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Summary. A central problem for structured peer-to-
peer networks is topology maintenance, that is, how to
properly update neighbor variables when nodes join or
leave the network, possibly concurrently. In this paper,
we consider the maintenance of the ring topology, the
basis of several peer-to-peer networks, in the fault-free
environment. We design, and prove the correctness of,
protocols that maintain a bidirectional ring under both
joins and leaves. Our protocols update neighbor vari-
ables once a membership change occurs. We prove the
correctness of our protocols using an assertional proof
method, that is, we first identify a global invariant for a
protocol and then show that every action of the protocol
preserves the invariant. Our protocols are simple and our
proofs are rigorous and explicit.

Keywords: concurrency, distributed algorithm, dis-
tributed data structures, network protocols, correctness.

1 Introduction

In a structured peer-to-peer network, nodes maintain
some neighbor variables. The neighbor variables of all
the members collectively form a certain topology (e.g., a
ring). Over time, membership may change: non-members
may wish to join the network and members may wish to
leave the network, possibly concurrently. When nodes
join or leave, the neighbor variables should be properly
updated to maintain the topology. This problem, known
as topology maintenance, is a central problem for struc-
tured peer-to-peer networks.

1.1 Existing Work

There are two general approaches to topology mainte-
nance: the passive approach and the active approach.
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In the passive approach, the neighbor variables are not
updated immediately after a member change. Instead, a
repair protocol runs in the background periodically to
restore the topology. In the active approach, the neigh-
bor variables are updated immediately. It is worth noting
that joins and leaves may be treated using the same ap-
proach or using different approaches (e.g., passive join
and passive leave [13], active join and passive leave [8,
14], active join and active leave [3,15]).

Existing work on topology maintenance has several
shortcomings. For the passive approach, since the neigh-
bor variables are not immediately updated, the network
may diverge significantly from its designated topology.
Furthermore, the passive approach is not as responsive
to membership changes and requires considerable back-
ground traffic (i.e., the repair protocol). On the other
hand, actively maintaining a peer-to-peer network topol-
ogy is a nontrivial task. Some existing work gives proto-
cols without proofs [15], some handles joins actively but
leaves passively [8,14], and some handles joins and leaves
actively but separately [3] (i.e., a protocol that handles
joins and a separate protocol that handles leaves). It is
not true, however, that an arbitrary join protocol and
an arbitrary leave protocol, if put together, can handle
both joins and leaves (e.g., the protocols in [3] cannot;
see a detailed discussion in Section 2). Finally, existing
protocols are complicated and their correctness proofs
are operational and sketchy. It is well known, however,
that concurrent programs often contain subtle errors and
operational reasoning is unreliable for proving their cor-
rectness.

1.2 Our Contributions

In this paper, we address the maintenance of the ring
topology, the basis of several peer-to-peer networks [7,
12,17,25], in the fault-free environment. We design, and
prove the correctness of, protocols that maintain a bidi-
rectional ring under both joins and leaves. Our protocols
handle both joins and leaves actively. Using an asser-
tional proof method, we prove the correctness of a proto-
col by first identifying a global invariant and then explic-



itly showing that every action of the protocol preserves
the invariant. We show that, although the ring topol-
ogy may be temporarily disrupted during membership
changes, our protocols restore the ring topology once
the (at most four) messages associated with each pend-
ing membership change are delivered, assuming that no
new changes are initiated. In practice, it is likely that
message delivery time is much shorter than the mean
time between membership changes. Hence, in practice,
even if membership changes never subside, our protocols
maintain the ring topology most of the time. Our proto-
cols are based on an asynchronous communication model
where only reliable delivery is assumed. That is, message
delivery takes finite, but otherwise arbitrary, amount of
time.

While the ring maintenance protocol arranges nodes
in an arbitrary ring, a simple extension of it maintains
the Chord ring, where nodes are organized based on their
identifiers.

Unlike the passive approach, which handles leaves as
fail-stop faults, we handle leaves actively (i.e., we suggest
that leaves and faults should be handled differently). Al-
though treating leaves and faults the same is simpler, we
have reasons to believe that handling leaves actively is
worth investigating. Firstly, leaves may occur more fre-
quently than faults. In such situations, handling leaves
and faults in the same way may lead to some drawbacks
in terms of performance (e.g., delay in response, substan-
tial background traffic). To see this, note that only four
messages are needed to handle an active leave (see Sec-
tion 6), while a linear number of messages is needed to
detect a passive leave (e.g., every node sends a message
to each of its two neighbors to detect if either of them
has left). Saroiu et al. [24] report that half of Gnutella
and Napster sessions terminate within an hour. Since the
termination of sessions are so frequent, it is likely that
many of them are terminated by the users (i.e., they
are active leaves), instead of by faults (i.e., link or node
failures). Secondly, while it appears more convenient for
a node to omit executing a leave protocol and simply
leave the network silently (i.e., stop responding to mes-
sages related to the peer-to-peer network), we remark
that nodes in peer-to-peer networks cooperate with each
other all the time, by following a join protocol, by for-
warding messages for each other, or by storing contents
for each other. Hence, it is reasonable to assume that a
node will execute a leave protocol.

We stress that this work is only a first step towards
rigorous and applicable topology maintenance protocols.
Several important issues, some of which are listed in Sec-
tion 9, are left out for further investigation. For example,
a shortcoming of our protocols is that some of them may
cause livelocks; see a detailed discussion in Section 6.3.
Also, we only focus on correctness issues in this paper
and do not address the algorithmic (e.g., space, message,
and time) complexities of our protocols, an important is-
sue for future research. Furthermore, we do not address
fault tolerance in our protocols (i.e., we assume that
nodes do not crash and messages are never lost). In prac-
tice, however, some fault-tolerant mechanisms (e.g., fault
detection) have to be in place. We make the fault-free
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assumption mainly for two reasons. First, it is typically
complicated to design an algorithm if faults need to be
considered during algorithm design. Second, as demon-
strated later in this paper, topology maintenance, even
in the fault-free model, is a complicated and nontrivial
problem. For example, the current proof lengths, which
are already substantial, are in fact the result of a se-
quence of simplifications. Therefore, we believe that a
layered approach where faults are handled separately is
a reasonable approach. How to handle faults is clearly an
important research problem. In fact, subsequent to the
original announcement of the results in this paper [11],
other researchers have leveraged our work for the design
and verification of a fault-tolerant active ring mainte-
nance protocol [22].

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 provides some
preliminaries. Section 4 shows how to maintain a unidi-
rectional ring under joins. Section 5 shows how to main-
tain a bidirectional ring under joins. Section 6 shows how
to maintain a bidirectional ring under leaves. Section 7
shows how to maintain a bidirectional ring under both
joins and leaves. Section 8 presents the Chord mainte-
nance protocol. Section 9 concludes the paper and dis-
cusses some future work.

2 Related Work

Peer-to-peer networks are classified into two general cat-
egories, structured and unstructured, depending on if
they have stringent neighbor relationships to be main-
tained by their members. While unstructured networks
do not have stringent requirements on the network topol-
ogy, it is still desirable to maintain certain properties
(e.g., connectivity). For example, Pandurangan et al. [19]
have proposed how to build connected unstructured net-
works with constant degree and logarithmic diameter.
In recent years, numerous topologies have been proposed
for structured peer-to-peer networks (e.g., [3,7,12,16,20,
25,21,23,26]). Many of them, however, assume that con-
current membership changes only affect disjoint sets of
the neighbor variables. Clearly, this assumption does not
always hold.

Chord [25] takes the passive approach to topology
maintenance. Liben-Nowell et al. [13] study the band-
width used by repair protocols and show that Chord is
nearly optimal in this regard. Hildrum et al. [8] focus on
choosing nearby neighbors for Tapestry [26], a topology
based on PRR [20]. In addition, they propose an active
join protocol for Tapestry, together with a correctness
proof. Furthermore, they describe how to handle leaves
(both voluntary and involuntary) in Tapestry. However,
the description of voluntary (i.e., active) leaves is high-
level and is mainly concerned with individual leaves. Liu
and Lam [14] have also proposed an active join protocol
for a topology based on PRR. Their focus, however, is on
constructing a topology that satisfies the bit-correcting
property of PRR; in contrast with the work of Hildrum et
al., proximity considerations are not taken into account.
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The work of Aspnes and Shah [3] is closely related
to ours. They give a join protocol and a leave protocol,
but their work has some shortcomings. Firstly, concur-
rency issues are addressed at a high level; for example,
the analysis does not capture the system state when mes-
sages are in transmission. Secondly, the join protocol and
the leave protocol of [3], if put together, do not handle
both joins and leaves. (To see this, consider the scenario
where a join occurs between a leaving process and its
right neighbor.) Thirdly, for the leave protocol, a process
may send a leave request to a process that has already
left the network; the problem persists even if ordered
delivery of messages is assumed. Fourthly, the protocols
rely on the search operation, the correctness of which
under topology change has not yet been established.

Awerbuch and Scheideler [4] propose the hyperring,
a low-congestion deterministic dynamic network topol-
ogy. The focus of [4] is on the performance bounds (e.g.,
message bounds) of hyperrings, and the maintenance of
hyperrings is only briefly discussed.

In their position paper, Lynch et al. [15] outline an
approach to ensuring atomic data access in peer-to-peer
networks and give the pseudocode of the approach for
the Chord ring. The pseudocode, excluding the part for
transferring data, gives a topology maintenance protocol
for the Chord ring. Although [15] provides some inter-
esting observations and remarks, no proof of correctness
is given, and the proposed protocol has several short-
comings, some of which are similar to those of [3] (e.g.,
it does not work for both joins and leaves and a mes-
sage may be sent to a process that has already left the
network).

Assertional proofs of distributed algorithms appear
in much previous work, e.g., Ashcroft [2], Lamport [9],
and Chandy and Misra [5]. Our work can be described
in the closure and convergence framework of Arora and
Gouda [1]: the protocols operate under the closure of the
invariants, and the topology converges to a ring once the
messages related to membership changes are delivered.

3 Preliminaries

Although the word “node” is more commonly used in
peer-to-peer literature, we are going to address the prob-
lem of topology maintenance in a formal and abstract
way, where the term “process” is more appropriate. Thus,
we use the term “process” in place of “node” hereafter,
except in Section 8, where we address the maintenance
of the Chord ring.

3.1 Basic Notations

We consider a fixed and finite set of processes denoted by
V. Let V’ denote V U {nil}, where nil is a special process
that does not belong to V. In what follows, symbols u,
v, and w are of type V, and symbols z, y, and z are
of type V'. We use u.a to denote variable a of process
u, and we use u.a.b to stand for (u.a).b. For example,
in the protocols, u.l is the left neighbor of process u,

u

O u
VOH—— =W VO/O\OW

before after

Fig. 1. Adding a process to a unidirectional ring.
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Fig. 2. Removing a process from a unidirectional ring.

and w.l.r is the right neighbor of the left neighbor of u.
By definition, the nil process does not have any variable
(i.e., nil.a is undefined for every variable a). We call a
variable x of type V' a meighbor variable. For example,
in the protocols, [ and r are neighbor variables. We call
a process u an x process iff u.z # nil.

We assume that there are two reliable and unbounded
communication channels between every two distinct pro-
cesses in V', one in each direction. There is one channel
from a process to itself and there is no channel from
or to process nil. We assume reliable, but not ordered,
message delivery in all channels.

3.2 Definitions of Rings

We first give a formal definition of a ring. For this pur-
pose of this paper, it may not seem necessary to intro-
duce a formal definition of a ring. However, one of our
future goals is to obtain machine-checked proofs for our
protocols. Hence, we introduce a formal definition that
does not rely on a graphical interpretation of a ring. In
words, for any neighbor variable z, the x processes form
a ring iff for all « processes u and v (which may be equal
to each other), there is a path of positive length from
u to v. Formally, we use the predicate ring(x) to mean
that the x processes in V' form a unidirectional ring, i.e.,

ring(z) = (Yu,v : u.x # nil A vz # nil : path™ (u, v, x)),

where path™ (u,v,x) = (3i : i > 0 : u.a’ = v) and where
u.z" means u.x.x - - - with x repeated i times. We first
state three simple but useful lemmas.

Lemma 1. If ring(x) holds, then distinct x processes
have distinct x neighbors.

Proof. Let k be the number of x processes. Let d~(u)
be the number of processes v such that v.x = u. Then
> wey A7 (u) = k. We observe that d~(u) > 0 iff u.x #
nil, because d~ (u) > 0 implies that (Jv :: v.z = u) and
then ring(x) implies that w.z # nil; on the other hand,
u.z # nil and ring(z) imply that (Fi : i > 0 : u.z® = u)
(ie., (u.z*"1).x = wu), which implies that d=(u) > 0.
Observing that there are k x processes, we conclude that
Vu:uax#nl:d (u)=1). O



Lemma 2. Suppose ring(z) A u.x = w A v.x = nil holds
before the execution of an action. And suppose that the
action changes u.x to v and changes v.x to w, but pre-
serves all other x values. Then ring(z) holds after the
action.

Proof. We first make the key observation that all paths
are preserved by the action, though some may become
longer. To see this, consider any two consecutive pro-
cesses, w and w’, on the path from u to v before the
action (hence w' = w.x). Note that w # v because
v.x = nil. Hence, w.x is affected by the action only if
w = u. If w # u, then w.x = w’ after this action; if
w = u, then w.z? = w' after this action. Hence, the path
is preserved. The lemma then follows from the definition
of ring(z). O

Lemma 3. Suppose ring(x) A u.x = v Av.e = w holds
before the execution of an action. And suppose that the
action changes u.x to w and changes v.x to nil, but pre-
serves all other x values. Then ring(xz) holds after the
action.

Proof. Similar to the proof of Lemma 2. 0O

Lemmas 2 and 3 show how an action may preserve a
ring when adding or removing a process. Figures 1 and 2
give an intuitive explanation of these two lemmas, yet we
stress that v and w in these figures need not be distinct.

We next give a formal definition of a bidirectional
ring. For all neighbor variables x and y, we use the pred-
icate biring(x,y) to mean that the = processes and the
y processes in V form a bidirectional ring, i.e.,

biring(x,y) = ring(x) A ring(y)
A Vu:wx #nil s uzy = u)
A Vu:wy £ il uwy.x = u).

Note that biring(x,y) is a stronger condition than simply
ring(x) A ring(y); the strengthening prevents the situa-
tion of two separate rings. The following two lemmas are
analogous to Lemmas 2 and 3.

Lemma 4. Suppose biring(z,y) A u.x = w A v.z = nil
holds before the execution of an action (hence w.y =
uAv.y =nil). And suppose that the action changes u.x
to v, w.y tov, v.r to w, and v.y to u, but preserves all
other x and y values. Then biring(x,y) holds after the
action.

Lemma 5. Suppose biring(x,y) Nuvx = v Av.e = w
holds before the execution of an action (hence v.y = u A
w.y = v). And suppose that the action changes u.x to
w, w.y to u, v.xr to nil, and v.y to nil, but preserves all
other x and y values. Then biring(x,y) holds after the
action.

The proofs to the above two lemmas are similar to
those of Lemmas 2 and 3 and hence are omitted. Fig-
ures 3 and 4 give an intuitive explanation of these two
lemmas, yet we stress that v and w in these figures need
not be distinct.

Xijaozhou Li et al.: Concurrent Maintenance of Rings

o u
O
O w VO/ \OW

before after

VO

Fig. 3. Adding a process to a bidirectional ring.
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Fig. 4. Removing a process from a bidirectional ring.

3.3 Abstract Protocol Notation

Next we briefly explain our protocol notation, a slight
variant of Gouda’s Abstract Protocol Notation [6]. We
present our protocols by specifying the behavior of each
process. Each process has the following form:

process (process name)

var (variable list)

init (boolean expression list)
begin (action list) end

The var section declares the names and types of the
variables used by the process. The init section specifies
the initial conditions that the variables should satisfy
before the execution of the protocol.

Actions are separated by the [ symbol. An action is of
the form (guard) — (statement list). A guard is either
a local guard or a receiving guard. A local guard of a
process (say p) is a boolean expression that may involve
only the variables of p. A receiving guard is of the form
rcv (message) from (process name). A receiving guard
is true iff a message of the specified type is available
in the specified channel. For example, in process p, the
guard, rcv join() from ¢, holds iff there is a join message
in the channel from ¢ to p. A message is of the form
(message name)((field list)). For example, ack(nil) is an
ack message with one field with value nil.

The body of an action is a sequence of statements.
Only three kinds of statements occur in our protocols:
assignment, sending, and selection. An assignment state-
ment is of the form (variable list) := (expression list),
where both lists have the same length. An assignment
statement is carried out by first computing the values
of all the expressions and then assigning the values to
the corresponding variables. For example, the statement
x,y = y,x exchanges the values of x and y. A send-
ing statement sends a message to a process and is of
the form send (message) to (process name). A selection
statement is of the form if (branch list) fi where the
branches are separated by the [ symbol and a branch is
of the form (local guard) — (statement list). To execute
a selection statement, an arbitrary branch with a true
guard is selected and the corresponding statement list is
executed.
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8.4 Protocol Execution

An execution of a protocol consists of an infinite se-
quence of actions. We assume a weak fairness model
where each action is executed infinitely often. Execution
of an action with a true guard executes the statements
of the action; execution of an action with a false guard
has no effect on the system. We assume that each action
is atomic and we reason about the system state in be-
tween actions. We next give a brief justification of this
assumption on atomic actions. A more complete treat-
ment of this issue can be found in the recent dissertation
of McGuire [18].

Every action consists of a number of steps, where
a step is one of the following three statements: a local
statement (i.e., an assignment to a local variable), a send
statement, and a receive statement. A receive statement
can only be the first step of an action. We assume that
every step is atomic. An execution of a protocol is equiva-
lent to a sequence of steps. Given an arbitrary sequence
of steps where the steps belonging to different actions
may be interleaved, our goal is to establish that this se-
quence, called an interleaving execution, is equivalent to
some sequence where the steps of every action are con-
tiguous, called a sequential execution. Subsequent results
of this paper hold for arbitrary sequential executions,
and this theorem implies that those results also hold for
any execution, interleaving or sequential. A slight excep-
tion to this claim is discussed in detail in Section 4.1.

Lemma 6. Fvery interleaving execution of the protocol
1s equivalent to some sequential execution of the protocol.

Proof. 1t suffices to show that the nonfirst steps of an ac-
tion, if separated by steps in other actions, can be moved
to be adjacent to the first step of the action. Consider
two adjacent steps o and (8 in the interleaving execution,
where o and 3 belong to different actions and 3 is not
the first step of its action. First note that o and 3 be-
long to different processes because a process completes
an action before executing another one. Our goal is to
show that o8 = fa (i.e., executing « first and [ next is
equivalent to executing 3 first and « next). Consider the
following cases (note that 3 cannot be a receive state-
ment). If 8 is a local statement, then clearly o8 = fa. If
0 is a send statement, then: (1) if « is a send statement,
since a and [ belong to different processes, these two
sends affect different channels, and hence a8 = Ba; (2)
if « is a local statement, then clearly o8 = Ba; (3) if «
is a receive statement, since the receive statement suc-
cessfully receives some message, putting 8 before o does
not prevent (3 from receiving that message, and hence

af =pPa. O

4 Joins for a Unidirectional Ring

We begin by considering joins for a unidirectional ring.
We discuss this seemingly simple problem for two rea-
sons. Firstly, we introduce several key concepts and ideas
as we discuss this problem. Secondly, our solution to this
problem exemplifies our techniques for solving the harder
problems discussed later in this paper.

change of topology

exchange of messages

time

v

Fig. 5. Joining a unidirectional ring. A solid edge from v
to u means v.r = u, and a dashed edge from u to w means
that a grant(w) message is in transmission to u, eventually
causing u to set u.r to w. The state jng is a shorthand for
“joining” .

4.1 The Protocol

We now explain our join protocol for a unidirectional
ring. Let r, the right neighbor, be a neighbor variable,
and assume that ring(r) holds initially. When process u
wishes to join the ring, we assume that u is able to find
a member v of the ring (if there is no such process, then
u creates a ring consisting of only w itself). Process u
then sends a join message to v. Upon receiving the join
message, v places u between v and its right neighbor
w (which can be equal to v), by setting v.r to u and
sending a grant(w) message back to u. Upon receiving
the grant(w) message, u sets u.r to w. Figure 5 shows an
execution of the protocol where a join request is granted.

Figure 6 describes the join protocol. We assume that
the contact() function in action Tj returns a process not
in the state out, if there is one (see the caption of Figure 6
for the meanings of the various states), and it returns the
calling process otherwise. Initially all processes are out
and all channels are empty.

Note that in action T4, the contact() function is in-
voked to find an existing process in the ring. Suppose
that the ring is empty. If two processes p and ¢ call
contact() at the same time, then contact() returns p
and ¢ to them, respectively, causing the creation of two
rings. Hence, we have to assume that two executions of
T7 do not interleave. The only situation that may cause
a problem is when the ring is empty and two nodes
call contact() simultaneously. Therefore, if the ring is
nonempty, then even 77 actions can interleave with each
other.

We remark that the retry message is not an essen-
tial part of this join protocol. With a slightly different
assumption on the contact() function (i.e., it returns an
in process if there is one and returns the calling process
otherwise), then a join request is always granted. The
retry message, however, is essential to the protocols for
bidirectional rings. In those protocols, an in process may
become busy or lvg (leaving), hence a join request may
be declined. We keep the retry message here in order to
maintain a consistent assumption on the contact() func-
tion throughout this paper.



process p
var s: {in,out,jng}; r:V'; a: V'
init s = out Ar = nil
begin
T s = out — a := contact();
ifa=p—r,s:=p,in
|l a#p— s:=jng; send join() to a fi
T | rev join() from g —
if s = in — send grant(r) to ¢; r :=¢q
| s # in — send retry() to g fi

Ts | rev grant(a) from ¢ — r, s :=a,in
Ty | rev retry() from ¢ — s := out
end

Fig. 6. The join protocol for a unidirectional ring. The states
in, out, and jng stand for in, out of, and joining, respectively.
An in process is completely inside the ring, an out process
is completely outside the ring, and a jng process is trying to
become part of the ring.

4.2 Notations and Conventions Used in Proofs

Before presenting the correctness proofs, we first intro-
duce some notations to be used in the proofs.

m(msg,u,v): The number of messages of type msg in
the channel from « to v. At times, we include the
parameter of a message type. For example, we use
m(grant(z),u,v) to denote the number of grant mes-
sages with parameter z in the channel from u to v.

m*(msg,u), m~ (msg,u): The number of outgoing and
incoming messages of type msg of u, respectively. A
message from u to itself is considered both an outgo-
ing message and an incoming message of w.

#msg: The total number of messages of type msg in all
channels.

1,1, : Shorthand for “before this action”, “after this
action”, and “before and after this action”, respec-
tively.

We often format our proofs into a particular style,
to be illustrated in the following simple example. Let P,
P’, P"” be some predicates. A proof of P = P” may be
structured as follows.

P

= {justifications for P = P’}
P/

= {justifications for P’ = P"}
P”.

Of course, the chain of implication can be of arbitrary
length.

In our reasoning, we often need to describe how a
predicate is affected by an action. We use truthify to
mean that a predicate is changed from false to true by
an action, falsify to mean that a predicate is changed
from true to false, preserve to mean that the truth value
of a predicate is unchanged, and establish to mean that
a predicate is true after the action (the predicate can be
either true or false before the action). We sometimes also
use preserve to mean that the value of a variable or an
expression is unchanged.
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An action affects variables by assignments and it af-
fects channel contents by sending or receiving messages.
For the sake of brevity, as a convention, if a predicate,
variable, or expression is unaffected by an action, then
we omit stating so. However, if it is affected (although
not necessarily changed) by an action, then we state so.
For example, expression m™ (join,p) + m™(grant,p) is
unaffected by an action if the action preserves both the
first term and the second term, but the same expression
is affected and preserved by an action if the action decre-
ments the first term by 1 but increments the second term
by 1.

4.8 Proof of Correctness

We now prove the correctness of the join protocol. We
prove certain safety and progress properties. Proving
safety properties often amounts to proving invariants.
What is an invariant of this protocol? It is tempting to
think that this protocol maintains ring(r) at all times.
This, however, is not true. For example, consider the mo-
ment when v has set v.7 to u but u has yet to receive the
grant message. At this moment, v.r = u but w.r = nil
(i.e., the ring is broken). In fact, no protocol can main-
tain ring(r) at all times, simply because the joining of a
process requires the modification of two variables (e.g.,
v.r and u.r) located at different processes.

This observation leads us to consider an extended
ring topology, ring(r'), defined as follows. Let u.r’, an
imaginary variable, be

x if m~(grant,u) =1
Am~(grant(x),u) =1
u.r otherwise.

Roughly speaking, if a process u has a unique incom-
ing grant message, then w.r’ equals the parameter in
that message; otherwise u.r’ is just the same as w.r. The
reader may wonder if the definition of r’ is needlessly
complicated, because it seems clear from the protocol
that a process has at most one incoming grant message.
We remark, however, that at this point, we have not
proven that yet. This is done below. The definition of r’
given above ensures 1’ is well-defined, regardless of the
behavior of the protocol.

In fact, r’ is a function on V, but due to the strong
connection between r and r’, we write r’ as a variable.
In effect, a process with a non-nil 7/ value is either a
member or a non-member for which the join request has
been acknowledged with a grant message, although the
grant message has yet to arrive.

The motivation for defining r’ is quite simple. When
a grant message is sent, the 7’ values of both the sender
and the receiver are changed simultaneously, preserving
ring(r'). In other words, this definition of  allows a
single action to change the 7’ values of two different pro-
cesses, solving the aforementioned problem. For example,
consider in Figure 5 the action where v receives the join
message from u and sends out the grant message to u.
This action changes v.r’ from w to u and u.r’ from nil
to w. Therefore, by Lemma 2, ring(r’) is preserved. The
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same intuition applies to all other v’ definitions in this
paper, although those definitions are more involved.

We now claim that ring(r’) holds at all times. We
prove this claim by proving that a predicate I, yet to
be designed, is an invariant. To do so, we plan to show
that {I}T{I}, where T is an arbitrary action. That is,
we plan to show that if I holds before any action, then
it still holds after the action. Clearly, I should include
ring(r') as a conjunct, but ring(r’) alone is not enough.
For example, consider again in Figure 5 the action where
v receives the join message and sends out the grant mes-
sage. This is the key action that grows the ' ring (and
the r ring). But how do we know that, before this ac-
tion, v is part of the 7’ ring but w is not (i.e., v.r’ # nil
and w.r’ = nil)? Neither the protocol nor the definition
of ' or ring enables us to conclude that. Although this
seems obvious at first sight, in an assertional proof, what
is included in the invariant is all that we have. A stan-
dard technique for overcoming a difficulty like this is to
strengthen I by adding additional conjuncts, to be de-
tailed next.

We introduce a function f : V' — N, where N denotes
the set of nonnegative integers, defined as:

fu) =m™ (join,u) + m™ (grant,u) +m™~ (retry,u),

and three additional conjuncts A, B, and C, where

A=Nu: (u.s=jng = f(u) =1)A f(u) <1),
B = (Vu :: u.s = in = u.r # nil),
C = #grant(nil) = 0.

Let I = AANBAC Aring(r'). We now claim that I is an
invariant of the protocol.

Let us take a moment to see how these additional
conjuncts help overcome the problem mentioned above.
For example, conjuncts A and B, together with the def-
inition of 7', allow us to infer that if v.s = in, then
v.r’ = v.or # nil, and if v has an outgoing join message,
then u.s = jng and thus w.r’ = nil. We stress, however,
that this I may not be the only, much less the simplest,
invariant that one may come up with.

Intuitively, the protocol aims to preserve ring(r’).
But processes can do so only by exchanging messages.
Messages are sent by actions enabled by local states or
the receiving of other messages. Therefore, an invariant
should establish the relationships among states, mes-
sages, and neighbor variables. In the predicate I, con-
junct A captures the relationship between states and
messages, B captures that between states and neighbor
variables, and C' captures that between messages and
the values of 7’. The same intuitions apply to the invari-
ants chosen for other protocols presented in this paper,
although those invariants are more involved.

Theorem 1. The predicate I is an invariant.

Proof. Tt can be easily verified that I is true initially. It
thus suffices to check that every action preserves I. We
first observe that C'is preserved by every action, simply
because T5 is the only action that sends a grant mes-
sage and B implies that p.r # nil. We itemize below the

reasons why each action preserves the other conjuncts of
I. The reader may wish to consult Section 4.2 for the
notations that we use in the proofs.

{I} Th {I}: Suppose T} takes the first branch (i.e., a =
p). This action preserves A A B because it changes p.s
from out to in and changes p.r from nil to p. This action
preserves ring(r’) because

contact() returns p
= {def. of contact(); A; B; def. of r'}

T (Vu::u.s = out Au.s’ =nil) A #grant =0
= {action}

I pr"=pANu:u#p:ur =nil).

{I} Ty {I}: Suppose T; takes the second branch (i.e.,
a # p). This action changes p.s from out to jng and
increases f(p) from 0 to 1.

{I} T> {I}: Suppose Ty takes the first branch (i.e., s =
in). This action preserves A A B because it preserves
f(q) and p.r # nil. Let w be the old p.r; B thus implies
w # nil. This action changes p.r’ from w to ¢ and ¢.r’
from nil to w because

1 pr=wAp.s=inAm(join,q,p) >0
= {4; B; def. of r'}
T pr’=wAm (grant,p) =0
A q.r’ =nil Am™ (grant,q) =0
= {action; p # ¢ because p.r’ # q.r'; def. of '}
I pr'=qnqr =w.

Lemma 2 thus implies that ring(r’) is preserved by this
action.

{I} T {I}: Suppose T takes the second branch (i.e.,
s # in). This action preserves f(q).

{I} T5 {I}: This action changes p.s from jng to in, de-
creases f(p) from 1 to 0, and truthifies p.r # nil. Tt
preserves p.r’ because | p.r’ = x.

{I} Ty {I}: This action changes p.s from jng to out and
decreases f(p) from 1 to 0.

Therefore, I is an invariant. 0O

4.4 Discussions

Given the simplicity of this protocol, the reader may
wonder if it is necessary to use assertional reasoning:
instead, an argument based on operational reasoning is
perhaps convincing enough. The convincing power of op-
erational reasoning, however, tends to diminish as the
number of messages and actions of the protocol increase.
Since our ultimate goal is to prove the correctness of the
more involved protocols discussed later in this paper, we
use assertional reasoning from the beginning.

As discussed above, although ring(r’) always holds,
ring(r) may sometimes be false. In fact, if processes keep
joining the network, the protocol may never be able to
establish ring(r). However, by the definition of 7/, once
all the grant messages are delivered, then w.r’ = u.r for
all v and consequently, ring(r) holds. A similar property
is shared by all the protocols presented in this paper.

In addition, the join protocol in Figure 6 is livelock-
free, and it does not cause starvation for an individual



process. To see this, observe that a retry is sent by a jng
process. Hence, although the join message of some pro-
cess may be declined, some other process may succeed in
joining. Furthermore, the ring cannot keep growing for-
ever because there are only a finite number of processes.
Hence, if a process keeps trying to join, it eventually
succeeds.

5 Joins for a Bidirectional Ring

If we consider both joins and leaves, then maintaining a
unidirectional ring no longer suffices, because in a uni-
directional ring, when a process leaves, it is difficult and
inefficient (though possible) to inform the process whose
neighbor is the leaving process to update its neighbor
variable. This task is much easier if we are maintaining
a bidirectional ring.

5.1 The Join Protocol

We begin by considering joins for a bidirectional ring.
We consider leaves and both joins and leaves in subse-
quent sections. Our design guideline is to make the join
protocol symmetric to the leave protocol, so that the
combined protocol, which handles both joins and leaves,
is a simple merge of the two protocols.

Maintaining a bidirectional ring is, not surprisingly,
more complicated than maintaining a unidirectional one.
The main idea of our join protocol is to view a bidirec-
tional ring as two unidirectional rings, the r ring and the
[ ring. When a process joins the bidirectional ring, it first
joins the r ring and then the [ ring. Figure 8 describes
the join protocol and Figure 7 shows an execution of the
protocol where a join request is granted. We remark that
in this join protocol, although a join request may be de-
clined, it is declined because another join is in progress.
Again, we assume that the contact() function returns a
non-out process if there is one, and it returns the calling
process otherwise.

At first sight, our join protocol may appear straight-
forward: after all, it is only a four-message protocol. We
remark, however, that there are numerous ways to de-
sign a join protocol. Also, our join protocol only assumes
reliable, but not ordered, delivery of messages, yet it in-
cludes a busy state. We show in Section 5.3 a join pro-
tocol that assumes reliable and ordered delivery of mes-
sages but does not include a busy state.

5.2 Proof of Correctness

We prove safety and progress properties similar to those
in Section 4. Our technique again is to first define 7" and
" and then come up with a global invariant I. The intu-
ition behind the definitions of 7’ and I’ is straightforward:
the 7’ and I’ values of the processes involved are changed
once a grant message is sent. For example, consider the
moment when v has just sent a grant(u) message to w.
At this moment, although v.r = u, w.l = v, u.r = nil,
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change of topology

exchange of messages

Fig. 7. Joining a bidirectional ring.

process p
var s: {in, out,jng, busy}; r,l: V',
init s=out Ar =1 =1 =nil
begin

T s = out — a := contact();

ifa=p—rl,s:=p,p,in
| a# p— s:=jng; send join() to a fi
T [ rev join() from g —
if s = in — send grant(q) to r;
r,s,t:=q, busy,r
| s # in — send retry() to g fi

ta:V’

T3 [ rev grant(a) from ¢ —
send ack(l) to a; l:=a
Ty [ rev ack(a) from g —
r,l,s:=q,a,in; send done() to
Ts [ rev done() from g — s,t := in,nil
Ts [ rev retry() from ¢ — s := out
end

Fig. 8. The join protocol for a bidirectional ring. Note that
t is an auxiliary variable introduced only to facilitate our
correctness proofs. The protocol executes correctly without
t. The purpose of ¢ is to keep the old value of r.

and u.l = nil, the definition of v’ and I’ yields v.r’ = u,
wl' = v, u.r’ = w, and w.l’ = u. Define u.r’, u.l’ to be

v if #grant(u) = 1 Am~ (grant(u),v) =1
/ v if #grant(u) = 0Am ™ (ack,u) =1
Am(ack,v,u) =1
u.r otherwise,

v if #grant(u
x if #gmnt(

) =1AmT(grant(u),v) =1
u) =0Am™ (ack,u) =1
m (o)) = 1

wl' =< z if #gmnt( “(ack,u) =0
m~ (grant,u) =1
m~(grant(z), u) = 1
u.l otherw1se
and define f,g,h:V — N to be:

f(u) = m™ (join,u) + #grant (u)
+m~ (ack,u) + m™ (retry, u),
g(u) = m™ (grant,u) +m~ (done, u) + h(u),
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I=ANBANCANDAR
Ar=(us=gng = f(u) =1 A f(u) <1
Az = (u.s =busy = g(u) =1) Ag(u) <1
Bi = (u.s = in|busy = u.r # nil A u.l # nil)

A (u.r # nil = u.l # nil)

Bz = u.s = busy = u.t # nil
C1 = m*t(join,u) > 0 = u.s = jng
Co = m(grant,u,v) >0=>ut=vAvl=u
Cs = m(ack(z),u,v) >0=>zt=uAzr=v
D = #grant(nil) = 0

R = biring(r', 1)

Fig. 9. An invariant of the join protocol. For the sake of
brevity, we have omitted the V quantification. All the pred-
icates above are quantified by V with appropriate dummy
variables. For example, A = (Vu :: A1 A Az).

m(ack,u.t,u.r) + m(ack,u.r,u.t)
if w.t # nil A u.r # nil
oy ” 4

otherwise.

Again we find it useful to introduce some additional con-
juncts. An invariant I of this protocol is shown in Fig-
ure 9. Although this invariant is much more involved that
the one in Section 4.3, the intuitions behind it is quite
similar to those explained in Section 4.3. The reader may
notice that the invariant in Figure 9 contains some re-
dundancy. For example, C; can be derived from A;. We
include such redundancy in order to make the invariant
of the join protocol and that of the leave protocol sym-
metric. It follows from I that

E: (Vu::m™ (grant,u) < 1),
because Ay implies that (Vu :: #grant(u) < 1), and

m~ (grant(z),u) > 0Am~ (grant(y),u) >0
= {D; def. of '}
zr' =uAyr =u
{R; Lemma 1}
x=uy.

We introduce the redundant predicate £ mainly for the
sake of convenience so that it can be directly used in the
proof below.

Theorem 2. The predicate I is an invariant.

Proof. Tt can be easily checked that I is true initially. It
thus suffices to check that I is preserved by each action.
Conjunct D is trivially preserved because the only action
that sends a grant message is T» and ¢ # nil.

{I} Ty {I}: Suppose T; takes the first branch (i.e., a =
p). [A, B] This action changes p.s from out to in and
truthifies both p.r # nil and p.l # nil. [C1] This action
preserves p.s # jng. [Ca 3] This action does not falsify
the consequent because T p.t = nil. [R] We observe that

contact() returns p
= {def. of contact(); A1; D}

T (Vu::u.s = out) A #ack + #grant =0
= {def. of v' and I’; B1}

T (Vu::wr’ =nil Auld’ = nil)
= {action}
L pr'=pApl =p
A NVu:uw#p:ur’ =nil Awl’ = nil).

{I} Ty {I}: Suppose T} takes the second branch (i.e., a #
p). [A, B] This action changes p.s from out to jng and
increases f(p) from 0 to 1. [Cy] This action establishes
both m* (join,p) > 0 and p.s = jng. [Cs 3] Unaffected.
[R] Unaffected.

{I} T {I}: Suppose Ty takes the first branch (i.e., s =
in). Let w be the old p.r; By thus implies that w # nil.
Hence, the grant message is sent to a non-nil process.
Note that p # ¢ because | p.s = in A q.s = jng. [A, B|
This action changes p.s from in to busy, p.r from w to g,
and p.t from nil to w. It decreases m(join,q,p) by 1 and
increases m(grant(q), p, w) by 1. Hence, it preserves f(q)
and increases g(p) from 0 to 1. [C;] This action removes
a join message and preserves p.s # jng. [C2] This action
establishes both m(grant,p,w) > 0 and p.t = w. We
observe that before this action

p.s = 1in
= {A;; By implies p.t = nil; C3}
m™ (grant, p) + #grant(p)
+m~ (ack,p) + #ack(p) =0
= {def. of " and I'; R}
pr'=wAwl =p
= {w.l’ takes “otherwise” in the def. of I'}
w.l = p A #grant(w) + m~ (ack, w)
+m~ (grant,w) = 0.

This action does not falsify the consequent because
p.t = nil. [C3] This action does not falsify the consequent
because T p.t = nil. [R] This action changes p.r’ from w
to ¢, ¢.r’ from nil to w, w.l’ from p to ¢, and ¢.I’ from
nil to p, because

1 m(join,q,p) >0
= {Al; Bo; 02}
T q.r =nil A q.l = nil
A #grant(q) +m~ (ack, q) +m~ (grant,q) = 0

= {reasoning in Cy above; def. of 7’ and '}
T pr'=wAwl =pAqgr =nilAgqgl =nil
= {action; reasoning in Cy above; w # ¢}

L pr'=qnrnqr =wAwl =qNql =p.

Lemma 4 thus implies that R is preserved.

{I} T {I}: Suppose T, takes the second branch (i.e.,
s # in). This action decrements m(join,q,p) by 1 and
increments m(retry, p,q) by 1, preserving f(q). It triv-
ially preserves I.

{I} T3 {I}: Tt follows from D that the ack message is
sent to a non-nil process. Furthermore, a # p because
By and C5 imply that a.l = nil A p.l # nil, and a # ¢
because A; and Bs imply that q.s = busy A a.s = jng.
We then observe that before this action

m(grant(a), ¢,p) > 0
= {Cy; def. of v’ and I'; R; q.s = busy}
gt=pAal =qAhqgr' =aNhar =p
A #grant(q) +m~ (q, ack) =0
= {def. of r'; q.r’ takes “otherwise”}

gt=pANqr=a.



10

[A, B] This action preserves p.l # nil. This action de-
creases m(grant(a), q,p) by 1 and increases m(ack,p,a)
by 1, preserving f(a) and g(q). Note that since ¢.t # q.r,
sending the ack message only increases h(g) by 1. This
action also preserves g(u) for every u # ¢, because before
this action

(ur=aAut=p)V(ur=pAut=a)
= {A1; By; def. of r'}

u.s = busy A (u.r’ = a Vu.r’ =p)

{g.r' =aNa.r' =p; R; Lemma 1}

u=qVu=a
= {u # ¢; a.r = nil; u.r # nil}

false.
[C4] Unaffected. [C2] This action may falsify the conse-
quent only if v = p. But F implies that | m~ (grant,p) =
0. [C5] This action establishes m(ack(q),p,a) > 0 and
we have shown that | ¢.t = p A ¢.r = a. [R] This action
preserves a.r’, a.l’, and p.l’ because

1 ar’' =pAal =qA#grant(a) >0

= {A;; R; C3}
1 pl’ =aAmt(grant,a) + #ack(a) =0

= {p.l' takes third branch in the def. of I’; action}
l ar’=pAal =qrpl =a.

{I} Ty {I}: Tt follows from Cj that the done message is
sent to a non-nil process. We then observe that

m(ack(a),q,p) >0
= {C3; Ay; def. of ' and I'; R}
at=qApl' =aNhar =pApr =q
= {a.s = busy; def. of 7'}
at=qNar=np.

Furthermore, a # p because a.s = busy A p.s = jng,
and p # ¢ because a.r = pAat =qgAga) <1.[A B
This action changes p.s from jng to in and truthifies
both p.r # nil and p.l # nil. This action decrements
m(ack,q,p) by 1 and increments m(done,p,a) by 1; it
thus decreases f(p) from 1 to 0 and preserves g(a). Note
that since p # ¢, removing an ack message only decreases
h(a) by 1. This action also preserves g(u) for every u # a,
because before this action

(ur=pAut=q)V (ur=qgAut=np)
= {A1; By; def. of r'}
w.s = busy A (u.r’ =pVur' =q)
= {a.r" =pApr’ =q; R; Lemma 1}
u=aVu=p
= {u # a; p.r = nil; w.r # nil}
false.

[C1] This action falsifies p.s = jng. It follows from A;
and 1 m~ (ack,p) > 0 that | m™ (join,p) = 0. [Cs] This
action does not falsify the consequent because T p.l =
nil A p.t = nil. [C3] This action removes an ack message
and does not falsify the consequent because T p.r = nil.
[R] This action preserves p.r’ and p.l’ because | p.r’ =
g A pl’ = a. Note that Co and 7 p.l = nil imply that
1 m~(grant,p) = 0.

{I} Ts {I}: [A, B] This action changes p.s from busy
to in, falsifies p.t # nil, and decreases g(p) from 1 to
0. [C1] This action preserves p.s # jng. [Ca] This ac-
tion may falsify the consequent only if u = p. But Ao
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and T m~(done,p) > 0 imply that | m™(grant,p) =
0. [C3] This action may falsify the consequent only if
x = p. But Ay and T m~(done,p) > 0 imply that
1 m(ack,p.t,p.r) = 0. [R] Unaffected.

{I} Ts {I}: This action decrements m(retry,q,p) by 1,
decreasing f(p) from 1 to 0, and changes p.s from jng
to out. It trivially preserves I except Cp. This action
preserves C7 because although it falsifies p.s = jng, A;
and T m™ (retry,p) > 0 imply that [ m™ (join,p) = 0.

Therefore, I is an invariant. 0O

5.8 A Join Protocol on FIFO Channels

The join protocol presented in Figure 8, henceforth re-
ferred to as the non-FIFO join protocol, only assumes
reliable, but not ordered, delivery of messages, but it in-
cludes a busy state. We present in this section a join pro-
tocol, henceforth referred to as the FIFO join protocol,
that does not have the busy state, but requires reliable
and ordered message delivery. Figure 10 describes the
FIFO join protocol and Figure 11 shows an execution of
this protocol. Define u.r’ and u.l’ to be:

v if #grant(u) = 1 Am~ (grant(u),v) =1
;) if #grant(u) =0Am ™ (ack(1),u) =1
Am(ack(1l),v,u) =1
u.r otherwise,

x if m~(grant,u) =1 Am~(grant(xz),u) =1

v if m~(grant,u) = 0Am™ (ack(0),u) =1
Am(ack(0),v,u) =1

u.l otherwise.

wl =

Define fo, f1: V — N to be:

fo(u) = m™ (join,u) + m~ (ack(0),u) + m™ (retry,u),
f1(w) = m™ (join,u) + #grant(u) +m ™ (ack(1),u)
+m~ (retry, u).

Figure 12 shows an invariant I of the FIFO join proto-
col. The reader may wish to consult Section 4.3 for the
intuitions behind this invariant.

We assume that the contact() function returns w if
there exists a u such that u.s[0] # out V u.s[1] # out,
and it returns the calling process otherwise. Again, we
remark that with a slightly different assumption on the
contact() function (i.e., the contact() function returns a
process with s[1] = in if there is one, and returns the
calling process otherwise), every join request is granted
and hence the retry message is not needed. It follows
from I that

F: (Yu::m™(grant,u) <1)
because A implies that (Vu :: #grant(u) < 1) and

m~ (grant(z),u) > 0Am~ (grant(y),u) >0
= {E; def. of v’}

zr' =uNyr =u
= {R; Lemma 1}

x=y.
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process p
var s[0..1] : {in, out,jng}; n[0..1] : V'; a: V'
init s[0..1] = out A n[0..1] = nil
begin
T s[0..1] = out — a := contact();
if a =p — n[0..1], s[0..1] :=p, in
| a # p— s[0..1] := jng; send join() to a fi
T | rev join() from g —
if s[1] = in — send grant(q) to r;
send ack(0) to q; 7 :=¢q
[ s[1] # in — send retry() to ¢ fi

T3 | rev grant(a) from q —
send ack(l) toa; l:=a
Ty | rev ack(d) from ¢ — nl[d], s[d] :== g, in
Ts | rev retry() from ¢ — s[0..1] := out
end

Fig. 10. The FIFO join protocol. In this protocol, every
process has two neighbor variables r and [, also denoted by
n[1] and n[0], respectively. We use two symbols to denote the
same variable in order to improve the symmetry between the
joining of the r ring and that of the ! ring, and to shorten
the invariant. Each process has two state variables, s[1] and
s[0], which represent the state of the process with respect to
the r ring and the [ ring, respectively. We have used some
shorthands in the presentation of the protocol. For example,
n[0..1] := p means n[0], n[1] := p,p and s[0..1] = out means
s[0] = out A s[1] = out.

change of topology

v O Ow
Oy
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<

Fig. 11. Joining a bidirectional ring on FIFO channels.

We introduce the redundant predicate F' mainly for the
sake of convenience so that it can be directly used in the
proof below.

Theorem 3. The predicate I is an invariant.

Proof. Tt can be easily checked that I is true initially. It
thus suffices to check that I is preserved by each action.
Conjunct F is trivially preserved because the only action
that sends a grant message is T» and ¢ # nil.

{I} Ty {I}: Suppose T; takes the first branch (i.e., a =
p). [A, B] This action changes p.s[0..1] from out to in

11

I=ANBANCANDANEAR
A = (wsld] = jng = fau) = 1) A falu) <1
B = w.s[d] = in = u.n|d] # nil
C1 = m* (join,u) > 0 = u.s[0..1] = jng
C2 = m(grant,u,v) > 0 A m(ack(0),u,v) =0=vl=u
Cs = m*(grant,u) > 0 = u.r # nil
Cs = m*(ack(d),u) > 0 = u.n[d'] # nil
D = No ack(0) follows grant
E = #grant(nil) =0
R = biring(r',1")

Fig. 12. An invariant of the FIFO join protocol. In the in-
variant, d ranges from 0 to 1 and d’ stands for 1 — d. For the
sake of brevity, we have omitted the V quantification. All the
predicates above are quantified by V with appropriate dummy
variables. For example, C' = (Vu,v,d :: C1 A C2 A C3 A Cu).

and truthifies p.n[0..1] # nil. [C;] This action preserves
p.5[0..1] # jng. [C23.4] This action does not falsify any
of the consequents because T p.n[0..1] = nil. [D] Unaf-
fected. [R] We observe that

contact() returns p
= {def. of contact()}
T (Vu i w.s[0..1] = out)
= {4; E; def. of v’ and I}
T #grant =0 A #ack =0
A (Vu s wr’ = nil Awd’ = nil)
= {action}
L pr'=pApl =p
ANVu:uw#p:ur’ =nil Awl’ = nil).

{I} Ty {I}: Suppose T takes the second branch (i.e.,
a # p). The grant message thus is sent to a non-nil
process. [A, B] This action changes w.s[0..1] from out
to jng and increases both fo(u) and fi(u) from 0 to
1. [C1] This action truthifies both w.s[0..1] = jng and
m™* (join,u) > 0. [Cq,3.4] Unaffected. [D] Unaffected. [R]
Unaffected.

{I'} T {I}: Suppose T takes the first branch (i.e., s[1] =
in). Let w be the old p.r; B implies that w # nil.
[A, B] This action decrements m™ (join,q) by 1 and in-
crements both m™*(ack(0),q) and #grant(q) by 1, pre-
serving fo(q) and fi(g). [C1] This action removes a join
message. [C2] This action may truthify the antecedent
only if T m(ack(0), p,w) = 0. If that is the case, then we
observe that before this action

p.s = 1in
= {A}
#grant(p) = 0Am ™ (ack(l),p) =0
= {def. of v'; R}
pr'=wAwl =p
= {w.l’ takes “otherwise”; m(ack(0),p, w) = 0}
w.l = p.

[C3] This action establishes m*(grant,p) > 0, and B
implies that this action preserves p.r # nil. [C4] This
action establishes m™ (ack(0),p) > 0, and B implies that
this action preserves p.n[l] # nil. [D] It suffices to show
that T m~(grant,q) = 0. Suppose T m(grant(x),u,q) >
0, then
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T m(grant(z),u,q) > 0Am*(join,q) >0
= {def. of I'; A; B}
T ql'=xzANzr’ =qAqr=nil
A #grant(q) + m~ (ack(1),q) =0
= {R}
false.

[R] This action changes p.r’ from w to ¢, ¢.r’ from nil to
w, ¢.I" from nil to p, and w.l’ from p to g, because

1 p.s[1] = in Am(join,q,p) >0
= {4; B; m~(grant,q) = 0 by D above}
T #grant(p) + m™ (ack(1),p) =0
A #grant(q) +m~ (ack(1),q) + m~ (ack(0),q) =0
Am~(grant,q) =0
= {def. of v" and I’; R}
T pr'=wAwl =pAqgr =nilAql =nil
= {action}
Il pr'=qArwl =qnhnqgr' =wAql =p.

Lemma 4 thus implies that R is preserved.

{I} Tz {I}: Suppose T5 takes the second branch (i.e.,
p.s[1] # in). This action decrements m™ (join,q) by 1
and increments m~ (retry, q) by 1, preserving fo(q) and
f1(q). Thus, it trivially preserves I.

{I} T3 {I}: [A, B] This action decrements #grant(q) by 1
and increments m~ (ack(1), ¢) by 1, preserving fi1(q), and
Cy and D imply that this action preserves p.l # nil. [C1]
Unaffected. [Co] This action may falsify the consequent
only if v = p, but F implies that | m~(grant,p) = 0. [Cs]
This action removes a grant message. [Cy] This action
establishes m™ (ack(1),p) > 0, and it preserves p.l # nil.
[D] This action removes a grant message. [R] This action
preserves p.l” and a.l’, because | p.l’ = aAa.r’ = p. Note
that T m™ (ack(0),p) = 0 because T p.l # nil.

{I} Ty {I}: [A, B] This action changes p.s[d] from jng
to in and decreases fq(p) from 1 to 0. [C;] This ac-
tion falsifies p.s[d] = jng. But it follows from A and
T m~ (ack(d),p) > 0 that | m™ (join,p) = 0. [C3] This
action may truthify the antecedent if d = 0 and before
this action, the second message in the channel from ¢ to
p is a grant message, and this action clearly establishes
p.l = q. This action does not falsify the consequent be-
cause | p.n[d] = nil. [C3] This action truthifies p.n[d] #
nil. [C4] This action does not falsify the consequent be-
cause T p.n[d] = nil. [D] This action removes an ack
message. [R] If d = 1, then this action preserves p.r’ be-
cause | p.r’ = ¢. If d = 0, then this action preserves p.l’
because if T m™ (grant,p) > 0, then removing an ack(0)
message does not change p.l’, if T m™ (grant, p) = 0, then
Ipr =q

{I} Ts {I}: This action changes p.s[0..1] from jng to out.
It removes a retry message, decreasing fo(p) and f1(p)
from 1 to 0. Therefore, it trivially preserves I.

Therefore, I is an invariant. 0O

6 Leaves for a Bidirectional Ring

We now consider leaves. As remarked before, our design
guideline is to make the join protocol and the leave pro-
tocol symmetric.
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change of topology

exchange of messages

Fig. 13. Leaving a bidirectional ring.

6.1 The Leave Protocol

We now consider leaves. The main idea of the leave pro-
tocol is similar to that of the join protocol, that is, a pro-
cess first leaves the r ring and then the [ ring. Figure 13
shows an execution of the protocol where a leave request
is granted and Figure 14 describes the leave protocol.
The reader may notice that there is some redundancy
in the protocol. For example, the ack message need not
have a parameter. The motivation for incorporating such
redundancy is to improve the symmetry between the join
protocol and the leave protocol. Another redundancy,
which is much less obvious, is that the conjunct r = ¢ in
T, is in fact unnecessary if we only consider leaves, but
is necessary if we consider both joins and leaves. This
demonstrates that handling joins and leaves together is
a more subtle problem than handling them separately.

6.2 Proof of Correctness

The technique for proving the correctness of the leave
protocol is similar to that for the join protocol. Define
u.r’ and u.l’ to be:

. {nil if #grant(u) + m~ (ack,u) =1
u.r’ = .

u.r otherwise,
nil if #grant(u) + m™ (ack,u) =1
v if #grant(u) + m~ (ack,u) =0
Am~ (grant,u) = 1 Am(grant,v,u) =1

u.l otherwise,

and define f to be:
f(w) = m™ (leave, u) + #grant(u) + m™~ (ack, u)
+m” (retry, u).

wl =

The definitions of g and h are the same as before. Fig-
ure 15 shows an invariant I of the leave protocol. The
reader may wish to consult Section 4.3 for the intuitions
behind this invariant. It follows from I that

E: (Vu::m™ (grant,u) <1)

because Ag implies that (Vu :: m™(grant,u) < 1) and
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process p
var s: {in, out, lvg, busy}; r,l:V'; t,a:V’
init all process states are either in or out;
the in processes form biring(r,1);
t =nilA (s = out = r = [ = nil)
begin
T S =1in —
if | =p— 1, s:=nil nil, out
l1#p—s:=lvg; send leave(r) to | fi
T | rev leave(a) from g —
if s =in Ar=q— send grant(q) to a;
r,s,t:=a, busy,r
| s#inVr#q— send retry() to ¢ fi

T | rev grant(a) from ¢ —
send ack(nil) to a; 1:=g¢q
Ty | rev ack(a) from ¢ —
send done() to l; 7,1, s := nil, nil, out
Ts | rev done() from g — s,t := in, nil
Ts | rev retry() from ¢ — s :=in
end

Fig. 14. The leave protocol for a bidirectional ring. The
state lvg stands for “leaving”. Initially, the in processes, if
any, form a single bidirectional ring.

I=ANBANCANDAR
Ar=(us=lwg = fu)=1)A f(u) <1
Az = (u.s = busy = g(u) = 1) Ag(u) <1
B:1 = (u.s = in|busy|lvg = u.r # nil A u.l # nil)
A (uw.r # nil = u.l # nil)
Bz = u.s = busy = u.t # nil
Cr = m* (leave(x),u) >0 = us =g Aur=ux
C2 = m(grant(z),u,v) >0
Sut=xAur=vAvl=xzAzl=u

Cs = m(ack(z),u,v) >0=z=nilAvlt=vAvlr=u
D = #grant(nil) =0

R = biring(r', 1)

Fig. 15. An invariant of the leave protocol. For the sake of
brevity, we have omitted the V quantification. All the pred-
icates above are quantified by V with appropriate dummy
variables. For example, A = (Vu :: A1 A Ag).

m(grant(z),v,u) > 0 A m(grant(y),w,u) >0
= {C2; A2}
vr=uAwr=uAv.s = busy ANw.s = busy
{Ay; def. of '}
vr' =uAwr =u
= {R; Lemma 1}
v =w.

We introduce the redundant predicate £ mainly for the
sake of convenience so that it can be used directly in the
proof below.

Theorem 4. The predicate I is an invariant.

Proof. Tt can be easily checked that I is true initially.
Hence, it suffices to check that each conjunct of I is pre-
served by each action. Conjunct D is trivially preserved
because the only action that sends a grant message is Tb
and ¢ # nil.
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{I} Ty {I}: Suppose T takes the first branch (i.e., I = p).
Let w be the old p.r; By implies that w # nil. We first
observe that w = p, because before this action,

ps=imApl=p
= {40}

#grant(p) + m~ (ack,p) + m~ (grant,p) =0
= {def. of " and I'; R}

pl'=pApr =pApr=np.

[A, B] This action changes p.s from in to out and changes
p.r and p.l from p to nil. [C;] This action may falsify the
consequent only if u = p. But A; and T p.s = in imply
that | m™ (leave,p) = 0. [Cs] This action may falsify the
consequent only if z = p, u = p, or v = p. In any case,
we have u = p because | p.r = p A p.l = p. But As
and T p.s = in imply that | m™ (grant,p) = 0. [C3] This
action may falsify the consequent only if v = p or v.l = p.
In either case, we have v.l = p because T p.l = p. But
1 p.t = nil. [R] We have shown that 1 p.r’ = pAp.l’ =p.
Hence,

T pr'=pApl =p
= {R}
T pr'=pApl =p
ANVu:u £ p:ur’ =nil Awd’ = nil)
= {action}
L (Vu i wr’ =nil Awld’ = nil).

{I} Ty {I}: Suppose T} takes the second branch (i.e.,
1 # p). [A, B] This action changes p.s from in to lug
and increases f(p) from 0 to 1. [Cy] This action estab-
lishes both m™ (leave(p.r),p) > 0 and p.s = lvg. [Ca3]
Unaffected. [R] Unaffected.

{I} T {I}: Suppose Ty takes the first branch (i.e., s =
in Ar = q). It follows from B; and C; that the grant
message is sent to a non-nil process. [A, B] This action
changes p.s from in to busy, changes p.r from ¢ to a, and
changes p.t from nil to ¢. It decreases m(leave, q,p) by 1
and increases m(grant(q),p,a) by 1. Hence, it preserves
f(¢g) and increases g(p) from 0 to 1. [Cy] This action
removes a leave message and does not falsify the conse-
quent because 1 p.s = in. [C3] This action establishes
both m(grant(q),p,a) > 0 and p.r = a A p.t = q. We
observe that before this action

p.s = in A m(leave(a),q,p) > 0
= {Al}

#grant(p) + m~(ack,p) + m™ (grant, p)

" #tgrant(q) + m~ (ack,q) + m* (grant, g) = 0

= {def. of v'; R}

pr'=qAqgr’ =anqgl =pAal =q
= {¢.l" and a.l’ take “otherwise” }

qgl=pAal=q.

This action does not falsify the consequent because T
p.t = nil. [C5] This action does not falsify either of the
consequents because 1 p.t = nil. [R] This action changes
p.r’ from ¢ to a, g.r’ from a to nil, q.I’ from p to nil, and
a.l’ from ¢ to p, because by the reasoning in Cy above

T pr'=qhqr =anqgl =pAhal =q
= {action}
Il pr'=anqgr =nilAql' =nilAal =p.
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Lemma 5 thus implies that R is preserved.

{I} Tz {I}: Suppose T takes the second branch (i.e.,
s # inVr # q). This action decrements m(leave, q, p) by
1 and increments m(retry, p,q) by 1, preserving f(q). It
trivially preserves I.

{I} T3 {I}: Tt follows from D that the ack message is
sent to a non-nil process, and it follows from C5 that
1 q.r = p A q.t = a. Furthermore, a # ¢ because | q.s =
busy A a.s = lvg, and a # p because T p.l = a Na.l =
q. [A, B] This action preserves p.I # nil. It decreases
m(grant(a),q,p) by 1 and increases m(ack,p,a) by 1,
preserving f(a) and g(g) because | ¢.r = p A q.t = a.
Note that since p # a, sending the ack message only
increases h(gq) by 1. This action also preserves g(u) for
every u # ¢, because

(ur=aAut=p)V(ur=pAut=a)

= {A1; By; def. of r'; a # nil}
u.s = busy A (u.r’ = aVu.r’ =p)

= {g.¥ = p; a.r’ = nil; R; Lemma 1; u # ¢}
false.

[C1] Unaffected. [C3] This action removes a grant mes-
sage. It may falsify the consequent only if x = p or v = p.
If x = p, then u = a. But By and T a.s = lvg imply that
T a.t =nil If v = p, then £ = a and u = ¢q. But A,
implies that | m(grant,q,p) = 0. [C3] This action es-
tablishes m(ack(nil), p,a) > 0. Since T a.l = g A ¢t =
aNqr =panda#p, we have | a.l.t = a A a.lor =p.
This action may falsify the consequent only if v = p. But
As and 1 p.l = a A a.s = lvg imply that T p.l.t = nil. [R)
This action preserves p.l’, a.r’, and a.l’ because

1 m(grant(a),q,p) >0
= {AQ; OQ}

1 #grant(q) + m~(ack,q) = 0
= {def. of v" and I’; R}

T gr'=pApl =qgAar =nilAal =nil
= {p.l' takes second branch; E; action}

l ar’' =nilAal =nilApl =q.

{I} Ty {I}: It follows from B; that the done message
is sent to a non-nil process. Let w be the old p.. It
follows from C3 that w.t = p A w.r = q. Hence, w # p
because T w.s = busy A p.s = lvg, and p # ¢ because
T wt =pAwr = qgAg(w) < 1. [A,B] This action
changes p.s from [vg to out and falsifies both p.r # nil
and p.l # nil. This action decrements m(ack,q,p) by 1
and increments m(done,p, w) by 1. Hence, it decreases
f(p) from 1 to 0, and preserves g(w). Note that since
p # ¢, removing an ack message only decreases h(w)
by 1. This action also preserves g(u) for every u # w,
because before this action

(ur=pAut=q)V (ur=qgAut=np)

= {Ay; By; def. of '}
u.s = busy A (u.r' =pVur =q)

= {w.r’ = ¢; p.r' =nil; R; Lemma 1; u # w}
false.

[C1] This action may falsify the consequent only if u =
p. But it follows from A; and T m™(ack,p) > 0 that
1 m* (leave,p) = 0. [C2] This action may falsify the con-
sequent only if x = p, u = p, or v = p. If z = p, then
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u = w. But As and | m(ack,w.r,w.t) > 0 imply that
1 m*(grant,w) = 0. If w = p, but By and T p.s = lvg
imply that T p.t = nil. If v = p, then = w. But A,
and T w.s = busy imply that | #grant(w) = 0. [Cs]
This action removes an ack message and may falsify the
consequent only if v = p or v.l = p. If v = p, then A;
implies that | m~(ack,p) = 0. If v.l = p, then By and
1 p.s = lug imply that | p.t = nil. [R] This action pre-
serves p.r’ and p.l’ because | p.r’ = nil Ap.l’ = nil. Note
that | m™(grant,p) = 0 because

m(ack,q,p) > 0 Am~(grant(x),p) > 0
= {Ca3; Ba; A1}
plit=pApls=busy Apl=xANzx.s=lvg
= {a process can be in only one state}
false.

{I} Ts {I}: [A, B] This action changes p.s from busy to
in, truthifies p.t = nil, and decreases g(p) from 1 to 0.
[C1] This action preserves p.s # lvg. [C3] This action
may falsify the consequent only if v = p. But As and
1 m~(done,p) > 0 imply that | m™*(grant,p) = 0. [Cs]
This action may falsify the consequent only if v.l = p;
hence u = p.r and v = p.t. But 4; and T m~(done,p) >
0 implies that T m(ack,p.r,p.t) = 0. [R] Unaffected.

{I} Ts {I}: This action decrements m(retry,q,p) by 1,
decreasing f(p) from 1 to 0, and changes p.s from lvg
to in. It trivially preserves I except C;. It preserves
C1 because A; and T m~(retry,p) > 0 imply that |
m™ (leave, p) = 0.

Therefore, I is an invariant. 0O

It is desirable that an out process has no incoming
message because a process that has left the ring is not
obligated to respond to the messages associated with the
maintenance of the ring. This property, however, is not
provided by our protocol if we only assume reliable, but
not ordered, delivery of messages. To see this, consider
the scenario where two adjacent processes send out their
leave requests simultaneously. Assume that the leave re-
quest of the left process is granted and the leave request
of the right process reaches the left process even after the
ack message. However, if we assume ordered delivery as
well, then our protocol guarantees that an out process
has no incoming message.

Theorem 5. If message delivery is reliable and ordered,
then an out process has no incoming message.

Proof. Tt follows from I that it suffices to show that
P = (Vu : u.s = out : m~ (leave,u) = 0) holds at all
times. Clearly, P is true initially. Hence, it suffices to
show that if an action truthifies u.s = out, then it also
establishes m™ (leave,u) = 0, and if an action falsifies
m~ (leave,u) = 0, then it also establishes u.s # out.

The only action that truthifies u.s = out is Ty, where
process p receives an ack message and changes its state
from lvg to out. We show that when p receives an ack
message from ¢, then there is no leave message in any
incoming channel of p. We first observe that as long as
m(ack,q,p) > 0, then no in process will send a leave
message to p, because suppose v sends a leave message
to p, then
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m(ack,q,p) >0Avl=pAv.s=in
= {def. of I'; T}
sgrant(p) + m~(ack. p) + m* (grant, p) = 0
A #grant(v) + m~ (ack,v) =0
= {def. of I}
pl' =nilAvl =p
= {R}
false.

Hence, it remains to show that if the first message in the
channel from ¢ to p is an ack message, then there is no
leave message in any other incoming channel of p. Sup-
pose this is not true. Assume that m(leave,w,p) > 0.
Note that w # ¢ because ¢ does not send a leave mes-
sage to p as long as m(ack,q,p) > 0. By the argument
above, w sends the leave message to p before g sends
the ack message to p. Consider the moment ¢; right be-
fore w sends the leave message to p. We observe that
at t1, w has no incoming grant message, because [ im-
plies that if w has an incoming grant message, then the
message is a grant(p) message, but ¢ has an incoming
grant(p) message later. Hence, two actions send grant(p)
messages, truthifying p.l’ = nil twice. But p.I’ = nil is
stable. Hence, at t;, w has no incoming grant message,
which implies w.l’ = p at t;. Consider the moment o
right before ¢ sends p the ack message. At to, I implies
that p.l’ = nil. Hence, w.l’ # p. Hence, between t; and
ta, an action falsifies w.l’ = p. Since m™ (leave,w) > 0
between t; and ¢2, an action that changes w.l’ can only
be w receiving a grant(p) message. But we have argued
above that this is not possible.

The only action that falsifies m™ (leave,u) = 0 is the
sending of a leave message, say, from w to p. If grant(p) =
0 at that moment, then w.l’ = p. Hence p.l’ # nilAp.s #
out. If grant(p) > 0 at that moment, then p.s # out.

Therefore, P holds at all times. O

6.3 Discussions

Our leave protocol, however, does not provide the progress
property that if a process intends to leave, then even-
tually it is able to do so. To see this, consider a sce-
nario where all processes decide to leave simultaneously,
and their leave requests are all declined because the left
neighbor of every process is also leaving. This scenario
can repeat forever. Hence, the system may get into a
livelock. Lynch et al. [15] have noted the likely difficulty
of providing this progress property. The leave protocol
by Aspnes and Shah [3] does not provide this property
either. See a detailed discussion in Section 2. In practice,
a system can use other techniques to avoid this scenario.
For example, as in the Ethernet protocol, a process may
delay a random amount of time before sending out an-
other leave request.

7 Joins and Leaves for a Bidirectional Ring
As we indicated before, our approach to obtain a proto-

col that handles both joins and leaves is to combine the
join protocol and the leave protocol.
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process p
var s: {in, out, jng, lvg, busy}; r,1:V'; t,a: V'
init s =out A\r=10=1t=nil
begin

T/ s = out — a := contact();

ifa=p—rl,s:=p,p,in
| @ #p— s:=jng; send join() to a fi
T | s=in—
if | =p — r,/l,s:=nil nil, out
[l #p— s:=lvg; send leave(r) to | fi
T [ rev join() from ¢ —
if s = in — send grant(q) to r;
r,s,t = q, busy,r
[ s # in — send retry() to ¢ fi
T} [ rev leave(a) from g —
if s =1in Ar =q — send grant(q) to a;
r,s,t = a, busy,r
| s#inVr#q— send retry() to ¢ fi
Ts [ rev grant(a) from q¢ —
if l=q — send ack(l) to a; l :=a
[l # q— send ack(nil) to a; l:=q fi
Ty | rev ack(a) from g —
if s=jng — r,1,s:=q,a,in;
send done() to [
| s =lvg — send done() to I;
r, 1, s := nil, nil, out fi
Ts | rev done() from g — s,t := in,nil
Ts [ rev retry() from g —
if s =jng — s := out
| s=lg—s:=infi
end

Fig. 16. The combined protocol.

7.1 The Combined Protocol

Exploiting the strong symmetry between the join proto-
col and the leave protocol, the combined protocol, de-
scribed in Figure 16, is a simple merge of the two pro-
tocols. The only subtlety is that, upon receiving a grant
message, a process has to tell whether the message is
granting a join or a leave request, and the way to do so
is to check whether | = g. As we show in the proof, [ = ¢
iff a join is granted. The definitions of ' and I’, as well as
the invariant, are simple integrations of their respective
definitions in the previous two protocols.

7.2 Proof of Correctness

Figure 17 shows the definitions of u.r’ and u.l’. Define f
to be:

f(u) = m*(join,u) + m™ (leave, u) + #grant(u)

+m™ (ack,u) + m™ (retry, u).
The definitions of g(u) and h(u) are the same as before.
Figure 18 shows an invariant I of the combined proto-

col. The reader may wish to consult Section 4.3 for the
intuitions behind this invariant. It follows from I that

E : (Vu::m™(grant,u) < 1).
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To see this, suppose u has two incoming grant messages.
It follows from D that their parameters are non-nil. If
the parameters in the two grant messages are in the same
state (i.e., both jng or both lvg), then the reasoning in
join and leave can be reused. If they are in different
states, then

m(grant(z),v,u) > 0Az.5s = jng
Am(grant(y), w,u) > 0Ay.s = lvg
= {def. of '; As}
zr' =uhwr =u
= {R; Lemma 1; w.s = busy}
false.

We introduce the redundant predicate £ mainly for the
sake of convenience so that it can be directly used in the
proof below.

Theorem 6. The predicate I is an invariant.

Proof. Tt can be easily checked that I is true initially.
Hence, it suffices to check that each conjunct of I is pre-
served by each action. Most of the reasoning below reuses
the proofs for the join protocol and the leave protocol.
In what follows, we use “Similar to join” (“Similar to
leave”) to indicate that the reasoning is almost, if not
entirely, identical to the reasoning in the join protocol
(the leave protocol). Conjunct D is trivially preserved,
for reasons similar to those mentioned in join and leave.

{I} T} {I}: Suppose Ty takes the first branch (i.e., a =
p). [A, B] Similar to join. [C4] For CY{, similar to join. For
C!, this action preserves p.s # lvg. [C2] For Cj, similar
to join. For C}, this action preserves p.s # lvg and does
not falsify the consequent because T p.r = nil A p.l = nil.
[C3] For C3, similar to join. For C}, this action preserves
p.s # lvg and it does not falsify the consequent because
1 p.r = nil A p.l = nil. [R] Similar to join.

{I} T} {I}: Suppose T} takes the second branch (i.e.,
a # p). [C3 5] This action truthifies p.s = jng, but Ay and
1 p.s = in imply that | #grant(p) = 0Am ™ (ack, p) = 0.
[C] 53] This action preserves p.s # lvg. The rest of the
reasoning is similar to join.

{I} T! {I}: Suppose T} takes the first branch (i.e., [ = p).
Let w be the old p.r. Similar to leave, we have w = p.
[A, B] Similar to leave. [C;] For C!, similar to leave. For
C{, this action preserves p.s # jng. [Cs] For C}, similar
to leave. For CJ, this action preserves p.s # jng and it
may falsify the consequent only if v = p. Thus, u = p
because T p.r = p. But By and T p.s = in imply that
T pt = nil. [C3] For C%, similar to leave. For C3, this
action preserves p.s # jng and it does not falsify the
consequent because 1 p.t = nil. [R] Similar to leave.

{I} T! {I}: Suppose T} takes the second branch (i.e.,
1 # p). [A, B,CY, R] Similar to leave. [CY , 4] This action
preserves p.s # jng. [0573] This action truthifies p.s =
lug, but A; and 7 p.s = in imply that | #grant(p) =
0 Am~ (ack,p) = 0.

{I} T {I}: Suppose T3 takes the first branch (i.e., s =
in). [A A B] Similar to join. [Cy] For CY, similar to join.
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For C!, this action preserves p.s # lvg. [C2] For Cj3,
similar to join. For C}, this action does not truthify the
antecedent because | ¢.s # lvg, and it does not falsify
the consequent because 1 p.t = nil. [C3] For CY, similar
to join. For Cé, this action preserves p.s # lvg, and it
does not falsify the consequent because T p.t = nil. [R]
Similar to join.

{I} Ty {I}: Suppose Ty takes the second branch (i.e.,
s # 4n). Similar to join.

{I} T {I}: Suppose T} takes the first branch (i.e., s =
in Ar = q). [A, B] Similar to leave. [C1] For C!}, similar
to leave. For CY, this action preserves p.s # jng. [C2] For
Cé, similar to leave. In that reasoning, in order to con-
clude that a.l’ takes “otherwise” in the definition of I,
we observe that p.l’ does not take the second branch, be-
cause otherwise CJ implies that ¢.t # nil, contradicting
q.s = lvg. For C}, this action does not truthify the an-
tecedent because it preserves ¢q.s # jng, and it does not
falsify the consequent because | p.t = nil. [C3] For Ci,
similar to leave. For C%, this action preserves p.s # jng,
it does not falsify the consequent because | p.t = nil. [R]
Similar to leave.

{I} T {I}: Suppose T} takes the second branch (i.e.,
s #in V r # q). Similar to leave.

{I} T5 {I}: It follows from D and A; that a.s = jng|lvg.
If a.s = jng, then CJ implies that p.l = ¢. If a.s = lvg,
then C) implies that p.l # ¢ because p.l = a A ¢.5 =
busy A a.s = lvg. Thus, if T3 takes the first branch (i.e.,
[ = ¢q), then a.s = jng. If it takes the second branch,
then a.s = lvg. Suppose T3 takes the first branch. Since
1 a.s = jng, we have T a.r’ = p Ap.l’ = a. [A, B] Similar
to join. [C4] For Cf, similar to join. For C!, unaffected.
[Ca] For Cj, similar to join. For C}, this action may
falsify the consequent only if t = porv =p. If z = p,
but | #grant(p) = 0 because 1 p.l # nil A p.I’ # nil. If
v = p, then E implies that | m™ (grant,p) = 0. [Cs] For
C3, similar to join. For C%, this action preserves a.s # lvug
and it may falsify the consequent only if v = p, but
1 p.l’ # nil implies that | m™(ack,p) = 0V p.s # lug.
[R] Similar to join.

{I} T5 {I}: Suppose T3 takes the second branch (i.e.,
Il # q). We have a.s = lvg. [A, B] Similar to leave.
[C1] For C%, similar to leave. For C7, unaffected. [Cs]
For C}, similar to leave. For C3, this action may fal-
sify the consequent only if v = p. But F implies that
| m~(grant,p) = 0. [C3] For C%, similar to leave. For
C4, this action preserves a.s # jng. [R] Similar to leave.
{I} Ty {I}: Tt follows from A; that p.s = jng|lvg. Sup-
pose p.s = jng. [A, B] Similar to join. [Cy] For C{, similar
to join. For C!, this action does not falsify the consequent
because T p.s # lvg. [C2] For C3, similar to join; note
that this action falsifies p.s = jng. For C%, this action
preserves p.s # lug and does not falsify the consequent
because T p.r = nil A p.l = nil. [C5] For CY, similar to
join; note that this action falsifies p.s = jng. For C’é,
this action preserves p.s # lvg and does not falsify the
consequent because T p.r = nil A p.l = nil. [R] Similar to
join.
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v if u.s = gng A #grant(u) =1 Am” (grant(u),v) =1
if u.s = gng A #grant(u) = 0Am™ (ack,u) = 1 Am(ack,v,u) =1

r_ v
1= nil if ws = lvg A #grant(u) + m™ (ack,u) =1
u.r otherwise
v if u.s = jng A #grant(u) = 1 Am™* (grant(u),v) = 1
x if u.s = jng A #grant(u) =0
wl — nil if u.s = lvg A #grant(u) + m™ (ack,u) =1

x  if #grant(u) + m~ (ack

=0Am™ (grant,u) =1 Am™ (grant(zx),
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Am~ (ack,u) =1 Am™ (ack(z),u) =1

u) =1Az.s=jng

u) =
v if #grant(u) + m~ (ack,u) = 0 Am™ (grant,u) = 1 A m(grant(z),v,u) = 1 Az.s = lvg

u.l otherwise

Fig. 17. Definitions of " and I’ for the combined protocol.

I=ANBANCANDAR

A1 = (u.s =gngllvg = f(u) = 1) A f(u) <1

Az = (u.s=busy =g(u) =1)Ag(u) <1

Bi = (u.s = in|busy|lvg = u.r # nil A u.l # nil)
Bz = u.s = busy = u.t # nil

cl = (join u,v) > 0= u.s = jng

Ct = m™* (leave(z),

) = m(gmnt(

Ch = m(grant(x

C4 = m(ac

C} = m(ack(),

D=

#grant(nil) =0
R = biring(r',1")

A (w.r # nil = u.l # nil)

u)>0=us=gAur=ux

),u,v) >0Az.s=jng = ut=vAvl=u

),u,v) >0Az.s=lg=ut=zAur=vAvl=zAzl=u
ack(z),u,v) >0Av.s=jng =>axt=uAzr=uv

u,v) >0Av.s=lvg=z=nilAvit=vAvlr=u

Fig. 18. An invariant of the combined protocol. For the sake of brevity, we have omitted the V quantification. All the predicates
A A A2>

above are quantified by V with appropriate dummy variables. For example, A = (Vu

{I} T4 {I}: Suppose p.s = lvg. Let w be the old p.l.
[A, B] Similar to leave. [C;] For C!, similar to leave. For
C{, this action preserves p.s # jng. [Cs] For C}, similar
to leave; note that this action falsifies p.s = lvg. For C3,
this action preserves p.s # jng and it may falsify the
consequent only if v = p, but | m™(grant,p) = 0 (see
R below). [C3] For C%, similar to leave; note that this
action falsifies p.s = lvg. For C3, this action preserves
p.s # jng and it does not falsify the consequent because
1 p.t = nil. [R] Similar to leave; in addition, we observe
1 m~ (grant(z),p) = 0 for any x.s = jng, because other-
wise z.r" = p A p.l’ = z. But p.l’ = nil.

{I'} Ts {I}: Similar to join and leave.

{I'} Ts {I}: Similar to join and leave.

Therefore, I is an invariant. 0O

7.3 The Extended Combined Protocol

We have mentioned in Section 6 that it is desirable for an
out process not to have any incoming messages. However,
even with the assumption of reliable and ordered delivery
of messages, our combined protocol does not provide this
property. We show in this section a counterexample. We
further show that combined protocol can be made to
provide this property with some simple extensions.
Figure 19 shows that, even if we assume reliable and
ordered delivery of messages, it is possible for an out

Fig. 19. An out process may have an incoming message.

process to have an incoming message in the combined
protocol. In the figure, u receives the leave message from
w when u.s = out. To provide the property that an out
process does not have any incoming message, we extend
our combined protocol as follows:

e Every process has an additional integer variable, k,
initialized to O.

e When a process grants a join or a leave request, it
sets k to 2.
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e When a process receives a grant(a) message from g,
in addition to sending the ack message to a, it sends
a done message to q.

e A process decrements k by 1 for every done message
it receives, and it changes its state (from busy) to in
when k = 0.

We further assume that an out process does not have
any incoming join message. Without this assumption, a
join request may be directed to an in process by the
contact() function, and when the join message is deliv-
ered, the in process has left the ring.

Theorem 7. If message delivery is reliable and ordered,
then an out process does not have any incoming message
in the extended combined protocol.

Proof. As in the proof of Theorem 5, it suffices to show
that P = (Vu : u.s = out : m~ (leave,u) = 0). Two ac-
tions may truthify u.s = out: Ty when p.s = lvg, and Ty
when p.s = jng. One action may falsify m~ (leave, u) = 0:
T} when p.l # p. We analyze these actions one by one.

Consider Ty when p.s = lvg. As in the proof of The-
orem 5, it suffices to show that when ¢ sends the ack
message to p, p has no incoming leave message at that
time. Suppose this is not true and suppose that w (note
that w # ¢) sends p a leave message right after time
t; and this leave message remains undelivered until ¢
sends p an ack message right after time ¢5. Suppose
m~ (grant,w) = 0 at ¢t;. Then w.l’ = p at ¢;. But I and
p.l” = nil at t2 imply that w.l’ # p at t2. Hence, between
t; and t9, an action falsifies w.l’ = p and this action
can only be T, where a grant(z) message is sent to w.
Suppose this happens right after time ¢3. If z.s = jng,
then I implies that this grant message is from p. Hence,
p.s = busy at t3. For p.s to change from busy (at t3) to
lvg (at t2), p has to receive the done message from w by
the time ¢5. Since message delivery is ordered, p receives
the leave message from w before it receives the done
message from w. A contradiction to the assumption that
m(leave, w,p) > 0 at ta. If 2.5 = lug, then I implies that
x = p and I implies that, by the time t2, p has received
the ack message from w so that p can have another ack
message from ¢g. Hence, by the order of delivery, p re-
ceives the leave message from w by t2. A contradiction
to the assumption that m(leave, w,p) > 0 at to. Suppose
m(grant(z),u,w) > 0 at ¢, for some z and u. Using a
similar argument, we reach a similar contradiction.

Consider Ty and p.s = jng. Let m(retry,q,p) > 0.
Suppose m(leave, w,p) > 0 at this time. However, when
w sends the leave message to p, w.l = p and I implies
that m~ (grant,w) = 0. Hence, w.l’ = p. But p.I’ = nil,
violating R.

Consider T}. Suppose ¢ sends a leave message to p.
At this time, ¢.s = in A ¢.l = p. If m™(grant,q) = 0,
then ¢.I'” = p and I implies that p.l’ # nil and hence
p.s # out. If m(grant(x),u,q) > 0, then x = p or u = p.
In either case, we have p.s # out.

Hence, P holds at all times. 0O

Xijaozhou Li et al.: Concurrent Maintenance of Rings

7.4 Discussions

When there are only leaves but no joins, the combined
protocol in Section 7.1 works the same way as the leave
protocol in Section 6.1. Therefore, due to reasons similar
to those mentioned in Section 6.3, the combined protocol
is not livelock-free either.

While this paper is mainly concerned with correct-
ness issues, we next give some high-level remarks on the
space, message, and time complexity of the protocols.
For the sake of brevity, we restrict our discussion to the
combined protocol in Section 7.1. It is clear that the com-
putation performed at each process is insignificant, and
the protocol incurs little space overhead. Each granted
join or leave request incurs a chain of four messages. A
process waits for three message transmissions before its
state goes from jng to in, or from lvg to out, or from busy
to in. Therefore, the protocol causes little performance
concern when there is no contention, which is likely to
be the common case. In other words, the protocol en-
sures correctness under arbitrary concurrent joins and
leaves, and provides good performance most of the time,
a theme that is not uncommon in other areas (see, e.g.,
Lamport’s fast mutual exclusion algorithm [10]).

The only concern, therefore, is performance under
contention, because a request arriving at a busy process
has to retry and incur additional messages and delay. (In
this regard, the FIFO join protocol in Section 5.3 has
the advantage that there is no busy state.) To determine
precisely how many messages are needed, and how long it
takes, to handle a group of join and leave requests, many
factors have to be taken into account: the locations of the
requests, message delays, retry strategy and intervals,
and so on. Rigorous analyses and extensive simulations,
however, fall out of the scope of this paper.

Although the protocols presented in this paper work
correctly in the fault-free environment, they clearly do
not work in a faulty environment where, say, messages
may be dropped or processes may crash. For example, a
joining process may remain indefinitely in the jng state if
its join message is dropped. Not surprisingly, additional
mechanisms are needed to cope with faults, and we leave
this as a future research problem.

8 Maintenance of the Chord Ring

We show in this section how to extend the protocol in
Section 7 to provide an active and concurrent mainte-
nance protocol for the Chord ring [25].

8.1 The Protocol

The protocol in Section 7 maintains a bidirectional ring
where a new node can be inserted between two arbi-
trary nodes in the ring. The Chord ring, however, has
stronger requirements on the arrangements of the nodes
in the ring. In Chord, every node has a random binary
string as its ID. The IDs are of the same length and are



Xiaozhou Li et al.: Concurrent Maintenance of Rings

process p
var s: {in, out, jng, lvg, busy};
r,1,t,a:V'; id, rid, lid : identifier
init s=out Ar=1l=t=nilAid =rid = lid = ¢
begin
T s = out — id := p.genid();
(a, aid) := contact();
if a=p—r rid,l, lid, s :== p,id,p,id, in
[ a#p—s:=jng;
send join(p, id, aid) to a fi
T! | s=in—
ifl=p—
r,rid, l, lid, s, id := nil, €, nil, €, out, €
[1#p—s:=lg;
send leave(r, rid) to | fi
T] [ rev join(a, aid, pid) from q —
if id # pid — send retry() to a
| id = pid — (b, bid) := p.bestfinger(aid);
ifb=pAs=in—
send grant(a, aid) to r;
r,rid, s, t := a, aid, busy,r
lb=pAs#in — send retry() to a
[b#p—
send join(a, aid, bid) to b fi fi
T [ rev leave(a, aid) from g —
if s =in Ar =q — send grant(r,id) to a;
r, rid, s,t := a, aid, busy, r
| s#inVr+#q— send retry() to g fi
T | rev grant(a, bid) from ¢ —
if | = ¢ — send ack(l, lid, id) to q;
l,lid :== a, bid
| 1 # q — send ack(nil, €, €) to a;
I, lid := q, bid i
Ty [ rev ack(a, aid, qid) from g —
if s = jng — r,7id, 1, lid, s := q, qid, a, aid, in;
send done() to [
| s =lvg — send done() to I,
r,rid,l, lid, s, id := nil, €, nil, €, out, € fi
Ts | rev done() from g — s,t := in,nil
Ts [ rev retry() from ¢ —
if s = jng — s,id := out, €
|l s=lg—s:=infi
end

Fig. 20. The protocol that maintains the Chord ring.

sufficiently long (say, 128 bits) so that all IDs may be as-
sumed to be unique. Chord arranges nodes in an ID ring
with wrap-around. The two basic neighbors that a node
has are its predecessor and successor. In addition, a node
has fingers, i.e., neighbor variables that allow a node to
reach another node in the ring. It is worth noting that
for Chord to work correctly, it suffices to maintain the
predecessors and successors. The fingers improve perfor-
mance, but do not affect correctness. In what follows,
we only discuss how to maintain the predecessors and
successors for Chord.

The key difference between maintaining the Chord
ring and an arbitrary ring is that when a new node joins
the Chord ring, it should be placed between two nodes
with proper IDs in the ring. While the protocol in Sec-
tion 7 places a new node between two arbitrary nodes,
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the additional idea needed to maintain the Chord ring is
quite straightforward. We simply include the ID of the
joining node in the join message and forward the join
message using the finger pointers until the node imme-
diately preceding the joining node in the Chord ring is
reached.

The protocol that maintains the Chord ring is shown
in Figure 20. In the protocol, € denotes the empty string.
Compared to the protocol in Section 7, one noticeable yet
nonessential change is the addition of IDs in the message
parameters. An alternative presentation of the protocol
can remove the need to explicitly mention IDs, but as-
sumes that the reference to a node, say p, includes the
ID of p. We opt for explicitly mentioning IDs. Compared
to the protocol in Section 7, several actions are substan-
tially modified.

T} The function p.genid() generates an ID for p. We pre-
fix genid() by “p.” to indicate that, in contrast to the
contact() function, which is a global function, genid()
is locally implementable. We assume that every call
to genid() gives a unique ID. This assumption can be
provided with high probability, if not certainty, using
some secure hash function like SHA-1. The contact()
function returns a pair, a non-out node and its ID, if
there is such a node; it returns the calling node and
its ID otherwise. A join message takes three parame-
ters, the joining node, the ID of the joining node, and
the ID of the receiver of the join message. The rea-
son for including the ID of the receiver is as follows.
Since we only assume reliable delivery of messages,
when a join message is in transmission, the receiver
may leave the ring, and then rejoins with a different
ID. Hence, by including the ID of the receiver in the
join message, the receiver can compare its current ID
with the ID in the join message and accept the mes-
sage only if they are the same. This checking prevents
the situation where a join message may be forwarded
forever without being able to reach the node with the
appropriate ID. An alternative method to avoid the
infinite forwarding of a join message is to include a
time-to-live (TTL) field in the join message, and dis-

~ card the message once the field is decremented to 0.

Ty The function p.bestfinger(aid) finds the best finger of
p in order to reach aid. We omit how fingers are main-
tained as they do not affect correctness. Note that the
p.r is one of the fingers of p. If the best finger is p
itself, then the new node should be inserted between
p and p.r. In our presentation, the right neighbor is
the successor and the left neighbor is the predecessor.

T, If a leaving node has been acknowledged, then it
changes its ID to the empty string ¢, so that in action
Ty, an out node with an ID of € always rejects a join
request.

8.2 Discussions
The correctness proofs for the protocol in Figure 20 are

largely similar to those shown in Section 7 and hence are
omitted. We remark that this protocol can be trivially
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modified to maintain a ring where the nodes are orga-
nized based on some other criteria (i.e., those that are
not based on node IDs), by changing the implementa-
tion of the bestfinger() function. It would be interesting
to extend the protocol to maintain fingers as well.

9 Conclusions and Future Work

In this paper, we have addressed the problem of concur-
rent maintenance of the ring topology in the fault-free
environment. We have presented simple protocols that
maintain a bidirectional ring under arbitrary interleav-
ings of both joins and leaves. We have used an assertional
method to prove the correctness of the protocols.

Numerous issues merit further investigation. Firstly,
it would be interesting to develop machine-checked proofs
for our protocols, using some automatic theorem provers
like ACL2 or I/O Automata. Secondly, it would be inter-
esting to investigate if certain techniques (e.g., reduction
or composition) can help to reduce our proof lengths.
Thirdly, our protocols do not provide the progress prop-
erty that a leaving process eventually is able to leave
the network. It would be interesting to design (simple)
protocols that provide this property. Fourthly, we have
assumed a fault-free environment for our protocols. Of
course, a peer-to-peer network should be fault-tolerant.
Thus, it would be interesting to extend our protocols to
faulty environments.
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