
Efficient Adaptive Collect using Randomization∗

Hagit Attiya1 Fabian Kuhn2 C. Greg Plaxton3 Mirjam Wattenhofer4

Roger Wattenhofer2

Abstract

An adaptivealgorithm, whose step complexity adjusts to the number of active processes, is attractive
for distributed systems with a highly-variable number of processes. The cornerstone of many adaptive
algorithms is an adaptive mechanism to collect up-to-date information from all participating processes.
To date, all known collect algorithms either have non-linear step complexity or they are impractical
because of unrealistic memory overhead.

This paper presents new randomized collect algorithms with asymptotically optimalO(k) step com-
plexity and linear memory overhead only. In addition we present a new deterministic collect algorithm
that beats the best step complexity for previous polynomial-memory algorithms.

1 Introduction and Related Work

To solve certain problems, processes need to collect up-to-date information about the other participating
processes. For example, in a typicalindulgentconsensus algorithm [11, 12], a process needs to announce its
preferred decision value and obtain the preferences of all other processes. Other problems where processes
need to collect values are in the area of atomic snapshots [1, 3, 9], mutual exclusion [2, 4, 6, 7], and renaming
[2]. A simple way that information about other processes can be communicated is to use an array of registers
indexed by process identifiers. An active process can update information about itself by writing into its
register. A process can collect the information it wants about other participating processes by reading the
entire array of registers. This takesO(n) steps, wheren is the total number of processes.

When there are only a few participating processes, it is preferable to be able to collect the required in-
formation more quickly. Anadaptivealgorithm is one whose step complexity is a function of the number
of participating processes. Specifically, if it performs at mosth(k) steps when there arek participating pro-
cesses, we say that it ish-adaptive. An algorithm iswait-freeif all processes can complete their operations
in a finite number of steps, regardless of the behavior of the other processes [13].

Several adaptive, wait-free collect algorithms are known [2, 8, 9]. In particular, there is an algorithm
that features an asymptotically optimalO(k)-adaptive collect, but its memory consumption is exponential

∗ A preliminary version of this paper appeared in the Proceedings of the 18th Annual Conference on Distributed Computing
(DISC) 2004 [10].

1 Department of Computer Science, The Technion, Haifa 32000, Israel. Email: hagit@cs.technion.ac.il.
2 Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland. Email:

{kuhn,wattenhofer}@tik.ee.ethz.ch.
3 Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas 78712–0233.

Email: plaxton@cs.utexas.edu. Partially supported by NSF Grants CCR–0310970 and ANI–0326001. Also affiliated with Akamai
Technologies, Inc., Cambridge, MA 02142.

4 Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland. Email: mirjam.wattenhofer@inf.ethz.ch.

1

in the number of potential processes [9], which renders the algorithm impractical. Other algorithms have
polynomial (in the number of potential processes) memory complexity, but the collect costsΘ(k2) steps [9,
16]. (Moir and Anderson [16] employ a matrix structure to solve the renaming problem. The same structure
can be used to solve the collect problem, following ideas of [9].) The lower bound of Jayanti, Tan and
Toueg [14] implies that the step complexity of a collect algorithm isΩ(k). This raises the question of the
existence of a collect algorithm that features an asymptotically optimalO(k) step complexity and needs
polynomial memory size only.

This paper suggests that randomization can be used to make adaptive collect algorithms more efficient,
in contrast to known deterministic algorithms with either super-linear step complexity or unrealistic memory
overhead. We present a wait-free randomized algorithm with memory complexity that is linear inn, step
complexity that is linear ink for the collect operation, and step complexity that is nearly logarithmic ink
for the first invocation of a store operation. The algorithm is randomized, and the step complexity bounds
hold “with high probability” as well as “in expectation.” We believe that randomization may bring a fresh
approach to the design of adaptive shared-memory algorithms.

Analogously to previous approaches, our randomized algorithm (Section 4) usessplittersas introduced
by Moir and Anderson to govern the algorithmic decisions of processes [16]. A splitter has an associated
register. Various processes may visit the splitter to try to acquire this register. The splitter ensures that at most
one process succeeds in acquiring the register. In addition, the splitter partitions the unsuccessful processes
into two sets. Ideally, these two sets are equal, or approximately equal, in size. Using a deterministic splitter,
it is difficult to partition the unsuccessful processes into two approximately equal-sized sets. That being the
case, it is natural to consider arandomizedsplitter that flips a fair coin to assign each unsuccessful process to
one of the two output partitions. As in the deterministic linear collect algorithm of [9], where deterministic
splitters are organized in a complete binary tree, we find it useful to study the behavior of a complete binary
tree of randomized splitters, which we refer to as a randomized splitter tree. The randomized splitter tree is
the basic building block of our randomized adaptive collect algorithm. The algorithm itself corresponds to a
cascaded sequence of randomized splitter trees of geometrically decreasing size, followed by a deterministic
backup structure. We prove that with high probability the backup structure is unused.

A binary tree of randomized splitters was previously used by Kim and Anderson [15] for adaptive mutual
exclusion.

In addition, Section 3 introduces a new wait-free, deterministic algorithm that improves the trade-off
between collect time and memory complexity: Using polynomial memory only, we achieveo(k2) collect.
For any integerγ > 1, the algorithm provides aSTORE with O(k) step complexity, aCOLLECT with
O(k2/((γ− 1) log n)) step complexity andO(nγ+1/((γ− 1) log n)) memory complexity. Interestingly, by
choosingγ accordingly, our deterministic algorithm achieves the bounds of both previously known algo-
rithms [9, 16].

All new algorithms build on the basic collect algorithm on a binary tree [9]. To employ this algorithm
in a more versatile manner than its original design, we rely on a new and simplified proof for the linear step
complexity ofCOLLECT (Section 3.1).

2 Model

We assume a standard asynchronous shared-memory model of computation. A system consists ofn pro-
cesses, p1, . . . , pn, communicating by reading from and writing to sharedregisters.

Processes are state machines, each with a (possibly infinite) set of local states, which includes a unique
initial state. In eachstep, the process determines which operation to perform according to its local state, and

2

subsequently changes its local state according to the value returned by the operation.
A registerprovides two operations:read, returning the value of the register; andwrite, changing the

register value to the value of its input. Aconfigurationconsists of the states of the processes and the values
of the registers. In theinitial configuration, every process is in the initial state and all registers are⊥. A
scheduleis a (possibly infinite) sequencepi1 , pi2 , . . . of process identifiers. Anexecutionconsists of the
initial configuration and a schedule, representing the interleaving of steps by processes.

An implementationof an object of typeX provides for every operationOP of X a set ofn procedures
F1, . . . , Fn, one for each process. (Typically, the procedures are the same for all processes.) To execute
OP on X, processpi calls procedureFi. The worst-case number of steps performed by some processpi

executing procedureFi is thestep complexityof implementingOP.
An operationOPi precedesoperationOPj (andOPj followsoperationOPi) in an executionα, if the call

to the procedure ofOPj appears inα after the return from the procedure ofOPi.
Let α be a finite execution. Processpi is activeat the end ofα if α includes a call of a procedureFi

without a matching return.
The total contentionduring α is the number of all processes that are active at the end of some prefix

of α. Let f be a non-decreasing function. An implementation isf -adaptiveto total contention if the step
complexity of each invocation of its procedures inα is bounded from above byf(k), wherek is the total
contention duringα.

For completeness, we also define the stronger notion of adaptivity to point contention, which is not
addressed in this paper. Thepoint contentionduring an interval inα is the maximum number of processes
that were simultaneously active at some point in time during that interval. An implementation isf -
adaptive to point contentionif the step complexity of its procedures is bounded byf(k), wherek is the
point contention during the interval of the procedure.

A collect algorithmprovides two operations: ASTORE(val) by processpi setsval to be the latest value
for pi. A COLLECT operation returns aview, a partial functionV from the set of processes to a set of values,
whereV (pi) is the latest value stored bypi, for each processpi. A COLLECT operationcopshould not read
from the future or miss a precedingSTOREoperationsop. Formally, the following validity properties hold
for every processpi:

– If V (pi) = ⊥, then noSTOREoperation bypi precedescop.

– If V (pi) = v 6= ⊥, thenv is the value of aSTOREoperationsopof pi that does not followcop, and
there is noSTOREoperation bypi that followssopand precedescop.

3 Deterministic Adaptive Collect

3.1 The Basic Binary Tree Algorithm

Associated to each vertex in the complete binary tree of depthn− 1 is asplitter [16]: A process entering a
splitter exits with eitherstop, left or right . It is guaranteed that if a single process enters the splitter, then it
obtainsstop, and if two or more processes enter the splitter, then there are two processes that obtain different
values. Thus the set of processes is “split” into smaller subsets, according to the values obtained.

To perform aSTORE in the algorithm of [9], a process writes its value in its acquired vertex. In case it
has no vertex acquired yet it starts at the root of the tree and moves down the data structure according to the
values obtained in the splitters along the path: If it receives aleft, it moves to the left child, if it receives a

3

stop

right

left

right

Figure 1: Traversing the basic binary tree.

right , it moves to the right child. A process marks each vertex it accesses by raising a flag associated with
the vertex. Figure 1 illustrates how a process traverses the basic binary tree in aSTOREoperation.

We call a vertexmarked, if its flag is raised. A processi acquires a vertexv, or stops inv, if it receives
a stop at v’s splitter. It then writes its id intov.id and its value inv.value. In Figure 1, a vertex is black
if it is acquired by some process, it is grey if it is marked, and white in all other cases. In later invocations
of STORE, processi immediately writes its value inv.value, clearly leading to a constant step complexity.
This leaves us to determine the step complexity of the first invocation ofSTORE.

In order to perform aCOLLECT, a process traverses the part of the tree containing marked vertices in
DFS order and collects the values written in the marked vertices.

A complete binary tree of depthn− 1 has2n − 1 vertices, implying the following lemma.

Lemma 3.1. The memory complexity isΘ(2n).

Lemma 3.2 ([9]). Each process writes its id in a vertex with depth at mostk−1 and no other process writes
its id in the same vertex.

Lemma 3.3. The step complexity ofCOLLECT at most2k − 1.

Proof. In order to perform a collect, a process traverses the marked part of the tree. Hence, the step com-
plexity of a collect is equivalent to the number of marked (visited) vertices.

Let xk be the number of marked vertices in a tree, wherek processes access the root. The splitter
properties imply the following recursive equations:

xk = xi + xk−i−1 + 1, (i ≥ 0) (1)

xk = xi + xk−i + 1, (i > 0) (2)

Equation (1) holds if a process stops in the splitter; otherwise, Equation (2) holds.
We prove the lemma by induction; note that the lemma trivially holds fork = 1. For the induction step,

assume the lemma is true forj < k, that is,xj ≤ 2j − 1. Then we can rewrite Equation (1):

xk ≤ (2i− 1) + (2(k − i− 1)− 1) + 1 ≤ 2k − 1

4

γdlog ne
T1

Tn/(γ−1)dlog ne)

T2

Figure 2: Organization of splitters in the cascaded trees algorithm.

and Equation (2) becomes:

xk ≤ (2i− 1) + (2(k − i)− 1) + 1 ≤ 2k − 1.

3.2 The Cascaded Trees Algorithm

We present a spectrum of algorithms, each providing a different trade-off between memory complexity and
step complexity. For an arbitrary constantγ > 1, thecascaded trees algorithmprovides aSTOREwith O(k)
step complexity, aCOLLECT with O(k2/((γ−1) log n)) step complexity andO(nγ+1) memory complexity.

3.2.1 The Algorithm

The algorithm is performed on a sequence ofn/((γ − 1)dlog ne) complete binary splitter trees of depth
γdlog ne, denotedT1, . . . , Tn/((γ−1)dlog ne). (To keep the calculations simple, we assume thatγdlog ne is an
integer and thatn is divisible by(γ − 1)dlog ne.) Except for the last tree, each leaf of treeTi has an edge to
the root of treeTi+1 (Figure 2).

To perform aSTORE, a process writes in its acquired vertex. If it has not acquired a vertex yet, it starts
at the root of the first tree and moves down the data structure as in the binary treeSTORE(described in the
previous section). A process that does not stop at some vertex of treeTi continues to the root of the next

5

Algorithm 1 Cascaded trees: Node acquisition
1: v = root ofT1

2: repeat
3: v.mark= true
4: move= splitter(v) {returns eitherstop, left, or right }
5: if move== left then
6: v = v.left-child
7: else ifmove== right then
8: v = v.right-child
9: fi

10: until move== stop
11: v.id = id {write your identifier}
12: return(v)

tree. Note that both the right and the left child of a leaf in treeTi, 1 ≤ i ≤ n/((γ − 1)dlog ne)− 1, are the
root of the next tree. Algorithm 1 presents the code for acquiring a vertex in the cascaded trees; note that the
code relies on the fact (proved below) that a process will obtainstop in one of the trees and does not include
a condition to avoid “falling out” of the cascaded trees.

The splitter properties guarantee that no two processes stop at the same vertex.
To perform aCOLLECT, a process traverses the part of treeTi containing marked vertices in DFS order

and collects the values written in the marked vertices. If any of the leaves of treei are marked, the process
also collects in treeTi+1.

3.2.2 Analysis

We haven/((γ − 1)dlog ne) trees, each of depthγdlog ne, implying the following lemma.

Lemma 3.4. The memory complexity is

O
(

nγ+1

(γ − 1) log n

)
.

Let k be the number of processes that callSTOREat least once andki be the number of processes that
access the root of treeTi.

Lemma 3.5. At leastmin{ki, (γ − 1)dlog ne} processes do not exit from a leaf of treeTi for everyi,
1 ≤ i ≤ n/(γ − 1)dlog ne.
Proof. Let mi be the number of marked leaves in treeTi. Consider the sub-treeT ′i that is induced by all the
paths from the root to the marked leaves ofTi.

We first argue that a non-leaf vertexv ∈ T ′i with one marked child inT ′i corresponds to at least one
process that does not continue toTi+1. If only one child value (left or right) is returned atv, then either some
process obtainedstop at v or some process did not return from the splitter associated withv. Otherwise,
processes reachingv return bothleft andright . Since only one path leads to a leaf, say, the one through the
left child, at least one process (that obtainedright at v) does not access the right child ofv and does not
reach a leaf ofTi.

6

The number of vertices inT ′i with two children is exactlymi − 1, since each node with two children
adds one to the number of paths to the leaves inT ′i .

To count the number of vertices with one child, we estimate the total number of vertices inT ′i and then
subtractmi − 1.

SinceT ′i is a subtree of a binary tree, the number of nodes at a level at most doubles the number of nodes
in the preceding level. Conversely, the number of vertices on each preceding level is at least half the number
at the current level. Starting above the leaves ofT ′i , whose number ismi, we therefore get the following
inequality for the number of non-leaf verticesni of treeT ′i :

ni ≥ mi

2
+

mi

4
+ · · ·+ mi

2dlog mie︸ ︷︷ ︸
mi−1

+1 + · · ·+ 1,︸ ︷︷ ︸
γdlog ne−dlog mie

where the number of ones in the equation follows from the fact that the treeTi has depthγ log n and after
dlog mie levels the number of vertices on the preceding level is at least one. The claim follows since
mi ≤ n.

Lemma 3.6. A process writes its id in a vertex in treeTm at the latest, for the smallestm such thatk ≤
m · (γ − 1)dlog ne.
Proof. If k ≤ (γ − 1)dlog ne, then a process stops in treeT1, by Lemma 3.2, and the claim follows.

Assume(m− 1) · (γ − 1)dlog ne < k ≤ m · (γ − 1)dlog ne, for some integerm > 1. By Lemma 3.5
at least(γ − 1)dlog ne processes do not exit from a leaf of treeTi, for everyi, 1 ≤ i ≤ m − 1. Thus, at
most(γ − 1)dlog ne processes access treeTm and by Lemma 3.2, a process stops in a vertex of treeTm at
the latest.

Thus a process stops after accessing at mostdk/((γ − 1)dlog ne)e trees. Since the depth of each tree
is γdlog ne and each splitter requires a constant number of operations, it follows that the step complexity
of the first invocation ofSTORE is O(k/((γ − 1)dlog ne) · γdlog ne) = O(γ/(γ − 1)k). All invocations
thereafter requireO(1) steps.

By Lemma 3.3, the time to collect in treeTi is 2ki − 1. By Lemma 3.6, all processes stop after at most
k/((γ − 1) log n) trees. This implies the next lemma:

Lemma 3.7. The step complexity of aCOLLECT is

O
(

k2

(γ − 1) log n

)
.

Remark: The cascaded-trees algorithm provides a spectrum of trade-offs between memory complexity
and step complexity. Choosingγ = 1 + 1/ log n gives an algorithm withO(k2) step complexity forCOL-
LECT andO(n2) memory complexity; this matches the complexities of the matrix algorithm [16]. Setting
γ = n/ log n + 1 yields a single binary tree of heightn; namely, an algorithm where the step complexity of
COLLECT is linear ink but the memory requirements are exponential, as in the algorithm of [9].

4 Adaptive Collect with Randomized Splitters

The algorithm presented in this section uses another kind of splitter, described in Section 4.1, that makes
a random choice in order to direct processes left and right. In Section 4.2 we analyze the behavior of a

7

Algorithm 2 Randomized Splitter
1: X = idi

2: if Y then return randomlyright or left
3: Y = true
4: if (X == idi) then
5: returnstop
6: else
7: return randomlyright or left
8: fi

complete binary tree of such randomized splitters. In Section 4.3 we present our adaptive collect algorithm,
which utilizes a cascaded sequence of randomized splitter trees. In Section 4.4 we analyze this algorithm.
Our three main results are Theorem 4.10, which bounds the memory complexity of the algorithm, Theo-
rem 4.18, which bounds the step complexity of the first invocation ofSTORE, and Theorem 4.19, which
bounds the step complexity ofCOLLECT. Most of our analysis is geared towards establishing the latter
pair of theorems. We remark that the constant factors associated with our bounds could be improved via a
more careful analysis. In general we have opted to simplify the presentation at the expense of such constant
factors.

4.1 A Randomized Splitter

Algorithm 2 presents the code defining the operation of our randomized splitter. If only one process enters
the splitter, it is guaranteed to stop. If two or more processes enter the splitter, then zero or one processes
stop, and the remaining processes each get a return value ofleft or right , independently and uniformly at
random.

4.2 Randomized Splitter Trees

A randomized splitter treeis a complete binary tree with a randomized splitter at each vertex. A process
enters a randomized splitter tree at the root and attempts to acquire the root vertex by entering the associated
randomized splitter. If this attempt is successful, the process stops at the root randomized splitter. Otherwise,
the process recursively descends to one of the two subtrees of the root depending on the value, left or right,
returned by the root randomized splitter. A process is said to stop in the tree if it successfully acquires some
vertex. A vertex that is visited by at least one process is said to bemarked.

Randomized splitter trees are the basic building block of the randomized adaptive collect algorithm to be
presented in Section 4.3. In this section, we establish a number of basic probabilistic lemmas characterizing
the behavior of this building block. Throughout the remainder of Section 4, we find it convenient to employ
a shorthand notation to characterize the probability with which certain claims hold. In particular, when we
say that a claim holds “whp(a)”, wherea is a parameter, we mean that the probability that the claim fails
to hold is upper bounded by an arbitrary inverse polynomial ina. In other words, the claim holds with
probability at least1 − a−c, wherec is a positive constant that can be set arbitrarily large by appropriately
adjusting other constants in the relevant context.

A basic technical tool that we use is the following standard bound on the upper tail of the binomial
distribution. LetX denote a random variable drawn fromB(n, p), that is, assume thatX is the number of
successes observed inn independent Bernoulli trials, each with success probabilityp. Then the following

8

inequality holds for all nonnegativeδ:

Pr(X ≥ (1 + δ)np) ≤
(

eδ

(1 + δ)1+δ

)np

(3)

At times it will be convenient to use the following weakened version of the preceding inequality, which
holds for allα ≥ 1. This version may be derived from Equation (3) by observing thateδ < e1+δ and setting
α = δ + 1.

Pr(X ≥ αnp) ≤
(e

α

)αnp
(4)

We also make use of the following bound on the lower tail of the binomial distribution, which holds for all
δ in the interval[0, 1].

Pr(X ≤ (1− δ)np) ≤ exp(−δ2np/2) (5)

See [5] or [17], for example, for derivations of Equations (3) and (5).
For any pair of real-valued random variablesX andY , we say thatX dominatesY if for all reals z,

Pr(X ≥ z) ≥ Pr(Y ≥ z). The following sequence of lemmas are concerned with the random experiment
in which b processes enter a randomized splitter tree witha leaves, wherea andb are positive integers such
thatb ≤ a.

Lemma 4.1. The number of processes leaving the tree is dominated by a random variable drawn from
2B(b, b/a).

Proof. Fix an arbitrary numbering of the processes from 1 tob. For any processx, let E0(x) denote the
event thatx leaves the tree, letE1(x) denote the event thatx descends to a leaf and at least one other process
descends to the same leaf, and letE2(x) denote the event thatx descends to a leaf and at least one other
lower-numbered process descends to the same leaf. Let the random variableX (resp.,Y , Z) denote the total
number of processesx such that eventE0(x) (resp.,E1(x), E2(x)) occurs.

For any leafv, let the random variableW (v) denote the number of processes that descend to leafv.
Note thatY =

∑
v:W (v)>1 W (v) while Z =

∑
v:W (v)>1 W (v)− 1. It follows that2Z ≥ Y , so the random

variable2Z dominatesY . Furthermore,Y dominatesX since eventE1(x) occurs whenever eventE0(x)
occurs. Thus2Z dominatesX, and we can complete the proof of the lemma by showing thatZ is dominated
by a random variable drawn fromB(b, b/a).

To see thatZ is dominated by a random variable drawn fromB(b, b/a), consider a modified version of
the random experiment in which no process stops or fails at an internal vertex of the randomized splitter
tree, i.e., each process descends randomly from the root until it reaches a leaf. For this modified random
experiment, letE′

2(x) denote the event that a processx descends to the same leaf as at least one other lower-
numbered process. Let the random variableZ ′ denote the total number of processesx such thatE′

2(x)
occurs. Note that we can convert a run of the original experiment to a run of the modified experiment as
follows: For each processx that stops or fails at some internal vertexv in the original experiment, randomly
extend the path ofx downward fromv to a leaf. Observe that in such a pair of runs of the original and
modified experiment, for any processx, if E2(x) occurs in the original experiment thenE′

2(x) occurs in the
modified experiment. It follows thatZ ′ dominatesZ.

We now complete the proof by showing thatZ ′ is dominated by a random variable drawn fromB(b, b/a).
One way to run the modified experiment is to consider the processes one at a time in numerical order, and
to generate a uniformly random root-leaf path for each process. Running the experiment in this manner, we
see thatZ ′ counts the number of times a process selects a previously selected path. Since the probability
any process selects a previously selected path is at most(b − 1)/a < b/a, Z ′ is dominated by a random
variable drawn fromB(b, b/a).

9

Lemma 4.2. The number of processes that leave the tree is upper bounded bymax(4b2/a, O(log a))
whp(a).

Proof. By Lemma 4.1, it is sufficient to prove that ifX is a random variable drawn fromB(b, b/a), thenX
is at mostmax(2b2/a, O(log a)) whp(a). In other words, we wish to prove that the probabilityX exceeds
max(4b2/a, c log a) can be driven below an arbitrary inverse polynomial ina by making a sufficiently large
choice of the positive constantc.

To see this, let us first assume thatc log a ≤ 8b2/a and consider Equation (3) withn = b, p = b/a, and
δ = 1. With this choice of the parameters, Equation (3) implies that the probabilityX exceeds2b2/a is at
most(e/4)b2/a ≤ (e/4)(c/8) log a = a−c′ wherec′ = (2− log2 e)c/8 ≈ 0.06966c. Thus this probability can
be made smaller than an arbitrary inverse polynomial ina by choosing the constantc sufficiently large.

Now let us assume thatc log a ≥ 8b2/a. In this case, consider Equation (4) withn = b, p = b/a, and
α = ac log a

b2
so thatαnp = c log a. With this choice of parameters, Equation (4) implies that the probability

X exceedsc log a is at most(e/α)c log a. Now observe thatα ≥ 8 ≥ 2e sincec log a ≥ 8b2/a. Thus the
probability thatX ≥ c log a is at most2−c log a = a−c, completing the proof.

Lemma 4.3. If b = O(a1/3), then the number of processes that leave the tree isO(1) whp(a).

Proof. By Lemma 4.1, it is sufficient to prove that ifX is a random variable drawn fromB(b, b/a) and
b = O(a1/3), then the probability thatX exceeds a sufficiently large positive constant is less than an
arbitrary inverse polynomial ina.

To see this, consider Equation (4) withn = b, p = b/a, andα = ac
b2

for some positive constantc. With
this choice of parameters, Equation (4) implies that the probabilityX exceedsc is at most

(
b2e

ac

)c

= O(a−c/3),

where the preceding equation follows from our assumption thatb = O(a1/3). This probability can be driven
below an arbitrary inverse polynomial ina by making a sufficiently large choice of the positive constant
c.

Lemma 4.4. If b = O(1) then the probability that no processes leave the tree is1−O(1/a).

Proof. By Lemma 4.1, it is sufficient to prove that ifX is a random variable drawn fromB(b, b/a) and
b = O(1), then the probability thatX ≥ 1 is O(1/a).

To see this, consider Equation (4) withn = b, p = b/a, andα = a
b2

. With this choice of parameters,
Equation (4) implies that the probabilityX ≥ 1 is at mostb2e/a, which isO(1/a) for b = O(1).

Lemma 4.5. LetX denote a random variable equal to the number of independent flips of a fair coin required
to obtainb− 1 heads. Then the number of marked vertices is dominated byX + b.

Proof. Call a marked vertexgoodif some process stops or fails at the vertex, andbadotherwise. Note that
there are at mostb good vertices. Below we complete the proof of the lemma by arguing that the number of
bad vertices is dominated byX.

Note that two or more processes leave each bad vertex. Call a bad vertexv unluckyif all of the processes
leavingv descend to the same child ofv. Call a bad vertexluckyotherwise.

We claim that at mostb− 1 bad vertices are lucky. One way to see this is to reveal the downward paths
of all processes in a breadth-first manner starting at the root. While doing this, we maintain a partition of

10

the processes into equivalence classes based on the portions of their paths that have been revealed thus far.
Initially, all processes belong to a single equivalence class since all of their associated paths are empty. When
a lucky bad vertexv is encountered, the equivalence class of processes descending tov is partitioned into
two or three nonempty equivalence classes. (A three-way partition is possible because one process could
stop atv.) Suppose we encounter a(b−1)th lucky bad vertex. Then at that point we have exactlyb singleton
equivalence classes, and so we cannot encounter another bad vertex. To complete the proof, note that each
bad vertex we encounter has probability at most1/2 of being unlucky, independent of the luckiness of any
previously identified bad vertices. It follows that the number of bad vertices is dominated byX.

Lemma 4.6. The expected number of marked vertices isO(b).

Proof. Immediate from Lemma 4.5.

Lemma 4.7. The number of marked vertices isO(b) whp(b).

Proof. Let the random variableX be as defined in the statement of Lemma 4.5. By Lemma 4.5, it is
sufficient to prove thatX = O(b) whp(b). Let Y denote the number of heads in4b flips of a fair coin. In
order to establish the desired bound onX, it is sufficient to prove thatY ≥ b whp(b). The latter claim is
immediate from Equation (5) withn = 4b, p = 1/2, andδ = 1/2. Remark: The inverse polynomial bound
on the failure probability claimed in this lemma is somewhat weaker than what is implied by Equation (5),
but is adequate for our purposes.

Lemma 4.8. The number of marked vertices isO(b + log a) whp(a).

Proof. Let the random variableX be as defined in the statement of Lemma 4.5. By Lemma 4.5, it is
sufficient to prove thatX = O(b + log a) whp(a). Let c be a positive integer constant, and letY denote
the number of heads in4b + c log a flips of a fair coin. Lettingn = 4b + c log a, p = 1/2, andδ = 1/2
in Equation (5), we find that the probabilityY ≤ b + c log a

4 is at mostexp(− b
4 − c log a

16) ≤ exp(− c log a
16).

It follows that the number of flips required to obtainb − 1 heads is at most4b + O(log a) = O(b + log a)
whp(a).

Lemma 4.9. The maximum depth of any marked vertex isO(log b), both whp(b) and expected.

Proof. The probability that two processes follow the same downward path to depthi is at most2−i. By a
union bound, the probability that any pair of theb processes follow the same downward path to depthi is
qi = O(b22−i). The whp(b) claim follows since a vertex at leveli + 1 can only be marked if two or more
processes follow the same downward path to depthi. The bound on the expectation follows since theqi’s
decrease geometrically withi.

4.3 The Construction

Our randomized adaptive collect algorithm employs a cascaded sequence of randomized splitter treesTi,
1 ≤ i ≤ `, where` = O(log log n), along with a backup array of sizen. (See Figure 3.) Assume without
loss of generality thatn is a power of2. Then treeTi hasni = n · 25−i leaves and its depth islog n + 5− i.
As in Figure 2, for each treeTi such thati < `, both children of all the leaves ofTi are defined to be the
root of Ti+1. Both children of all the leaves ofT` are defined to benil . On the first invocation of aSTORE

operation, a process entersT1 and proceeds downward as described in Section 4.2 until it either stops at a
vertex of someTi — thereby successfully acquiring the register associated with that vertex — or leavesT`.
In the latter case, the process raises a global flag (calledoverflow) to indicate that the backup array is in

11

1

3

2

backup array

log n + 5− i

n

n · 25−i leaves

T`

T1

Ti

Figure 3: Cascaded randomized splitters trees.

use, and acquires the array register corresponding to its ID. That is, processi acquires registeri of the array,
where1 ≤ i ≤ n. In either case, the process completes theSTOREoperation by writing the value into the
acquired register. SubsequentSTOREoperations by the same process are completed in a constant number of
operations by writing into the register acquired previously. Of course, a process may fail at any point during
its execution.

The code for acquiring a vertex is similar to Algorithm 1, and appears in Algorithm 3.
The COLLECT works analogously to the previous algorithms. The marked vertices ofT1 are traversed

in DFS order. Then, if the root ofT2 is marked, the marked vertices ofT2 are traversed, and so on. Finally,
if the flag of the array (overflow) is set, the entire backup array is read.

4.4 Analysis

We now analyze the performance of our adaptive collect algorithm in terms of the parametersn andk. The
memory complexity of the algorithm is straightforward to analyze.

Theorem 4.10.The memory complexity isO(n).

Proof. TheTi’s are geometrically decreasing in size, andT1 has sizeΘ(n), so the total size of all theTi’s is
linear inn. The size of the backup array is also linear inn.

12

Algorithm 3 Cascaded randomized splitter trees: Node acquisition
1: v = root ofT1

2: repeat
3: v.mark= true
4: move= rand-splitter(v) {returns eitherstop, left, or right }
5: if move== left then
6: v = v.left-child
7: else ifmove== right then
8: v = v.right-child
9: fi

10: until move== stopor v == nil
11: if move== stop then
12: v.id = id {write your identifier}
13: return(v)
14: fi
15: overflow= true {the backup array is used}
16: return(backup[id])

Our remaining goal is to bound the step complexity of theSTOREandCOLLECT operations. To this end,
we first present a few auxiliary definitions and lemmas.

For all i such that1 ≤ i ≤ `, let ki denote the number of processes enteringTi. Thusk = k1. In
addition, it is convenient to definek`+1 as the number of processes entering the backup array.

Throughout the remainder of this section, letc denote a sufficiently large positive constant. Call a tree
markedif at least one of its vertices is marked, that is,Ti is marked if and only ifki > 0. Assign a color to
each treeTi as follows. Each unmarked tree is white. If there is no marked treeTi such thatki ≤ c log n,
then all marked trees are red. Otherwise, the marked treeTi with the least indexi such thatki ≤ c log n is
purple, all (marked) trees with lower indices are red, and all marked trees with higher indices are blue.

In several of the proofs that follow, we make implicit use of the fact that any claim holding whp(ni),
where1 ≤ i ≤ `, also holds whp(n). This is becauseni is within a polylogarithmic factor ofn, and as such
is lower-bounded by a polynomial inn.

Lemma 4.11. If treeTi is red, thenki+1/ni+1 ≤ max(8(ki/ni)2, O(log ni)/ni) whp(n).

Proof. Lemma 4.2 implies thatki+1 ≤ max(4k2
i /ni, O(log ni)) whp(ni), and hence whp(n). The claim

follows by dividing through byni and using the fact thatni+1 = ni/2.

It is convenient to define the following function for all positive integersa andb such thata ≥ b.

f(a, b) = max[1, (log log a)− log log(2a/b)] (6)

Note thatf(a, b) = O(log log b), andf(a, b) = O(1) for b ≤ a1−ε, whereε denotes an arbitrarily small
positive constant.

Lemma 4.12. There areO(f(n, k)) red trees whp(n).

Proof. If k1 ≤ c log n, then there are no red trees, so the claim is trivial. In what follows, we assume
that k1 ≥ c log n. By Lemma 4.11, whp(n), eitherk2 is O(log n) or k2/n2 is at most8(k1/n1)2. If k2

13

is O(log n), then assuming we choose the positive constantc sufficiently large, there is exactly one red
tree. Otherwise, there are at least two red trees. So we may assume in what follows thatk2/n2 is at most
8(k1/n1)2. By Lemma 4.11, whp(n), eitherk3 is O(log n) or k3/n3 is at most8(k2/n2)2 ≤ 83(k1/n1)4.
If k3 is O(log n), then assuming we choose the positive constantc sufficiently large, there are exactly two
red trees. Otherwise, there are at least three red trees. So we may assume in what follows thatk3/n3 is at
most83(k1/n1)4. Continuing in this manner, we find that afteri iterations, either we have exhausted all of
the red trees, or

ki/ni ≤ 82i−1(k1/n1)2
i

=
1
8
(8k1/n1)2

i
.

Thus we can obtain a whp(n) upper bound the number of red trees by determining the maximumi such that
the preceding upper bound onki/ni is at least1/n, say, since1/n is O(log n

ni
) for anyi. Taking logarithms,

and usingk = k1 andn1 = 16n, we seek the maximumi such that2i log k
2n ≥ log 8

n , or equivalently,
2i log 2n

k ≤ log n
8 . Taking logarithms once again, and rearranging terms, we find that whp(n) the number of

red trees is at mostlog log n
8 − log log 2n

k ≤ f(n, k).

Lemma 4.13. If Ti is blue thenki = O(1) whp(n).

Proof. If Ti is blue then there is a purple treeTj such thatj < i. Lemma 4.3 implies thatkj+1 is O(1)
whp(n). The claim follows sinceki ≤ kj+1.

Lemma 4.14. There areO(1) blue trees whp(n).

Proof. Assume that there are one or more blue trees and letTi be the blue tree with the least index. By
Lemma 4.13,ki = O(1) whp(n). By repeated application of Lemma 4.4 we find that, conditional on
ki = O(1), the probability that there are more thanm blue trees isO(a−m) for any positive constantm.
The claim of the lemma follows.

Lemma 4.15. There areO(f(n, k)) marked trees whp(n).

Proof. Recall that every marked tree is either red, purple, or blue, and there is at most one purple tree. Thus
the claim follows from Lemmas 4.12 and 4.14 and the observation thatf(n, k) ≥ 1.

Lemma 4.16. We can choosèsuch that̀ = O(log log n) and whp(n) the backup array is unused.

Proof. It is sufficient to prove that the total number of marked trees isO(log log n) whp(n). This is imme-
diate from Lemma 4.15 sincef(n, k) = O(log log n) for all k.

Lemma 4.17. The expected number of marked trees isO(f(n, k)).

Proof. By our choice of̀ , the maximum number of marked trees isO(log log n). Thus the desired bound
on the expected number of marked trees follows from Lemma 4.15.

We are now ready to state and prove the two main theorems of this section.

Theorem 4.18. The step complexity of the first invocation ofSTOREsatisfies the following upper bounds:
O((log n) log log n) worst case;O(f(n, k) log n) whp(n); O(f(n, k) log k) whp(k); O(f(n, k) log k) ex-
pected.

14

Proof. Let the random variableX denote the the maximum depth of any marked node in the overall cascaded
tree structure. Note that in order to establish the step complexity bounds claimed in the lemma, it is sufficient
to establish that these bounds hold for the random variableX.

Note that each tree hasO(log n) depth. The worst case bound follows since there are` = O(log log n)
trees. The whp(n) bound follows from Lemma 4.15. For the two remaining bounds, let us consider the
casesk ≤ √

n andk ≥ √
n separately.

First assume thatk ≤ √
n. At most k processes enter any marked tree, so Lemma 4.9 implies that

whp(k) the maximum depth of any marked vertex within a marked treeTi (i.e., relative to the root ofTi)
is O(log k). Furthermore,f(n, k) = O(1) for k ≤ √

n, so the number of marked trees isO(1) whp(n) by
Lemma 4.15. We conclude via a union bound that whp(k) there areO(1) marked trees and that all marked
vertices in any marked treeTi occur at depthO(log k) within Ti. It follows thatX is O(log k) whp(k), as
required. To bound the expected value ofX, note that Lemma 4.17 implies that the expected number of
marked trees isO(1). Furthermore, since at mostk processes enter any marked tree, Lemma 4.9 implies
that the expected maximum depth of any marked node within any marked tree isO(log k). It follows that
the expected value ofX is O(log k).

Now assume thatk ≥ √
n. In this case,log k = Ω(log n), so it is sufficient to establish a bound of

O(f(n, k) log n), both whp(k) and expected. But both of these bounds are immediate from our whp(n)
bound.

Theorem 4.19. The step complexity ofCOLLECT satisfies the following upper bounds:O(n) worst case;
O(k + log n) whp(n); O(k) whp(k); O(k) expected.

Proof. Let the random variableX denote the total number of marked vertices in the randomized splitter
trees. Lemma 4.16 implies that in order to establish the step complexity bounds claimed in the lemma, it is
sufficient to establish that these bounds hold for the random variableX.

TheO(n) worst case bound onX is immediate from Theorem 4.10.
Lemma 4.2 implies that the sequence ofki’s associated with the red trees decreases (super-)geometrically

whp(n). Thus, Lemma 4.8 implies that the number of marked vertices in all red trees isO(k) whp(n). The
number of marked vertices in the purple tree, if any, isO(log n) whp(n) by Lemma 4.8. The number of
marked vertices in all blue trees isO(log n) whp(n) by Lemmas 4.13 and 4.14, and the fact that the depth
of every tree isO(log n). ThusX = O(k + log n) whp(n).

Now let us prove thatX = O(k) whp(k). If T1 is red, thenk = Ω(log n), so we haveX = O(k +
log n) = O(k) whp(n), implying thatX = O(k) whp(k). Otherwise,T1 is purple, and Lemma 4.7 implies
that the number of marked vertices inT1 is O(k) whp(k). Furthermore, Lemma 4.9 implies that whp(k)
there are no blue trees, soX = O(k) whp(k).

It remains to prove that the expectation ofX is O(k). If T1 is red, thenk = Ω(log n) soX = O(k +
log n) = O(k) whp(n). The latter bound implies that the expectation ofX is O(k), sinceX = O(n) in the
worst case. IfT1 is not red then it is purple, sok = O(log n) and Lemma 4.17 implies that the expected
number of marked trees isO(1). By the expectation bound of Lemma 4.6, the expected value ofX is O(k)
times the expected number of marked trees, and hence isO(k).

5 Conclusions

We presented new deterministic and randomized adaptive collect algorithms. Table 1 compares the algo-
rithms presented in this paper with previous work. The algorithms are adaptive to so-calledtotal contention,
that is, to the maximum number of processes that were ever active during the execution. There are other

15

Step Complexity Memory
Algorithm COLLECT STORE Complexity
triangular matrix [16] O(k2) O(k) O(n2) deterministic
tree [9] O(k) O(k) O(2n) deterministic
cascaded trees (Sec. 3.2) O(k2/(ε log n)) O(k/ε) O(n2+ε) deterministic
randomized splitters (Sec. 4) O(k) O(f(n, k) log k) O(n) randomized

Table 1: Summary of the complexities achieved by different collect algorithms. See Equation (6) for the
definition of the functionf .

contention definitions which are more fine-grained, such as point contention. Thepoint contentionduring
an execution interval is the maximum number of processes that were simultaneously active at some point in
time during that interval. We believe that some of our new techniques carry over to algorithms that adapt to
point contention [2, 3, 8].

Our paper shows that it is possible to perform aCOLLECT operation inO(k) time with polynomial
memory using randomization. To determine the best possible step complexity forCOLLECT achievable by
a deterministic algorithm with polynomial memory is an interesting open problem.

References

[1] Y. Afek and M. Merritt. Fast, wait-free(2k− 1)-renaming. InProceedings of the 18th Annual ACM Symposium
on Principles of Distributed Computing, pages 105–112, 1999.

[2] Y. Afek, G. Strupp, and D. Touitou. Long-lived adaptive collect with applications. InProceedings of the 40th
IEEE Symposium on Foundations of Computer Science, pages 262–272, 1999.

[3] Y. Afek, G. Stupp, and D. Touitou. Long-lived and adaptive atomic snap-shot and immediate snapshot. In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, pages 71–80, 2000.

[4] Y. Afek, G. Stupp, and D. Touitou. Long lived adaptive splitter and applications.Distributed Computing,
15(2):67–86, 2002.

[5] N. Alon and J. H. Spencer.The Probabilistic Method. Wiley, New York, NY, 1991.

[6] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research trends since 1986.
Distributed Computing, 16:75–110, 2003.

[7] H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusion.Distributed Computing, 15(3):177–189,
2002.

[8] H. Attiya and A. Fouren. Algorithms adaptive to point contention.Journal of the ACM, 50(4):444–468, July
2003.

[9] H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with applications.Distributed Computing,
15(2):87–96, 2002.

[10] H. Attiya, F. Kuhn, M. Wattenhofer, and R. Wattenhofer. Efficient adaptive collect using randomization. InPro-
ceedings of the 18th Annual Conference on Distributed Computing, volume 3274 ofLecture Notes in Computer
Science, pages 159–173. Springer, 2004.

[11] R. Guerraoui. Indulgent algorithms. InProceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing, number 289–297, 2000.

16

[12] R. Guerraoui and M. Raynal. A generic framework for indulgent consensus. InProceedings of the 23rd Inter-
national Conference on Distributed Computing Systems, pages 88–95, 2003.

[13] M. Herlihy. Wait-free synchronization.ACM Transactions on Programming Languages and Systems, 13(1):124–
149, January 1991.

[14] P. Jayanti, K. Tan, and S. Toueg. Time and space lower bounds for nonblocking implementations.SIAM Journal
on Computing, 30(2):438–456, 2000.

[15] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. InProceedings of the 14th
International Symposium on Distributed Computing, volume 2180 ofLecture Notes in Computer Science, pages
1–15, 2001.

[16] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renaming.Science of Computer Program-
ming, 25(1):1–39, October 1995.

[17] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, Cambridge, UK, 1995.

17

