allows
generic procedures to use other generics as subroutines and allows higher-order procedures
to be expanded through several levels of abstraction until operations on data are reached.

Symbolic optimization folds operations on constants [62], performs partial evaluation [7]
[12] and mathematical optimization, removes dead code, and combines operations to improve
efficiency. It provides conditional compilation, since a conditional is eliminated when the

test can be evaluated at compile time. Optimization often eliminates operations associated
with a view, so that use of the view has little or no cost after compilation.

3.2 Views in GLISP

A view [46, 49, 50] is expressed as a GLISP type whose record is the concrete type. The
abstract type is a superclass of the view type, allowing generics to be inherited 7. The view
type encapsulates the concrete type and defines methods to compute basis variables of the
abstract type. As specialized versions of generics are compiled, the compiler caches them
in the view type. Examples of abstract type circle, concrete type pizza, and view type
pizza-as-circle are shown below; each gives the name of the type followed by its data
structure, followed by method (prop), view, and superclass specifications.

(circle (list (center vector) (radius real))
prop ((area (pi * radius "~ 2))))

(pizza (cons (diameter real) (topping symbol))
views ((circle pizza-as-circle)))

(pizza-as-circle (p pizza)
prop ((radius ((diameter p) / 2)))
supers (circle))

pizza-as-circle encapsulates pizza and makes it appear as a circle; its record is named
p and has type pizza. It defines basis variable radius as the diameter of p divided by 2 and
specifies circle as a superclass; it hides other data and methods of pizza ®. The following
example shows how area defined in circle is compiled through the view; GLISP function
t1 is shown followed by compiled code in Lisp.

(gldefun t1 (pz:pizza) (area (circle pz)))

result type: REAL
(LAMBDA (PZ) (* 0.78539816 (EXPT (CAR PZ) 2)))

The code (circle pz) changes the type of pz to the view type pizza-as-circle. The area
method is inherited from circle and expanded in-line; basis variable radius is expanded
using diameter, which becomes a data access (CAR PZ).

If a view defines all basis variables in terms of the concrete type, then any generic
procedure of the abstract type can be used through the view. Because compilation by
GLISP is recursive, generic procedures can be written using other generics as subroutines, as

7Only methods are inherited; data structures, and therefore state variables, are not.
8pizza—-as-circle fails to define the basis variable center; this is allowable. An attempt to reference
an undefined basis variable is detected as an error.

long as the recursion terminates at compile time.? A view type may redefine some methods
that are generics of the abstract type; this may improve efficiency. For example, a Cartesian
vector defines magnitude as a generic, but this value is stored as r in a polar (r,) vector.

When a basis variable is assigned a value, the compiler produces code as follows:

1. If the basis variable corresponds to a field of the concrete type, a store is generated.

2. If the basis variable is defined by an expression that can be inverted algebraically, the
compiler does so. For example, assigning a value r to the radius of a pizza-as-circle
causes r * 2 to be stored into the diameter of record pizza.

3. A procedure can be defined in the view type to accomplish assignment to a basis vari-
able while maintaining the storage and independence properties. MKV [54] produces
such procedures automatically.

A view can define a procedure to create an instance of the concrete type from a set of
basis variables of the abstract type [54]. This is needed for generics that create new data,
e.g. when two vectors are added to produce a new vector.

Several points about views are worth noting:

1. In general, it is not the case that an object is its view; rather, a view represents some
aspect of an object. The object may have other data that are not involved in the view.

2. A view provides name translation. This removes any necessity that concrete data use
particular names and eliminates name conflicts.

3. A view can specify representation transformation.

4. There can be several ways of viewing a concrete type as a given abstract type. For
example, the same records might be sorted in several ways for different purposes.

4 Clusters of Views

Several languages (e.g. Ada, Modula-2, ML, and C+4+) provide a form of abstract data type
that is like a macro: an instance is formed by substituting a concrete type into it, e.g. to
make a linked list whose contents is a user type. This technique allows only limited software
reuse. We seek to extend the principle that a generic should be reusable for any reasonable
implementation of its data to generics that involve several abstract types.

Some data structures that might be regarded as a single concept, such as a linked list,
involve several types: a linked list has a record type and a pointer type. Many languages
finesse the need for two types by providing a pointer type that is derived from the record

9Recursion beyond a certain depth is trapped and treated as a compilation error.

10

type. In general, however, a pointer can be any data that uniquely denotes a record in a
memory: a memory address, a disk address, an array index, an employee number, etc. To
maximize generality, the record and pointer must be treated as distinct types.

A view maps a single concrete type to a single abstract type. A cluster collects a set of
views that are related because they are used in a generic algorithm. For example, a polygon
can be represented as a sequence of points; the points could be Cartesian, polar or some
type that could be viewed as a point (e.g. a city), and the sequence could be a linked list,
array, etc. There should not be a different generic for each combination of types; a single
generic should be usable for any combination. A cluster collects the views used by a generic
algorithm in a single place, allows inheritance and specialization of generics through the
views, and is used in type inference.

A cluster has a set of roles, each of which has a name and a corresponding view type;
for example, cluster 1inked-1ist has roles named record and pointer. A cluster may
have super-clusters; each view type that fills a role specifies as a superclass the type that
fills the same role in the super-cluster, allowing inheritance of methods from it. The view
types also define methods or constants'® needed by generic procedures; for example, cluster
sorted-linked-1ist requires specification of the field or property of the record on which
to sort and whether the sort is ascending or descending.

4.1 Example Cluster: Sorted Linked List

This section gives an example record, shows how a cluster is made for it using VIEWAS, and
shows how a generic is specialized. We begin by showing the user interaction with VIEWAS
to emphasize its ease of use; a later section explains how VIEWAS works.

The C structure of example record myrec and its corresponding GLISP type are shown
below.!!

typedef struct myrecord {
int color;
char *name;
int size;
struct myrecord *next;
} MYREC;

(myrec (crecord myrec
(color integer)
(name string)
(size integer)
(next (~ myrec))))

10A constant is specified as a method that returns a constant value.
The GLISP type could be derived automatically from the C declaration, but this is not implemented.

11

Suppose the user wishes to view myrec as a sorted-linked-1list and obtain specialized
versions of generics for an application. The user invokes VIEWAS to make the view cluster:

(viewas ’sorted-linked-list ’myrec)

VIEWAS determines how the concrete type matches the abstract type; it makes some
choices automatically and asks the user for other choices: 2

Choice for LINK = NEXT

Specify choice for SORT-VALUE
Choices are: (COLOR NAME SIZE)
name

Specify choice for SORT-DIRECTION
Choices are: (ASCENDING DESCENDING)
ascending

VIEWAS chooses field next as the link of the linked-list record since it is the only
possibility; it asks the user for the field on which to sort and the direction of sorting. VIEWAS
requires only a few simple choices by the user; the resulting cluster MYREC-AS-SLL and two
view types are shown in Fig. 6. Cluster MYREC-AS-SLL has roles named pointer and record
that are filled by corresponding view types; MYREC-AS-SLL lists cluster SLL (sorted linked
list) as a super-cluster.

View type MYREC-AS-SLL-POINTER is a pointer to view type MYREC-AS-SLL-RECORD; it
has the corresponding type SLL-POINTER of cluster SLL as a superclass. The generics of SLL
are defined as methods of SLL-POINTER. View type MYREC-AS-SLL-RECORD has data named
Z16'% of type MYREC; it lists type SLL-RECORD as a superclass and defines the LINK and
COPY-CONTENTS-NAMES needed for linked-list generics and SORT-VALUE and SORT-DIRECTION
needed for sorted-linked-list generics.

After making a view cluster, the user can obtain specialized versions of generics. We do
not expect that a user would read the code of generics or the specializations derived from
them, but we present a generic and its specialization here to illustrate the process.

Fig. 7 shows generic sl1l-insert; it uses generics rest defined for linked-list (the
value of field 1ink) and sort-before. The notation (. ptr) is short for dereference
of pointer ptr. sort-direction is tested in this code; however, since this is constant at
compile time, the compiler eliminates the if and keeps only one sort-before test, which is
expanded depending on the type of sort-value.

I2Lisp converts symbols to upper-case, so upper-case and lower-case representations of the same symbol
are equivalent. In general, user input is shown in lower-case, while Lisp output of symbols is upper-case.

13Names with numeric suffixes are new, unique names generated by the system. The unique name Z16
encapsulates MYREC and prevents name conflicts in the view type because features of MYREC can be accessed
only via that name.

12

Cluster MYREC-AS-SLL:

(GLCLUSTERDEF
(ROLES ((POINTER MYREC-AS-SLL-POINTER)
(RECORD MYREC-AS-SLL-RECORD))
SUPERS (SLL)))

View type MYREC-AS-SLL-POINTER:

((® MYREC-AS-SLL-RECORD)
SUPERS (SLL-POINTER))
GLCLUSTER MYREC-AS-SLL

View type MYREC-AS-SLL-RECORD:

((Z16 MYREC)
SUPERS (SLL-RECORD)
PROP ((LINK ((NEXT Z16))
RESULT
MYREC-AS-SLL-POINTER)
(COPY-CONTENTS-NAMES
(’ (COLOR NAME SIZE)))
(SORT-VALUE ((NAME Z16)))
(SORT-DIRECTION (’ASCENDING))))
GLCLUSTER MYREC-AS-SLL

Figure 6: Cluster and View Types

Specialization of a generic is performed when a function that calls it is compiled. Such a
function can be defined by the user or created by the user interface; the following function
specifies insertion of a new record into a sorted linked list:

(gldefun t2 (b:myrec new:myrec)
(insert (sorted-linked-list b)
(sorted-linked-1list new)))

When this function is compiled, the compiler specializes generic s11-insert (Fig. 7) to
produce sll-insert-1, which is mechanically converted to the target language (Fig. 8).

There can be several view clusters of the same kind for a given concrete type; for example,
the same records could be used in sorted linked lists that are sorted in different ways, or a
record could contain several pointer fields, each used in a different linked list. At present,
the programmer must insure that multiple views do not conflict, e.g. a list cannot be sorted
in two different ways at the same time.

13

; insert record new into sorted linked list 1lst
(gldefun sll-insert (lst:sll-pointer new: (typeof 1lst))
(let ((ptr 1lst) prev)
(prev := nil)
; find the proper insertion point
; invariant: all records before ptr sort before new
(while ptr is not null and
(if (sort-direction (~. 1lst)) = ’ascending
then (sort-before (~. ptr) (°. new))
else ~“(sort-before (~. ptr) (°. new)))
do (prev := ptr)
(ptr := (rest ptr)))
; splice in new before ptr
((rest new) := ptr)
(if prev then ((rest prev) := new)
1st
else new)))

Figure 7: Generic: Insert into Sorted Linked List

4.2 Uses of Clusters

Clusters serve several goals:

1. Clusters allow independent specification of the several views used in a generic.

2. A generic that performs a given function should be written only once; generics should
reuse other generics when possible. Clusters allow generics to be inherited.

3. Clusters are used to derive the correct view types as generics are specialized.

4.2.1 Inheritance through Clusters

It is desirable to inherit and reuse generics when possible. In some cases, a cluster can be
considered to be a specialization of another cluster, e.g. sorted-linked-list is a specialization
of linked-list. Some generics defined for linked-list also work for a sorted-linked-list: the
length of a linked-list is the same whether it is sorted or not. Generics should be defined
at the highest possible level of abstraction to facilitate reuse.

A cluster can specify super-clusters. Fig. 9 shows the inheritance among clusters for the
MYREC-AS-SLL example; each cluster can inherit generics from the clusters above.

The mechanism of inheritance between clusters is simply inheritance between types. Each
type that fills a role in a cluster lists as a superclass the type that fills the corresponding

14

MYREC *sll_insert_1 (1lst, new)
MYREC *1st, *new;

{
MYREC #*ptr, *prev;
ptr = 1lst;
prev = 0;

while (ptr &&
strcmp (ptr->name, new->name)

<0)
{
prev = ptr;
ptr = ptr->next;
¥

new->next = ptr;
if (prev != 0)
{
prev->next = new,
return lst;
}
else
return new;

Figure 8: Specialized Procedure in C

role in the super-cluster. These inheritance paths are specified manually for abstract types;
VIEWAS sets up the inheritance paths when it creates view clusters

Inheritance provides defaults for generic procedures and constants. For example, generics
of sorted-linked-1list use predicate sort-before to compare records; a generic sort-before
is defined as < applied to the sort-value of records. Predicate <, in turn, depends on the
type of the sort-value,e.g., string comparison is used for strings. A minimal specification of
a sorted-linked-1list can use the default sorting predicate, but an arbitrary sort-before
predicate can be specified in the record view type if desired.

In some cases, inheritance of generics from super-clusters should be preventable. For
example, nreverse (destructive reversal of the order of elements in a linked list) is defined
for linked-list but should not be available for a sorted-linked-list, since it destroys the sorting
order. Prevention of inheritance can be accomplished by defining a method as error, in
which case an attempt to use the method is treated as a compilation error.

15

record-with-pointer
4

linked-1list

4

s11 (sorted-linked-list)

4

myrec-as-sll

Figure 9: Inheritance between Clusters

4.2.2 Type Mappings

A cluster specifies a set of related types. A generic procedure is specified in terms of
abstract types, but when it is specialized, the corresponding view types must be sub-
stituted. For example, at the abstract level, a linked-list-record contains field 1link
whose type is linked-list-pointer, and dereference of a linked-list-pointer yields
a linked-list-record. When a generic defined for 1inked-1ist is specialized, these types
must be replaced by the corresponding view types of the cluster. Care is required in defining
generics and view types to ensure that each operation produces a result of the correct type;
otherwise, the generic will not compile correctly when specialized.

In general, if a generic function f : a; — a, with abstract argument and result types
is specialized for concrete types t; and {5 using views vy : {; — a; and vy : {3 — ay, the
specialized function must have signature fs : vi(t;) — wva(f2). Smith [68] uses the term
theory morphism for a similar notion. Dijkstra [15] uses the term coordinate transformation
for a similar notion, in which some variables are replaced by others; Gries [23] uses the term
coupling invariant for the predicate that describes the relation (between the abstract types
or variables and their concrete counterparts) that is to be maintained by functions. Consider
the following generic:

(gldefun generic-cddr (l:linked-list)
(rest (rest 1)))

generic-cddr follows the link of a linked-list record twice: rest is the 1ink value. '* Now
suppose that a concrete record has two pointer fields, so that two distinct linked-list clusters
can be made using the two pointer fields. To specialize generic-cddr for both, rest must
produce the view type, which defines the correct 1ink, rather than the concrete type.

Fig. 10 abstractly illustrates type mappings as used in the generic-cddr example. The
figure shows concrete types ¢; that are viewed as abstract types a; by views v;. Suppose

Mrest (or cdr) and cddr are Lisp functions; we use Lisp names for linked-list generics that are similar.

16

01

Gs g

t3 as

Figure 10: Cluster: Views between Type Families

generic function f : a; — a3 is composed with function g : a; — a3 . The corresponding
specialized functions will be fs : v1(t1) — va(t2) and g5 : va(t2) — vs(t3). Because the views
are virtual and operations are actually performed on the concrete data, the compiled code
will perform gso f; : {1 — t3. However, the result of function f;, as seen by the compiler, must
be vy(t2) rather than ¢y because function g is defined for abstract type ag and is inherited
by va(tq), but is undefined for concrete type 5.

The roles of a cluster are used within generics to specify types that are related to a known
view type. Each view type has a pointer to its cluster, and the cluster’s roles likewise point
to the view types; therefore, it is possible to find the cluster from a view type and then
to find the view type corresponding to a given role of that cluster. The GLISP construct
(clustertype role code) returns at compile time the type that fills role in the cluster to
which the type of code belongs; this construct can be used as a type specifier in a generic,
allowing use of any view type of the cluster. For example, a generic’s result type can be
declared to be the view type that fills a specified role of the cluster to which an argument
of the generic belongs. clustertype can also be used to declare local variable types and to
create new data of a concrete type through its view. Thus, type signatures and types used
within generics can be mapped from the abstract level to the view level so that specialization
of generics is performed correctly.

17

5 View Cluster Construction: VIEWAS

A view cluster may be complex, and detailed knowledge of the generic procedures is needed
to specify one correctly. We expect that abstract types and view clusters will be defined
by experts; however, it should be simple for programmers to reuse the generics. VIEWAS
makes it easy to create view clusters without detailed understanding of the abstract types
and generics. Its inputs are the name of the view cluster and concrete type(s). VIEWAS
determines correspondences between the abstract types of the cluster and the concrete types,
asking questions as needed; from these it creates the view cluster and view types.

(gldefviewspec
’(sorted-linked-list (sorted-sequence)

sll t

((record anything))

((type pointer (~ record))
(prop link (partof record pointer) result pointer)
(prop copy-contents-names (names-except record (link)))
(prop sort-value (choose-prop-except record (link)))
(prop sort-direction (oneof (ascending descending))))
((pointer pointer)
(record record

prop (link copy-contents-names sort-value sort-direction)))

(s11)))

Figure 11: View Specification used by VIEWAS

Fig. 11 shows the view specification for a sorted linked list. ((record anything)) is a
list of formal parameters that correspond to types given in the call to VIEWAS; argument
record can have a type matching anything. Next is a list of names and specifications
that are to be matched against the concrete type; following that is a pattern for the output
cluster, which is instantiated by substitution of the values determined from the first part.
Finally, there is a list of super-clusters of the cluster to be created, (s11).

The previous example, (viewas ’sorted-linked-list ’myrec), specifies the name of
the target cluster and the concrete type myrec to be matched. VIEWAS first matches the
record with the myrec argument; then it processes the matching specifications in order:

1. (type pointer (~ record))
The first thing to be determined is the type of the pointer to the record. The pointer
defaults to a standard pointer to the record, but a different kind of pointer, such as an
array index, will be used if it has been defined.

2. (prop link (partof record pointer) result pointer)
The 1ink must be a field of the record, of type pointer. Type filtering restricts the
possible matches; if there is only one, it is selected automatically.

18

3. (prop copy-contents-names (names-except record (link)))
These are the names of all fields of the record other than the 1ink; the names are used
by generics that copy the contents of a record.

4. (prop sort-value (choose-prop-except record (link)))
The sort-value is compared in sorting; it is chosen from either fields or computed
(method) values defined for the record type, excluding the field that is the 1ink. A

menu of choices is presented to the user.

5. (prop sort-direction (oneof (ascending descending)))
This must be ascending or descending; the user is asked to choose.

After the items have been matched with the concrete type, the results are substituted into
a pattern to form the view type cluster. Fig. 6 above shows cluster myrec-as-s11 and view
types myrec-as-sll-pointer and myrec-as-sll-record produced by VIEWAS. Properties
needed by generics of sorted-linked-1list, such as sort-value, are defined in terms of the
concrete type. Generics defined for sorted-linked-1list explicitly test sort-direction;
since this value is constant, only the code for the selected direction is kept. This illustrates
that switch values in view types can select optional features of generics. Weide [73] notes
that options in reusable procedures are essential to avoid a combinatoric set of versions.
For example, the Booch component set [9] contains over 500 components; Batory [5] has
identified these as combinations of fewer design decisions.

The 1linked-1list library has 28 procedures; one view cluster allows specialization of any
of them. VIEWAS requires minimal input; it presents sensible choices, so the user does not
need to understand the abstract types in detail. In effect, view specifications use a special-
purpose language that guides type matching; this language is not necessarily complete, but
is sufficient for a variety of view clusters. Some specifications prevent type errors and often
allow a choice to be made automatically, as in the case of the link field. Others, e.g.
copy-contents-names, perform bookkeeping to reduce user input. Specifications such as
that for sort-value heuristically eliminate some choices; additional restrictions might be
helpful, e.g., sort-value could require a type that has an ordering. VIEWAS is not a
powerful type matcher, but it tends to be self-documenting, eliminates opportunities for
errors, and is effective with minimal input. We assume that the user understands the
concrete type and understands the abstract types well enough to make the choices presented.
VIEWAS is intended for views of data structures; a companion program MKV [54] uses a
graphical interface and algebraic manipulation of equations to make mathematical views.
We have also investigated creation of programs from connections of diagrams that represent
physical and mathematical models [51].

19

6 Higher-order Code

6.1 Compound Structures

Abstract types may be used in larger structures. For example, several kinds of queue can be
made from a linked-1list: front-pointer-queue, with a pointer to the front of a linked list,
two-pointer-queue, with pointers to the front and the last record, and end-pointer-queue,
with a pointer to the last record in a circularly linked list. A sequence of queue, in turn,
can be used for a priority-queue. Generics for compound structures are often small and
elegant; for example, insertion in a priority queue is:

(gldefun priority-queue-insert
(q:priority-queue n:integer new)
(insert (index q n) new))

The code (index q n) indexes the sequence by priority n to yield a queue. insert is
interpreted relative to the type of queue. This small function expands into larger code
because its operations expand into operations on component structures, which are further
expanded. A single definition of a generic covers the combinatoric set of component types.

6.2 Generic Loop Macros

A language with abstract types must provide loops over collections of data. Alphard [66]
and CLU [38] allow iterators for concrete types; Interlisp [30] provided a flexible looping
construct for Lisp lists. SETL [14] provides sets and maps and compiles loops over them,
with implementations chosen by the compiler [63]. Generic procedures need loops that are
independent of data structure (e.g., array, linked list, or tree); this is done by loop macros.

Expansion of generic procedures obeys strict hierarchy and involves independent name
spaces. In expanding a loop, however, code specified in the loop statement must be inter-
spersed with the code of the iterator, and the iterator must introduce new variables at the
same lexical level; macros are used for these reasons. Names used by the macro are changed
when necessary to avoid name conflicts.

GLISP provides a generic looping statement of the form:
(for ilem in sequence [when p(item)] verd f(item))

When this statement is compiled, iterator macros defined for the verb and for the type of
sequence are expanded in-line. For example, consider:

(gldefun t3 (r:myrec)
(for x in (sorted-linked-list r)
sum (size x)))

20

This loop iterates through a sequence r using its sorted-linked-1ist view and inheriting
the linked-1ist iterator; it sums the size of each element x of the linked list. Macros are
provided for looping, summation, max, min, averaging, and statistics. Collection macros
collect data in a specified form, making it possible to convert from one kind of collection to
another (e.g., from an array to a linked list).

Data structures may have several levels of structure. For example, a symbol table might
be constructed using an array of buckets, where the array is indexed by the first character of
a symbol and each array element is a pointer to a bucket, i.e., a sorted linked list of symbols.
A double-iterator macro is defined that composes two iterators, allowing a loop over a
compound structure:

(gldefun t4 (s:symbol-table)
(for sym in s sum (name sym)))

t4 concatenates the names of all the symbols. The loop expands into nested loops (first
through the array of buckets, then through each linked list) and returns a string (since a
name is a string and + concatenates strings). The compiled code is 23 lines of Lisp.

6.3 Copying and Representation Change

The GLISP compiler can recursively expand code through levels of abstraction until opera-
tions on data are reached; it interprets code relative to the types to which it is applied. In
Lisp, funcall is used to call a function that is determined at runtime. In GLISP, a funcall
whose function argument is constant at compile time is treated like other function calls, i.e.,
it is interpreted relative to its argument types. This makes it possible to write higher-order
code that implements compositions of views.

The contents of a linked-list record may consist of several items of different types. Generic
copy-list makes a new record and copies the contents fields into it, requiring several
assignments. This is accomplished by a loop over the copy-contents-names defined in
the view type. For each name in copy-contents-names, a funcall of that name on the
destination record is assigned the value of a funcall of that name on the source record.

(for name in (copy-contents-names (~. 1)) do
Py
((funcall name (implementation (~. 1)))
:= (funcall name (implementation (*. m)))))

Since the list of names is constant, the loop is unrolled. Each funcall then has a constant
name that is interpreted as a field or method reference; the result is a sequence of assignments.

Since the “function call” on each side of the assignment statement is interpreted relative
to the type to which it is applied, this higher-order code can transfer data to a different record
type and can change the representation during the transfer, e.g., by converting the radius of
a circle in one representation to the area in another representation, or by converting the data

21

to reflect different representations or units of measurement [53]. For example, consider two
different types cira and cirb, each of which has a color and lists circle as a superclass:

(cira (cons (color symbol)
(cons (nxt (~ cira))
(radius integer)))
supers (circle))

(cirb (list (diameter roman)
(color symbol)
(next (~ cirb)))
prop ((radius (diameter / 2)))
supers (circle))

These types have different records, and cira contains an integer radius while cirb contains
diameter represented in roman numerals. After viewing each type as a linked-1ist, it is
possible to copy a list from either representation to the other. This illustrates how higher-
order code is expanded. First, the loop is unrolled into two assignment statements that
transfer color and diameter from source record to destination record; then diameter is
inherited from circle for the source record and encoded into Roman numerals for the
destination record:

(gldefun t5 (u:cira &optional v:cirb)
(copy-list-to (linked-list u) (linked-list v)))

(t5 ’(RED (GREEN (BLUE NIL . 12) . 47) . 9))
= ("XVIII" RED ("XCIV" GREEN ("XXIV" BLUE NIL)))

6.4 Several Views

Viewing concrete data as a conceptual entity may involve several views; e.g., a polygon can
be represented as a sequence of points. Viewing a concrete type as a polygon requires a view
of the concrete type t; as a sequence of some type ¢ and a view of {5 as a vector (Fig. 12).

View vy from the element of the concrete sequence to a vector is specified declaratively
by giving the name of the view. This view name is used in a funcall inside the polygon
procedures; it acts as a type change function that changes the type of the sequence element
to its view as a point. This effectively implements composition of views. A single generic can
be specialized for a variety of polygon representations. For example, a string of characters
can be viewed as a polygon by mapping a character to its position on a keyboard: does the
string “car” contain the character “d” on the keyboard?

22

0

t seq(ty) — — — — seq(vector)
|
. , |
iterator iterator
'
p)
(2 vector

Figure 12: Polygon: Sequence of Vector

6.5 Application Languages

The Lisp output of our system can be mechanically transformed into other languages,
including C, C++4, Java, and Pascal. GLISP allows a target language record as a type;
accesses to such records are compiled into Lisp code that can be transformed into target
language syntax. The code can also run within Lisp to create and access simulated records;
this allows the interactive Lisp environment and our programming and data-display tools to
be used for rapid prototyping.

Conversion of Lisp to the target language is done in stages. Patterns are used to trans-
form Lisp idioms into corresponding target idioms and to transform certain Lisp constructs
(e.g., returning a value from an if statement) into constructs that will be legal in the
target language. These Lisp-to-Lisp transformations are applied repeatedly until no further
transformations apply. A second set of patterns transforms the code into nicely-formatted
target language syntax. The result may be substantially restructured.

A C procedure s1l_insert_1 was shown in Fig. 8. This code is readable and has no
dependence on Lisp. Versions of generic procedures containing a few hundred lines of code
have been created in C, C4++, Java, and Pascal. The C version of the convex hull program,
described below, runs 20 times faster than the Lisp version.

6.6 A Larger Example: Convex Hull

The convex hull of a set of points is the smallest convex polygon that encloses them. Kant
[32] studied highly qualified human subjects who wrote algorithms for this task. All subjects
took considerable time; some failed or produced an inefficient solution. Although convex
hull algorithms are described in textbooks [64] and in the literature, getting an algorithm
from such sources is difficult: it is necessary to understand the algorithm, and a published
description may omit details of the algorithm or even contain errors [22]. A hand-coded
version of a published algorithm requires testing or verification.

Fig. 13 illustrates execution of a generic convex hull algorithm. We describe the algorithm

23

Figure 13: Convex Hull of Points

and illustrate its use on cities viewed as points. The algorithm uses several views of the same
data and reuses other generics; it is similar to the QUICKHULL algorithms [57].

A convex hull is represented as a circularly linked list of vertex points in clockwise order
(Fig. 14). An edge is formed by a vertex and its successor. Associated with a vertex is a
list of points that may be outside the edge; an edge is split (Fig. 15) by finding the point
that is farthest to the left of the edge. If there is such a point, it must be on the convex
hull. The edge is split into two edges, from the original vertex to the new point and from the
new point to the end vertex, by splicing the new point into the circularly linked list. The
subsets of the points that are to the left of each new edge are collected and stored with the
corresponding vertex points, and the edges are split again.

The algorithm is initialized by making the points with minimum and maximum x values
into a two-point polygon with all input points associated with each edge; then each edge is
split. Finally, the vertices are collected as a (non-circular) linked list. Fig. 13 shows the
successive splittings. The algorithm rapidly eliminates most points from consideration.

Fig. 16 shows the type cluster used for convex hull. The line formed by a point and
its successor is declared as a virtual 1ine-segment [46]; this is another way of specifying a
view. This allows the polygon to be treated simultaneously as a sequence of vertices and as
a sequence of edges. Only vertices are represented, but the algorithm deals with edges as
well. The internal-record specifies circular-linked-1list under property viewspecs;
this causes VIEWAS to be called automatically to make the circular-linked-list view

24

Figure 14: Convex Hull as Circular Linked List of Points

Figure 15: Splitting an Edge

so that procedure splice-in and the iterator of that view can be used.

Fig. 17 shows generic procedure convex-hull. This procedure initializes the algorithm
by finding the two starting points; use of iterators min and max simplifies the code. Next,
an initial circularly linked list is made by linking together the starting points, and function
split is called for each. Finally, the vertex points are collected as a non-circular list.

Fig. 18 shows generic cvh-split, which uses iterator max and signed leftof-distance
from a line-segment to a point; this generic is inherited since the line associated with a
vertex is a virtual 1ine-segment. leftof-distance expands as in-line code that operates
directly on the linked list of vertex records; we can think of a vertex and its successor as
a line-segment without materializing one. Operator +_ specifies a push on a list to collect
points. cvh-split also uses procedure splice-in of the circular-linked-list view of
the points. The split algorithm views the same data in three different ways: as a vertex
point, as an edge line-segment, and as a circularly linked list. We believe that use of several
views is common and must be supported by reuse technologies.

A programmer should not have to understand the algorithm to reuse it. The concrete

25

(gldefclusterc
’convex-hull-cluster
’ ((source-point (convex-hull-source-point vector))
(source-collection (convex-hull-source-collection
(l1istof convex-hull-source-point)
prop ((hull convex-hull specialize t))))
(internal-record (convex-hull-internal-record
(1ist (pt convex-hull-source-point)
(next (© convex-hull-internal-record))
(points (listof convex-hull-source-point)))
prop ((line ((virtual line-segment with
pl = (pt self)
p2 = (pt (". (next self)))))))
msg ((split cvh-split specialize t))
viewspecs ((circular-linked-list)))))

*O)

Figure 16: Convex Hull Cluster

data might not be points per se and might have other attributes. To find the convex hull
using a traditional algorithm would require making a new data set in the required form,
finding the convex hull, and then making a version of the hull in terms of the original data.
Specialization of generics is more efficient. For example, consider finding the convex hull
of a set of cities, each of which has a latitude and longitude. Fig. 19 shows the city data
structure and a hand-written view as a point using a Mercator projection. VIEWAS was
used to make a convex hull view of the city-as-point data. Using this view, a specialized
version of the convex hull algorithm (229 lines of Lisp) was produced (in about 5 seconds)
that operates on the original data.

This example illustrates the benefits of our approach to reuse. The generic procedures
themselves are relatively small and easy to understand because they reuse other generics.
Reuse of the generic procedure for an application has a high payoff: the generated code is
much larger and more complex than the few lines that are entered to create the views.

6.7 Testing and Verification

Users must have confidence that reused programs will behave as intended. Programmer’s
Apprentice [61] produced Ada code; the user would read this code and modify it as necessary.
We do not believe a programmer should read the output of any reuse system. With our
system, in-line code expansion and symbolic optimization can make the output code difficult
to read and to relate to the original code sources. Reading someone else’s code is difficult,
and no less so if the “someone else” is a machine.

26

(gldefun convex-hull (orig-points:(listof vector))
(let (xmin-pt xmax-pt hullpl hullp2)
(if ((length-up-to orig-points 2) >= 2)

then (xmin-pt := (for p in orig-points min (x p)))
(xmax-pt := (for p in orig-points max (x p)))
(hullpl := (a (clustertype internal-record orig-points)
with pt = xmin-pt

points = orig-points))
(hullp2 := (a (clustertype internal-record orig-points)

with pt = xmax-pt
points = orig-points))
((next hullpil) := hullp2) ; link circularly
((next hullp2) := hullpil)

(split hullpl)

(split hullp2)

(for p in (circular-linked-list hullpl)
collect (pt p)))))

Figure 17: Generic Convex Hull Procedure

We believe that a reuse system such as ours will reduce errors. Errors in reusing software
components might arise from several sources:

1. The component itself might be in error.
2. The component might be used improperly.

3. The specialization of a component might not be correct.

Algorithms that are reused justify careful development and are tested in many applications,
so unnoticed errors are unlikely. Humans introduce errors in coding algorithms; Sedgewick
[64] notes “Quicksort ... is fragile: a simple mistake in the implementation can go unnoticed
and can cause it to perform badly for some files.” Reuse of carefully developed generics is

likely to produce better programs than hand coding.

VIEWAS and MKV guide the user by presenting only correct choices. When views are
written by hand, type checking usually catches errors. Although GLISP is not strongly
typed (because of its Lisp ancestry), there are many error checks that catch nearly all type
errors. Qur experience with our system has been good, and we have reused generics for new
applications; e.g., the generic for distance from a line to a point was reused to test whether
a mouse position is close to a line.

Ultimately, it must be verified not only that software meets its specification but also
that it is what the user really wants. With rapid prototyping based on reuse, developers

27

(gldefun cvh-split (cp:cvhpoint)
(let (maxpt pts newcp)
(pts := (points cp))
((points cp) := nil)
(if pts is not null
then (maxpt := (for p in pts when ((p <> (pl (line cp)))
and (p <> (p2 (line cp))))
max (leftof-distance (line cp) p)))
(if maxpt and (leftof (line cp) maxpt)
then (newcp := (a (typeof cp) with pt = maxpt))
(splice-in (circular-linked-list cp)
(circular-linked-list newcp))
(for p in pts do
(if (leftof (line cp) p)
then ((points cp) +_ p)
else (if (leftof (line newcp) p)
then ((points newcp) +_ p))))
(split cp)
(split newcp)))))

Figure 18: Generic Split Procedure

can address a program’s performance in practice and make modifications easily. Our system
allows significant representation changes to be accomplished easily by recompilation.

Formal verification might be applied to specialized generics. Gries and Prins [21] suggest
a stratified proof of a program obtained by transformation: if a generic is correct and an
implementation of its abstract type is correct, the transformed algorithm will be correct
Morgan [42] extends these techniques for proofs of data refinements. Morris [43] provides
calculational laws for refinement of programs written in terms of abstract types such as bags
and sets. Related methods might be used for proofs of refinements with a system such as
ours; a library of proven lemmas about generic components would greatly simplify the task
of proving a software system correct.

7 Views and OOP

Views can be used to generate methods that allow concrete data to be used with OOP
software; this is useful for reuse of OOP software that uses runtime messages to interface
to diverse kinds of objects. The GLISP compiler can automatically compile and cache
specialized versions of methods based on the definitions given in a type; for example, a
method to compute the area of a pizza-as-circle can be generated automatically.

28

(city
(1ist (name symbol)
(latitude (units real degrees))
(population integer)
(longitude (units real degrees)))
views ((point city-as-point)))

(city-as-point (z17 city)
prop
((x ((let (rad:(units real radians))
(rad := (longitude z17))
rad)))
(y ((signum (latitude z17)) *
(log (tan (pi / 4) +
(abs (latitude z17))
/ 2)))))

supers (vector))

Figure 19: City and Mercator Projection

We have implemented direct-manipulation graphical editors for 1inked-1ist and array.
A display method and editor for a record can be made interactively using program DISPM,
which allows selection of properties to be displayed, display methods to be used, and
positions. Given a display method for a record, a generic for displaying and editing structured
data containing such records can be used on the concrete data. Figure 20 shows data
displayed by the generic 1inked-1list editor. The user can move forward or backward in
the displayed list or excise a selected list element; the user can also zoom in on an element
to display it in more detail or to edit the contents. This technique allows a single generic
editor to handle all kinds of 1inked-1ist. The display omits detail such as contents of link
fields and shows the data in an easily understood form.

-— o - -

RED GREEN ELUE

2] | | [

Figure 20: Linked List Display

29

8 Related Work

We review closely related work. It is always possible to say “an equivalent program could
be written in language ”; however, a system for software reuse must satisfy several criteria
simultaneously to be effective [34]. We claim that the system described here satisfies all of
these criteria:

1. It has wide applicability: many kinds of software can be expressed as reusable generics.
2. It is easy to use. The amount of user input and the learning required are small.
3. It produces efficient code in several languages.

4. Tt minimally constrains the representation of data. Generics can be specialized for use
with existing data and programs.

Brooks [10] contends that there are “no silver bullets” in software development. The
system described here is not a silver bullet, but it suggests that significant improvement in
software development is possible.

8.1 Software Reuse

Krueger [34] is an excellent survey of software reuse, with criteria for practical effectiveness.
Biggerstaff and Perlis [8] contains papers on theory and applications of reuse; artificial
intelligence approaches are described in [1], [39], and [60]. Mili [41] extensively surveys
software reuse, emphasizing technical challenges.

8.2 Software Components

The Programmer’s Apprentice [61] was based on reuse of clichés, somewhat analogous to
our generics. This project produced some good ideas but had limited success. KBEmacs,
a knowledge-based editor integrated with Emacs, helped the user transform cliché code;
unfortunately, KBEmacs was rather slow, and the user had to read and understand the low-
level output code. We assume that the user will treat the outputs of our system as “black
boxes” and will not need to read or modify the code. Rich [59] describes a plan calculus
for representing program and data abstractions; overlays relate program and data plans,
analogous to our views.

Weide [73] proposed a software components industry based on formally specified and
unchangeable components. Because the components would be verified and unchangeable,
errors would be prevented; however, the rigidity of the components might make them harder
to reuse. Our approach adapts components to fit the application.

Zaremski and Wing [77] describe retrieval of reusable ML components based on signature
matching of functions and modules; related techniques could be used with our generics.

30

Batory [4] [5] [6] describes a data structure precompiler and construction of software
systems from layers of plug-compatible components with standardized interfaces. The use of
layers whose interfaces are carefully specified allows the developer to ensure that the layers
will interface correctly. We have focused on adapting interfaces so that generics can be reused
for independently designed data.

8.3 Languages with Generic Procedures

Ada, Modula-2 [28], and C++ [69] allow modules for parameterized abstract types such as
ST AC K[type]. Books of generic procedures [37] [44] contain some of the same procedures
that are provided with our system. In Ada and Modula-2, such collections have limited value
because such code is easy to write and is only a small part of most applications. The class,
template, and virtual function features of C4++ allow reuse of generics; however, Stroustrup’s
examples [69] show that the declarations required are complex and subtle. Our declarations
are also complex, but VIEWAS hides this complexity and guides the user in creating correct
views. The ideas in VIEWAS might be adapted for other languages.

8.4 Functional and Set Languages

ML [74] [55] is like a strongly typed Lisp; it includes polymorphic functions (e.g., functions
that operate on lists of an arbitrary type) and functors (functions that map structures
of types and functions to structures). ML also includes references (pointers) that allow
imperative programming. ML functors can instantiate generic modules such as container
types. Our system allows storing into a data structure through a view and composition of
views [52].

Miranda [71] is a strongly-typed functional language with higher-order functions. While
this allows generics, it is often hard to write functional programs with good performance.

SETL [14] provides sets and set operations. [63] describes an attempt to automatically
choose data structures in SETL to improve efficiency. Kruchten et al. [35] say “slow is
beautiful” to emphasize ease of constructing programs, but inefficient implementations can
make even small problems intractable.

8.5 Transformation Systems

Transformation systems repeatedly replace parts of an abstract algorithm specification with
code that is closer to an implementation, until executable code is reached. Our views specify
transformations from features of abstract types to their implementations.

Kant et al. [33] describe Sinapse, which generates programs to simulate spatial differential
equations, e.g. for seismic analysis. Sinapse transforms a small specification into a much
larger program in Fortran or C; it is written using Mathematica [75] and appears to work

31

well within its domain.

Setliff’s Elf system [65] automatically generates data structures and algorithms for wire
routing on integrated circuits and printed circuit boards. Rules are used to select refinement
transformations based on characteristics of the routing task.

KIDS [68] transforms problem statements in first-order logic into programs that are highly
efficient for certain combinatorial problems. The user must select transformations to be used
and must supply a formal domain theory for the application. This system is interesting and
powerful, but its user must be mathematically sophisticated.

Gries and Prins [21] proposed use of syntactic transformations to specify implementation
of abstract algorithms. Volpano [72] and Gries [23] describe systems in which a user specifies
transformations for variables, expression patterns, and statement patterns; by performing
substitutions on an algorithm, a different version of the algorithm is obtained. This method
allows the user to specify detailed transformations for a particular specialization of an
algorithm, whereas we rely on type-based transformations and on general optimization
patterns. The ability to specify individual transformations in Gries’ system gives more
flexibility, possibly at the cost of writing more patterns.

The Intentional Programming project at Microsoft [67] is based on inlentions, which
are similar to algorithm fragments expressed as abstract syntax trees. Intentions can be
transformed by enzymes at the abstract syntax tree level and can be parsed and unparsed
into various surface syntaxes by methods stored with or inherited by the intentions. This
work is in progress; its results to date are impressive.

Berlin and Weise [7] used partial evalualion to improve efficiency of scientific programs.
Given that certain features of a problem are constant, their compiler performs as many
constant calculations as possible at compile time, yielding a specialized program that runs
faster. Our system includes partial evaluation by in-lining and symbolic optimization. Consel
and Danvy [12] survey work on partial evaluation.

8.6 Views

Goguen [18] proposes a library interconnection language, LIL. This proposal has much in
common with our approach, and Goguen uses the term wview similarly; LIL has a stronger
focus on mathematical descriptions and axioms. The OBJ language family of Goguen et al.
[19] has views that are formal type mappings; operators are mapped by strict isomorphisms.
Tracz [70] describes LILEANNA, which implements LIL for construction of Ada packages;
views in LILEANNA map types, operations, and exceptions between theories. In our
system, views are computational transformations between types; general procedures as well
as operators can be reused.

Garlan [17] and Kaiser [31] use views to allow tools in a program development environ-
ment to access a common set of data. Their MELD system can combine features (collections
of classes and methods) to allow “additive” construction of a system from selected features.

32

Meyers [40] discusses problems of consistency among program development tools and
surveys approaches including use of files, databases, and views as developed by Garlan.

Hailpern and Ossher [25] describe views as subsets of methods of a class, to restrict certain
methods to particular clients. Harrison and Ossher [26] argue that OOP is too restrictive for
applications that need their own views of objects; they propose subjects that are analogous
to class hierarchies.

8.7 Data Translation

IDL (Interface Description Language) [36] translates representations, possibly with struc-
ture sharing, for exchange of data between parts of a compiler, based on precise data
specifications. Herlihy and Liskov [27] describe transmission of data over a network, with
representation translation and shared structure; the user writes procedures to encode and
decode data for transmission. The Common Object Request Broker Architecture (CORBA)
[13] includes an Interface Definition Language and can automatically generate stubs to allow
interoperability of objects across distributed systems and across languages and machine
architectures. The ARPA Knowledge-Sharing Project [45] addresses the problem of sharing
knowledge bases that were developed using different ontologies. Purtilo and Atlee [58]
describe a system that translates calling sequences by producing small interface modules that
reorder and translate parameters as necessary for the called procedure. Re-representation of
data allows reuse of an existing procedure; it requires space and execution time, although
[36] found this was a small cost in a compiler. [49] and this paper describe methods for data
translation, but these do not handle shared structure.

Guttag and Horning [24] describe a formal language for specifying procedure interface sig-
natures and properties. Yellin and Strom [76] describe semi-automatic synthesis of protocol
converters to allow interfacing of clients and servers.

8.8 Object-oriented Programming

We have described how views can be used to generate methods for OOP. In OOP, messages
are interpreted (converted to procedure calls) depending on the type of the receiving object;
methods can be inherited from superclasses. The close connection between a class and its
superclasses requires the user to understand a great deal about a class and its methods.
In many OOP systems, a class must include all data of its superclasses, so reuse with
OOP restricts implementation of data; names of data and messages must be consistent and
must not conflict. Holland [29] uses contracts to specify data and behavioral obligations of
composed objects. Contracts are somewhat like our clusters, but require that specializations
include certain instance data and implement data in the same way as the generics that are
to be specialized. A separate “contract lens” construct is used to disambiguate names where
there are conflicts. Our views provide encapsulation that prevents name conflicts; views
allow the reuse benefits of OOP with flexibility in implementing data.

33

Some OOP systems are inefficient: since most methods are small, message interpreta-
tion overhead can be large, especially in layered systems. C+4 [69] has restricted OOP
with efficient method dispatching. Opacity of objects prevents optimization across message
boundaries unless messages are compiled in-line; C++ allows in-line compilation. Reuse in
OOP may require creating a new object to reuse a method of its class; views allow an object
to be thought of as another type without having to materialize that type.

9 Conclusions

Our approach is based on reuse of programming knowledge: generic procedures, abstract
types, and view descriptions. We envision a library of abstract types and generics, developed
by experts, that could be adapted quickly for applications. Programmers of ordinary skill
should be able to reuse the generics. VIEWAS facilitates making views; easily used interfaces,
as opposed to verbose textual specifications with precise syntax, are essential for successful
reuse. Systems like VIEWAS might reduce the complexity of the specifications required in
other languages. Views also support data translation and runtime message interpretation: a
single direct-manipulation editor can handle all implementations of an abstract type.

These techniques provide high payoff in generated code relative to the size and complexity
of input specifications. They require only modest understanding of the details of library
procedures for successful reuse.

Our techniques allow restructuring of data to meet new requirements or to improve
efficiency. Traditional languages reflect the data implementation in the code [3], making
changes costly. Our system derives code from the data definitions; design decisions are
stated in a single place and distributed by compilation rather than by hand coding.

The ability to produce code in different languages decouples the choice of programming
tools from the choice of application language. It allows new tools to extend old systems or
to write parts of a system without committing to use of the tool for everything. Just as
computation has become a commodity, so that the user no longer cares what kind of CPU
chip is inside the box, we may look forward to a time when today’s high-level languages
become implementation details.

10 Acknowledgements

Computer equipment used in this research was furnished by Hewlett Packard and IBM.

We thank David Gries, Hamilton Richards, Ben Kuipers, and anonymous reviewers for
their suggestions for improving this paper.

34

References

1]
2]

3]

IEEFE Trans. on Software Engineering, vol. 11, no. 11, Nov. 1985.

M. Arbib and E. Manes, Arrows, Structures, and Functors: The Categorical
Imperative, New York: Academic Press, 1975.

R. Balzer, “A 15 Year Perspective on Automatic Programming,” [FKEFE
Trans. Software Engineering, vol. 11, no. 11 pp. 1257-1267, Nov. 1985.

D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical
Software Systems with Reusable Components,” ACM Trans. Software
Engineering and Methodology, vol. 1, no. 4, pp. 355-398, Oct. 1992.

D. Batory, V. Singhal, J. Thomas, and M. Sirkin, “Scalable Software
Libraries,” Proc. ACM SIGSOFT ’93: Foundations of Software Engineering,
Dec. 1993.

D. Batory, J. Thomas, and M. Sirkin, “Reengineering a Complex Application
Using a Scalable Data Structure Compiler,” in Proc. ACM SIGSOFT ’9/,
Dec. 1994.

A. Berlin and D. Weise, “Compiling Scientific Code Using Partial Eval-
uation,” IKKE Computer, vol. 23, no. 12, pp. 25-37, Dec. 1990.

T. Biggerstaff and A. Perlis (eds), Software Reusability (2 vols.), ACM Press
/ Addison-Wesley, 1989.

G. Booch, Software Components with Ada, Benjamin-Cummings, 1987.

F. P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering,” IEFEE Computer, vol. 20, no. 4 pp. 10-19. April 1987.

J. C. Cleaveland, An Introduction to Data Types, Addison-Wesley, 1986.

C. Consel and O. Danvy, “Tutorial Notes on Partial Evaluation,” ACM
Symp. on Principles of Programming Languages, 1993, pp. 493-501.

“The Common Object Request Broker: Architecture and Specification,” TC
Document 91.12.1, Revision 1.1, Object Management Group, Dec. 1991.

R. B. K. Dewar, The SETL Programming Language, manuscript, 1980.
E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

35

[17]

[22]

23]

[24]

D. Garlan, “Views for Tools in Integrated Environments,” in R. Conradi,
T. Didriksen, and D. Wanvik (eds.), LNCS 244: Adv. Prog. Environments,
Springer, 1986.

J. A. Goguen, “Reusing and Interconnecting Software Components,” I[EFFE
Computer, pp. 16-28, Feb. 1986.

J. A. Goguen, “Principles of Parameterized Programming,” [8], pp. 159-225.

M. J. C. Gordon, The Denotational Description of Programming Languages,
Springer, 1979.

D. Gries and J. Prins, “A New Notion of Encapsulation,” ACM SIGPLAN
Notices, vol. 20, no. 7, pp. 131-139, July 1985.

D. Gries and 1. Stojmenovic, “A Note on Graham’s Convex Hull Algorithm,”
Information Processing Letters, vol. 25, no. 5 (July 1987), pp. 323-327.

D. Gries and D. Volpano, “The Transform — a New Language Construct,”
Structured Programming, vol. 11, no. 1, pp. 1-10, 1990.

J. V. Guttag and J. J. Horning, “Introduction to LCL, a LARCH/C Interface
Language,” TR SRC-74, D.E.C. Software Res. Ctr., Palo Alto, CA, 1991.

B. Hailpern and H. Ossher, “Extending Objects to Support Multiple
Interfaces and Access Control,” IFEE Trans. Software Engineering, vol. 16,
no. 11, pp. 1247-1257, Nov. 1990.

W. Harrison and H. Ossher, “Subject-Oriented Programming (A Critique of
Pure Objects),” Proc. OOPSLA-93, ACM SIGPLAN Notices, vol. 28, no.
10, pp. 411-428, Oct. 1993.

M. Herlihy and B. Liskov, “A Value Transmission Method for Abstract Data
Types,” ACM Trans. Prog. Lang. Syst., vol. 4, no. 4, pp. 527-551, Oct. 1982.

R. F. Hille, Data Abstraction and Program Development using Modula-2,
Prentice Hall, 19809.

[. M. Holland, “Specifying Reusable Components Using Contracts,” in O.
Lehrmann Madsen (ed.), Proc. 6th Furopean Conf. Object-Oriented Prog.
(ECOOP-92), LNCS 615, pp. 287-308, Springer, July 1992.

Interlisp Reference Manual, Xerox Palo Alto Research Center, 1983.

G. Kaiser and D. Garlan, “Synthesizing Programming Environments from
Reusable Features,” in [8], pp. 35-55.

E. Kant, “Understanding and Automating Algorithm Design,” IFEE Trans.
Software Engineering, vol. 11, no. 11, pp. 1361-1374, Nov. 1985.

36

33]

[34]

[35]

[36]

37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

E. Kant, F. Daube, W. MacGregor, and J. Wald, “Scientific Programming
by Automated Synthesis,” in [39], pp. 169-205.

C. W. Krueger, “Software Reuse,” ACM Computing Surveys, vol. 24, no. 2,
pp- 131-184, June 1992.

P. Kruchten, E. Schonberg, and J. Schwartz, “Software Prototyping using
the SETL Language,” IEEF Software, vol. 1, no. 4 pp. 66-75, Oct. 1984.

D. Lamb, “IDL: Sharing Intermediate Representations,” ACM Trans.
Programming Languages Syst. vol. 9, no. 3, pp. 267-318, July 1987.

C. Lins, The Modula-2 Software Component Library, Springer, 1989.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler, and
A. Snyder, CLU Reference Manual, Springer, 1981.

M. Lowry and R. McCartney, eds., Automating Software Design, AAAT Press
/ MIT Press, 1991.

S. Meyers, “Difficulties in Integrating Multiview Development Systems,”
IEEFE Software, vol. 8, no. 1, pp. 49-57, Jan. 1991.

H. Mili, F. Mili, and A. Mili, “Reusing Software: Issues and Research
Directions,” IEFEE Trans. Software Engineering, vol. 21, no. 6, pp. 5H28-562,
June 1995.

C. Morgan, “Data Refinement by Miracles,” Information Processing Letters,

vol. 26, pp. 243-246, 1988.

J. M. Morris, “Laws of Data Refinement,” Acta Informatica, vol. 26, pp.
287-308, 1989.

D. Musser and A. Stepanov, The Ada Generic Library, Springer, 1989.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, P. Senator, and W.
Swartout, “Enabling Technology for Knowledge Sharing,” Al Magazine, vol.
12, no. 3, pp. 36-56, Fall 1991.

G. Novak, “GLISP: A LISP-Based Programming System With Data
Abstraction,” AI Magazine, vol. 4, no. 3, pp. 37-47, Fall 1983.

G. Novak, “GLISP User’s Manual,” Tech. Report STAN-CS-82-895,
Stanford Univ., 1982; TR-83-25, Univ. of Texas at Austin.

G. Novak, “Data Abstraction in GLISP,” Proc. SIGPLAN 83 Symposium,
ACM SIGPLAN Notices, vol. 18, no. 3, pp. 170-177, June 1983.

G. Novak, F. Hill, M. Wan, and B. Sayrs, “Negotiated Interfaces for Software
Reuse,” IEEE Trans. Software FEngineering, vol. 18, no. 7, July 1992.

37

[50]

[51]

[64]

[65]

G. Novak, “Software Reuse through View Type Clusters,” 7th Knowledge-
Based Software Engineering Conf., IEEE CS Press, 1992, pp. 70-79.

G. Novak, “Generating Programs from Connections of Physical Models,”
10th Conf. Artificial Intelligence for Applications, IEEE CS Press, 1994, pp.
224-230.

G. Novak, “Composing Reusable Software Components through Views,” 9th
Knowledge-Based Software Engineering Conf., IEEE CS Press, 1994, pp. 39-
47.

G. Novak, “Conversion of Units of Measurement,” IEFE Trans. Software
Engineering, vol. 21, no. 8, pp. 651-661, Aug. 1995.

G. Novak, “Creation of Views for Reuse of Software with Different Data
Representations,” IKKEFE Trans. Software Fngineering, vol. 21, no. 12, pp.
993-1005, Dec. 1995.

L. C. Paulson,, ML for the Working Programmer, Cambridge U. Press, 1991.

F. Preparata and R. Yeh, Introduction to Discrete Structures, Addison-
Wesley, 1973.

F. Preparata and M. Shamos, Computational Geometry, Springer, 1985.

J. M. Purtilo and J. M. Atlee, “Module Reuse by Interface Adaptation,”
Software Practice and Fxperience, vol. 21, no. 6, pp. 539-556, June 1991.

C. Rich, “A Formal Representation for Plans in the Programmer’s
Apprentice,” 7th Intl. Joint Conf. Artificial Intelligence (1JCAI-81), pp.
1044-1052, 1981.

C. Rich and R. Waters (eds), Readings in Artificial Intelligence and Software

Engineering, San Francisco: Morgan Kaufmann, 1986.
C. Rich and R. Waters, The Programmer’s Apprentice, ACM Press, 1990.

M. Schaefer, A Mathematical Theory of Global Program Optimization,
Prentice-Hall, 1973.

E. Schonberg, J. T. Schwartz, and M. Sharir, “An Automatic Technique
for Selection of Data Representations in SETL Programs,” ACM Trans. on
Prog. Lang. and Systems, vol. 3, no. 2 pp. 126-143, Apr. 1981.

R. Sedgewick, Algorithms, Addison-Wesley, 1988.

D. Setliff, “On the Automatic Selection of Data Structures and Algorithms,”
in [39], pp. 207-226.

38

[66]

[67]

M. Shaw, W. Wulf, and R. London, “Abstraction and Verification in
Alphard: Defining and Specifying Iterators and Generators,” Comm. ACM,
vol. 20, no. 9, pp. 553-564, Aug. 1977.

C. Simonyi, ”Intentional Programming - Innovation in the Legacy
Age,” Presented at IFIP WG 2.1 meeting, June 4, 1996. See

http://www.research.microsoft.com/research/ip/main.htm

D. R. Smith, “KIDS: A Semiautomatic Program Development System,”
IEEFE Trans. Software Engineering, vol. 16, no. 9, pp. 1024-1043, Sept. 1990.

B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1991.

W. Tracz, “LILEANNA: A parameterized programming language,” 2nd Int’l
Workshop on Software Reuse (IWSR-2), IEEE CS Press, 1993, pp. 66-78.

D. Turner, “An Overview of Miranda,” SIGPLAN Notices, Dec. 1986.

D. Volpano. and R. Kieburtz, “The Templates Approach to Software Reuse,”
in [8], pp. 247-255.

B. Weide, W. Ogden, and S. Zweben, “Reusable Software Components,” in
M. Yovits, ed., Adv. in Computers, vol. 33, Academic Press, 1991, pp. 1-65.

A. Wikstrom, Functional Programming Using Standard ML, Prentice-Hall,
1987.

S. Wolfram, Mathematica: a System for Doing Mathematics by Computer,
Addison Wesley, 1991.

D. M. Yellin and R. E. Strom, “Interfaces, Protocols, and the Semi-
Automatic Construction of Software Adaptors,” Proc. OOPSLA-9/, ACM
SIGPLAN Notices, vol. 29, no. 10, pp. 176-190, Oct. 1994.

A. M. Zaremski and J. M. Wing, “Signature Matching: A Key to Reuse,”
ACM Software Engineering Notes, vol. 18, no. 5, pp. 182-190, Dec. 1993.

39

