Computing Static Single Assignment (SSA) Form

Overview

- What is SSA?
- Advantages of SSA over use-def chains
- “Flavors” of SSA
- Dominance frontiers revisited
- Inserting ϕ-nodes
- Renaming the variables
- Translating out of SSA form

What is SSA?

- Each assignment to a variable is given a unique name
- All of the uses reached by that assignment are renamed
- Easy for straight-line code

\[
\begin{align*}
V & \leftarrow 4 & V_0 & \leftarrow 4 \\
& \leftarrow V + 5 & & \leftarrow V_0 + 5 \\
V & \leftarrow 6 & V_1 & \leftarrow 6 \\
& \leftarrow V + 7 & & \leftarrow V_1 + 7
\end{align*}
\]

What about control flow?

\[\implies \phi\text{-nodes}\]
What is SSA?

CS 380C Lecture 4 3 Static Single Assignment
What is SSA?

\[B_1 \quad I \leftarrow 1 \]

\[B_2 \quad I \leftarrow I + 1 \]

\[B_1 \quad I_0 \leftarrow 1 \]

\[B_2 \quad I_1 \leftarrow \phi(I_2, I_0) \]

\[I_2 \leftarrow I_1 + 1 \]
Advantages of SSA over use-def chains

- More compact representation
- Easier to update?
- Each USE has only one definition
- Definitions are explicit merging of values definitions may still reach multiple φ-node
“Flavors” of SSA

Where do we place ϕ-nodes?

Condition:
If two non-null paths $X \rightarrow^* Z$ and $Y \rightarrow^* Z$ converge at node Z, and nodes X and Y contain assignments to V (in the original program), then a ϕ-node for V must be inserted at Z (in the new program).

minimal
As few as possible subject to condition

Briggs-minimal
Invented by Preston Briggs
As few as possible subject to condition, and V must be live across some basic block

pruned
As few as possible subject to condition, and no dead ϕ-nodes
Dominance Frontiers Revisited

The *dominance frontier* of X is the set of nodes Y s.t. X dominates a predecessor of Y, but X does not strictly dominate Y.

$$DF(X) = \{Y \mid \exists P \in \text{pred}(Y), (X \text{ DOM } P \text{ and } X \not\text{ DOM! } Y)\}$$

If X appears on every path from *entry* to Y, then X *dominates* Y ($X \text{ DOM } Y$).

If $X \text{ DOM } Y$ and $X \neq Y$, then X *strictly dominates* Y ($X \text{ DOM! } Y$).

The *immediate dominator* of Y (IDOM(Y)) is the closest strict dominator of Y.

IDOM(Y) is Y's parent in the *dominator tree*.
Dominance Frontier Example

\[
\begin{align*}
A &= \\
A &= A = \\
DF(9) &= \\
DF\{8, 9\} &= \\
DF(10) &= \\
\quad = \\
DF(8) &= \\
\quad = \\
DF(2) &= \\
DF\{8, 9\} &= \\
DF(10) &= \\
\quad = \\
DF\{2, 8, 9, 10\} &= \\
\end{align*}
\]
Iterated Dominance Frontier

Extend the dominance frontier mapping from nodes to sets of nodes:

\[\text{DF}(\mathcal{L}) = \bigcup_{X \in \mathcal{L}} \text{DF}(X) \]

The *iterated* dominance frontier \(\text{DF}^+(\mathcal{L}) \) is the limit of the sequence:

\[\begin{align*}
\text{DF}_1 &= \text{DF}(\mathcal{L}) \\
\text{DF}_{i+1} &= \text{DF}(\mathcal{L} \cup \text{DF}_i)
\end{align*} \]

Theorem 1

The set of nodes that need \(\phi \)-nodes for any variable \(V \) is the iterated dominance frontier \(\text{DF}^+(\mathcal{L}) \), where \(\mathcal{L} \) is the set of nodes with assignments to \(V \).
Inserting φ-nodes

for each variable \(V \)
 \(HasAlready \leftarrow \emptyset \)
 \(EverOnWorkList \leftarrow \emptyset \)
 \(WorkList \leftarrow \emptyset \)
 for each node \(X \) containing an assignment to \(V \)
 \(EverOnWorkList \leftarrow EverOnWorkList \cup \{ X \} \)
 \(WorkList \leftarrow WorkList \cup \{ X \} \)
 end for
while \(WorkList \neq \emptyset \)
 remove \(X \) from \(WorkList \)
 for each \(Y \in DF(X) \)
 if \(Y \notin HasAlready \)
 insert a φ-node for \(V \) at \(Y \)
 \(HasAlready \leftarrow HasAlready \cup \{ Y \} \)
 if \(Y \notin EverOnWorkList \)
 \(EverOnWorkList \leftarrow EverOnWorkList \cup \{ Y \} \)
 \(WorkList \leftarrow WorkList \cup \{ Y \} \)
 end for
end while
endfor
Renaming the variables

Data Structures

Stacks array of stacks, one for each original variable \(V \)
 The subscript of the most recent definition of \(V \)
 Initially, \(\text{Stacks}[V] = \text{EmptyStack}, \forall V \)

Counters an array of counters, one for each original variable
 The number of assignments to \(V \) processed
 Initially, \(\text{Counters}[V] = 0, \forall V \)

procedure GenName(Variable \(V \))
 \(i \leftarrow \text{Counters}[V] \)
 replace \(V \) by \(V_i \)
 Push \(i \) onto \(\text{Stacks}[V] \)
 \(\text{Counters}[V] \leftarrow i + 1 \)

Rename - a recursive procedure

- Walks the dominator tree in preorder
- Initially, call Rename(entry)

CS 380C Lecture 4 11 Static Single Assignment
Renaming the variables

procedure Rename(Block X)

// first process ϕ-nodes
for each ϕ-node P in X
 GenName(LHS(P))

// then process statements in block X
for each statement A in X
 for each variable V ∈ RHS(A)
 replace V by V_i, where i = Top(Stacks[V])
 for each variable V ∈ LHS(A)
 GenName(V)

// then update any ϕ-functions in CFG successors of X
for each Y ∈ SUCC(X)
 j ← position in Y’s ϕ-nodes corresponding to X
 for each ϕ-node P in Y
 replace the j^th operand of RHS(P) by V_i
 where i = Top(Stacks[V])

// recursively visit children of X in dominator tree
for each Y ∈ SUCC(X)
 Rename(Y)

// when backing out of X, pop variables defined in X
for each ϕ-node or statement A in X
 for each V_i ∈ LHS(A)
 Pop (Stacks[V])
What happens to Stacks during Renaming?

\[
\begin{align*}
V &\leftarrow \\
\vdots \\
V &\leftarrow \\
\vdots \\
V &\leftarrow \\
\end{align*}
\]

Stacks

\begin{align*}
\text{Before} & \\
V & \rightarrow i \rightarrow \ldots \rightarrow 0
\end{align*}

Stacks

\begin{align*}
\text{After} & \\
V & \rightarrow i+3 \rightarrow i+2 \rightarrow i+1 \rightarrow i \\
\vdots & \rightarrow 0
\end{align*}
Computing SSA Form

- Compute dominance frontiers
- Insert ϕ-nodes
- Rename variables

Theorem 2

Any program can be put into minimal SSA form using this algorithm.

Translating Out of SSA Form

- Restore original names to variables
- Delete all ϕ-nodes
- Replace ϕ-nodes with copies in predecessors
Translating Out of SSA Form

\[
\begin{align*}
B_1 & \text{ if } (\ldots) \\
B_2 & X_0 \leftarrow 5 \\
B_3 & X_1 \leftarrow 3 \\
B_4 & X_2 \leftarrow \phi(X_0, X_1) \\
& \quad Y \leftarrow X_2
\end{align*}
\]
Next Time

Static Single Assignment

- Induction variables (standard vs. SSA)
- Loop Invariant Code Motion with SSA