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Abstract. A central problem for structured peer-to-peer networks is
topology maintenance, that is, how to properly update neighbor variables
when nodes join and leave the network, possibly concurrently. In this
paper, we first present a protocol that maintains a ring, the basis of
several structured peer-to-peer networks. We then present a protocol that
maintains Ranch, a topology consisting of multiple rings. The protocols
handle both joins and leaves concurrently and actively (i.e., neighbor
variables are updated once a join or a leave occurs). We use an assertional
method to prove the correctness of the protocols, that is, we first identify
a global invariant for a protocol and then show that every action of the
protocol preserves the invariant. The protocols are simple and the proofs
are rigorous and explicit.

1 Introduction

In a structured peer-to-peer network, nodes (i.e., processes) maintain some neigh-
bor variables. The neighbor variables of all the nodes in the network collectively
form a certain topology (e.g., a ring). Over time, membership may change: nodes
may wish to join or leave the network, possibly concurrently. When membership
changes, the neighbor variables should be properly updated to maintain the des-
ignated topology. This problem, known as topology maintenance, is a central
problem for structured peer-to-peer networks.

Depending on whether the neighbor variables are immediately updated once
a membership change occurs, there are two general approaches to topology main-
tenance: the passive approach and the active approach. In the passive approach,
a repair protocol runs in the background to periodically restore the topology.
Joins and leaves may be treated using the same approach or using different ap-
proaches (e.g., passive join and passive leave [12], active join and passive leave [6,
13], active join and active leave [2, 14]).

Existing work on topology maintenance has certain shortcomings. For the
passive approach, since the neighbor variables are not immediately updated, the
network may diverge significantly from its designated topology. And the passive
approach is not as responsive to membership changes and requires considerable
background traffic (i.e., the repair protocol). On the other hand, active topology
maintenance is a rather complicated task. Some existing work gives protocols
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without proofs [14], some handle joins actively but leaves passively [6, 13], and
some uses a protocol that only handles joins and a separate protocol that only
handles leaves [2]. It is not true, however, that an arbitrary join protocol and
an arbitrary leave protocol, if put together, can handle both joins and leaves
(e.g., the protocols in [2] cannot; see a detailed discussion in Section 5). Finally,
existing protocols are complicated and their correctness proofs are operational
and sketchy. It is well known, however, that concurrent programs often contain
subtle errors and operational reasoning is unreliable for proving their correctness.

In this paper, we first present a topology maintenance protocol for the ring
topology, the basis of several structured peer-to-peer networks (e.g., [5, 11, 16,
22]). We then present a topology maintenance protocol for Ranch, a structured
peer-to-peer network topology consisting of multiple rings. Our protocols handle
both joins and leaves concurrently and actively. To the best of our knowledge,
our protocols are the first to handle both joins and leaves actively. Our protocols
are simple. For example, the join protocol for Ranch, discussed in Section 4.2,
is much simpler than the join protocols for other topologies (e.g., [2, 6, 13]).
Our protocols are based on an asynchronous communication model where only
reliable delivery is assumed.

As operational reasoning is unreliable, we use an assertional method to prove
the correctness of the protocols, that is, we first identify a global invariant for
a protocol and then show that every action of the protocol preserves the invari-
ant. We show that, although a topology may be tentatively disrupted during
membership changes, the protocols restore the topology once the messages as-
sociated with each pending membership change are delivered, assuming that no
new changes are initiated. In practice, it is likely that message delivery time
is much shorter than the mean time between membership changes. Hence, in
practice, our protocols maintain the topology most of the time.

Unlike the passive approach, which handles leaves as fail-stop faults, we han-
dle leaves actively (i.e., we handle leaves and faults differently). Although treat-
ing leaves and faults the same is simpler, we have several reasons to believe
that handling leaves actively is worth investigating. Firstly, leaves may occur
more frequent than faults. In such situations, handling leaves and faults in the
same way may lead to some drawbacks in terms of performance (e.g., delay in re-
sponse, substantial background traffic). To see this, note that only four messages
is needed to handle an active leave (see Section 3.2), while a linear number of
messages is needed to detect a passive leave. Secondly, while a node can leave the
network silently, we consider it reasonable to assume that a node will execute
a leave protocol, because nodes in peer-to-peer networks cooperate with each
other all the time, by forwarding messages or storing contents. Thirdly, as an
analogy, communication protocols like TCP have “open connection” and “close
connection” phases, even though they handle faults as well.

Our work is only a first step towards designing topology maintenance proto-
cols that have rigorous foundations. For example, a shortcoming of our protocols
is that some of them may cause livelocks; see a detailed discussion in Section 4.4.
We outline some future work in Section 6.



The rest of this paper is organized as follows. Section 2 provides some pre-
liminaries. Section 3 discusses how to maintain a single ring. Section 4 discusses
how to maintain the Ranch topology. Section 5 discusses related work. Section 6
provides some concluding remarks.

2 Preliminaries

We consider a fixed and finite set of processes denoted by V . Let V ′ denote
V ∪ {nil}, where nil is a special process that does not belong to V . In what
follows, symbols u, v, w are of type V , and symbols x, y, z are of type V ′. We use
u.a to denote variable a of process u, and we use u.a.b to stand for (u.a).b. By
definition, the nil process does not have any variable (i.e., nil.a is undefined).
We call a variable x of type V ′ a neighbor variable. We assume that there are
two reliable and unbounded communication channels between every two distinct
processes in V , one in each direction. We also assume that there is one channel
from a process to itself, and there is no channel from or to process nil. Message
transmission in any channel takes a finite, but otherwise arbitrary, amount of
time.

A set of processes S form a (unidirectional) ring via their x neighbors if for
all u, v ∈ S (which may be equal to each other), there is an x-path of positive
length from u to v and u.x ∈ S. Formally,

ring(S, x) = 〈∀u, v : u, v ∈ S : u.x ∈ S ∧ path+(u, v, x)〉,

where path+(u, v, x) means 〈∃i : i > 0 : u.xi = v〉 and where u.xi means
u.x.x . . . x with x repeated i times. We use biring(S, x, y) to mean that a set
of processes S form a bidirectional ring via their x and y neighbors, formally,

biring(S, x, y) = ring(S, x) ∧ ring(S, y) ∧ 〈∀u : u ∈ S : u.x.y = u ∧ u.y.x = u〉.

We sometimes omit writing S in the ring(S, x) notation when S = {u : u.x 6=
nil}, and we omit S in biring(S, x, y) when S = {u : u.x 6= nil} = {v : v.y 6= nil}.
Below are some other notations used in the paper.

m(msg , u, v): The number of messages of type msg in the channel from u to
v. We sometimes include the parameter of a message type. For example,
m(grant(x), u, v) denotes the number of grant messages with parameter x in
the channel from u to v.

m+(msg , u), m−(msg , u): The number of outgoing and incoming messages of
type msg from and to u, respectively. A message from u to itself is considered
both an outgoing message and an incoming message of u.

#msg : The total number of messages of type msg in all the channels.
↑, ↓, l: Shorthands for “before this action”, “after this action”, and “before and

after this action”, respectively.
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Fig. 1. Joining a unidirectional ring. A solid edge from u to v means u.r = v, and
a dashed edge from u to v means that a grant(v) message is in transmission to u,
eventually causing u to set u.r to v.

process p
var s : {in, out , jng}; r : V ′; a : V ′

init s = out ∧ r = nil
begin

T1 s = out → a := contact();
if a = p → r, s := p, in [] a 6= p → s := jng ; send join() to a fi

T2 [] rcv join() from q →
if s = in → send grant(r) to q; r := q
[] s 6= in → send retry() to q fi

T3 [] rcv grant(a) from q → r, s := a, in
T4 [] rcv retry() from q → s := out

end

Fig. 2. The join protocol for a unidirectional ring. The states in, out , and jng
stand for in, out of, and joining the network, respectively.

3 Maintaining a Single Ring

We discuss the maintenance of a single ring for two reasons. Firstly, we use the
protocol for maintaining a single ring as a building block to maintain Ranch, a
multi-ring topology. Secondly, the ring topology is the basis of several peer-to-
peer networks (e.g., [5, 11, 16, 22]) and hence its maintenance is of independent
interest.

3.1 Joins for a Unidirectional Ring

We begin by considering joins for a unidirectional ring. We discuss this seemingly
simple problem to exemplify our techniques for solving the harder problems
discussed later in this paper. The join protocol for a unidirectional ring is quite



simple. Let r (the right neighbor) be a neighbor variable. When process u wishes
to join the ring, we assume that u is able to find a member v of the ring (if there
is no such process, then u creates a ring consisting of only u itself). Process u
then sends a join message to v. Upon receiving the join message, v places u
between v and its right neighbor w (which can be equal to v), by setting v.r
to u and sending a grant(w) message back to u. Upon receiving the grant(w)
message, u sets u.r to w.

Figure 2 describes the join protocol. We have written our protocol as a collec-
tion of actions, using a notation similar to Gouda’s abstract protocol notation [4].
An execution of a protocol consists of an infinite sequence of actions. We assume
a weak fairness model where each action is executed infinitely often; execution
of an action with a false guard has no effect on the system. We assume, without
loss of generality, that each action is atomic, and we reason about the system
state in between actions. We assume that the contact() function in action T1

returns a non-out process if there is one, and it returns the calling process oth-
erwise.1 A brief justification of the assumption on the atomicity of actions and
on the behavior of the contact() function can be found in [9]. A more complete
treatment of the issue of atomicity of actions can be found in [17]. Figure 1 shows
an execution of the protocol where a join request is granted.

We now prove the correctness of the join protocol. We begin with safety
properties. Proving safety properties often amounts to proving invariants. What
is an invariant of this protocol? It is tempting to think that this protocol main-
tains ring(r) at all times. This, however, is not true. For example, consider the
moment when v has set v.r to u but u has yet to receive the grant message. At
this moment, v.r = u but u.r = nil (i.e., the ring is broken). In fact, no pro-
tocol can maintain ring(r) at all times, simply because the joining of a process
requires the modification of two variables (e.g., v.r and u.r) located at differ-
ent processes. This observation leads us to consider an extended ring topology,
defined as follows. Let u.r′, an imaginary variable, be

u.r′ =
{

x if m−(grant , u) = 1 ∧m−(grant(x), u) = 1
u.r otherwise.

In effect, a process with a non-nil r′ value is either a member or a non-member
for which the join request has been acknowledged with a grant message, although
the grant message has yet to arrive. This definition of r′ allows a single action
to change the r′ values of two different processes, solving the aforementioned
problem. We now claim that ring(r′) holds at all times. To prove this claim,
we find it useful to introduce a function f : V → N, where N denotes the
nonnegative integers, defined as:

f(u) = m+(join, u) + m−(grant , u) + m−(retry , u).
1 Alternatively, we can assume that the contact() function returns an in process if

there is one, and returns the calling process otherwise. For this protocol, this alter-
native assumption eliminates the need for the retry message. For subsequent proto-
cols, however, this alternative assumption has to be modified. We keep the current
assumption in order to maintain a consistent definition of the contact() function.



We define I as I = A ∧B ∧ C ∧ ring(r′), where

A = 〈∀u :: (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1〉,
B = 〈∀u :: u.s = in ≡ u.r 6= nil〉,
C = (#grant(nil) = 0).

Theorem 1. invariant I.

Proof. It can be easily verified that I is true initially. It thus suffices to check
that every action preserves I. We first observe that C is preserved by every
action, simply because T2 is the only action that sends a grant message and B
implies that p.r 6= nil. We itemize below the reasons why each action preserves
the other conjuncts of I.

– {I} T1 {I}: Suppose T1 takes the first branch (i.e., a = p). This action
preserves A∧B because it changes p.s from out to in and changes p.r from
nil to p. This action preserves ring(r′) because

contact() returns p
⇒ {def. of contact(); A; B; def. of r′}
↑ 〈∀u :: u.s = out ∧ u.r′ = nil〉 ∧#grant = 0

⇒ {action}
↓ p.r′ = p ∧ 〈∀u : u 6= p : u.r′ = nil〉.

– {I} T1 {I}: Suppose T1 takes the second branch (i.e., a 6= p). This action
changes p.s from out to jng and increases f(p) from 0 to 1.

– {I} T2 {I}: Suppose T2 takes the first branch (i.e., s = in). This action
preserves A ∧ B because it preserves f(q) and p.r 6= nil. Let w be the old
p.r; B thus implies w 6= nil. This action changes p.r′ from w to q and q.r′

from nil to w because

↑ p.r = w ∧ p.s = in ∧m(join, q, p) > 0
⇒ {A; B; def. of r′}
↑ p.r′ = w ∧m−(grant , p) = 0 ∧ q.r′ = nil ∧m−(grant , q) = 0

⇒ {action; p 6= q because p.r′ 6= q.r′; def. of r′}
↓ p.r′ = q ∧ q.r′ = w.

Hence, ring(r′) is preserved.
– {I} T2 {I}: Suppose T2 takes the second branch (i.e., s 6= in). This action

preserves f(q).
– {I} T3 {I}: This action changes p.s from jng to in, decreases f(p) from 1 to

0, and truthifies p.r 6= nil. It preserves p.r′ because l p.r′ = x.
– {I} T4 {I}: This action changes p.s from jng to out and decreases f(p) from

1 to 0.

Therefore, invariant I. ut
Given the simplicity of this protocol, the reader may wonder if it is necessary

to use assertional reasoning; instead, an argument based on operational reason-
ing might suffice. The effectiveness of operational reasoning, however, tends to
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Fig. 3. Joining and leaving a bidirectional ring: (a) join, (b) leave.

diminish as the number of messages and actions of the protocol increase. Since
our ultimate goal is to prove the correctness of the more involved protocols
discussed later in this paper, we use assertional reasoning from the beginning.

As discussed above, although ring(r′) always holds, ring(r) may sometimes
be false. In fact, if processes keep joining the network, the protocol may never
be able to establish ring(r). However, by the definition of r′, once all the grant
messages are delivered, then u.r′ = u.r for all u and consequently, ring(r) holds.
A similar property is shared by all the protocols presented in this paper.

In addition, the join protocol in Figure 2 is livelock-free, and it does not
cause starvation for an individual process. To see this, simply observe that a
retry is sent by a jng node. Hence, although the join message of some node may
be declined, some other node succeeds in joining. Furthermore, the ring cannot
keep growing forever because there are only a finite number of processes. Hence,
if a process keeps trying to join, it eventually succeeds.

3.2 Joins and Leaves for a Bidirectional Ring

We design the maintenance protocol for a bidirectional ring by first designing a
join protocol and a symmetric leave protocol and then combining them. Figure 3
depicts how a process joins or leaves a ring. Converting this figure to protocols
are straightforward. Hence, the join protocol and the leave protocol are omitted
here, but they can be found in [10]. The resulting combined protocol is shown
in Figure 4. Proofs of correctness of these protocols are given in [10].

We refer the interested reader to [8, 10] for a number of additional results
on rings. For example, we show in [10] a join protocol for a bidirectional ring
that does not have the busy state, but assumes FIFO channels. We show in [10]
how a simple extension to the combined protocol in Figure 4 ensures that an
out process does not have any incoming messages. We show in [8] that a simple



process p
var s : {in, out , jng , lvg , busy}; r, l : V ′; t, a : V ′

init s = out ∧ r = l = t = nil
begin

T j
1 s = out → a := contact();

if a = p → r, l, s := p, p, in [] a 6= p → s := jng ; send join() to a fi
T l

1 [] s = in →
if l = p → r, l, s := nil,nil, out
[] l 6= p → s := lvg ; send leave(r) to l fi

T j
2 [] rcv join() from q →

if s = in → send grant(q) to r; r, s, t := q, busy , r
[] s 6= in → send retry() to q fi

T l
2 [] rcv leave(a) from q →

if s = in ∧ r = q → send grant(q) to a; r, s, t := a, busy , r
[] s 6= in ∨ r 6= q → send retry() to q fi

T3 [] rcv grant(a) from q →
if l = q → send ack(l) to a; l := a
[] l 6= q → send ack(nil) to a; l := q fi

T4 [] rcv ack(a) from q →
if s = jng → r, l, s := q, a, in; send done() to l
[] s = lvg → send done() to l; r, l, s := nil,nil, out fi

T5 [] rcv done() from q → s, t := in,nil
T6 [] rcv retry() from q → if s = jng → s := out [] s = lvg → s := in fi

end

Fig. 4. The combined protocol for a bidirectional ring. The auxiliary variable t
is for the purpose of the correctness proofs.

extension of the protocol in Figure 3 maintains the Chord ring; the main idea is
to forward a join message via the finger pointers until a node with an appropriate
identifier is found.

4 Maintaining the Ranch Topology

The Ranch (random cyclic hypercube) topology, proposed in [11], is a struc-
tured peer-to-peer network topology with a number of nice properties, including
scalability, locality awareness, and fault tolerance. The presentation of Ranch in
this paper is self-contained.

4.1 The Ranch Topology

In Ranch, every process u has a binary string, denoted by u.id , as its identifier.
Identifiers need not be unique or have the same length. We use ε to denote the
empty string. For a set of processes S, we use Sα to denote the set of processes
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Fig. 5. An example of the Ranch topology. Bits in identifiers are numbered from left
to right. For example, if id = 01, then id [0] = 0 and id [1] = 1.

in S that are prefixed by α. Every process u uses two dynamic arrays of type V ′,
u.r and u.l, to be their right neighbors and left neighbors. A set of processes S
form a Ranch topology if for every bit string α, all the processes in S prefixed by
α form a ring. The rings in Ranch can be either unidirectional or bidirectional.
Formally, S form a unidirectional Ranch if 〈∀α : ring(Sα, r[|α|])〉 holds, and they
form a bidirectional Ranch if 〈∀α : biring(Sα, r[|α|], l[|α|])〉 holds. Hence, the key
to maintaining Ranch is the joining or leaving of a single ring. We call the ring
consisting of all the processes prefixed by α simply the α-ring. Figure 5 shows
an example of the Ranch topology.

At a high level, Ranch and skip graphs [2] share some similarities. But as
far as topology maintenance is concerned, they have two key differences: (1) in
Ranch, a new process can be added to an arbitrary position in the base ring
(i.e., the ε-ring), while in skip graphs, a new process has to be added to an
appropriate position; (2) in Ranch, the order in which the processes appear in,
say the α0-ring, need not be the same as the order in which they appear in the
α-ring, while in skip graphs, the orders need to be the same. For example, in
Figure 5, the order in which the processes appear in the 0-ring is different from
the order in which they appear in the ε-ring. This flexibility allows us to design
simple maintenance protocols for Ranch.

4.2 Joins for Unidirectional Ranch

A process joins Ranch ring by ring. It first calls the contact() function to join
the ε-ring, then after it has joined the α-ring, for some α, if it intends to join
one more ring, it generates the next bit d of its identifier and joins the αd-ring.
But how does the process find an existing process in the αd-ring? Note that we
can no longer use the contact() function for this purpose.

The idea to overcome this difficulty is as follows. Suppose that process u
intends to join the α0-ring, where |α0| = i. Process u sends a join(u, i, 0) message
to u.r[i− 1]. This join message is forwarded around the α-ring. Upon receiving
the join message, a process p makes one of the following decisions: (1) if a = p
(i.e., the join message originates from p and comes back), then the α0-ring is



process p
var id : dynamic bit string; s : dynamic array of {out , in, jng};

r : dynamic array of V ′; a : V ′; i : integer; d : [0..1]
init id = ε ∧ s[0] = out
begin

T1 s[k] = out ∨ s[k] = in →
if s[k] = out → a, d := contact(), any
[] s[k] = in → a, d := r[k], random; id := grow(id , d) fi;
if a = p → s[k] := in; r[k] := p
[] a 6= p → s[k] := jng ; send join(p, k, d) to a fi

T2 [] rcv join(a, i, d) from q →
if a = p → r[k], s[k] := p, in
[] a 6= p ∧ i > 0 ∧ s[i′] = in ∧ (k < i ∨ id [i′] 6= d) →

send join(a, i, d) to r[i′]
[] a 6= p ∧ ((i = 0 ∧ s[i] 6= in) ∨ (i > 0 ∧ (s[i′] 6= in

∨ (k ≥ i ∧ id [i′] = d ∧ s[i] 6= in)))) → send retry() to a
[] a 6= p ∧ (i = 0 ∨ (k ≥ i ∧ s[i′] = in ∧ id [i′] = d)) ∧ s[i] = in →

send grant(r[i]) to a; r[i] := a fi
T3 [] rcv grant(a) from q → r[k], s[k] := a, in
T4 [] rcv retry() from q → s[k] := out ;

if k > 0 → id := shrink(id) [] k = 0 → skip fi
end

Fig. 6. The join protocol for unidirectional Ranch. A call to grow(id , d) appends
bit d to id ; a call to shrink(id) removes the last bit from id . We use k and i′

as shorthands for |id | and i − 1, respectively. The array s has range [0..k]. If
s[0] = out , then r is empty; otherwise, r has range [0..k]. When s and r grow,
their new elements are initialized to out and nil, respectively.

empty and p creates the α0-ring by setting p.r[i] = p; (2) if p is in the α-ring
but is not in the α0-ring, then p forwards the join message to p.r[i − 1]; (3) if
p is not in the α-ring, or p itself is also trying to join the α0-ring, then p sends
a retry message to a; (4) if p is in the α0-ring, then p sends a grant message
to a, informing a that p is its r[i] neighbor. Figure 6 shows the join protocol
for unidirectional Ranch.2 This protocol, however, is not livelock-free: when two
processes attempt to join the same empty ring, they may reject each other. We
show in [9] that, assuming a total order on the processes, we can use a leader
election algorithm to obtain a livelock-free join protocol.

4.3 Joins and Leaves for Bidirectional Ranch

The join protocol for bidirectional Ranch is a simple combination of the ideas
in Sections 3.1 and 4.2. A process leaves Ranch ring by ring, starting from the
2 For the protocol in Figure 6, a single state, instead of an array of states, suffices. We

keep an array of states so that the protocols in Figures 6 and 7 are more similar.



“highest” ring in which it participates. The leave protocol for bidirectional Ranch
is a straightforward extension of the leave protocol in [10]. We omit presenting
these two protocols here but they can be found in [9]. Designing a protocol that
handles both joins and leaves is a much more challenging problem than designing
two that handle them respectively. In particular, there are two subtleties.

The first subtlety is as follows. Suppose that there is a join(a, |α0|, 0) message
in transmission from u to v, both of which are in the α-ring. Since we only assume
reliable delivery, when this join message is in transmission, v may leave the α-
ring, and even worse, v may join the α-ring again, but at a different location. If
this happens, then the join message may “skip” part of the α-ring, which may
contain some processes in the α0-ring. Therefore, if the join message comes back
to process a, it causes a to form a singleton ring, resulting in two α0-rings, which
violates the definition of Ranch.

The second subtlety is as follows. Suppose that u and v belong to the α-ring
and w is the only process in the α0-ring. Then u decides to join the α0-ring and
sends out a join(u, |α0|, 0) message. But when this message has passed v but has
not reached w, v also decides to join the α0-ring and sends out a join(v, |α0|, 0)
message. Since we only assume reliable delivery, the join(v) message may reach
w earlier than the join(u) message does. Hence, v is granted admission to the
α0-ring, but then w may leave the α0-ring. Therefore, the join(u) message does
not encounter any process in the α0-ring before it comes back to u, causing u
to create an α0-ring. This violates the Ranch definition, because the α0-ring
already exists and consists of v.

We use the following idea to overcome these two subtleties. When u decides to
join, say the α0-ring, it changes u.s[|α|] (from in) to wtg (waiting), a new state.
Upon receiving a join(u, i, 0) message, process v first checks if v.s[i−1] = in. If so,
v takes a decision as before, and if it needs to forward the join message, v changes
v.s[i − 1] to wtg . If not, v sends a retry message to u. After u receives either a
grant or a retry message, it sends an end message to change the state of those
processes which has been set to wtg by its join message back to in. Intuitively,
changing a state to wtg prevents a process from performing certain join or leave
operation that may jeopardize an ongoing join operation. The combined protocol
that realizes this idea is shown in Figure 7.

4.4 Discussion

A desirable property for a topology maintenance protocol is that a process that
has left the network does not have any incoming messages related to the net-
work. This property, however, is not provided by the protocol in Figure 7 if we
only assume reliable, but not ordered delivery. On the other hand, if we assume
reliable and ordered delivery of messages and we extend the protocol using a
method similar to the one suggested in [10], then the extended combined proto-
col provides this property.

This combined protocol in Figure 7 is not livelock-free. In fact, as pointed out
in [10], the leave protocol for a single ring is not livelock-free. We remark that
this property is not provided by existing work either; see a detailed discussion



process p
var id : dynamic bit string; s : dynamic array of {in, out , jng , lvg , busy ,wtg};

r, l, t : dynamic array of V ′; a : V ′; i : integer; d : [0..1]
init id = ε ∧ s[0] = out
begin

T j
1 s[k] = out ∨ s[k] = in →

if s[k] = out → a, d := contact(), any
[] s[k] = in → a, d := r[k], random; id := grow(id , d) fi;
if a = p → s[k] := in; r[k], l[k] := p, p
[] a 6= p → s[k] := jng ; send join(p, k, d) to a;

if k > 0 → s[k′] := wtg [] k = 0 → skip fi fi

T l
1 [] s[k] = in →

if l[k] = p → r[k], l[k] := nil,nil; s[k] := out ;
if k > 0 → id := shrink(id) [] k = 0 → skip fi

[] l[k] 6= p → s[k] := lvg ; send leave(r[k], k) to l[k] fi

T j
2 [] rcv join(a, i, d) from q →

if a = p → r[i], l[i], s[i] := p, p, in;
if i > 0 → s[i′] := in; send end(p, i′) to r[i′] [] i = 0 → skip fi

[] a 6= p ∧ i > 0 ∧ s[i′] = in ∧ (k < i ∨ id [i′] 6= d) →
s[i′] := wtg ; send join(a, i, d) to r[i′]

[] a 6= p ∧ ((i = 0 ∧ s[i] 6= in) ∨ (i > 0 ∧ (s[i′] 6= in
∨ (k ≥ i ∧ id [i′] = d ∧ s[i] 6= in)))) → send retry() to a

[] a 6= p ∧ (i = 0 ∨ (k ≥ i ∧ s[i′] = in ∧ id [i′] = d)) ∧ s[i] = in →
send grant(a, i) to r[i]; r[i], s[i], t[i] := a, busy , r[i] fi

T l
2 [] rcv leave(a, i) from q →

if s[i] = in ∧ r[i] = q → send grant(q, i) to a; r[i], s[i], t[i] := a, busy , r[i]
[] s[i] 6= in ∨ r[i] 6= q → send retry() to q fi

T3 [] rcv grant(a, i) from q →
if l[i] = q → send ack(l[i]) to a; l[i] := a
[] l[i] 6= q → send ack(nil) to a; l[i] := q fi

T4 [] rcv ack(a) from q →
if s[k] = jng → r[k], l[k], s[k] := q, a, in; send done(k) to l[k];

if k > 0 → s[k′] := in; send end(a, k′) to r[k′] [] k = 0 → skip fi
[] s[k] = lvg → send done(k) to l[k]; r[k], l[k] := nil,nil; s[k] := out ;

if k > 0 → id := shrink(id) [] k = 0 → skip fi fi
T5 [] rcv done(i) from q → s[i], t[i] := in,nil
T6 [] rcv retry() from q →

if s[k] = jng ∧ k > 0 → s[k], s[k′] := out , in; id := shrink(id);
send end(q, k) to r[k]

[] s[k] = jng ∧ k = 0 → s[k] := out [] s[k] = lvg → s[k] := in fi
T7 [] rcv end(a, i) from q →

if p 6= a → s[i] := in; send end(a, i) to r[i] [] p = a → skip fi
end

Fig. 7. The combined protocol for bidirectional Ranch. We use k, k′, and i′ as short-
hands for |id |, k − 1, and i − 1, respectively. The array s has range [0..k]. When
s[0] = out , r, l, t are empty; otherwise, r, l, t have range [0..k]. When s grows, the new
element is initialized to out ; when r, l, t grow, the new elements are initialized to nil.



in Section 5 and in [10]. Lynch et al. [14] have noted the similarity between this
problem and the classical dining philosophers problem, for which there is no
deterministic symmetric solution that avoids starvation [7]. However, one may
use a probabilistic algorithm similar to the one in [7] to provide this property,
or, as in the Ethernet protocol, a process may delay a random amount of time
before sending out another leave request.

5 Related Work

Peer-to-peer networks belong in two categories, structured and unstructured,
depending on whether they have stringent neighbor relationships to be main-
tained by their members. While unstructured networks do not maintain topolo-
gies as stringent as structured networks, it is still desirable to maintain a topol-
ogy with certain properties (e.g., connectivity). For example, Pandurangan et
al. [18] propose how to build a connected network with constant degree and log-
arithmic diameter. In recent years, numerous topologies have been proposed for
structured peer-to-peer networks (e.g., [2, 5, 11, 15, 16, 19, 22, 20, 21, 23]). Many
of them, however, assume that concurrent membership changes only affect dis-
joint sets of the neighbor variables. Clearly, this assumption does not always
hold.

Chord [22] takes the passive approach to topology maintenance. Liben-Nowell
et al. [12] investigate the bandwidth consumed by repair protocols and show
that Chord is nearly optimal in this regard. Hildrum et al. [6] focus on choosing
nearby neighbors for Tapestry [23], a topology based on PRR [19]. In addition,
they propose a join protocol for Tapestry, together with a correctness proof.
Furthermore, they describe how to handle leaves (both voluntary and involun-
tary) in Tapestry. However, the description of voluntary (i.e., active) leaves is
high-level and is mainly concerned with individual leaves. Liu and Lam [13] have
also proposed an active join protocol for a topology based on PRR. Their focus,
however, is on constructing a topology that satisfies the bit-correcting property
of PRR; in contrast with the work of Hildrum et al., proximity considerations
are not taken into account.

The work of Aspnes and Shah [2] is closely related to ours. They give a join
protocol and a leave protocol, but their work has some shortcomings. Firstly,
concurrency issues are addressed at a high level; for example, the analysis does
not capture the system state when messages are in transmission. Secondly, the
join protocol and the leave protocol of [2], if put together, do not handle both
joins and leaves. (To see this, consider the scenario where a join occurs between a
leaving process and its right neighbor.) Thirdly, for the leave protocol, a process
may send a leave request to a process that has already left the network; the
problem persists even if ordered delivery of messages is assumed. Fourthly, the
protocols rely on the search operation, the correctness of which under topology
change is not established.

In their position paper, Lynch et al. [14] outline an approach to providing
atomic data access in peer-to-peer networks and give the pseudocode of the ap-



proach for the Chord ring. The pseudocode, excluding the part for transferring
data, gives a topology maintenance protocol for the Chord ring. While [14] pro-
vides some interesting observations and remarks, no proof of correctness is given,
and the proposed protocol has several shortcomings, some of which are similar
to those of [2] (e.g., it does not work for both joins and leaves and a message
may be sent to a process that has already left the network).

Assertional proofs of distributed algorithms appear in, e.g., Chandy and
Misra [3]. It is not uncommon for a concurrent algorithm to have an invariant
consisting of a number of conjuncts. Our work can be described by the closure
and convergence framework of Arora and Gouda [1]: the protocols operate un-
der the closure of the invariants, and the topology converges to a ring once the
messages related to membership changes are delivered.

6 Concluding Remarks

We have shown in this paper simple protocols that actively maintain a single
ring and the Ranch topology under both joins and leaves. Numerous issues merit
further investigation. For example, it would be interesting to develop machine-
checked proofs for the protocols, investigate techniques that may help reduce the
proof lengths, design simple protocols that provide certain progress properties,
and extend the protocols to faulty environments.
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