Optimal Cover Time for a Graph-Based Coupon Collector Process

Nedialko B. Dimitro+? and C. Greg Plaxtdr
January 2005

Abstract

In this paper we study the following covering process defined over an arbitrary directed graph. Each
node is initially uncovered and is assigned a random integer rank drawn from a suitable range. The pro-
cess then proceeds in rounds. In each round, a uniformly random node is selected and its lowest-ranked
uncovered outgoing neighbor, if any, is covered. We prove that if each node has in-@¢djread out-
degreeO(d), then with high probability, every node is covered witldxn - max(1, (logn)/d)) rounds,
matching a lower bound due to Alon. Alon has also shown that, for a certain cldsggétlar expander
graphs, the upper bound holds no matter what method is used to choose the uncovered neighbor. In
contrast, we show that for arbitradyregular graphs, the method used to choose the uncovered neighbor
can affect the cover time by more than a constant factor.

Adler et al. have previously shown that a similar covering process is useful in the analysis of an
optimal load balancing scheme for a hypercubic distributed hash table. We show that our covering
process leads to an optimal load balancing scheme for any distributed hash table in which each machine
has a logarithmic number of pointers to other machines.

1 Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas 78712—-0233.
2 Email: ned@cs.utexas.edu. Supported by an MCD Fellowship from the University of Texas at Austin.
3 Email: plaxton@cs.utexas.edu. Supported by NSF Grants CCR—0310970 and ANI-0326001.

1 Introduction

One of the most commonly discussed stochastic processes in computer science is the so-called coupon
collector process [6]. In that process, there mamistinct coupons and we proceed in rounds, collecting
one uniformly random coupon (with replacement) in each round. It is natural to ask how many rounds are
needed to collect alt coupons. Itis a well known fact, often given as an exercise, that with high probability
this number of rounds i©®(nlogn).

This result is in some sense unsatisfying, since one might hope to collettthgons ind(n) rounds.
This shortcoming has motivated Adlgtral.[1] and Alon [2] to study a similar graph-based covering process.
The nodes of the graph nodes represent the coupons and covering a node represents collecting a coupon. In
each round, a uniformly random nodes selected. If an uncovered neighbonvoéxists, choose one such
uncovered neighbor and cover it. We refer to this process as process CC.

Process CC can use a variety of differeotering method® decide which uncovered neighbor to cover.
If our ultimate goal is to minimize cover time, certainly the most powerful covering method available is an
offline method with knowledge of the entire sequence of node selections and with infinite computing power.
We refer to this powerful cover time minimizing version of process CC as process MIN. To achieve our
O(n) goal, it is natural to considdog n-regular graphs since the work of Alon implies process MIN has an
expected cover time @(nmax(1, (logn)/d)) rounds ord-regular graphs [2].

1.1 Logarithmic-Degree Graphs

Another natural version of process CC — in which the covering method chooses a uniformly random un-
covered neighbor, if any — was studied by Adédral. [1] and by Alon [2]. We refer to this version of
process CC as process UNI. Alon shows that for logarithmic-degree Ramanujan expander graphs, process
UNI completes inO(n) time, matching the lower bound for process MIN.

Adler et al. show that for the hypercube, which has a weak expansion property but is not an expander,
process UNI take®(n) time, also matching the lower bound for process MIN [1]. They also show that for
arbitrary logarithmic-degree graphs, process UNI complet&X(iriog logn) time. Furthermore, Adleet
al. present an application of process UNI to load balancing in a hypercubic distributed hash table (DHT).

A process that is intuitively similar to process UNI is one where we initially assign a rank to each node
using a uniformly random permutation of the nodes, and the covering method covers the minimum-rank
uncovered neighbor, if any. We refer to this permutation-based version of process CC as process P-RANK.
In this paper, we show process P-RANK complete®{n) time on arbitrary logarithmic-degree graphs.

In fact, we analyze a more general and local version of process CC in which each node initially chooses
a uniformly random rank in a suitable range, and the covering method covers the minimum-rank uncovered
neighbor of the selected node. (We assume that the nodes are numberddtédrapand that ties in rank
are broken in favor of the lower-numbered node.) We refer to this random rank version of process CC as
process R-RANK.

Adler et al. show that in a hypercubic DHT, if new nodes use process UNI to choose which existing
node’s name space to split, then there exist constarasdc, such that aften joins, no node is responsible
for more than &;/n or less than d/(cyn) fraction of the name space with high probability. By applying
our results within the framework of Corollary 2.3 of Adletal., we can show that if process R-RANK is
used by joining nodes to choose which existing node to split, thanyiDHT where each node holdisgn
pointers to other nodes in the table, there exists a consiamtch that aften joins no node is responsible
for more than a3/n fraction of the name space with high probability. For example, if process R-RANK
is used by joining nodes, our results establishes a load balance guarantee for the well-known DHT Chord,
which has logarithmic degree but is not a hypercube.

As discussed in the preceding paragraph, our results may be used to upper bound the maximum load of
any machine in the DHT. For completeness, it may be interesting to establish a lower bound on the minimum
load, as Adlert al. show for the hypercubic DHT. We conjecture that with high probability the [first
rounds of process R-RANK are successful on arbitrary logarithmic-degree graphs. If this conjecture holds,
the result can be applied within the framework of Corollary 2.4 of Adtaal.to establish the desired lower
bound on the minimum load for any hash table with logarithmic degree. In practice, however, such a lower
bound on the minimum load is unimportant in load balancing applications where the objective is to avoid
overload.

1.2 Results for General Graphs

Alon shows that process MIN on axyregular graph has expected time at Ierastg + g Ioge(g) [2]. Alon
also shows that process UNI completes in time (1 + o(l))n'o%” for random nearlyd-regular graphs.
Alon further shows that on anfn, d, 1)-expander graph the expected time of process UNI is at mest
n(é)z(loge n+1). In particular, this implies that on Ramanujan graphs process UNI complgtes o{(1))n
time, matching the lower bound for process MIN.

If our ultimate goal is to maximize cover time, certainly the most powerful neighbor selection method
available is an offline adversary with knowledge of the entire sequence of node selections and with infinite
computing power. We refer to this powerful cover time maximizing version of process CC as process MAX.
Alon notes that the upper bounds for expanders hold even if after every round an adversary “is allowed to
shift the uncovered nodes to any place he wishes, keeping their number.” In particular, this shows that on
Ramanujan graphs, the cover time for process MAX matches the cover time for process MIN, up to constant
factors. In effect, the covering method does not matter for this class of graphs.

Another previously studied variant of process CC favors covering the selected node. In this variant, we
check — immediately after selecting a uniformly random node — if the selected node is uncovered. If it
is, we cover it and move to the next selection. Only otherwise do we consider the neighbors of the selected
node. We refer to the selection-biased variants of process UNI, process P-RANK, and process R-RANK as
process UNI, process P-RANK and process R-RANKrespecively.

Adler et al. show that for evergl-regular graph, processes UNI and UNbmplete inO(n + n%)
time[1]. They also show that for randodaregular graphs onlp(n + n'c’%‘) steps are needed. Furthermore,
they exhibit an application of process UNib load balancing in DHTSs.

All of the results matching Alon’s lower bound for process MIN presented prior to this work have
used some expansion properties of the underlying graph. In contrast, our proof techniques do not require
the underlying graph to have any particular structure. Thus we show the more general result that for di-
rected graphs (with self-loops but no parallel edges) where each node has in-degreesgtdedsat most
Ain, while the out-degree is at moAt,;, both process R-RANK and process R-RANtOver all nodes in
O(nmax@AinAout/52,, (Iogn)/din)) rounds with high probability. This result matches Alon’s lower bound for
din = Ain = Aout = ©(d), and is thus optimal under these conditions.

Furthermore, Alon’s results for Ramanujan graphs raise the question whether there is any separation
between the cover times for process MAX and process MIN. In other words, are there any graphs for which
the choice of covering method matters? We define a weakly adversarial process, process A-RANK, that is
similar to process P-RANK. In process A-RANK, instead of picking a uniformly random permutation, an
adversary is initally allowed to fix the permutation used to assign ranks to the nodes. We then proceeds as
in process P-RANK. Define the even weaker adversarial process A-RAiNHlarly to process P-RANK
We show that there exists a logarithmic-degree graph on which process A-RANK and process A-RANK
each takeuv(n) rounds to complete. This implies that in general there is separation between the cover times
of process MIN and process MAX. Or, in other words, the covering method does matter.

1.3 Proof Outline

The proof of our theorem is inspired by the delay sequence argument used by Ranade for the analysis of a
certain packet routing problem on the butterfly [7] (see also [5]. In a delay sequence argument, we identify
certain combinatorial structures that exist whenever the random process lasts for a long time. Then, we show
that the probability any of these structures exist is small. This in turn implies an upper bound on the running
time of the random process.

There are significant differences between our proof and that of Ranade. For example, in our problem,
the connection between the running time and the length of a delay sequence is not clear-cut, while in the
butterfly routing problem analyzed by Ranade, the length of the delay sequence is equal to the running time.
But let us begin by giving the notion of a delay sequence in our problem.

Consider the node that was covered last, Why wasn’tw; covered earlier? It was not covered earlier
because at the last opportunity to cowgr— that is, the last selection im;'s neighborhood — we covered
some other nodey, instead. Thusyw; was delayed byw,. Similarly, w, was delayed by some node, et
cetera, until finally we reach a noae that was not delayed, i.enx was covered at the first opportunity.

The sequence of nodes, .. ., wi corresponds to our notion of a delay sequence.

In analyzing process R-RANK, we find it useful to first analyze a much simpler process, process SE-
LECT, in which we repeatedly select a uniformly random node, never covering anything. After establishing
several lemmas for the simpler process, we proceed to analyzing process R-RANK. This is the bulk of the
proof, and includes a technical lemma to work around the difficulties in linking cover time to delay sequence
length. Finally, we reduce process R-RANig process R-RANK to show that the same bounds hold.

The rest of the paper is structured as follows. In Section 2, we establish helpful definitions and lemmas
about random variables. In Section 3, we analyze the simple process. In Section 4, we analyze process R-
RANK. In Appendix D, we analyze process R-RANYa a reduction from process R-RANK. In Section 5,
we show the existence of a logarithmic-degree graph on which process A-RANK and process A-RANK
each takeo(n) rounds to complete, establishing that the covering method does matter. Section 6 provides
some concluding remarks.

2 Preliminaries

For the sake of brevity, we use the tefrsequence to refer to a sequence of ledgthor anyf-sequencer
of elements of a given type, and any elemetf the same type, we let : x denote th€¢ + 1)-sequence
obtained by appending elemento o

For any nonnegative integarand probabilityp, we letX ~ Bin(n, p) denote that the random variable
X has a binomial distribution with trials and success probabilify We letX ~ Geo(p) denote that the
random variableX has a geometric distribution with success probabpityVe letX ~ NegBin(r, p) denote
that the random variabl¥ has a negative binomial distribution withsuccesses and success probabpity
See Appendix A for proofs of the basic probabilistic lemmas stated below.

Lemma 2.1. Let p denote an arbitrary probability, lef denote an arbitrary honnegative integer, and let
X ~ NegBin(¢, p). For any integerj such thatl < j < ¢, let p; denote an arbitrary probability such that

pj 2 p, letY; ~ Geo(p;), and letY = ¥, Yj. Then for any nonnegative integePr(X > i) > Pr(Y > i).

Lemma 2.2. For any nonnegative integersand n, and any probabilityp Pr(X < r) = Pr(Y > n), where
X ~ Bin(n, p) andY ~ NegBin(r, p).

Lemma 2.3. For any integerr > 2, Pr(X > 2E[X]) = Pr(X > 2r/p) < exp(-r/8), whereX ~ NegBin(r, p).

Lemma 2.4. Let p be an arbitrary probability and leX be the sum of independent Bernoulli variables
X1, ..., Xn, whereX; has success probabilify; > p. ThenPr(X < np/2) < exp(-np/12).

Lemma 2.5. Suppose we repeatedly throw balls independently and uniformly at randombinte, and let
the random variableX denote the number of throws required for every bin to receive at tebhatls. Then
X is O(n?) with high probability.

Lemma 2.6. Let | balls be thrown independently and uniformly at random intbins. LetX denote
the number of bins with at least one ball at the end of the experiment. PiéX,< min(n/4, j/4)) <

exp(-i/2).

3 Process SELECT

Throughout all sections of this paper related to establishing upper bounds — that is, Sections 3 and 4 as
well as Appendix C — we fix an arbitrary directed graph= (V, E) where|V| = n > 0. We letéi, denote

the minimum in-degree of any nodk;, denote the maximum in-degree of any node, and wadgtdenote

the maximum out-degree of any node. For ease of exposition, we assume throughout the paper hat

The edge seE is allowed to contain loops but not parallel edges. For any npdee defineli,(v) as

{w| (w,V) € E}. For any sequence of edges= (uz, v1), ..., (U, V¢), we define the two sequences of nodes
sr(o) = Ug,..., U anddst(o) = va, ..., V.

In this section, we analyze a simple stochastic process, process SELECT, defined as follows. Initially,
we fix a positive integer and independently assign each nod&ia uniformly random integer rank from
{1,...,r}. Process SELECT then proceeds in an infinite number of rounds, indexed frioneach round,
one node is selected uniformly at random, with replacement. The following definitions are central to our
analysis of this process.

We inductively define the notion offrank-sortednode sequence as follows. FHoequal to0 or 1, any
¢-sequence of nodes is rank-sorted. Forl, an/-sequence of nodes of the foum: v : V' is rank-sorted if
o : vis rank-sorted andank(v) < rank(Vv').

For any node sequenee we inductively define a nonnegative integlerration(o) and a node sequence
selecfo) as follows. Ifo-is empty, therduration(o) is 0 andselec{o) is empty. Otherwiser is of the form
7 . vfor some shorter node sequencand nodev. Leti denote the the leassuch thai > duration(r) and
the node selected in roundelongs tdj (V). Let u denote the node selected in roundThen we define
durationo) asi, andselecfo) asselecfr) : u.

See Appendix B for proofs of the following lemmas related to process SELECT.

Lemma 3.1. For any¢-sequence of distinct nodes Pr(o- is rank-sortedi = (“})r=.

Lemma 3.2. For any¢-sequence of nodes= va,...,V, and any nonnegative integerwe have
Pr(duration(c") = i) < Pr(X > i), whereX ~ NegBin(¢,).

Lemma 3.3. For any¢-sequence of edges Pr(selec{dst(c)) = srd(o)) < 6;{.

Lemma 3.4. For any¢-sequence of edgesand nonnegative integérthe event# = “ dst(o) is rank-sorted”,
B = “durationdst(c)) = i, and C = “ selec{dst{(c)) = sr¢(o)” are mutually independent.

Lemma 3.5. Leto be anf-sequence of edges such that the nodésigf) are distinct, letX ~ NegBin(f, % ,

leti be a nonnegative integer, and let eveAtd andC be defined as in the statement of Lemma 3.4. Then
PrAn BN C) < (“7Y) Pr(X > i)(roin) .

4 Process R-RANK

In the section we analyze an augmented version of process SELECT, referred to as Process R-RANK, in
which we maintain a notion of a “covered subset” of the nodes. Initially, all of the nodes are uncovered.
Process R-RANK then proceeds in rounds in exactly the same manner as process SELECT, with the addi-
tional step that in any given round, if one or more outgoing neighbors of the selected node are uncovered,
we cover the uncovered outgoing neighbor with minimum rank. (As indicated in Section 1, ties are broken
according to some arbitrary numbering of the nodes.)

Note that process R-RANK simply augments process SELECT with the additional notion of covered
nodes; rank assignment and selections are performed in exactly the same manner in the two processes. Thus
all of the definitions and lemmas presented in Section 3 are applicable to process R-RANK. The following
additional definitions are useful for our analysis of process R-RANK.

Thecover timeof process R-RANK is defined as the number of rounds required to cover all of the nodes.

We inductively define the notion of linked sequence of edges. Féequal to0 or 1, any{-sequence
of edges is linked. Fof > 1, an¢-sequence of edges of the form : (u,v) : (U,V) is linked if the
(¢ — 1)-sequence : (u,V) is linked and(u, V') belongs tcE.

For any nodev, we defineparentV) as follows. Leti denote the round in which nodeis covered. If
i is the first round in which some nodelify, (v) is selected, theparen(v) is defined to banil. Otherwise,
paren{Vv) is the node covered in the first round prior to roui which the selected node belongdig(v).

We inductively define the notion of @éhronologicalsequence of nodes as follows. Afasequence of
nodes with? < 1is chronological. Arf-sequence of nodes of the fowm: v : V' is chronological ifo- : vis
chronological and nodeis covered before nodg.

We inductively define the notion of aactivenode sequence as follows. The empty node sequence is
active. A singleton node sequence consisting of the nddeactive if paren(v) = nil. An ¢-sequence of
nodes of the formar : v : V' is active ifo : vis active angaren{Vv’) = v.

We call ané-sequence of edgesactiveif dst(o) is active andselec{dst(o)) = srqo).

We call anf-sequence of edgesi-activeif it is active and eithef =i = 0or ¢ > 0, o is of the form
o : (u,v), andv is covered in round

Lemma 4.1. For any nonnegative integét there are at mostAj ALt linked -sequences of edges.

Proof. We proceed by induction of treatingf = 0 and¢ = 1 as base cases. FHE 0, the empty sequence
is the only linked0-sequence, and the claim holds simg&;, > 1. (Note thatAj, is at mostn since we do
not allow parallel edges.) Fdr= 1, the number of linked-sequences is at mg&| < NAgyt.

Now let¢ be greater thath and inductively assume that the number of linkéd 1)-sequences of edges
is at mosmAgatlAfn‘z. Recall that any linked-sequence of edges is of the form: (u,v) : (U, V) where
the (¢ — 1)-sequence of edges : (u,V) is linked and(u,Vv’) belongs toE. Observe that for any linked
(¢ — 1)-sequence of edges : (u,V), there are at mosty; nodesv’ such thafu, v') belongs toE, and for
each such choice of, there are at mostj;, nodesu’ such that(u’, v') belongs toE. Thus the number of
linked £-sequences is at moAtAin times the number of linke(f — 1)-sequences, and the desired bound
follows from the induction hypothesis. m|

Lemma 4.2. Suppose we run two instances of process R-RANK in parallel using the same random ranks
and the same sequence of random selections, but in the second instance, we allow an arbitrary subset of
the covered nodes to be uncovered after each round. Then the cover time of the first instance is at most the
cover time of the second instance.

Proof. By a straightforward induction on the number of rounds, at all times, the set of covered nodes in the
first instance contains the set of covered nodes in the second instance. The claim of the lemma fallows.

Lemma 4.3. For any rank assignment, the expected cover time of process R-RAN}s

Proof. It follows from Lemma 2.5 that cover time 8(n?) with high probability since in that time each
vertex would have been selected at leasines implying that all its neighbors are covered.

We can then consider a modified version of process R-RANK in which the infinite sequence of rounds
is partitioned into epochs dd(n?) rounds, and where at the end of each epoch, if the nodes are not all
covered, all nodes are uncovered before proceeding to the next epoch. Since each epoch covers all the nodes
with high probability, the expected cover time of this modified version of process R-RANKS. By
Lemma 4.2, for any rank assignment, the expected cover time of process R-RAN®)s o

Lemma 4.4. Assume that nodeis covered in round and letu be the node selected in roundThen there
is ani-active edge sequeneeterminating in edgéu, v) and such thatlurationdst(c)) = i.

Proof. Observe thau belongs tol'jn(v). Also observe that iparen(v) = nil, the singleton node se-
guenceyv is active withdurationv) = i, and hence the singleton edge sequence (u, V) is i-active with
duration(dst(c)) = i.

We prove the claim by induction anFori = 1, it must be true thgtaren(v) = nil and the observations
of the previous paragraph prove the claim.

Fori > 1, if paren{v) = nil, the observations once again prove the claim. Otherpaen{v) = v/
whereVv’ is some node covered in roundk i. Call the node selected in rourjdu’. Sincej < i, we can
inductively assume that there ig-active edge sequence, calrjtterminating in edgéu’, v') and such that
durationdst(r)) = j. Sincer is active, the node sequendsi(t) is active andselecfdst(r)) = src(r). Let
o =1 (u,v). Thussrg(o) = srd(r) : uanddsto) = dsi(r) : v. Sinceparen{v) = V' andds{(r) is an active
node sequence terminating in nodedst(o) is active. Sincalurationdst(r)) = j, selectdsi(r)) = sr¢(7),

u was selected in roung andi is the least integer greater thpsuch that the node selected in round

belongs taolj(v), we havedurationdsf{c)) = i andselec{dsi{(c)) = sr(o). Sincedsi(o) is active and
selecfdst(c)) = srd(o), o is active. Sincer is active and node is covered in round, o is i-active. Thus
the edge sequencesatisfies all of the requirements of the lemma. |

Lemma 4.5. Any active node sequence is rank-sorted, chronological, and consists of distinct nodes.

Proof. Note that any chronological node sequence consists of distinct nodes. Thus, in what follows, it is
sufficient to prove that any active node sequence is rank-sorted and chronological.

We proceed by induction on the length of the sequence. For the base case, note that any node sequence
of lengthO or 1 is rank-sorted and chronological. For the induction step, consider an active node seguence
of the formt : v : V. Sinceo is active,r : vis active ancparen{V’) = v. Sincer : vis active, the induction
hypothesis implies that it is also rank-sorted and chronological. $iamn(Vv') = v, rank(v) < rank(V')
andv is covered beforg’. Henceo is rank-sorted and chronological. m|

Lemma 4.6. For any nonempty active edge sequeacé the last edge iwr is (u, v), then nodev is covered
in roundduration(dstc)) and nodeu is selected in the same round.

Proof. We prove the claim by induction on the length of the active edge sequence

If o~ consists of a single edda, v), then by the definition of an active edge sequence, the singleton node
sequencelst(c) is active andselec{dsi(c)) = src(o). Sincedst(o) is active,paren(Vv) = nil, that is, node
v is covered in the first round in which a nodelifp(v) is selected, which is rounduration(dst(c-)). Since
selecfdst(o)) = src(o), nodeu is selected in the same round.

Now assume that is an active edge sequence of the farm(u, v), wherer is of the formz’ : (U, V).
Sinceo is active, the node sequendst(o) is active andselecf{dst{c)) = srd(o). It follows thatds{(r) is
active andselec{dst(r)) = src(r), that is,t is also active. Since is active and shorter than, we can

6

inductively assume that is covered in roundluration(dst(r)) and node is selected in the same round.
Sincedst(o) is active paren{v) = V', that is, noder is covered in the first round after rouddration(dst(r))
in which a node i, (v) is selected. Applying the definition afuration(dst(c)), we conclude that is
covered in roundiuration(dst(c’)). Sinceselectdsic)) = sr¢(o), nodeu is selected in the same roundo

Lemma 4.7. If o is an active sequence of edges, theis linked.

Proof. We proceed by induction on the lengthaaf If the length ofo-is 0 or 1, theno is linked by definition.
Now assume that is an edge sequence of the form(u, v), wherer is of the formr’ : (U, V') ando is
active. Sincer is active,dst(o) is active. Sincals{o) is active,dsi(r) is also active. Sincdsi(r) is active
andr is shorter thamr, we can inductively assume thats linked. Therefore, in order to establish thais
linked, it is sufficient to prove thgu', v) is an edge. Sincds{(o) is active,paren{v) = v'. Hence, letting
denote the round in which nodes covered, we find that nodéis covered in the first round prior to round
i in which the selected node belongdig(v). By Lemma 4.6y is covered in a round in which nodg is
selected. Thug’ belongs td'iy(V), that is,(U/, v) is an edge, as required. m|

Lemma 4.8. If an edge sequenceis i-active therduration(dst(c)) = i.

Proof. If o is empty, then the claim holds since 0 andduration(dst(c)) = 0. Otherwise¢ is of the form
7 : (u,v), and by the definition of anactive edge sequencejs covered in round. By Lemma 4.6y is
covered in roundiurationdst(c-)), soduration(dst(c)) = i. O

Lemma 4.9. For any¢-sequence of edges and any nonnegative integeithe probability that- is i-active
is at mos{“*}) Pr(X i)(réin) ', whereX ~ NegBin(¢, %2).

Proof. If the nodes indst(c") are not all distinct, theRr(o- is i-active = 0 by Lemma 4.5 and the claimed
inequality holds since the right-hand side is nonnegative.

Now assume thatlst{o”) consists of distinct nodes, and let eveAisB, andC be as defined in the
statement of Lemma 3.4. Below we prove thatrifis i-active, then events, B, andC all occur. The
claimed inequality then follows by Lemma 3.5.

Assume that is i-active. Thus evenB occurs by Lemma 4.8. Furthermote,is active, sadst(o) is
active and event occurs by the definition of active edge sequence. Silstfer) is active, even occurs
by Lemma 4.5. m|

Lemma 4.10. For any honnegative integeraind¢, the probability that somé&sequence of edgesiigctive

is at most / 1 PrX > i)
r— reX > i

nAf AL-L + =7
out=in (£ (r5in)€

whereX ~ NegBir‘(é’, %)

Proof. By Lemma 4.7, if an edge sequenges not linked, therPr(o isi-activg = 0. The union bound
then implies that the probability sonfesequence of edges iisactive is at most the number of linked
sequences of edges multiplied by the maximum probability that any particgkguence is-active. The
lemma follows by Lemmas 4.1 and 4.9. m|

Lemma 4.11. For nonnegative integers ¢, andr such thati > 64n max@outAin/éﬁ],(ln n)/éin) andr >
mMin([26?AoutAin/din1, £), We have

¢ o€+ T —L\PrX =) e
AoutAin (P)—(réinY < expidin/(32n))

n

whereX ~ NegBin(é’, ‘i)

Proof. See Appendix C. m|

Lemma4.12.Forr = min([26?AoutAin/din 1, N), €Very active edge sequencO® max@outAin/(Sﬁ], (logn)/din))-
active with high probability.

Proof. Let c denote an arbitrary positive real greater than or equaj &md leti denote the positive integer
[64cnmax@outdin/ 85, (IN1)/in))1;

For any nonnegative integgrlet p; denotes the probability that there ig-active edge sequence. Ay
active edge sequenesds active, so the associated node sequelsie) is active. It follows from Lemma 4.5
that anyj-active sequence has length at masin other words¢ < n for any j-active{-sequence of edges.
Furthermore, iff > 0 then the length of g-active sequence is nonzero. Since grgctive £-sequence of
edges must have < n, the conditionr = min([2?AoutAin/din1, N) is enough for us to apply Lemmas 4.10
and 4.11. Thus, the union bound and Lemmas 4.10 and 4.11 ippptyn? exp(- jdin/(64n)) for j > i.

Let p denote the probability that there igj@active edge sequence for some i. By the union bound,
p < Xjsi Pj.- Using the upper bound op; derived in the preceding paragraph, we find thas upper
bounded by an infinite geometric sum with initial terfexp(-isin/(64n)) and ratioexp(-din/(64n)). Thus

p = O((n%/6in) exp(isin/(64n)))
= O(n® exp(-c max(AoutAin/Sin, 10g 1))
= omn*o).
By settingc to a sufficiently large positive constant, we can dfMaelow any desired inverse polynomial
threshold. The claim of the lemma follows. m]

Lemma4.13.Forr = min([2e?AoutAin/din], N), the cover time of process R-RANKIE max(AoutAin /6%, (logn)/éin))
with high probability, and the same asymptotic bound holds for the expected cover time.

Proof. The high probability claim is immediate from Lemmas 4.4 and 4.12.

Thus, forc > 3 with probability at leas — 1/n° the cover time i©O(n max(AoutAm/éﬁ, (logn)/éin)) and
with probability at mostl/n® we enter a bad case where we cannot apply our bound. In the bad case, we
will use theO(n?) expected cover time bound provided by Lemma 4.3. Siricé - O(n?) = O(1), we have
shown the desired result. m|

Theorem 1. If both A, and Agy; are O(6in), there is anr = O(6in) such that the cover time of process
R-RANK isO(nmax(l, (logn)/sin)) with high probability, and the same asymptotic bound holds for the
expected cover time.

Proof. Immediate from Lemma 4.13. O

The result of Theorem 1 matches the lower bound proved by Alon for process MIN and is thus opti-
mal [2].

Note that ag tends to infinity, the behavior of process R-RANK converges to that of process P-RANK.
Thus, the bounds of Theorem 1 also hold for process P-RANK.

5 Lower Bounds

While the full proofs of the two theorems stated in this appendix are rather lengthy, the main ideas are
straightforward. We summarize these main ideas in the two proof sketches that follow. The main technical
tools employed in the full proofs are Chernoff bounds and Azuma’s inequality (see, e.g., [6, 3]). Note that
our lower bounds hold even if we restrict attention to the special class of directed graphs whefge @dge

is present if and only if edgg, u) is present; below we refer to such graphs as undirected.

8

Theorem 2. For all n, there is ann-node undirected grapks in which each node has degréxlogn),
and an assignment of rankisthroughn to the nodes o6, such that process A-RANK has cover time

Q(n+/(logn)/ loglogn) = w(n).

Proof sketch: Fix nand construcG as follows. First, partition the nodes intof levels numbered from
0to ¢ — 1, so that the following conditions hold: levBlcontains®(n) nodes; the ratio of the number of
nodes at level — 1 to the number of nodes at leviels approximatelyt = /(Ign)/Iglgn, 1 <i < ¢; level
¢ — 1is the only level with fewer than/n nodes. Thug = ®((logn)/loglogn). Assign ranksl throughn
to the nodes in such a way that nodes on lower-numbered levels have lower ranks. For eachtriedel
i, selecig n nodes at random from each of levelndi — 1 (with replacement), and add an edge frarto
each selected node. (If nodés at levelO, then selec® Ilgn nodes from leveD.)

We call a levelcrowdedif more than half of the nodes on that level are covered. In what follows, let
be an arbitrary level, but for the sake of simplifying the exposition, assume@ that< £ — 1. In any round
in which a node in level is covered, the selected node belongs to lévell, i, ori + 1. If the selected
node belongs to level- 1 (resp.,i, i + 1) we refer to such a node covering ascending(resp.,lateral,
descending The main observation underlying our proof is that until lével is crowded, only a negligible
fraction of the node coverings at leviehre ascending or lateral. (This is because a node selected at level
ori — 1is likely to have an uncovered neighbor at a level less tharurthermore, a trivial upper bound on
the number of descending node coverings at leiefiven by the number of node selections at levell,
and we can upper bound the latter quantity using a standard Chernoff bound argument.

Using the preceding ideas, we obtain an upper bound the rate of coverage of nodesi atrigvigvel
i —1is crowded. Once levél- 1 is crowded, we upper bound the rate of node coverings at Ievel
pessimistically assuming that every selection in laévell, i, ori + 1 results in a node covering at level
i. By applying these upper bounds on the rate of nhode coverage, we are able to prove by induction on
that, with high probability, level is not crowded before roun§l + 2—;. The theorem follows by setting
i =¢-1=0((logn)/loglogn). m|

Theorem 3. For all n, there is ann-node undirected grapls in which each node has degréxlogn),
and an assignment of rankisthroughn to the nodes o6, such that process A-RANKas cover time
Q(nloglogn) = w(n).

Proof sketch: The proof of this theorem is similar to that of Theorem 2. The g@jhdefined in the same
way except that the ratié of the number of nodes between successive levels is taken to be approximately
(Ign)/4, and we restrict the number of levelso ©((logn)®/8log logn).

For rounds in which a node is covered that is different from the selected node, we refer to the node
covering as ascending, lateral, or descending as in the proof of Theorem 2. If the covered node is equal to
the selected node, we refer to the node covering as stationary.

We now call a level crowded if more tharla- (Ig n)~Y/8 fraction of the nodes on that level are covered.
The motivation for this change is that stationary node coverings quickly cover a significant fraction of the
nodes in each level.

The proof now proceeds in much the same manner as the proof of Theorem 2, with the following two
major differences. First, for any given levelwe now need to upper bound the number of stationary node
coverings observed at levielithin a given number of rounds. Such an upper bound is given by the number
of distinct nodes selected at levielwhich is not difficult to characterize. Second, the threshold on the
number of rounds after which we claim that, with high probability, lévelnot crowded, reduces to

n,_m
4 4(lgn)t/’
0 <i < ¢. The theorem follows by settirnig= £ — 1 = @((logn)*8log logn). O

9

6 Concluding Remarks

As indicated in the introduction, we conjecture that there is a positive corrstanh that for any logarithmic-
degree graph, each of the fitgh] rounds of process R-RANK covers a node with high probability. A proof

of this conjecture would provide load balance guarantees for a wide class of DHTSs. It would also be inter-
esting to see if the proof ideas used in this paper can be used to provide similarly optimal bounds for process
UNI.

References

[1] M. Adler, E. Halperin, R. Karp, and V. Vazirani. A stochastic process on the hypercube with applications
to peer-to-peer networks. Proceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC) pages 575-584, 2003.

[2] N. Alon. Problems and results in extremal combinatorics, 1l. Manuscript, 2004.
[3] N. Alon and J. H. Spenceihe Probabilistic MethodWiley, New York, NY, 1991.
[4] Stasys JuknaExtremal Combinatoricpages 224—-225. Springer, 2001.

[5] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes
pages 547-556. Morgan-Kaufmann, San Mateo, CA, 1991.

[6] R. Motwani and P. RaghavaiRandomized AlgorithmsCambridge University Press, Cambridge, UK,
1995.

[7]1 A. G. Ranade. How to emulate shared memdpurnal of Computer and System Sciend@s307-326,
1991.

A Proofs of Basic Probabilistic Lemmas

Proof of Lemma 2.1Note that ifp; = p for all j, then the random variableéandY have the same distri-
bution. Furthermore, increasing any of thgs can only decrease. |

Proof of Lemma 2.2The random variableX andY can be seen as different views of the same experiment
where we successively flip coins with probability of sucges#/ith Y, we ask “How many flips are required
for r successes?” WitK, we ask “How many successes are in the filipps?” In this experiment, the event

of seeing less thansuccesses in the firatflips (X < r) corresponds to the event that we have to wait more
thann flips for the firstr successesy(> n). This gives the result. m|

Proof of Lemma 2.3Let j = |2 | - 1 and letY ~ Bin(j, p). By Lemma 2.2, we know thar(X > 2) <

PrX > |Z])=PrX > [Z]-1)=Pr(Y <r) =Pr(Y <1 - 1).
ip
Pr(Ys 2)

Pr(Y <r—(n+ 1)%’)
Pr(Yy <r-1)

whereZ = | Z | + 5 and the last equality holds becawse (7 + 1)§ < 1.

10

Recall the Chernoff bounds in the form

PIY < (1- A)jp) < exp(_/lsz)

2
for0< A < 1(see[4, 3)).
We apply this bound witll = % to get

Priy<r-1) = Pr(Ysjp)

—_“0)
< exp(3

_ exp(_zr +(n+ 1)p)

8

< eof3)

< p 5
wheren is as previously defined and the last inequality holds becags2 m|
Proof of Lemma 2.4The result follows from Chernoff bounds (see, e.g., [4, 3]). m|
Proof of Lemma 2.5The result follows from Lemma 2.4. m]

Proof of Lemma 2.6Let[n] = {1,2,...,n}. Supposenin(}, }1) = k. LetS c [n] be a particular subset of
sizek. Then,

]
Pr(@ll balls land inS) < (lﬁ()

Thus,

Pr(X <K) Pr[U all balls land inS]
S S.t.|s|=k

)

k/\n
()

k/ \n

enyk (k)2 (K\?
G G
Now, sincel > 2k and sincek > 1 implies X < 1 implying & < 1
ek* (k\?
(5)
ek\“ (1 b
() G

-}

Pr(X <k)

IA

IA

11

B Proofs Related to Process SELECT

Proof of Lemma 3.1There ar “2‘1 ways that ranks can be assigned to £hdistinct nodes so that the

resulting/-sequence is rank-sorted. The result follows since each such assignment occurs with probability
r—t. i

Proof of Lemma 3.2We proceed by proving that
Pr(duration(c) =i) = Pr(}_ Yk=1i)

whereYy ~ Geo() anddy denotes the in-degree @f. The desired bound then follows by Lemma 2.1.
We prove the foregoing claim by induction énlf £ = 0, the claim holds sincduration(c) = Zk:1 Yk =

0.
For¢ > 0, we letr denote the node sequengg. . ., V,—1 and assume inductively that
-1
Prduration(r) =i) = Pr(Yi=i)
k=1
Thus,
i-1
Pr{durationo’) =i) = Pr(duration(t) = j) - Pr(duration(o") — duration(r) = i — j | duration(r) = j)
j=0
i-1
= Pr(duration(r) = j) - Pr({duration(o”) — duration(r) =i — j)
j=0
i-1
= Pr(duration(r) = j) - Pr(Y, =1 —])
j=0
i-1

-1
= D PQ Yi=1)-Prive=i-])

j=0 k=1

-1
= P} Ye=i).
k=1

The second equality comes from the fact that future selections are independent of past selections. The third
equality comes from the fact that the number of rounds elapsed from any given time to the next selection in
Tin(Vy) is distributed a¥,. O

Proof of Lemma 3.3We proceed by induction of For¢ = 0, Pr(selec{dsi(c)) = sro(o)) =1 = 5% since
we have assumed thét, > 0.

For¢ > 0, o can be written in the formr : (u, v), where we inductively assume that the claim of the
lemma holds forr. Let A denote the event that the first node selecteld;j(v) after roundduration(dst(r))
isu. We have

Pr(selecfdst(o)) = src(o))

Pr(selec{dsi(t)) = sro(7)) - Pr(A | selectdsi(t)) = src(r))
Pr(selec{dst(r)) = sr(7)) - Pr(A)
5.t

IA

12

The second step follows from the independence of the evemiisd selec{dst(c”’)) = src(o”’) (They are
independent since future selections are independent of past selections). The third step follows from the
induction hypothesis and the observation tRe®) is equall/Tis(V), which is at most/din. m|

Proof of Lemma 3.4Note that evenf depends only on the rank assignments, while evBaisdC depend
only on the selections. Thusis independent of evenB andC. Below we argue that evenBandC are
independent.

Leto = (ug,va),..., (U, v¢) and letoj denote the length-prefix of o, 0 < j < ¢. Define a selection to
be j-special 1 < j < ¢, if itis the first selection after rounduration(c-j_1) in T'in(v;). A selection isspecial
ifitis j-special for somg. Note that evenB depends only on the timing of the special events; in particular,
B occurs if and only if thef-special selection occurs in roumd Suppose we run process SELECT, but
at each step, instead of revealing the selected node, we reveal only whether the selection is special. This
information is sufficient to determine the uniquir which B occurs, but does not bias the distribution of
selecfdst(c)). Since even€ only depends oselec{dst(c)), it is independent oB. m|

Proof of Lemma 3.5By Lemma 3.1Pr(A) < (““;*)r~. By Lemma 3.2Pr(B) < Pr(X > i). By Lemma 3.3,
PrC) < 6;]". The claim then follows by Lemma 3.4. |

C Proof of Lemma4.11

First, we show that the LHS of the claimed inequality is a nonincreasing function of
It is sufficient to prove that the expressi@ﬁ;‘l)r“’ is a nonincreasing function of Fix £ and letf(r)
denote the preceding expression. Note that

fr+1) r+&(r
fry — r (r+1)

S

< 1

where the last inequality holds since the binomial theorem imp]jes%)f >1+ §

Since we have established that the LHS of the claimed inequality is a nonincreasing funatiomeof
can assume in what follows that min([2e?AoutAin/in], £).

Let us rewrite the LHS of the claimed inequality.asPr(X > i), where

, fl+r =1 :
A = AL 1(/)(r(sm) ¢
e(l+r-1) t
< AgutAi[n (fréin

(erutAin(f + r))" ' o

gréin

We begin by establishing two useful upper boundstpmamely, Equations (2) and (4) below.

13

If r = [26?AoutAin/din], then since since = Min([2e?AoutAin/din1, £), we haver < ¢£. Substituting the
value ofr in Equation (1), we find that

(#22)

- \2e2¢

e’ 2)

IA

If r = ¢, then Equation (1) implies
2eAoutAin !
A < |—]. 3
B ({6in) ()

Let h(¢) denote the natural logarithm of the RHS of Equation (3), thah(g) = ¢In(2eAqutAin/(£din))-
Using elementary calculus, it is straightforward to prove that the derivativgpfwith respect tof is
positive forf < 2AqutAin/din, iIs0whent = 2AquAin/din, and is negative fof > 2AquiAin/din. It follows that
h(¢) < h(2AoutAin/din) = 2AoutAin/din. Sinceln is monotonic, the RHS of Equation (3) is also maximized
when¢ = 2AquiAin/6in. Combining this result with Equation (2), we have that regardless of the value of

A < exp(outhin/din)- (4)

(Note thatexp(2outAin/din) > 1 and Equation (2) implies < 1 whenr = [2€?AoutAin/din1.)

We are now ready to proceed with the proof of the lemma. We consider the twofcasgsi,/(2n)]
and/ < [idin/(2n)] separately.

If € > Tidgin/(2n)], then¢ > 2ecmax(AouAin/din, INN) wherec = 16/e > e. In specific, we have
¢ > [2€2AoutAin/din], and thusr = [262AguiAin/din]. It follows from Equation (2) thatt < e <
exp(-idin/(2n)) < exp(-idin/(64n)), and hence the claim holds sinee(X > i) <1.

Now assume that < [idin/(2n)]. LetY ~ NegBin(| 52|, %) andZ ~ NegBin(|'32 | - ¢, %). By the
definition of the negative binomial distributioRr(Y > i) = Pr(X + Z > i). And, sinceZ is nonnegative,

Pr(X+Z >i) = Pr(X = i). Thus
PriX > i) < Pr(Y > i). (5)

SinceE[Y] < 12 andlidin/(2n)] > [32 maxQoutAin/din, INN)] > 2, Lemma 2.3 implie®r(Y > i) < Pr(Y >
2E[Y]) < exp(7g2 + 3). The claim follows since

2AoutAin) .
-Priy > i

(—i5in n } " 2AoutAin)

A-PriX =)

A
D
x
=)

A
[¢]
X
e)

+

IA
D
x
=)

|
¢
x
©
—_
o| L.
5
=}
~—

(The first step follows from Equations (4) and (5). For the third step and fourth steps, note that the as-
sumptioni > 64nmax(A0utAin/6§],(Iogn)/éin) implies idin/(32n) > 2AqutAin/din andidin/(64n) > 1/8,
respectively.)

14

D Process R-RANK

In this section we analyze a biased version of process R-RANK, which we call process R‘RRNdKess
R-RANK’ is the same as process R-RANK, but now, immediately after a selection, if the selected node is
uncovered we cover it and move to the next selection. Otherwise, we proceed as in process R-RANK.

In our analysis, we find it helpful to consider another process, which we call process H. Process H
runs in two phases. For the first phase, consisting of thectinstax(1, (logn)/éi,) rounds, we run process
SELECT. At the end of phase 1, we remove from the underlying graph all edges which did not have at least
one end-point selected during phase 1. After the edge removal, we proceed to phase 2 where we begin to
cover vertices as in process R-RANK.

Lemma D.1. If process H and process R-RANKse the same node numbering, random rank assignment,
and infinite series of selections, the cover time of process R-R&NIKmost the cover time of process H.

Proof. We prove the stronger claim that if process H and process R-RA{d& the same node numbering,
random rank assignment, and infinite series of selections, in ripendry node covered in process H is also
covered in process R-RANK

Call a roundi low if i < cnmax(l, (logn)/éin), and high otherwise. We call a node marked if it was
selected in some low round.

We proceed by induction an For the base case, we consider any low rourd these rounds, process
H covers no nodes, so there is nothing to prove.

Now, assuma is high. Letu be the node selected in roundin both process R-RANKand process
H). If no node is covered in process H, claim follows from the induction hypothesis. Now assumg node
covered in process H in roungand assume thatis not covered in process R-RANIgrior to roundi. (If v
is covered in process R-RANKrior to roundi, there is nothing to prove.) We now complete the induction
step by arguing thatis also covered in rounidin process R-RANK

If vis marked, then is already covered in process R-RAN&ince it was selected in a low round. So we
can assume thatis unmarked. Since H seleaisind coverw in roundi, (u, v) must not have been removed
by process H at the end of phase 1. Thuandv cannot both be unmarked, ses marked.

It follows thatu is not equal tor andu is already covered in process R-RANHSs it was selected in
a low round. Sinces is marked, it has the same set of outgoing neighbors in both processes, i.e., no edge
(u, w) was thrown away in process H at the end of the first phase.

Let S (resp.,T) be the uncovered outgoing neighborsudh process R-RANK(resp., process H) at the
beginning of round. By the induction hypothesi§ is contained inT. Since both processes use the same
node numbering and random ranks, the neighbor selection procedure gives well defined order of the nodes.
SinceS <€ T andv is the minimum order node i and belongs t&, v is the minimum order node 8.
Thusv also is covered in rounidin process R-RANK o

Lemma D.2. The cover time of process R-RAN&KO(n max@outAin/cSﬁ], (logn)/éin)) with high probability.
The expected cover time has the same bound.

Proof. We run a copy of process R-RANKn parallel with a copy of process H, using the same node
numbering, random ranks, and selections.

We call phase 1 of process H successful if at Iégg® of every node’s in-neighbors are selected. If
phase 1 is unsuccessful, we over estimate the cover time of process R‘R&Nie O(nlogn) cover time
of coupon collector. If phase 1 is successful, by Lemma D.1 we may overestimate the cover time of process
R-RANK’ with the cover time bound of process H. To find the cover time bound of process H, we add the
number of rounds during phase 1, to the cover time bound of process R-RANK during phase 2. We apply
Lemma 4.13 to phase 2 of process H where the graph has in-degree at,l@hso get a cover time bound

15

of O(max@ouiAin/52,, (logn)/sin)) for process H. Since the bound on the cover time of process H is both
with high probability and in expectation, if phase 1 is successful with high probability, the same bound holds
for process R-RANK

All that remains to be shown to prove the required result is that phase 1 is successful with high proba-
bility.

Consider a specific node. The probability of selecting a node Iy, (w) on any selection is a Bernoulli
random variable with success probability at leastn. The number of selections in,(w) during phase 1
is the sum ofcnmax(l, (logn)din) such independent Bernoulli random variables. Thus, by Lemma 2.4,
the probability of getting less thaft/2) maxgin, logn) selections inlin(w) during phase 1 is at most
exp((c/12) maxgin, logn)), which is an arbitrary inverse polynomial by choosing a large enough comstant

Given that(c/2) maxgin, (logn)) selections during phase 1 select a vertax,ifw), we apply Lemma 2.6.
To do so, let the variables in the lemmarbe [, (W)| > din, andj = (c/2) max@in, (logn)) which is also at
leastsi, if we setc > 2. Thus, Lemma 2.6 tell us that the probability less tﬁfudistinct nodes of’j,(w) are
selected during phase 1 of process H is at re@p(; max(in, logn)), which is an arbitrary inverse polyno-
mial by selecting a large enough constanfTaking the union bound over all nodes in the graph shows that
phase 1 is successful with high probability. m|

16

