
Optimal Cover Time for a Graph-Based Coupon Collector Process

Nedialko B. Dimitrov1,2 and C. Greg Plaxton1,3

January 2005

Abstract

In this paper we study the following covering process defined over an arbitrary directed graph. Each
node is initially uncovered and is assigned a random integer rank drawn from a suitable range. The pro-
cess then proceeds in rounds. In each round, a uniformly random node is selected and its lowest-ranked
uncovered outgoing neighbor, if any, is covered. We prove that if each node has in-degreeΘ(d) and out-
degreeO(d), then with high probability, every node is covered withinO(n · max(1, (logn)/d)) rounds,
matching a lower bound due to Alon. Alon has also shown that, for a certain class ofd-regular expander
graphs, the upper bound holds no matter what method is used to choose the uncovered neighbor. In
contrast, we show that for arbitraryd-regular graphs, the method used to choose the uncovered neighbor
can affect the cover time by more than a constant factor.

Adler et al. have previously shown that a similar covering process is useful in the analysis of an
optimal load balancing scheme for a hypercubic distributed hash table. We show that our covering
process leads to an optimal load balancing scheme for any distributed hash table in which each machine
has a logarithmic number of pointers to other machines.

1 Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas 78712–0233.
2 Email: ned@cs.utexas.edu. Supported by an MCD Fellowship from the University of Texas at Austin.
3 Email: plaxton@cs.utexas.edu. Supported by NSF Grants CCR–0310970 and ANI–0326001.

1 Introduction

One of the most commonly discussed stochastic processes in computer science is the so-called coupon
collector process [6]. In that process, there aren distinct coupons and we proceed in rounds, collecting
one uniformly random coupon (with replacement) in each round. It is natural to ask how many rounds are
needed to collect alln coupons. It is a well known fact, often given as an exercise, that with high probability
this number of rounds isO(n logn).

This result is in some sense unsatisfying, since one might hope to collect then coupons inO(n) rounds.
This shortcoming has motivated Adleret al.[1] and Alon [2] to study a similar graph-based covering process.
The nodes of the graph nodes represent the coupons and covering a node represents collecting a coupon. In
each round, a uniformly random nodew is selected. If an uncovered neighbor ofw exists, choose one such
uncovered neighbor and cover it. We refer to this process as process CC.

Process CC can use a variety of differentcovering methodsto decide which uncovered neighbor to cover.
If our ultimate goal is to minimize cover time, certainly the most powerful covering method available is an
offline method with knowledge of the entire sequence of node selections and with infinite computing power.
We refer to this powerful cover time minimizing version of process CC as process MIN. To achieve our
O(n) goal, it is natural to considerlogn-regular graphs since the work of Alon implies process MIN has an
expected cover time ofΩ(nmax(1, (logn)/d)) rounds ond-regular graphs [2].

1.1 Logarithmic-Degree Graphs

Another natural version of process CC — in which the covering method chooses a uniformly random un-
covered neighbor, if any — was studied by Adleret al. [1] and by Alon [2]. We refer to this version of
process CC as process UNI. Alon shows that for logarithmic-degree Ramanujan expander graphs, process
UNI completes inO(n) time, matching the lower bound for process MIN.

Adler et al. show that for the hypercube, which has a weak expansion property but is not an expander,
process UNI takesO(n) time, also matching the lower bound for process MIN [1]. They also show that for
arbitrary logarithmic-degree graphs, process UNI completes inO(n log logn) time. Furthermore, Adleret
al. present an application of process UNI to load balancing in a hypercubic distributed hash table (DHT).

A process that is intuitively similar to process UNI is one where we initially assign a rank to each node
using a uniformly random permutation of the nodes, and the covering method covers the minimum-rank
uncovered neighbor, if any. We refer to this permutation-based version of process CC as process P-RANK.
In this paper, we show process P-RANK completes inO(n) time on arbitrary logarithmic-degree graphs.

In fact, we analyze a more general and local version of process CC in which each node initially chooses
a uniformly random rank in a suitable range, and the covering method covers the minimum-rank uncovered
neighbor of the selected node. (We assume that the nodes are numbered from1 to n, and that ties in rank
are broken in favor of the lower-numbered node.) We refer to this random rank version of process CC as
process R-RANK.

Adler et al. show that in a hypercubic DHT, if new nodes use process UNI to choose which existing
node’s name space to split, then there exist constantsc1 andc2 such that aftern joins, no node is responsible
for more than ac1/n or less than a1/(c2n) fraction of the name space with high probability. By applying
our results within the framework of Corollary 2.3 of Adleret al. , we can show that if process R-RANK is
used by joining nodes to choose which existing node to split, then inanyDHT where each node holdslogn
pointers to other nodes in the table, there exists a constantc3 such that aftern joins no node is responsible
for more than ac3/n fraction of the name space with high probability. For example, if process R-RANK
is used by joining nodes, our results establishes a load balance guarantee for the well-known DHT Chord,
which has logarithmic degree but is not a hypercube.

1

As discussed in the preceding paragraph, our results may be used to upper bound the maximum load of
any machine in the DHT. For completeness, it may be interesting to establish a lower bound on the minimum
load, as Adleret al. show for the hypercubic DHT. We conjecture that with high probability the firstbεnc
rounds of process R-RANK are successful on arbitrary logarithmic-degree graphs. If this conjecture holds,
the result can be applied within the framework of Corollary 2.4 of Adleret al. to establish the desired lower
bound on the minimum load for any hash table with logarithmic degree. In practice, however, such a lower
bound on the minimum load is unimportant in load balancing applications where the objective is to avoid
overload.

1.2 Results for General Graphs

Alon shows that process MIN on anyd-regular graph has expected time at leastn− n
d + n

d loge(
n
d) [2]. Alon

also shows that process UNI completes in timen + (1 + o(1))n logn
d for random nearlyd-regular graphs.

Alon further shows that on any(n, d, λ)-expander graph the expected time of process UNI is at mostn +

n(λd)2(loge n+ 1). In particular, this implies that on Ramanujan graphs process UNI completes in(1+ o(1))n
time, matching the lower bound for process MIN.

If our ultimate goal is to maximize cover time, certainly the most powerful neighbor selection method
available is an offline adversary with knowledge of the entire sequence of node selections and with infinite
computing power. We refer to this powerful cover time maximizing version of process CC as process MAX.
Alon notes that the upper bounds for expanders hold even if after every round an adversary “is allowed to
shift the uncovered nodes to any place he wishes, keeping their number.” In particular, this shows that on
Ramanujan graphs, the cover time for process MAX matches the cover time for process MIN, up to constant
factors. In effect, the covering method does not matter for this class of graphs.

Another previously studied variant of process CC favors covering the selected node. In this variant, we
check — immediately after selecting a uniformly random node — if the selected node is uncovered. If it
is, we cover it and move to the next selection. Only otherwise do we consider the neighbors of the selected
node. We refer to the selection-biased variants of process UNI, process P-RANK, and process R-RANK as
process UNI′, process P-RANK′, and process R-RANK′, respecively.

Adler et al.show that for everyd-regular graph, processes UNI and UNI′ complete inO(n + n logn logd
d)

time[1]. They also show that for randomd-regular graphs onlyO(n+ n logn
d) steps are needed. Furthermore,

they exhibit an application of process UNI′ to load balancing in DHTs.
All of the results matching Alon’s lower bound for process MIN presented prior to this work have

used some expansion properties of the underlying graph. In contrast, our proof techniques do not require
the underlying graph to have any particular structure. Thus we show the more general result that for di-
rected graphs (with self-loops but no parallel edges) where each node has in-degree at leastδin and at most
∆in, while the out-degree is at most∆out, both process R-RANK and process R-RANK′ cover all nodes in
O(nmax(∆in∆out/δ

2
in, (logn)/δin)) rounds with high probability. This result matches Alon’s lower bound for

δin = ∆in = ∆out = Θ(d), and is thus optimal under these conditions.
Furthermore, Alon’s results for Ramanujan graphs raise the question whether there is any separation

between the cover times for process MAX and process MIN. In other words, are there any graphs for which
the choice of covering method matters? We define a weakly adversarial process, process A-RANK, that is
similar to process P-RANK. In process A-RANK, instead of picking a uniformly random permutation, an
adversary is initally allowed to fix the permutation used to assign ranks to the nodes. We then proceeds as
in process P-RANK. Define the even weaker adversarial process A-RANK′ similarly to process P-RANK′.
We show that there exists a logarithmic-degree graph on which process A-RANK and process A-RANK′

each takeω(n) rounds to complete. This implies that in general there is separation between the cover times
of process MIN and process MAX. Or, in other words, the covering method does matter.

2

1.3 Proof Outline

The proof of our theorem is inspired by the delay sequence argument used by Ranade for the analysis of a
certain packet routing problem on the butterfly [7] (see also [5]. In a delay sequence argument, we identify
certain combinatorial structures that exist whenever the random process lasts for a long time. Then, we show
that the probability any of these structures exist is small. This in turn implies an upper bound on the running
time of the random process.

There are significant differences between our proof and that of Ranade. For example, in our problem,
the connection between the running time and the length of a delay sequence is not clear-cut, while in the
butterfly routing problem analyzed by Ranade, the length of the delay sequence is equal to the running time.
But let us begin by giving the notion of a delay sequence in our problem.

Consider the node that was covered last,w1. Why wasn’tw1 covered earlier? It was not covered earlier
because at the last opportunity to coverw1 — that is, the last selection inw1’s neighborhood — we covered
some other node,w2 instead. Thus,w1 was delayed byw2. Similarly, w2 was delayed by some nodew3, et
cetera, until finally we reach a nodewk that was not delayed, i.e.,wk was covered at the first opportunity.
The sequence of nodesw1, . . . ,wk corresponds to our notion of a delay sequence.

In analyzing process R-RANK, we find it useful to first analyze a much simpler process, process SE-
LECT, in which we repeatedly select a uniformly random node, never covering anything. After establishing
several lemmas for the simpler process, we proceed to analyzing process R-RANK. This is the bulk of the
proof, and includes a technical lemma to work around the difficulties in linking cover time to delay sequence
length. Finally, we reduce process R-RANK′ to process R-RANK to show that the same bounds hold.

The rest of the paper is structured as follows. In Section 2, we establish helpful definitions and lemmas
about random variables. In Section 3, we analyze the simple process. In Section 4, we analyze process R-
RANK. In Appendix D, we analyze process R-RANK′ via a reduction from process R-RANK. In Section 5,
we show the existence of a logarithmic-degree graph on which process A-RANK and process A-RANK′

each takeω(n) rounds to complete, establishing that the covering method does matter. Section 6 provides
some concluding remarks.

2 Preliminaries

For the sake of brevity, we use the term`-sequence to refer to a sequence of length`. For any`-sequenceσ
of elements of a given type, and any elementx of the same type, we letσ : x denote the(` + 1)-sequence
obtained by appending elementx toσ.

For any nonnegative integern and probabilityp, we letX ∼ Bin (n, p) denote that the random variable
X has a binomial distribution withn trials and success probabilityp. We let X ∼ Geo(p) denote that the
random variableX has a geometric distribution with success probabilityp. We letX ∼ NegBin(r, p) denote
that the random variableX has a negative binomial distribution withr successes and success probabilityp.
See Appendix A for proofs of the basic probabilistic lemmas stated below.

Lemma 2.1. Let p denote an arbitrary probability, let̀ denote an arbitrary nonnegative integer, and let
X ∼ NegBin(`, p). For any integerj such that1 ≤ j ≤ `, let p j denote an arbitrary probability such that

p j ≥ p, let Yj ∼ Geo
(
p j

)
, and letY =

∑
1≤ j≤` Yj . Then for any nonnegative integeri, Pr(X ≥ i) ≥ Pr(Y ≥ i).

Lemma 2.2. For any nonnegative integersr andn, and any probabilityp Pr(X < r) = Pr(Y > n), where
X ∼ Bin (n, p) andY ∼ NegBin(r, p).

Lemma 2.3. For any integerr ≥ 2, Pr(X ≥ 2E[X]) = Pr(X ≥ 2r/p) ≤ exp(−r/8), whereX ∼ NegBin(r, p).

3

Lemma 2.4. Let p be an arbitrary probability and letX be the sum ofn independent Bernoulli variables
X1, . . . ,Xn, whereX j has success probabilityp j ≥ p. ThenPr(X ≤ np/2) ≤ exp(−np/12).

Lemma 2.5. Suppose we repeatedly throw balls independently and uniformly at random inton bins, and let
the random variableX denote the number of throws required for every bin to receive at leastn balls. Then
X is O(n2) with high probability.

Lemma 2.6. Let j balls be thrown independently and uniformly at random inton bins. LetX denote
the number of bins with at least one ball at the end of the experiment. Then,Pr(X ≤ min(n/4, j/4)) ≤
exp(− j/2).

3 Process SELECT

Throughout all sections of this paper related to establishing upper bounds — that is, Sections 3 and 4 as
well as Appendix C — we fix an arbitrary directed graphG = (V,E) where|V| = n > 0. We letδin denote
the minimum in-degree of any node,∆in denote the maximum in-degree of any node, and we let∆out denote
the maximum out-degree of any node. For ease of exposition, we assume throughout the paper thatδin > 0.
The edge setE is allowed to contain loops but not parallel edges. For any nodev, we defineΓin(v) as
{w | (w, v) ∈ E}. For any sequence of edgesσ = (u1, v1), . . . , (u`, v`), we define the two sequences of nodes
src(σ) = u1, . . . ,u` anddst(σ) = v1, . . . , v`.

In this section, we analyze a simple stochastic process, process SELECT, defined as follows. Initially,
we fix a positive integerr and independently assign each node inV a uniformly random integer rank from
{1, . . . , r}. Process SELECT then proceeds in an infinite number of rounds, indexed from1. In each round,
one node is selected uniformly at random, with replacement. The following definitions are central to our
analysis of this process.

We inductively define the notion of arank-sortednode sequence as follows. For` equal to0 or 1, any
`-sequence of nodes is rank-sorted. For` > 1, an`-sequence of nodes of the formσ : v : v′ is rank-sorted if
σ : v is rank-sorted andrank(v) ≤ rank(v′).

For any node sequenceσ, we inductively define a nonnegative integerduration(σ) and a node sequence
select(σ) as follows. Ifσ is empty, thenduration(σ) is 0 andselect(σ) is empty. Otherwise,σ is of the form
τ : v for some shorter node sequenceτ and nodev. Let i denote the the leasti such thati > duration(τ) and
the node selected in roundi belongs toΓin(v). Let u denote the node selected in roundi. Then we define
duration(σ) asi, andselect(σ) asselect(τ) : u.

See Appendix B for proofs of the following lemmas related to process SELECT.

Lemma 3.1. For any`-sequence of distinct nodesσ, Pr(σ is rank-sorted) =
(
`+r−1
`

)
r−`.

Lemma 3.2. For any`-sequence of nodesσ = v1, . . . , v` and any nonnegative integeri, we have
Pr(duration(σ) = i) ≤ Pr(X ≥ i), whereX ∼ NegBin

(
`, δin

n

)
.

Lemma 3.3. For any`-sequence of edgesσ, Pr(select(dst(σ)) = src(σ)) ≤ δ−`in .

Lemma 3.4.For any`-sequence of edgesσ and nonnegative integeri, the eventsA = “ dst(σ) is rank-sorted”,
B = “ duration(dst(σ)) = i”, and C = “ select(dst(σ)) = src(σ)” are mutually independent.

Lemma 3.5.Letσ be aǹ -sequence of edges such that the nodes ofdst(σ) are distinct, letX ∼ NegBin
(
`, δin

n

)
,

let i be a nonnegative integer, and let eventsA, B andC be defined as in the statement of Lemma 3.4. Then
Pr(A∩ B∩C) ≤

(
`+r−1
`

)
Pr(X ≥ i)(rδin)−`.

4

4 Process R-RANK

In the section we analyze an augmented version of process SELECT, referred to as Process R-RANK, in
which we maintain a notion of a “covered subset” of the nodes. Initially, all of the nodes are uncovered.
Process R-RANK then proceeds in rounds in exactly the same manner as process SELECT, with the addi-
tional step that in any given round, if one or more outgoing neighbors of the selected node are uncovered,
we cover the uncovered outgoing neighbor with minimum rank. (As indicated in Section 1, ties are broken
according to some arbitrary numbering of the nodes.)

Note that process R-RANK simply augments process SELECT with the additional notion of covered
nodes; rank assignment and selections are performed in exactly the same manner in the two processes. Thus
all of the definitions and lemmas presented in Section 3 are applicable to process R-RANK. The following
additional definitions are useful for our analysis of process R-RANK.

Thecover timeof process R-RANK is defined as the number of rounds required to cover all of the nodes.
We inductively define the notion of alinked sequence of edges. For` equal to0 or 1, any`-sequence

of edges is linked. For̀ > 1, an `-sequence of edges of the formσ : (u, v) : (u′, v′) is linked if the
(` − 1)-sequenceσ : (u, v) is linked and(u, v′) belongs toE.

For any nodev, we defineparent(v) as follows. Leti denote the round in which nodev is covered. If
i is the first round in which some node inΓin(v) is selected, thenparent(v) is defined to benil. Otherwise,
parent(v) is the node covered in the first round prior to roundi in which the selected node belongs toΓin(v).

We inductively define the notion of achronologicalsequence of nodes as follows. Any`-sequence of
nodes with̀ ≤ 1 is chronological. Aǹ -sequence of nodes of the formσ : v : v′ is chronological ifσ : v is
chronological and nodev is covered before nodev′.

We inductively define the notion of anactivenode sequence as follows. The empty node sequence is
active. A singleton node sequence consisting of the nodev is active ifparent(v) = nil. An `-sequence of
nodes of the formσ : v : v′ is active ifσ : v is active andparent(v′) = v.

We call aǹ -sequence of edgesσ activeif dst(σ) is active andselect(dst(σ)) = src(σ).
We call an`-sequence of edgesσ i-activeif it is active and either̀ = i = 0 or ` > 0, σ is of the form

σ : (u, v), andv is covered in roundi.

Lemma 4.1. For any nonnegative integer`, there are at mostn∆`
out∆

`−1
in linked`-sequences of edges.

Proof. We proceed by induction oǹ, treating` = 0 and` = 1 as base cases. For` = 0, the empty sequence
is the only linked0-sequence, and the claim holds sincen/∆in ≥ 1. (Note that∆in is at mostn since we do
not allow parallel edges.) For` = 1, the number of linked1-sequences is at most|E| ≤ n∆out.

Now let` be greater than1 and inductively assume that the number of linked(`− 1)-sequences of edges
is at mostn∆`−1

out ∆
`−2
in . Recall that any linked̀-sequence of edges is of the formσ : (u, v) : (u′, v′) where

the (` − 1)-sequence of edgesσ : (u, v) is linked and(u, v′) belongs toE. Observe that for any linked
(` − 1)-sequence of edgesσ : (u, v), there are at most∆out nodesv′ such that(u, v′) belongs toE, and for
each such choice ofv′, there are at most∆in nodesu′ such that(u′, v′) belongs toE. Thus the number of
linked `-sequences is at most∆out∆in times the number of linked(` − 1)-sequences, and the desired bound
follows from the induction hypothesis. �

Lemma 4.2. Suppose we run two instances of process R-RANK in parallel using the same random ranks
and the same sequence of random selections, but in the second instance, we allow an arbitrary subset of
the covered nodes to be uncovered after each round. Then the cover time of the first instance is at most the
cover time of the second instance.

Proof. By a straightforward induction on the number of rounds, at all times, the set of covered nodes in the
first instance contains the set of covered nodes in the second instance. The claim of the lemma follows.�

5

Lemma 4.3. For any rank assignment, the expected cover time of process R-RANK isO(n2).

Proof. It follows from Lemma 2.5 that cover time isO(n2) with high probability since in that time each
vertex would have been selected at leastn times implying that all its neighbors are covered.

We can then consider a modified version of process R-RANK in which the infinite sequence of rounds
is partitioned into epochs ofO(n2) rounds, and where at the end of each epoch, if the nodes are not all
covered, all nodes are uncovered before proceeding to the next epoch. Since each epoch covers all the nodes
with high probability, the expected cover time of this modified version of process R-RANK isO(n2). By
Lemma 4.2, for any rank assignment, the expected cover time of process R-RANK isO(n2). �

Lemma 4.4. Assume that nodev is covered in roundi and letu be the node selected in roundi. Then there
is ani-active edge sequenceσ terminating in edge(u, v) and such thatduration(dst(σ)) = i.

Proof. Observe thatu belongs toΓin(v). Also observe that ifparent(v) = nil, the singleton node se-
quencev is active withduration(v) = i, and hence the singleton edge sequenceσ = (u, v) is i-active with
duration(dst(σ)) = i.

We prove the claim by induction oni. For i = 1, it must be true thatparent(v) = nil and the observations
of the previous paragraph prove the claim.

For i > 1, if parent(v) = nil, the observations once again prove the claim. Otherwise,parent(v) = v′

wherev′ is some node covered in roundj < i. Call the node selected in roundj, u′. Since j < i, we can
inductively assume that there is aj-active edge sequence, call itτ, terminating in edge(u′, v′) and such that
duration(dst(τ)) = j. Sinceτ is active, the node sequencedst(τ) is active andselect(dst(τ)) = src(τ). Let
σ = τ : (u, v). Thussrc(σ) = src(τ) : u anddst(σ) = dst(τ) : v. Sinceparent(v) = v′ anddst(τ) is an active
node sequence terminating in nodev′, dst(σ) is active. Sinceduration(dst(τ)) = j, select(dst(τ)) = src(τ),
u was selected in roundi, and i is the least integer greater thatj such that the node selected in roundi
belongs toΓin(v), we haveduration(dst(σ)) = i andselect(dst(σ)) = src(σ). Sincedst(σ) is active and
select(dst(σ)) = src(σ), σ is active. Sinceσ is active and nodev is covered in roundi, σ is i-active. Thus
the edge sequenceσ satisfies all of the requirements of the lemma. �

Lemma 4.5. Any active node sequence is rank-sorted, chronological, and consists of distinct nodes.

Proof. Note that any chronological node sequence consists of distinct nodes. Thus, in what follows, it is
sufficient to prove that any active node sequence is rank-sorted and chronological.

We proceed by induction on the length of the sequence. For the base case, note that any node sequence
of length0 or 1 is rank-sorted and chronological. For the induction step, consider an active node sequenceσ

of the formτ : v : v′. Sinceσ is active,τ : v is active andparent(v′) = v. Sinceτ : v is active, the induction
hypothesis implies that it is also rank-sorted and chronological. Sinceparent(v′) = v, rank(v) ≤ rank(v′)
andv is covered beforev′. Henceσ is rank-sorted and chronological. �

Lemma 4.6. For any nonempty active edge sequenceσ, if the last edge inσ is (u, v), then nodev is covered
in roundduration(dst(σ)) and nodeu is selected in the same round.

Proof. We prove the claim by induction on the length of the active edge sequenceσ.
If σ consists of a single edge(u, v), then by the definition of an active edge sequence, the singleton node

sequencedst(σ) is active andselect(dst(σ)) = src(σ). Sincedst(σ) is active,parent(v) = nil, that is, node
v is covered in the first round in which a node inΓin(v) is selected, which is roundduration(dst(σ)). Since
select(dst(σ)) = src(σ), nodeu is selected in the same round.

Now assume thatσ is an active edge sequence of the formτ : (u, v), whereτ is of the formτ′ : (u′, v′).
Sinceσ is active, the node sequencedst(σ) is active andselect(dst(σ)) = src(σ). It follows thatdst(τ) is
active andselect(dst(τ)) = src(τ), that is,τ is also active. Sinceτ is active and shorter thanσ, we can

6

inductively assume thatv′ is covered in roundduration(dst(τ)) and nodeu′ is selected in the same round.
Sincedst(σ) is active,parent(v) = v′, that is, nodev is covered in the first round after roundduration(dst(τ))
in which a node inΓin(v) is selected. Applying the definition ofduration(dst(σ)), we conclude thatv is
covered in roundduration(dst(σ)). Sinceselect(dst(σ)) = src(σ), nodeu is selected in the same round.�

Lemma 4.7. If σ is an active sequence of edges, thenσ is linked.

Proof. We proceed by induction on the length ofσ. If the length ofσ is 0 or 1, thenσ is linked by definition.
Now assume thatσ is an edge sequence of the formτ : (u, v), whereτ is of the formτ′ : (u′, v′) andσ is

active. Sinceσ is active,dst(σ) is active. Sincedst(σ) is active,dst(τ) is also active. Sincedst(τ) is active
andτ is shorter thanσ, we can inductively assume thatτ is linked. Therefore, in order to establish thatσ is
linked, it is sufficient to prove that(u′, v) is an edge. Sincedst(σ) is active,parent(v) = v′. Hence, lettingi
denote the round in which nodev is covered, we find that nodev′ is covered in the first round prior to round
i in which the selected node belongs toΓin(v). By Lemma 4.6,v′ is covered in a round in which nodeu′ is
selected. Thusu′ belongs toΓin(v), that is,(u′, v) is an edge, as required. �

Lemma 4.8. If an edge sequenceσ is i-active thenduration(dst(σ)) = i.

Proof. If σ is empty, then the claim holds sincei = 0 andduration(dst(σ)) = 0. Otherwise,σ is of the form
τ : (u, v), and by the definition of ani-active edge sequence,v is covered in roundi. By Lemma 4.6,v is
covered in roundduration(dst(σ)), soduration(dst(σ)) = i. �

Lemma 4.9. For any`-sequence of edgesσ, and any nonnegative integeri, the probability thatσ is i-active
is at most

(
`+r−1
`

)
Pr(X ≥ i)(rδin)−`, whereX ∼ NegBin

(
`, δin

n

)
.

Proof. If the nodes indst(σ) are not all distinct, thenPr(σ is i-active) = 0 by Lemma 4.5 and the claimed
inequality holds since the right-hand side is nonnegative.

Now assume thatdst(σ) consists of distinct nodes, and let eventsA, B, andC be as defined in the
statement of Lemma 3.4. Below we prove that ifσ is i-active, then eventsA, B, andC all occur. The
claimed inequality then follows by Lemma 3.5.

Assume thatσ is i-active. Thus eventB occurs by Lemma 4.8. Furthermore,σ is active, sodst(σ) is
active and eventC occurs by the definition of active edge sequence. Sincedst(σ) is active, eventA occurs
by Lemma 4.5. �

Lemma 4.10.For any nonnegative integersi and`, the probability that somè-sequence of edges isi-active
is at most

n∆`
out∆

`−1
in

(
` + r − 1

`

)
Pr(X ≥ i)

(rδin)`

whereX ∼ NegBin
(
`, δin

n

)
.

Proof. By Lemma 4.7, if an edge sequenceσ is not linked, thenPr(σ is i-active) = 0. The union bound
then implies that the probability some`-sequence of edges isi-active is at most the number of linked`-
sequences of edges multiplied by the maximum probability that any particular`-sequence isi-active. The
lemma follows by Lemmas 4.1 and 4.9. �

Lemma 4.11. For nonnegative integersi, `, and r such thati ≥ 64nmax(∆out∆in/δ
2
in, (ln n)/δin) and r ≥

min(d2e2∆out∆in/δine, `), we have

∆`
out∆

`−1
in

(
` + r − 1

`

)
Pr(X ≥ i)

(rδin)`
≤ exp(−iδin/(32n))

whereX ∼ NegBin
(
`, δin

n

)
.

7

Proof. See Appendix C. �

Lemma 4.12.For r = min(d2e2∆out∆in/δine,n), every active edge sequence isO(nmax(∆out∆in/δ
2
in, (logn)/δin))-

active with high probability.

Proof. Let c denote an arbitrary positive real greater than or equal to1, and leti denote the positive integer
d64cnmax(∆out∆in/δ

2
in, (ln n)/δin))e.

For any nonnegative integerj, let p j denotes the probability that there is aj-active edge sequence. Anyj-
active edge sequenceσ is active, so the associated node sequencedst(σ) is active. It follows from Lemma 4.5
that any j-active sequence has length at mostn. In other words,̀ ≤ n for any j-active`-sequence of edges.
Furthermore, ifj > 0 then the length of aj-active sequence is nonzero. Since anyj-active`-sequence of
edges must havè≤ n, the conditionr = min(d2e2∆out∆in/δine,n) is enough for us to apply Lemmas 4.10
and 4.11. Thus, the union bound and Lemmas 4.10 and 4.11 implyp j ≤ n2 exp(− jδin/(64n)) for j > i.

Let p denote the probability that there is aj-active edge sequence for somej ≥ i. By the union bound,
p ≤ ∑

j≥i p j . Using the upper bound onp j derived in the preceding paragraph, we find thatp is upper
bounded by an infinite geometric sum with initial termn2 exp(−iδin/(64n)) and ratioexp(−δin/(64n)). Thus

p = O((n3/δin) exp(−iδin/(64n)))

= O(n3 exp(−cmax(∆out∆in/δin, logn)))

= O(n3−c).

By settingc to a sufficiently large positive constant, we can drivep below any desired inverse polynomial
threshold. The claim of the lemma follows. �

Lemma 4.13.For r = min(d2e2∆out∆in/δine,n), the cover time of process R-RANK isO(nmax(∆out∆in/δ
2
in, (logn)/δin))

with high probability, and the same asymptotic bound holds for the expected cover time.

Proof. The high probability claim is immediate from Lemmas 4.4 and 4.12.
Thus, forc > 3 with probability at least1− 1/nc the cover time isO(nmax(∆out∆in/δ

2
in, (logn)/δin)) and

with probability at most1/nc we enter a bad case where we cannot apply our bound. In the bad case, we
will use theO(n2) expected cover time bound provided by Lemma 4.3. Since1/nc ·O(n2) = O(1), we have
shown the desired result. �

Theorem 1. If both ∆in and ∆out are O(δin), there is anr = O(δin) such that the cover time of process
R-RANK isO(nmax(1, (logn)/δin)) with high probability, and the same asymptotic bound holds for the
expected cover time.

Proof. Immediate from Lemma 4.13. �

The result of Theorem 1 matches the lower bound proved by Alon for process MIN and is thus opti-
mal [2].

Note that asr tends to infinity, the behavior of process R-RANK converges to that of process P-RANK.
Thus, the bounds of Theorem 1 also hold for process P-RANK.

5 Lower Bounds

While the full proofs of the two theorems stated in this appendix are rather lengthy, the main ideas are
straightforward. We summarize these main ideas in the two proof sketches that follow. The main technical
tools employed in the full proofs are Chernoff bounds and Azuma’s inequality (see, e.g., [6, 3]). Note that
our lower bounds hold even if we restrict attention to the special class of directed graphs where edge(u, v)
is present if and only if edge(v,u) is present; below we refer to such graphs as undirected.

8

Theorem 2. For all n, there is ann-node undirected graphG in which each node has degreeΘ(logn),
and an assignment of ranks1 through n to the nodes ofG, such that process A-RANK has cover time
Ω(n

√
(logn)/ log logn) = ω(n).

Proof sketch: Fix n and constructG as follows. First, partition then nodes intò levels, numbered from
0 to ` − 1, so that the following conditions hold: level0 containsΘ(n) nodes; the ratio of the number of
nodes at leveli − 1 to the number of nodes at leveli is approximatelyξ =

√
(lg n)/ lg lg n, 1 ≤ i < `; level

` − 1 is the only level with fewer than
√

n nodes. Thus̀ = Θ((logn)/ log logn). Assign ranks1 throughn
to the nodes in such a way that nodes on lower-numbered levels have lower ranks. For each nodeu at level
i, selectlg n nodes at random from each of levelsi andi − 1 (with replacement), and add an edge fromu to
each selected node. (If nodeu is at level0, then select2 lgn nodes from level0.)

We call a levelcrowdedif more than half of the nodes on that level are covered. In what follows, leti
be an arbitrary level, but for the sake of simplifying the exposition, assume that0 < i < ` − 1. In any round
in which a node in leveli is covered, the selected node belongs to leveli − 1, i, or i + 1. If the selected
node belongs to leveli − 1 (resp.,i, i + 1) we refer to such a node covering asascending(resp.,lateral,
descending). The main observation underlying our proof is that until leveli−1 is crowded, only a negligible
fraction of the node coverings at leveli are ascending or lateral. (This is because a node selected at leveli
or i − 1 is likely to have an uncovered neighbor at a level less thani.) Furthermore, a trivial upper bound on
the number of descending node coverings at leveli is given by the number of node selections at leveli + 1,
and we can upper bound the latter quantity using a standard Chernoff bound argument.

Using the preceding ideas, we obtain an upper bound the rate of coverage of nodes at leveli until level
i − 1 is crowded. Once leveli − 1 is crowded, we upper bound the rate of node coverings at leveli by
pessimistically assuming that every selection in leveli − 1, i, or i + 1 results in a node covering at level
i. By applying these upper bounds on the rate of node coverage, we are able to prove by induction oni
that, with high probability, leveli is not crowded before roundn4 + ni

4ξ . The theorem follows by setting
i = ` − 1 = Θ((logn)/ log logn). �

Theorem 3. For all n, there is ann-node undirected graphG in which each node has degreeΘ(logn),
and an assignment of ranks1 through n to the nodes ofG, such that process A-RANK′ has cover time
Ω(n log logn) = ω(n).

Proof sketch: The proof of this theorem is similar to that of Theorem 2. The graphG is defined in the same
way except that the ratioξ of the number of nodes between successive levels is taken to be approximately
(lg n)1/4, and we restrict the number of levels` to Θ((logn)3/8 log logn).

For rounds in which a node is covered that is different from the selected node, we refer to the node
covering as ascending, lateral, or descending as in the proof of Theorem 2. If the covered node is equal to
the selected node, we refer to the node covering as stationary.

We now call a level crowded if more than a1− (lg n)−1/8 fraction of the nodes on that level are covered.
The motivation for this change is that stationary node coverings quickly cover a significant fraction of the
nodes in each level.

The proof now proceeds in much the same manner as the proof of Theorem 2, with the following two
major differences. First, for any given leveli, we now need to upper bound the number of stationary node
coverings observed at leveli within a given number of rounds. Such an upper bound is given by the number
of distinct nodes selected at leveli, which is not difficult to characterize. Second, the threshold on the
number of rounds after which we claim that, with high probability, leveli is not crowded, reduces to

n
4

+
ni

4ξ(lg n)1/8
,

0 ≤ i < `. The theorem follows by settingi = ` − 1 = Θ((logn)3/8 log logn). �

9

6 Concluding Remarks

As indicated in the introduction, we conjecture that there is a positive constantε such that for any logarithmic-
degree graph, each of the firstbεnc rounds of process R-RANK covers a node with high probability. A proof
of this conjecture would provide load balance guarantees for a wide class of DHTs. It would also be inter-
esting to see if the proof ideas used in this paper can be used to provide similarly optimal bounds for process
UNI.

References

[1] M. Adler, E. Halperin, R. Karp, and V. Vazirani. A stochastic process on the hypercube with applications
to peer-to-peer networks. InProceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC), pages 575–584, 2003.

[2] N. Alon. Problems and results in extremal combinatorics, II. Manuscript, 2004.

[3] N. Alon and J. H. Spencer.The Probabilistic Method. Wiley, New York, NY, 1991.

[4] Stasys Jukna.Extremal Combinatorics, pages 224–225. Springer, 2001.

[5] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes,
pages 547–556. Morgan-Kaufmann, San Mateo, CA, 1991.

[6] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, Cambridge, UK,
1995.

[7] A. G. Ranade. How to emulate shared memory.Journal of Computer and System Sciences, 42:307–326,
1991.

A Proofs of Basic Probabilistic Lemmas

Proof of Lemma 2.1.Note that ifp j = p for all j, then the random variablesX andY have the same distri-
bution. Furthermore, increasing any of thep j ’s can only decreaseY. �

Proof of Lemma 2.2.The random variablesX andY can be seen as different views of the same experiment
where we successively flip coins with probability of successp. With Y, we ask “How many flips are required
for r successes?” WithX, we ask “How many successes are in the firstn flips?” In this experiment, the event
of seeing less thanr successes in the firstn flips (X < r) corresponds to the event that we have to wait more
thann flips for the firstr successes (Y > n). This gives the result. �

Proof of Lemma 2.3.Let j =
⌊

2r
p

⌋
− 1 and letY ∼ Bin (j, p). By Lemma 2.2, we know thatPr(X ≥ 2r

p) ≤
Pr(X ≥

⌊
2r
p

⌋
) = Pr(X >

⌊
2r
p

⌋
− 1) = Pr(Y < r) = Pr(Y ≤ r − 1).

Pr
(
Y ≤ jp

2

)
= Pr

(
Y ≤ r − (η + 1)

p
2

)

= Pr(Y ≤ r − 1)

where2r
p =

⌊
2r
p

⌋
+ η and the last equality holds because0 < (η + 1)p

2 < 1.

10

Recall the Chernoff bounds in the form

Pr(Y ≤ (1− λ) jp) ≤ exp

(−λ2 jp
2

)

for 0 < λ < 1 (see [4, 3]).
We apply this bound withλ = 1

2 to get

Pr(Y ≤ r − 1) = Pr
(
Y ≤ jp

2

)

≤ exp
(− jp

8

)

= exp

(−2r + (η + 1)p
8

)

≤ exp
(−r

8

)

whereη is as previously defined and the last inequality holds becauser ≥ 2. �

Proof of Lemma 2.4.The result follows from Chernoff bounds (see, e.g., [4, 3]). �

Proof of Lemma 2.5.The result follows from Lemma 2.4. �

Proof of Lemma 2.6.Let [n] = {1,2, . . . ,n}. Supposemin
(

n
4,

j
4

)
= k. Let S ⊆ [n] be a particular subset of

sizek. Then,

Pr(all balls land inS) ≤
(
k
n

) j

Thus,

Pr(X ≤ k) = Pr


⋃

S s.t. |S|=k

all balls land inS



≤
(
n
k

) (
k
n

) j

≤
(en

k

)k
(
k
n

) j

=

(en
k

)k
(
k
n

) j
2
(
k
n

) j
2

Now, since j
2 ≥ 2k and sincek ≥ n

4 implies k
n <

1
4 implying ek

n < 1

Pr(X ≤ k) ≤
(
ek
n

)k (
k
n

) j
2

≤
(
ek
n

)k (
1
4

) j
2

≤ exp
(
− j

2

)

�

11

B Proofs Related to Process SELECT

Proof of Lemma 3.1.There are
(
`+r−1
`

)
ways that ranks can be assigned to the` distinct nodes so that the

resulting`-sequence is rank-sorted. The result follows since each such assignment occurs with probability
r−`. �

Proof of Lemma 3.2.We proceed by proving that

Pr(duration(σ) = i) = Pr(
∑̀

k=1

Yk = i)

whereYk ∼ Geo
(

dk
n

)
anddk denotes the in-degree ofvk. The desired bound then follows by Lemma 2.1.

We prove the foregoing claim by induction on`. If ` = 0, the claim holds sinceduration(σ) =
∑`

k=1 Yk =

0.
For ` > 0, we letτ denote the node sequencev1, . . . , v`−1 and assume inductively that

Pr(duration(τ) = i) = Pr(
`−1∑

k=1

Yk = i)

Thus,

Pr(duration(σ) = i) =

i−1∑

j=0

Pr(duration(τ) = j) · Pr(duration(σ) − duration(τ) = i − j | duration(τ) = j)

=

i−1∑

j=0

Pr(duration(τ) = j) · Pr(duration(σ) − duration(τ) = i − j)

=

i−1∑

j=0

Pr(duration(τ) = j) · Pr(Ỳ = i − j)

=

i−1∑

j=0

Pr(
`−1∑

k=1

Yk = j) · Pr(Ỳ = i − j)

= Pr(
`−1∑

k=1

Yk = i).

The second equality comes from the fact that future selections are independent of past selections. The third
equality comes from the fact that the number of rounds elapsed from any given time to the next selection in
Γin(v`) is distributed asỲ . �

Proof of Lemma 3.3.We proceed by induction oǹ. For ` = 0, Pr(select(dst(σ)) = src(σ)) = 1 = δ0
in since

we have assumed thatδin > 0.
For ` > 0, σ can be written in the formτ : (u, v), where we inductively assume that the claim of the

lemma holds forτ. Let A denote the event that the first node selected inΓin(v) after roundduration(dst(τ))
is u. We have

Pr(select(dst(σ)) = src(σ)) = Pr(select(dst(τ)) = src(τ)) · Pr(A | select(dst(τ)) = src(τ))

= Pr(select(dst(τ)) = src(τ)) · Pr(A)

≤ δ−`in .

12

The second step follows from the independence of the eventsA andselect(dst(σ′)) = src(σ′) (They are
independent since future selections are independent of past selections). The third step follows from the
induction hypothesis and the observation thatPr(A) is equal1/Γin(v), which is at most1/δin. �

Proof of Lemma 3.4.Note that eventA depends only on the rank assignments, while eventsB andC depend
only on the selections. ThusA is independent of eventsB andC. Below we argue that eventsB andC are
independent.

Let σ = (u1, v1), . . . , (u`, v`) and letσ j denote the length-j prefix ofσ, 0 ≤ j ≤ `. Define a selection to
be j-special, 1 ≤ j ≤ `, if it is the first selection after roundduration(σ j−1) in Γin(v j). A selection isspecial
if it is j-special for somej. Note that eventB depends only on the timing of the special events; in particular,
B occurs if and only if thè -special selection occurs in roundi. Suppose we run process SELECT, but
at each step, instead of revealing the selected node, we reveal only whether the selection is special. This
information is sufficient to determine the uniquei for which B occurs, but does not bias the distribution of
select(dst(σ)). Since eventC only depends onselect(dst(σ)), it is independent ofB. �

Proof of Lemma 3.5.By Lemma 3.1,Pr(A) ≤
(
`+r−1
`

)
r−`. By Lemma 3.2,Pr(B) ≤ Pr(X ≥ i). By Lemma 3.3,

Pr(C) ≤ δ−`in . The claim then follows by Lemma 3.4. �

C Proof of Lemma 4.11

First, we show that the LHS of the claimed inequality is a nonincreasing function ofr.
It is sufficient to prove that the expression

(
`+r−1
`

)
r−` is a nonincreasing function ofr. Fix ` and let f (r)

denote the preceding expression. Note that

f (r + 1)
f (r)

=
r + `

r

(r
r + 1

)`

=

(
1 +

`

r

) (
1 +

1
r

)−`

≤ 1,

where the last inequality holds since the binomial theorem implies(1 + 1
r)` ≥ 1 + `

r .
Since we have established that the LHS of the claimed inequality is a nonincreasing function ofr, we

can assume in what follows thatr = min(d2e2∆out∆in/δine, `).
Let us rewrite the LHS of the claimed inequality asλ · Pr(X ≥ i), where

λ = ∆`
out∆

`−1
in

(
` + r − 1

`

)
(rδin)−`

≤ ∆`
out∆

`
in

(
e(` + r − 1)

`rδin

)`

≤
(
e∆out∆in(` + r)

`rδin

)`
. (1)

We begin by establishing two useful upper bounds onλ, namely, Equations (2) and (4) below.

13

If r = d2e2∆out∆in/δine, then since sincer = min(d2e2∆out∆in/δine, `), we haver ≤ `. Substituting the
value ofr in Equation (1), we find that

λ ≤
(
e(` + r)

2e2`

)`

≤
(

2è

2e2`

)`

≤ e−`. (2)

If r = `, then Equation (1) implies

λ ≤
(
2e∆out∆in

`δin

)`
. (3)

Let h(`) denote the natural logarithm of the RHS of Equation (3), that is,h(`) = ` ln(2e∆out∆in/(`δin)).
Using elementary calculus, it is straightforward to prove that the derivative ofh(`) with respect tò is
positive for` < 2∆out∆in/δin, is 0 when` = 2∆out∆in/δin, and is negative for̀ > 2∆out∆in/δin. It follows that
h(`) ≤ h(2∆out∆in/δin) = 2∆out∆in/δin. Sinceln is monotonic, the RHS of Equation (3) is also maximized
when` = 2∆out∆in/δin. Combining this result with Equation (2), we have that regardless of the value ofr

λ ≤ exp(2∆out∆in/δin). (4)

(Note thatexp(2∆out∆in/δin) ≥ 1 and Equation (2) impliesλ ≤ 1 whenr = d2e2∆out∆in/δine.)
We are now ready to proceed with the proof of the lemma. We consider the two cases` > diδin/(2n)e

and` ≤ diδin/(2n)e separately.
If ` > diδin/(2n)e, then ` > 2ecmax(∆out∆in/δin, ln n) wherec = 16/e > e. In specific, we have

` > d2e2∆out∆in/δine, and thusr = d2e2∆out∆in/δine. It follows from Equation (2) thatλ ≤ e−` ≤
exp(−iδin/(2n)) ≤ exp(−iδin/(64n)), and hence the claim holds sincePr(X ≥ i) ≤ 1.

Now assume that̀ ≤ diδin/(2n)e. Let Y ∼ NegBin
(⌊

iδin
2n

⌋
, δin

n

)
andZ ∼ NegBin

(⌊
iδin
2n

⌋
− `, δin

n

)
. By the

definition of the negative binomial distribution,Pr(Y ≥ i) = Pr(X + Z ≥ i). And, sinceZ is nonnegative,
Pr(X + Z ≥ i) ≥ Pr(X ≥ i). Thus

Pr(X ≥ i) ≤ Pr(Y ≥ i). (5)

SinceE[Y] ≤ i
2 andbiδin/(2n)c ≥ b32 max(∆out∆in/δin, ln n)c > 2, Lemma 2.3 impliesPr(Y ≥ i) ≤ Pr(Y ≥

2E[Y]) ≤ exp
(−iδin

16n + 1
8

)
. The claim follows since

λ · Pr(X ≥ i) ≤ exp

(
2∆out∆in

δin

)
· Pr(Y ≥ i)

≤ exp

(−iδin

16n
+

1
8

+
2∆out∆in

δin

)

≤ exp

(−iδin

32n
+

1
8

)

≤ exp
(−iδin

64n

)
.

(The first step follows from Equations (4) and (5). For the third step and fourth steps, note that the as-
sumptioni ≥ 64nmax(∆out∆in/δ

2
in, (logn)/δin) implies iδin/(32n) ≥ 2∆out∆in/δin and iδin/(64n) ≥ 1/8,

respectively.)

14

D Process R-RANK′

In this section we analyze a biased version of process R-RANK, which we call process R-RANK′. Process
R-RANK′ is the same as process R-RANK, but now, immediately after a selection, if the selected node is
uncovered we cover it and move to the next selection. Otherwise, we proceed as in process R-RANK.

In our analysis, we find it helpful to consider another process, which we call process H. Process H
runs in two phases. For the first phase, consisting of the firstcnmax(1, (logn)/δin) rounds, we run process
SELECT. At the end of phase 1, we remove from the underlying graph all edges which did not have at least
one end-point selected during phase 1. After the edge removal, we proceed to phase 2 where we begin to
cover vertices as in process R-RANK.

Lemma D.1. If process H and process R-RANK′ use the same node numbering, random rank assignment,
and infinite series of selections, the cover time of process R-RANK′ is at most the cover time of process H.

Proof. We prove the stronger claim that if process H and process R-RANK′ use the same node numbering,
random rank assignment, and infinite series of selections, in roundi, every node covered in process H is also
covered in process R-RANK′.

Call a roundi low if i ≤ cnmax(1, (logn)/δin), and high otherwise. We call a node marked if it was
selected in some low round.

We proceed by induction oni. For the base case, we consider any low roundi. In these rounds, process
H covers no nodes, so there is nothing to prove.

Now, assumei is high. Letu be the node selected in roundi (in both process R-RANK′ and process
H). If no node is covered in process H, claim follows from the induction hypothesis. Now assume nodev
covered in process H in roundi, and assume thatv is not covered in process R-RANK′ prior to roundi. (If v
is covered in process R-RANK′ prior to roundi, there is nothing to prove.) We now complete the induction
step by arguing thatv is also covered in roundi in process R-RANK′.

If v is marked, thenv is already covered in process R-RANK′ since it was selected in a low round. So we
can assume thatv is unmarked. Since H selectsu and coversv in roundi, (u, v) must not have been removed
by process H at the end of phase 1. Thus,u andv cannot both be unmarked, sou is marked.

It follows that u is not equal tov andu is already covered in process R-RANK′ as it was selected in
a low round. Sinceu is marked, it has the same set of outgoing neighbors in both processes, i.e., no edge
(u,w) was thrown away in process H at the end of the first phase.

Let S (resp.,T) be the uncovered outgoing neighbors ofu in process R-RANK′ (resp., process H) at the
beginning of roundi. By the induction hypothesis,S is contained inT. Since both processes use the same
node numbering and random ranks, the neighbor selection procedure gives well defined order of the nodes.
SinceS ⊆ T andv is the minimum order node inT and belongs toS, v is the minimum order node inS.
Thusv also is covered in roundi in process R-RANK′. �

Lemma D.2. The cover time of process R-RANK′ is O(nmax(∆out∆in/δ
2
in, (logn)/δin)) with high probability.

The expected cover time has the same bound.

Proof. We run a copy of process R-RANK′ in parallel with a copy of process H, using the same node
numbering, random ranks, and selections.

We call phase 1 of process H successful if at leastδin/4 of every node’s in-neighbors are selected. If
phase 1 is unsuccessful, we over estimate the cover time of process R-RANK′ by theO(n logn) cover time
of coupon collector. If phase 1 is successful, by Lemma D.1 we may overestimate the cover time of process
R-RANK′ with the cover time bound of process H. To find the cover time bound of process H, we add the
number of rounds during phase 1, to the cover time bound of process R-RANK during phase 2. We apply
Lemma 4.13 to phase 2 of process H where the graph has in-degree at leastδin/4, to get a cover time bound

15

of O(max(∆out∆in/δ
2
in, (logn)/δin)) for process H. Since the bound on the cover time of process H is both

with high probability and in expectation, if phase 1 is successful with high probability, the same bound holds
for process R-RANK′.

All that remains to be shown to prove the required result is that phase 1 is successful with high proba-
bility.

Consider a specific nodew. The probability of selecting a node inΓin(w) on any selection is a Bernoulli
random variable with success probability at leastδin/n. The number of selections inΓin(w) during phase 1
is the sum ofcnmax(1, (logn)δin) such independent Bernoulli random variables. Thus, by Lemma 2.4,
the probability of getting less than(c/2) max(δin, logn) selections inΓin(w) during phase 1 is at most
exp((c/12) max(δin, logn)), which is an arbitrary inverse polynomial by choosing a large enough constantc.

Given that(c/2) max(δin, (logn)) selections during phase 1 select a vertex inΓin(w), we apply Lemma 2.6.
To do so, let the variables in the lemma ben = |Γin(w)| ≥ δin, and j = (c/2) max(δin, (logn)) which is also at
leastδin if we setc ≥ 2. Thus, Lemma 2.6 tell us that the probability less thanδin

4 distinct nodes ofΓin(w) are
selected during phase 1 of process H is at mostexp(c2 max(δin, logn)), which is an arbitrary inverse polyno-
mial by selecting a large enough constantc. Taking the union bound over all nodes in the graph shows that
phase 1 is successful with high probability. �

16

