
Reconfigurable Resource Scheduling with Variable Delay Bounds

C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

Department of Computer Science
University of Texas at Austin

{plaxton, sunyu, mitult, vin}@cs.utexas.edu

Abstract

Certain emerging network applications involve dynamically allocating shared resources to a variety of services to
provide QoS guarantees for each service. Motivated by such applications, we address the following online scheduling
problem belonging to the recently introduced class of reconfigurable resource scheduling: unit jobs of different cate-
gories arrive over time and need to be completed within category-specific delay guarantees, or else they are dropped at
a unit drop cost; processors can be reconfigured to process jobs of a certain category at a fixed reconfiguration cost; the
goal is to minimize the total cost. We study this problem in the framework of competitive analysis. Through a novel
combination of the EDF and LRU scheduling principles, we obtain an online algorithm that is constant competitive
when given a constant factor advantage in the number of resources over an optimal offline algorithm.

1Supported by NSF Grants CCR–0310970 and ANI–0326001.
2Supported by NSF Grant ANI–0326001 and Texas Advanced Technology Program Grant 003658-0608-2003.

1 Introduction

Motivation. Reconfigurable resource scheduling, recently introduced in [14], is a class of scheduling problems with the
following salient features: (1) there are jobs of different categories; (2) resources can be reconfigured to process jobs of
a certain category at an overhead, in terms of cost or time.

This paradigm is useful in multi-core and multi-processor environments that are increasingly used to support a wide
range of high-throughput applications, such as web services, network applications, and database servers. These envi-
ronments host multiple services (or support multiple categories of jobs) simultaneously (e. g., a shared data center and a
multi-service router). To isolate — with respect to security and performance — categories from one another, these envi-
ronments often configure processors to support only one category at a time. The set of processors configured to support
a particular category depends upon the workload demands for that category; fluctuations in workloads require changes
in processor allocations. For instance, a shared data center [4, 5] adjusts dynamically the allocation of processors to
independent categories as the workload composition changes. Similarly, a multi-service router based on programmable,
multi-core network processors [16, 17, 18] adjusts allocations of processors to different packet categories as the traf-
fic load fluctuates. In certain applications involving QoS guarantees, jobs are required to be processed within a delay
tolerance, where the delay tolerance is a function of the job category [9].

Problem Statement.In this paper, we study and solve the following variant of reconfigurable resource scheduling.
The input is a sequence of requests, each of which is a set of unit jobs. Each job has a category, and needs to be executed
within acategory-specificdelay bound from its arrival, or else it is dropped at a unit drop cost. A job of a given category
can only be executed on a resource configured for that category. A resource can be reconfigured at any time at a fixed
reconfiguration cost. The objective is to minimize the total cost.

Our goal is to design online algorithms that provide good performance under all possible operating conditions.
This motivates us to study this problem in the framework of competitive analysis, where the performance of an online
algorithm is measured by the competitive ratio [15], that is, the maximum ratio between the cost incurred by the online
algorithm and that incurred by an optimal offline algorithm, over all input sequences (see [1] for a comprehensive
introduction to competitive analysis). In this paper, we adopt a standard technique in competitive analysis, sometimes
referred to asresource augmentation[7, 13], in which the online algorithm is given extra resources as a method to
compensate for its lack of future information. We refer to an online algorithm that achieves a constant competitive ratio
when given a constant factor resource advantage as aresource competitivealgorithm.

We aim to provide a resource competitive online algorithm for reconfigurable resource scheduling with variable
delay bounds. In our previous work [14], we solve a variant with uniform delay bounds and variable drop costs. It
is not clear whether the techniques used in that work can be generalized to solve the variant studied in this paper. To
appreciate some of the difficulties associated with variable delay bounds, consider a scenario in which we are scheduling
two categories of jobs on a single resource: “background” jobs and “short-term” jobs. Background jobs have deadlines
far in the future, and short-term jobs have smaller delay bounds and arrive intermittently. We need to decide whether
to use idle cycles to execute background jobs. If we allow background jobs to use idle cycles whenever available, we
may end up incurring a large number of reconfigurations, or dropping a lot of short-term jobs; later on, we may regret
incurring these costs if we encounter a lengthy interval in which no short-term jobs arrive, and all of the background jobs
could be executed using one reconfiguration. On the other hand, if we do not allow background jobs to use small chunks
of idle cycles, and instead wait for a long idle period, then later on, we may regret doing so if we never encounter a long
idle interval. In summary, either of these basic approaches lead tothrashing(i. e., excessively high reconfiguration cost)
or underutilization(i. e., excessively high drop cost). Even under resource augmentation, these basic approaches fail,
when there are many categories of jobs with different delay bounds.

One natural approach try to overcome these difficulties is to consider algorithms based on the Least Recently Used
(LRU) principle. To pursue this approach, we need to define an appropriate notion of an LRU timestamp in this setting.
We have investigated various natural alternatives (See Section 3.1.1 for an example). In all of these alternatives, we
encounter the following basic difficulty: if we configure the categories with the most recent LRU timestamp, without
considering whether these categories have jobs to execute, then we may suffer from underutilization; if we configure
the categories that have the most recent LRU timestamps, andhave jobs to execute, then we may suffer from thrashing.
Thus it appears that LRU alone is insufficient to obtain a resource competitive solution.

Another natural approach is to consider algorithms based on the Earliest Deadline First (EDF) principle. As with
LRU, there are different ways we can formulate a specific algorithm based on the EDF principle (See Section 3.1.2 for an
example). However, all EDF variations seem to suffer from thrashing, and therefore fail to yield a resource competitive
solution.

Our Contribution. In this paper, we give a resource competitive online algorithm for reconfigurable resource

1

scheduling with variable delay bounds. We solve the problem using a layered approach. First, we use a batching
subroutine to reduce the problem to the special case in which jobs of a given category arrive at integral multiples of
the category-specific delay bound. This layer is analogous to the first layer in [14], but is more involved with variable
delay bounds. Second, we reduce the batched problem to a rate-limited problem in which at mostp jobs of categoryp
arrive at each integeral multiple ofp. Third, we solve the core problem using a novel combination of EDF and LRU,
which we view as a major contribution of this paper. The main idea of this combination is to keep two sets of categories
configured: one set consists of categories with the most recent timestamps, the other set consists of categories that have
the earliest deadlines and have jobs to execute.

Our consideration of the EDF and LRU combination is motivated by the following observations. The LRU compo-
nent, which does not consider idleness, allows categories with short delay bounds to remain cached as long as they have
recent timestamps; this reduces thrashing. The EDF component ensures that the resources are well utilized. The main
challenge in the analysis is to bound the reconfiguration cost. We address the challenge by employing amortized analysis
and a proof technique called “phase partition” used in [15].

Related Work. In our previous work [14], we introduce the class of reconfigurable resource scheduling, and solve a
variant with uniform delay bounds and variable drop costs by reducing to a file caching problem.

Brucker [2, Chapter 9] surveys a class of offline scheduling problems with context switch time, which they call
changeover time. In this class of problems, each job belongs to a certain group, and between the executions of any two
jobs in different groups on the same machine, there is a changeover period, during which the machine cannot process
any job. Results for single and multiple machine problems with changeover time are summarized. For a variant with
identical machines, equal sized groups, and equal processing and changeover time, Brucker et al. [3] give a polynomial
time offline algorithm that decides whether there exists a schedule in which all jobs are executed within a common delay
bound.

In a position paper, Srinivasan et al. [17] discuss scheduling problems for multi-core network processors, and con-
sider the application of existing multiprocessor scheduling algorithms in this domain. Various challenges are identified
and some initial ideas to address these concerns are presented. Kokku et al. [8] give a scheduling algorithm, called Ever-
est, for multi-core network processors. The parameters considered are a per-service delay bound, a per-service execution
requirement, and a fixed context switch time. Everest is shown to perform well in experiments in terms of maximizing
the number of packets processed within a service-specific delay tolerance.

The EDF scheduling algorithm is shown [6, 10] to be an optimal preemptive uniprocessor scheduling algorithm for
problems that do not involve reconfiguration overhead, in terms of the number of jobs executed. In this paper, we discuss
the issues of applying EDF in reconfigurable resource scheduling with variable delay bounds, and propose a combination
of EDF and LRU to address the problems.

The classic disk paging problem studied by Sleator and Tarjan [15] can be viewed as a special case of reconfigurable
resource scheduling with unit delay bound, unit reconfiguration cost, infinite drop cost, and where each request consists
of a single job. In this seminal work, the competitive ratio of any deterministic online paging algorithm is shown to be
at least the cache size, and certain algorithms such as LRU are shown to be resource competitive.

O’Neil et al. [12] consider a variation of LRU called LRU-K, which keeps track of the times of the lastK references
to pages. Megiddo et al. [11] consider a self-tuning cache replacement policy called Adaptive Replacement Cache,
which combines recency and frequency aspects of the request sequence by maintaining two lists: one list captures the
recency aspect, and the other captures the frequency aspect. Our combination of EDF and LRU integrates recency and
deadline aspects by keeping two sets of categories configured: one set captures the recency aspect and the other captures
the deadline aspect.

2 Preliminaries

Problem Definitions. Most of the material in this section also appears in the preliminaries section of [14]. We include
it here in order to make the current presentation self-contained.

For the reconfigurable resource scheduling problems considered in this paper, the input is a sequence of requests, each
of which consists of a (possibly empty) set of unit jobs. Each job is characterized by a non-black color, a nonnegative
integer arrival time, and a positive integer delay bound. For any job, we define an associated deadline to be its arrival
time plus its delay bound. A job has to be executed on a resource of the same color between its arrival time and its
deadline, or else it is dropped at a unit drop cost. After a job arrives, it ispendinguntil it is either dropped or executed.

There is a finite set of resources on which jobs are executed. Resources are numbered from0. Each resource is
associated with a color and can be reconfigured to a different color at any time at a fixed reconfiguration cost. Initially,

2

all resources are colored black.
Any problem considered here proceeds in rounds numbered from0. Each roundi consists of four phases, in the

following order: (1) in thedrop phase, jobs with deadlinei are dropped; (2) in thearrival phase, the ith request is
received; (3) in thereconfiguration phase, for each resource, an algorithm decides whether to reconfigure to a different
color or not, and if so, to which color; (4) in theexecution phase, for each resource configured to color`, we execute up
to one pending job of color̀.

For any request sequenceσ, a schedulespecifies the reconfigurations, if any, and the job executions, to perform in
each round. The total cost of a schedule is the sum of all reconfiguration and drop costs. The goal is to device a schedule
of minimum cost for a given request sequenceσ.

Let S andS′ be any two schedules for a given request sequenceσ. We sayS is resource competitivewith S′ if, the
number of resources given toS is within a constant factor of that given toS′, and the cost incurred byS is within a
constant factor of that incurred byS′.

An offline algorithm knows all requests in advance. An online algorithm has to make decisions without knowing the
future requests. The competitive ratio of an algorithmA is defined as the maximum ratio, over all request sequences
σ, of the cost incurred byA on σ to that incurred by an optimal offline algorithm forσ. An algorithmA is defined
to bec-competitive if the competitive ratio isc. Any c-competitive algorithmA is called constant competitive ifc is a
constant. We say an algorithmA is resource competitiveif, for any request sequenceσ, the schedule generated byA is
resource competitive with an optimal schedule forσ.

For the sake of brevity, we use the[reconfig | drop | delay | batch] notation introduced in [14]. Thereconfig field
describes the details of the reconfiguration cost. In this paper, there is only one possible value for this field, a fixed
reconfiguration cost denoted by∆. Thedrop field describes the details of the drop cost. In this paper, there is only one
possible value for this field, namely1, since we assume unit drop cost. Thedelay field contains the details of the delay
bound. In this paper, there is only one possible value for this field, a per-color delay bound denoted byD`. Thebatch
field constrains the arrival rounds of requests of color` to occur at integral multiples of the specified value. In this paper,
the possible values for this field are1 andD`.

With this notation, our main problem is denoted by[∆ | 1 | D` | 1]. The special case in which jobs of color` arrive
at integral multiples ofD` is denoted by[∆ | 1 | D` | D`]. We use the terminology “rate-limited[∆ | 1 | D` | D`]” to
denote the special case of[∆ | 1 | D` | D`] in which at mostD` color ` jobs arrive at each integral multiple ofD`. In
this paper, we assume∆ is a positive integer (it is not hard to generalize our results to arbitrary∆).

Roadmap.The rest of the paper is organized as follows. Section 3 solves rate-limited[∆ | 1 | D` | D`], where each
D` is a power of2. Section 4 solves[∆ | 1 | D` | D`], where eachD` is a power of2, with a reduction to rate-limited
[∆ | 1 | D` | D`]. Section 5 solves our main problem[∆ | 1 | D` | 1] by a reduction to[∆ | 1 | D` | D`].

3 Rate-Limited Batched Arrivals

In this section, we solve rate-limited[∆ | 1 | D` | D`], where eachD` is a power of2. This problem is characterized
by a fixed configuration cost∆, a unit drop cost, per-color delay boundD`, batched arrivals (jobs with delay boundD`

arrive at integral multiples ofD`), and rate-limited input (at mostD` jobs of color` arrive at each integral multiple of
D`).

To solve this problem, we propose a combination of EDF and LRU, referred to as algorithm∆LRU-EDF. The main
result of this section is presented in Theorem 1, which is used in Theorem 2 in Section 4.

3.1 Algorithms

In this section, we introduce three online algorithms for rate-limited[∆ | 1 | D` | D`], whereD` is a power of2,
namely,∆LRU, EDF, and∆LRU-EDF. Because these algorithms only differ in the way the resources are reconfigured,
we first present the common aspects, and then define the reconfiguration schemes of these algorithms in Section 3.1.1,
Section 3.1.2, and Section 3.1.3, respectively. The reconfiguration scheme of algorithm∆LRU is a variation of LRU.
The reconfiguration scheme of algorithm EDF is based on the earliest deadline principle. Even though neither∆LRU
nor EDF is resource competitive, the study of these two algorithms motivates our consideration of∆LRU-EDF, which
is a certain combination of∆LRU and EDF, and which we show to be resource competitive.

We usen to denote the number of resources given to the online algorithm. We consider the set of resources as a
cache where resourcei is viewed as locationi. We view each color as a page. Each location can cache one color. We
view reconfiguring resourcei with color ` as caching color̀ at locationi.

3

For each color̀ , we maintain a counter and a deadline, denoted by`.cnt and`.dd , respectively. A color̀ is idle if
there are no pending color` jobs, andnonidleotherwise. A color is eithereligibleor ineligible.

The common aspects of the three algorithms are as follows. Initially, the cache is empty, and all colors are ineligible.
In each roundk, the actions performed in the four phases are described as follows.

Drop phase For any color̀ , if k is an integral multiple ofD`, we drop all pending color̀ jobs, and set color̀ to be
ineligible and̀ .cnt to zero if color` is eligible and not in the cache.

Arrival phase For any color̀ , if k is an integral multiple ofD`, we receive a request, which consists of a set of jobs
X, and perform the following steps.

1. We set the deadline of` to bek + D`.

2. We increasè.cnt by the number of color̀ jobs inX.

3. If `.cnt is at least∆, we perform the following substeps.

(a) We set̀ .cnt to (̀ .cnt mod∆), which we refer to as acounter wrapping eventof color `.

(b) If color ` is ineligible, we set color̀ to be eligible.

Reconfiguration phaseWe use the first half locations of the cache capacity to cache distinct colors; the method used
depends on the algorithm, see Sections 3.1.1 through 3.1.3. We use the remaining cache capacity to replicate the
cache content of the first half locations, that is, we maintain the invariant that each cached color is cached in two
locations.

Execution phaseFor each resourceq, let ` be the color cached at locationq. We execute one pending job of color`.

3.1.1 Reconfiguration Scheme of∆LRU

Consider any color̀. Let k be the most recent integral multiple ofD`. We define thetimestampof ` to be the index of
the latest round before roundk in which a counter wrapping event of color` occurs, and0 if such a round does not exist.

The reconfiguration scheme of algorithm∆LRU works as follows. We maintain the invariant that we keepn
2 eligible

colors with the most recent timestamps in the cache, breaking ties arbitrarily.
Intuitively, like the classic LRU algorithm,∆LRU intends to capture the recency aspect of the input sequence. Due

to the difference between the reconfiguration and drop costs, we update the timestamp of each color roughly∆ job
arrivals of that color. To avoid caching a color with a deadline far ahead too aggressively (which may not be desirable
since we can use the slack to execute jobs of other colors with earlier deadlines first), for each color`, we only consider
the counter wrapping events of` for which a subsequent integral multiple ofD` has elapsed.

At a high level,∆LRU may keep idle colors with recent timestamps, which results in low utilization of resources.
We refer the readers to Appendix A for a detailed example that shows∆LRU is not resource competitive.

3.1.2 Reconfiguration Scheme of EDF

The reconfiguration scheme of EDF works as follows. We rank the eligible colors first on idleness, where nonidle colors
come first, and then in ascending order of deadlines, breaking ties by increasing delay bounds, and then by a consistent
order of colors. We update the cache as follows. If a nonidle eligible color` in the topn

2 rankings is not in the cache, we
cache color̀ . In case there is not enough room in the cache, we evict the color with the lowest rank.

At a high level, EDF suffers from thrashing: when a color` becomes idle and nonidle alternatively, a nonidle color
`′ with larger delay bound is repeatedly brought in and removed from the cache, and so EDF incurs a large number of
reconfigurations. We may later regret paying these reconfiguration costs if a long period of time appears later that allows
to execute all jobs of̀′ with a single reconfiguration. We refer the readers to Appendix B for a detailed example that
shows EDF is not resource competitive.

3.1.3 Reconfiguration Scheme of∆LRU-EDF

As discussed in Section 3.1.1 and Section 3.1.2, an algorithm that captures only the recency aspect or only the deadline
aspect in the input sequence is not resource competitive. This observation motivates us to think about algorithms that
capture both the recency and deadline aspects. In the following, we introduce the reconfiguration scheme of∆LRU-EDF,
which is a combination of∆LRU and EDF.

4

The reconfiguration scheme of∆LRU-EDF is as follows. We first run the reconfiguration scheme of∆LRU to cache
the n

4 eligible colors with the most recent timestamps. At any instant, a color is called an LRU-color if it is cached by
∆LRU, and a non-LRU color otherwise. We then rank the non-LRU colors that are eligible, in the same way as we rank
eligible colors in the reconfiguration scheme of EDF (see Section 3.1.2 for details). LetX be the set of nonidle and
non-LRU colors in the topn4 rankings but not in the cache. We bring all colors inX into the cache. In case there is not
enough room in the cache, we repeatedly evict the non-∆LRU color with the lowest rank until there is enough room.

3.2 Analysis of algorithm∆LRU-EDF

Consider any input sequenceσ. For any color̀ and any color̀ job x, we sayx is ineligible if x is dropped by∆LRU-
EDF while` is ineligible. All jobs that are not ineligible areeligible.

Let OFF denote an optimal offline algorithm. Letm denote the number of resources given to OFF, wheren = 8m.We
useCostOFF(σ) andCost∆LRU-EDF(σ) to denote the total cost incurred by OFF and∆LRU-EDF onσ, respectively.
We useReconfigCostOFF(σ) andReconfigCost∆LRU-EDF(σ) to denote the reconfiguration cost incurred by OFF and
∆LRU-EDF onσ, respectively. We useDropCostOFF(σ) andDropCost∆LRU-EDF(σ) to denote the drop cost incurred
by OFF and∆LRU-EDF onσ, respectively. We useIneligibleDropCost∆LRU-EDF(σ) to denote the drop cost incurred
by ∆LRU-EDF on ineligible jobs inσ. We useEligibleDropCost∆LRU-EDF(σ) to denote the drop cost incurred by
∆LRU-EDF on eligible jobs inσ.

We define epochs as follows. For any color`, anepochof ` ends the moment̀becomes ineligible. A new epoch of`
starts when the previous epoch ends. Note that the last epoch of any color can end prematurely. For any input sequence
σ, we usenumEpochs(σ) to denote the total number of epochs (including incomplete epochs) associated withσ. For
any color`, we number the epochs of color` from zero. We useepoch(`, j) to denote epochj of color `.

Lemma 3.1 For any input sequenceσ such that for each color̀, there are less than∆ color ` jobs inσ,

Cost∆LRU-EDF(σ) ≤ CostOFF(σ).

Proof. Consider an arbitrary color̀. Since there are less than∆ color ` jobs inσ, ` never becomes eligible. Hence,
∆LRU-EDF never caches̀ and drops all color̀ jobs. If OFF caches̀ at some point, OFF incurs a reconfiguration
cost of∆. Otherwise, OFF drops all color` job. In either case, the cost incurred by OFF on color` jobs is at least that
incurred by∆LRU-EDF on color̀ jobs. Summing up over all̀’s, the lemma follows.

Lemma 3.2 For any input sequenceσ, EligibleDropCost∆LRU-EDF(σ) ≤ DropCostOFF(σ).

Proof. See Section 3.3.

Lemma 3.3 For any input sequenceσ, ReconfigCost∆LRU-EDF(σ) ≤ 4 · numEpochs(σ) ·∆.

Proof. We give each epoch4∆ units of credit:2∆ units of “first-time” credit and2∆ units of “end-of-epoch” credit. It
is sufficient to show that the total reconfiguration cost incurred by∆LRU-EDF can be paid for by the credit associated
with the epochs.

Consider any color̀ and any nonnegative integerj. We use the2∆ units of “first-time” credit associated with
epoch(`, j) to pay for the reconfiguration cost incurred by the first time` is brought into the cache inepoch(`, j) (recall
that each time a color is cached, it is cached in two locations). In the following, we show that the reconfiguration cost
incurred by each of the subsequent times` is brought into the cache inepoch(`, j) can also be paid for.

Until any subsequent timèis brought into the cache inepoch(`, j), the deadline of̀ does not increase since the
previous time` is evicted, otherwisè becomes ineligible andepoch(`, j) ends. Because the timestamp of` only
increases when the deadline of` is reached, the timestamp does not increase since the previous time` is evicted, either.
Hence, wheǹ is brought into the cache subsequently inepoch(`, j), an idle color̀ ′ is evicted. The color̀′ remains idle
until its associated deadline is reached and becomes ineligible; during this period (since the time`′ is evicted bỳ till the
time `′ becomes ineligible), sincè′ is idle and its timestamp does not improve,`′ remains outside the cache. Therefore,
we can associate any subsequent reconfiguration of` in epoch(`, j) with the end of an epochk of a color`′, that is, we
can use the2∆ units of “end-of-epoch” credit associated withepoch(`′, k) to pay for a subsequent reconfiguration of`
(in two locations) inepoch(`, j).

Summing up over allj’s and`’s, the lemma follows.

5

Lemma 3.4 For any input sequenceσ, IneligibleDropCost∆LRU-EDF(σ) ≤ numEpochs(σ) ·∆.

Proof. Consider any color̀ and anyj. By definition of an epoch, inepoch(`, j), ` starts off ineligible, becomes eligible,
and becomes ineligible again, at which pointepoch(`, j) ends.

By ∆LRU-EDF, wheǹ becomes ineligible,̀.cnt is zero. Letk be the round inepoch(`, j) during which` becomes
eligible. By ∆LRU-EDF, `.cnt reaches∆ the first time inepoch(`, j) in roundk. By the way`.cnt is updated, the
number of jobs associated with` that arrive inepoch(`, j) and before roundk is at most∆. Hence, the ineligible drop
cost incurred by∆LRU-EDF on` in epoch(`, j) is at most∆. Summing up overj’s and`’s, the lemma follows.

Lemma 3.5 For any input sequenceσ such that for each color̀, there are at least∆ color ` jobs inσ,

CostOFF(σ) = Ω(numEpochs(σ) ·∆).

Proof. See Section 3.4.

Theorem 1 Algorithm∆LRU-EDF is resource competitive for rate-limited[∆ | 1 | D` | D`], where eachD` is a power
of 2.

Proof. Let σ be any input sequence for rate-limited[∆ | 1 | D` | D`]. We breakσ into two subsequencesα andβ,
whereα consists of jobs of colors with less than∆ jobs inσ, andβ consists of the remaining jobs. LetS be the schedule
generated by∆LRU-EDF onσ. LetS′ (resp.,S′′) be the schedule onα (resp.,β) obtained by removing jobs inβ (resp.,
α) from S. It is not hard to see that the cost incurred byS′ (resp.,S′′) onα (resp.,β) is at most that incurred byS onσ.
Let T be the schedule generated by OFF onσ. Let T ′ (resp.,T ′′) be the schedule onα (resp.,β) obtained by removing
jobs inβ (resp.,α) from T . It is not hard to see that the cost incurred byT ′ (resp.,T ′′) on α (resp.,β) is at most that
incurred byT onσ.

By Lemma 3.1, the cost incurred byS′ on α is at most that incurred byT ′ on α. By Lemmas 3.2, 3.3, 3.4, and 3.5,
the cost incurred byS′′ onβ is at most a constant factor times that incurred byT ′′ onβ. Hence, the cost incurred byS
onσ is at most that incurred byT onσ. The theorem then follows from the fact thatn = 8m.

3.3 Proof of Lemma 3.2

Lemma 3.6 For any input sequenceσ and any subsequenceα of σ, DropCostOFF(α) ≤ DropCostOFF(σ).

Proof. Since any schedule by OFF onσ implies a schedule by OFF onα of smaller or same drop cost, the lemma
follows.

We define an algorithmA to be adouble-speed algorithmif the reconfiguration and execution phases are repeated in
each round inA. For any input, a double-speed algorithm produces adouble-speed schedule. On the other hand, in an
uni-speed algorithm, the reconfiguration and execution phases are performed only once in each round. For any input, a
uni-speed algorithm produces a uni-speed schedule. In this paper, unless otherwise stated, all algorithms and schedules
are uni-speed.

In this section, we specify the following schemes of ranking eligible colors and pending jobs, which are invoked by
the algorithms that use such schemes in each reconfiguration phase. We rank eligible colors in the same way as used in
EDF, that is, rank first on idleness, where nonidle colors comes first, and then in ascending order of deadlines, breaking
ties by increasing delay bounds, and then by a consistent order of colors. Note that∆LRU-EDF uses the same ranking
scheme for non-LRU colors that are eligible. We rank pending jobs in increasing order of deadlines, breaking ties by
increasing delay bounds, and then by a consistent order of colors. In this paper, we use the same consistent order of
colors in all algorithms that use such ranking schemes.

Algorithm Par-EDF is defined as follows. We givem resources to Par-EDF. In each execution phase, we execute up
to m pending jobs with the best ranks.

Algorithm Seq-EDF is defined the same as EDF except that Seq-EDF is givenm resources and uses all the cache
capacity to cache distinct colors, i.e., we do not use half the cache capacity for replication. We use DS-Seq-EDF to
denote double-speed Seq-EDF.

For any input sequenceσ, we useDropCostPar-EDF(σ) andDropCostDS-Seq-EDF(σ) to denote the drop cost incurred
by Par-EDF and DS-Seq-EDF onσ, respectively.

6

Lemma 3.7 For any input sequenceσ, DropCostPar-EDF(σ) ≤ DropCostOFF(σ).

Proof. We viewm resources as one super resource which can execute up tom jobs per round. The proof then follows
from the optimality of traditional EDF algorithm.

We define amini-round to be an iteration of the reconfiguration and execution phases in a round. We number the
mini-rounds from zero. By definition, there are two (resp., one) mini-rounds in a round in any double-speed (resp.,
uni-speed) algorithm or schedule. We define aslot to be a mini-roundj on a resourcek, identified by slot(k, j). A slot
(k, j) is occupiedif a job is scheduled in mini-roundj and on resourcek. A slot that is not occupied isfree. we define a
columnto be the set of slots in the same mini-round. A column isfull if all slots in the column are occupied, andnonfull
otherwise. Columns are ordered in increasing order of mini-round indices.

For any delay boundp, we defineblocksof delay boundp as follows. For any nonnegative integeri, blocki of delay
boundp, denoted byblock(p, i), is thep rounds starting from roundi · p.

An inputσ is defined to benice if Par-EDF does not incur any drops onσ.

Lemma 3.8 For any nice input sequenceσ, DS-Seq-EDF does not incur any drops onσ.

Proof. The proof proceeds in two steps as follows. First, we construct a double-speed scheduleT that executes all jobs
in σ. Second, we show thatT is a schedule generated by DS-Seq-EDF.

In the first step, we schedule jobs in increasing order of delay bounds. For a certain delay boundp, we schedule jobs
with delay boundp block by block. For a certain block ofp, we schedule jobs with delay boundp in the consistent order
of colors mentioned above. We now describe the scheduling process for any delay boundp, any blocki of p, and any
color ` with delay boundp. Let X be the set of color̀ jobs that arrive inblock(p, i). First, we pick the first|X| nonfull
columns. Second, in each of the columns picked in the first step, we pick an arbitrary free slot. Third, we scheduleX in
the|X| slots picked in the second step.

We need to show that there are at least|X| nonfull columns while we scheduleX. By definition of rate-limited
[∆ | 1 | D` | D`], |X| ≤ p, hence it is sufficient to show that at leastp nonfull columns while we scheduleX, which we
prove as follows. LetS be the schedule generated by Par-EDF onσ. Sinceσ is a nice schedule, all jobs that arrive in
block(p, i) are executed byS. SinceT is a double-speed schedule, the number of slots inblock(p, i) in T is twice that
in S. Hence, the number of slots inblock(p, i) in T is at least twice the number of jobs that arrive inblock(p, i). Hence
at least half of the columns, that is, at leastp columns, are nonfull while we scheduleX.

In the second step, we show thatT is a schedule generated by DS-Seq-EDF as follows. Since all delay bounds are
powers of2, the increasing order of delay bounds agrees with the increasing order of deadlines. Hence, the ranking of
nonidle eligible colors agrees with the increasing order of delay bounds. By the construction ofT , in each mini-round, a
job of color` is not scheduled until one job of each nonidle eligible color is scheduled that has a larger delay bound or has
same delay bound and precedes` in the consistent order of colors. Hence,T is a schedule generated by DS-Seq-EDF.

Lemma 3.9 For any input sequenceσ and any subsequenceα of σ, if DS-Seq-EDF executesj jobs when operated on
α, then DS-Seq-EDF executes at leastj jobs when operated onσ.

Proof. Let β = σ \ α. We sort jobs inβ in increasing order of arrival time, breaking ties arbitrarily. We defineγ0 = α.
For0 ≤ i < |β|, we defineβi to be jobi in β andγi+1 = γi ∪ {βi}. By definition,σ = γ|β|.

In the following, we prove the lemma by showing that, for anyi such that0 ≤ i < |β|, |Xi| ≤ |Xi+1|, whereXi is
the set of jobs executed by DS-Seq-EDF when operated onγi. If βi 6∈ Xi+1, Xi+1 = Xi. Otherwise,|Xi \Xi+1| ≤ 1.
In either case,|Xi| ≤ |Xi+1|. This completes the proof and the lemma follows.

Corollary 3.1 For any input sequenceσ, DropCostDS-Seq-EDF(σ) ≤ DropCostPar-EDF(σ).

Proof. If σ is nice, the corollary follows immediately from Lemma 3.8. Otherwise, we breakσ into two subsequences
α andβ, whereα consists of the jobs executed by Par-EDF onσ, andβ consists of the remaining jobs, that is, the jobs
dropped by Par-EDF onσ. By Lemma 3.8, DS-Seq-EDF does not incur any drops onα. By Lemma 3.9, the number of
jobs executed by DS-Seq-EDF onσ is at least the number of jobs executed by DS-Seq-EDF onα. Hence the corollary
follows.

Lemma 3.10 Consider any input sequenceσ. Let α be the subsequence ofσ that consists of eligible jobs inσ. Then
EligibleDropCost∆LRU-EDF(σ) ≤ DropCostDS-Seq-EDF(α).

7

Proof. Consider∆LRU-EDF and DS-Seq-EDF proceed concurrently. LetXi (resp.,Yi) be the set of pending eligible
jobs in∆LRU-EDF (resp., DS-Seq-EDF) at the beginning of roundi. We show the lemma by proving that for anyi,
Xi ⊆ Yi.

The proof is obtained by induction. For the base case,i = 0. It is obvious thatX0 = Y0 = ∅. The induction step is
as follows. SupposeXi ⊆ Yi, we show in the following thatXi+1 ⊆ Yi+1. Let X ′

i andY ′
i be the set of pending eligible

jobs in∆LRU-EDF and DS-Seq-EDF at the end of the arrival phase in roundi. In the arrival phase of roundi + 1, the
number of newly arrived eligible jobs become pending in both algorithms. This observation, together with the induction
hypothesis thatXi ⊆ Yi, indicates thatX ′

i+1 ⊆ Y ′
i+1. Let color` be any color that is ever configured by DS-Seq-EDF

in roundi + 1. By definition of DS-Seq-EDF, color̀ is among the2m nonidle eligible colors with the best ranks, and
in roundi + 1, DS-Seq-EDF executes up to2 jobs of color`. SinceX ′

i+1 ⊆ Y ′
i+1, in ∆LRU-EDF, unless color̀ is idle

(which indicates all color̀ jobs have been executed), color` is also among the2m nonidle eligible colors with the best
ranks. Sincen = 4m, i.e.,2m = n

4 , by definition of∆LRU-EDF, ∆LRU-EDF configures color̀ in roundi + 1 and
executes2 jobs of color` if there are at least2, and all color̀ jobs otherwise. In roundi + 1, DS-Seq-EDF configures
up to2m distinct colors,∆LRU-EDF configures2m distinct nonidle colors if there are that many, and all nonidle colors
otherwise. Therefore,Xi+1 ⊆ Yi+1.

Proof of Lemma 3.2. Consider any input sequenceσ. Let α be the subsequence ofσ that consists of the eligible
jobs in σ. By Lemma 3.6,DropCostOFF(α) ≤ DropCostOFF(σ). By Lemmas 3.10 and 3.7 and Corollary 3.1,
DropCost∆LRU-EDF(σ) ≤ DropCostOFF(α). Hence, the lemma follows.

3.4 Proof of Lemma 3.5

We define super-epochs as follows. Asuper-epochends the moment that at least2m colors increase their timestamps
since the start of the current super-epoch. A new super-epoch starts when the previous super-epoch ends. Note that the
last super-epoch can end prematurely. For convenience, we number the super-epochs from zero.

We define a color̀ to be ani-active colorif the timestamp of̀ is updated in super-epochi. For anyi-active color̀ ,
any epoch of̀ that overlaps with super-epochi is defined to be ani-active epoch. We define an epoch to bespecialif it
is noti-active for any complete super-epochi. An epoch that is not special isnonspecial.

We attribute jobs to counter wrapping events as follows. For any color` and any roundk that is an integral multiple
of D`, let X be the set of color̀ jobs that arrive in roundk andj be the value of̀ .cnt at the beginning of roundk. If
|X| < ∆ − j, there is no counter wrapping event of color` in roundk; we attribute all jobs inX to the next counter
wrapping event of color̀. Otherwise, there is a counter wrapping event of color` in roundk; we attribute any∆ − j
jobs inX to the counter wrapping event of color` in roundk, and the rest jobs inX to the next counter wrapping event
of color `.

The following lemma follows from the way we update counters, the definition of counter wrapping events, and the
way we attribute jobs to counter wrapping events.

Lemma 3.11 The number of jobs attributed to each counter wrapping event is at least∆.

We define a timestamp update event of color` to be the event that the timestamp of` is updated. We assign credit
to timestamp update events as follows: (1) if color` is i-active and there is a reconfiguration from or to color` in
super-epochi incurred by OFF, we give6∆ units of credit to the first timestamp update event of color` in super-epoch
i; (2) for each reconfiguration from or to a color` incurred by OFF, we give6∆ units of credit to each of the next two
timestamp update events of color`; (3) for any color` job x that is dropped by OFF, we give6 units of credit to the
first timestamp update event of color` subsequent to the counter wrapping event whichx is attributed to, if such events
exists.

The following lemma follows from the way we assign credit.

Lemma 3.12 The total credit associated with timestamp update events over all colors isO(CostOFF(σ)).

Lemma 3.13 For any i-active color`, either ` is cached throughout super-epochi, or there are at least6∆ units of
credit associated with the first timestamp update event of` in super-epochi.

Proof. Let k be the index of the round in which the first timestamp update event of` in super-epochi occurs. Letr be
the index of the round from which super-epochi starts. If at least two counter wrapping events of color` occur before
roundk, we definej to be the index of the round in which the second to last counter wrapping event of` before roundk
occurs. Otherwise, we definej to be0.

8

We first show thatj ≤ r, which we use later in the proof of the lemma. If less than two counter wrapping events
of ` occur before roundk, j = 0 and the claim holds. Otherwise, we show the claim as follows. Letj′ be the index of
the round in which the last counter wrapping event of` before roundk occurs. By the definitions of counter wrapping
events, timestamps, and timestamp update events,j < j′ < k, and the timestamp of̀is updated once between roundj
and roundj′ (including roundj′). Since the first timestamp update event of` in super-epochi occurs in roundk, j ≤ r.

Let V be the time interval between roundj and roundr, which is well-defined by the claim shown above. We
now prove the lemma as follows. If OFF evicts` from the cache or brings̀ into the cache in super-epochi, by credit
assignment rule (1), the first timestamp update event of` in super-epochi gets6∆ units of credit. If OFF keeps̀out of
the cache throughout super-epochi, we consider the following two cases.

• Algorithm OFF evicts̀ out of the cache or brings̀into the cache inV . It is not hard to see that there is at most
one timestamp update event of` in V . Hence, the first timestamp update event of` in super-epochi is either the
first or the second timestamp update events subsequent to any reconfiguration inV . By credit assignment rule (2),
the first timestamp update event of` in super-epochi gets6∆ units of credit.

• Algorithm OFF keeps̀ out of the cache inV . Then OFF keeps̀ out of the cache since roundj till round k.
In this case, all jobs contributed to the last counter wrapping event of` before roundk are dropped by OFF. By
Lemma 3.11 and credit assignment rule (3), the first timestamp update event of` in super-epochi gets at least6∆
units of credit.

Hence, either̀ is either cached throughout super-epochi, or the first timestamp update event of` in super-epochi gets
at least6∆ units of credit.

Lemma 3.14 For any color ` and and integerj, the timestamp of̀ is updated inepoch(`, j), and at the end of
epoch(`, j), the timestamp is at least the start ofepoch(`, j).

Proof. In epoch(`, j), ` starts off ineligible, becomes eligible, and becomes ineligible again, at which pointepoch(`, j)
ends. At the timè becomes eligible, the counter of` is wrapped around. At the timèbecomes ineligible again, the
current deadline of̀ is reached. By definition of the timestamp, the lemma follows.

Lemma 3.15 For any super-epochi and any color̀ , once` has two complete epochs in super-epochi, super-epochi
ends.

Proof. By definition of the timestamp, the value of the timestamp of any color is smaller than current time. Hence, at
the beginning of super-epochi, the timestamp of any color is smaller than the start of super-epochi. By definition of
a super-epoch, at most2m colors increase their timestamps during super-epochi (excluding the end of super-epochi).
Hence, until the end of super-epochi, at most2m colors have timestamps with value at least the start of super-epochi.

Once` has a complete epoch super-epochi, by Lemma 3.14, the timestamp of` is at least the start of super-epoch
i, which indicates̀ is among the2m = n

4 colors with the most recent timestamps. In the second complete epoch` in
super-epochi, when` becomes eligible,̀ is brought into the cache and kept in until the super-epochi ends.

By definition of epochs, at the end of the second complete epoch of` in super-epochi, ` becomes ineligible. Because
a color can only become ineligible when it is out of the cache,` is out of the cache when the second epoch ends, which
means super-epochi has ended. Hence the lemma follows.

The following corollary immediately from Lemma 3.15.

Corollary 3.2 For any color` and any nonnegative integeri, there are at most three epochs of color` that overlap with
super-epochi.

Lemma 3.16 For each color̀ , there are at most three special epochs.

Proof. By Lemma 3.14 and the definition of ani-active epoch, a complete epoch contained in any super-epochi is
i-active. Hence, a special epoch is either incomplete, or overlaps with the incomplete super-epoch. The lemma then
follows from Corollary 3.2 and the fact that there is only one incomplete epoch and one incomplete super-epoch.

Corollary 3.3 For any input sequenceσ such that for each color̀, there are at least∆ color ` jobs inσ, CostOFF(σ)
is at least3∆ times the number of special epochs.

9

Proof. Consider any color̀. If OFF ever configures color̀, OFF incurs a cost of∆. Otherwise, OFF drops all color`
jobs, incurring a cost of at least∆ since there are at least∆ color ` jobs inσ. In either case, OFF incurs at least a cost of
∆ on color` jobs. The corollary then follows from Lemma 3.16.

Lemma 3.17 The total credit associated with the timestamp update events is at least∆ times the number of nonspecial
epochs.

Proof. Let X = {j | super-epochj is complete}. Consider anyi ∈ X. Let ki be the number ofi-active colors. Let
k′i be the number ofi-active colors of which the first timestamp event in super-epochi is assigned at least6∆ units of
credit. Letk′′i be the number ofi-active colors that are cached throughout super-epochi. By Lemma 3.13,ki ≤ k′i + k′′i .
By definition of a super-epoch,ki ≥ 2m. Sincek′′i ≤ m, k′i ≥ 1

2ki, or in other words,

ki ≤ 2k′i. (1)

For any color̀ , let qi,` denote the number ofi-active epochs of color̀ andqi be the number ofi-active epochs.

number of nonspecial epochs≤
∑
i∈X

qi

=
∑
i∈X

∑
`

qi,`

≤ 3
∑
i∈X

ki

≤ 6
∑
i∈X

k′i.

(The first inequality follows from the definition ofi-active epochs and nonspecial epochs. The second equality uses the
definitions ofi-active colors andi-active epochs. The third inequality follows from the definitions ofi-active colors,i-
active epochs and Corollary 3.2. The last inequality uses Equation (1).) Obviously, the total credit is at least6∆

∑
i∈X k′i,

hence the lemma follows.

Lemma 3.5 immediately follows from Corollary 3.3, Lemmas 3.12 and 3.17.

4 Batched Arrivals

In this section, we solve[∆ | 1 | D` | D`], where eachD` is a power of2. This variant is characterized by a fixed
configuration cost∆, a unit drop cost, a per-color delay boundD`, and batched arrivals (jobs with delay boundD` arrive
at integral multiples ofD`).

The solution to this variant uses a reduction to rate-limited[∆ | 1 | D` | D`], which is solved in Section 3.

4.1 Algorithm Distribute

Algorithm Distribute proceeds in three steps. In the first step, given an arbitrary instanceI of [∆ | 1 | D` | D`], where
D` is a power of2, we construct an instanceI ′ of rate-limited[∆ | 1 | D` | D`] as follows. Each color associated withI ′

is characterized by a color` associated withI and a nonnegative integerj, denoted by(`, j). Letσ be the input sequence
associated withI. For any nonnegative integeri, let σi be requesti of σ. For any color̀ , we rank color̀ jobs inσi in
an arbitrary order. For any color` and any color̀ job x in σi, we construct a joby with the same characterization except

the color ofy is (`, j), wherej =
⌊

rank(x)
D`

⌋
andrank(x) is the rank ofx in σi. Let σ′

i be the union of all suchy’s. The

input sequenceσ′ that associates withI ′ is the the concatenation ofσ′
i in increasing order ofi.

In the second step, we use algorithm∆LRU-EDF to obtain a scheduleS′ for I ′.
In the third step, we construct a scheduleS for I from S′ as follows. WheneverS′ configures color(`, j), S

configures color̀ . WheneverS′ executes a job of color(`, j), S executes a job of color̀.
Note that Distribute is an online algorithm.

10

4.2 Analysis

Lemma 4.1 If there exists an offline scheduleT for I, then there exists an offline scheduleT ′ for I ′ that is resource
competitive withT .

Proof. See Section 4.3.

Lemma 4.2 The cost incurred byS is at most that incurred byS′.

Proof. SinceS replaces color(`, j) with color `, the reconfiguration cost incurred byS is at most that incurred byS′.
Since the number of̀ jobs executed byS equals the number(`, j) jobs executed byS′, hence the drop cost incurred by
S equals that incurred byS′. Hence, the lemma follows.

Theorem 2 Algorithm Distribute is resource competitive for[∆ | 1 | D` | D`], where eachD` is a power of2.

Proof. Suppose there exists an offline scheduleT for I. By Lemma 4.1, there exists an offline scheduleT ′ for I ′ that is
resource competitive withT . By Theorem 1, the scheduleS′, that is, the schedule given by algorithm∆LRU-EDF for
I ′, is resource competitive withT ′. By Lemma 4.2, the cost incurred byS, that is, the schedule obtained by algorithm
Distribute forI, is at most that incurred byS′. Hence,S is resource competitive withT and the theorem follows.

4.3 Proof of Lemma 4.1

In this section, we use the definitions of blocks and slots, which are defined in Section 3.3. We sort slots in ascending
order of resource indices and then in ascending order of mini-round indices, where mini-rounds are defined in Section 3.3.

For any scheduleS, any delay boundp and any nonnegative integeri, we define a resourcek to be (S, p, i)-
monochromaticif resourcek is configured with one color throughoutblock(p, i) in S, and (S, p, i)-multichromatic
otherwise. An(S, p, i)-monochromatic resourcek is defined to be(S, p, i, `)-monochromaticif resourcek is configured
with color ` throughoutblock(p, i) in S.

In the following, we introduce an algorithm Aggregate that takes an arbitrary scheduleT as input, and generates a
scheduleT ′ with three times the resources ofT . For convenience, with each resourcek in T , we associate resources3k,
3k + 1, and3k + 2 in T ′, referred to as resource(k, 0), (k, 1), and(k, 2), respectively. We useXp,i andYp,i to denote
the the set of resources that are(T, p, i)-monochromatic and(T, p, i)-multichromatic, respectively. We defineX ′

p,i to be

{resource(k, 0), (k, 1), and(k, 2) | resourcek ∈ Xp,i}

andY ′
p,i to be

{resource(k, 0), (k, 1), and(k, 2) | resourcek ∈ Yp,i}.

We defineMp,i,` to be
{resource(k, 0) | resourcek is (T, p, i, `)-monochromatic}.

For any resource(k, 0) in Mp,i,`, we define itsT -level in block(p, i) to be the largest delay boundq such that resourcek
is (T, q, j)-monochromatic, whereblock(q, j) enclosesblock(p, i). Resources inMp,i,` are ranked in descending order
of T -levels inblock(p, i).

To constructT ′, Aggregate starts with an empty schedule and schedules all jobs executed byT by proceeding in
ascending order of delay bounds. For a certain delay boundp, Aggregate proceeds block by block in increasing order
block indices. For a certain block ofp, Aggregate proceeds in an arbitrary order of colors with delay boundp. Now we
describe Aggregate for any delay boundp, any blocki of p, and any color̀ with delay boundp.

First, we label the resources inMp,i,` from 0 to |Mp,i,`| − 1 as follows. Ifi = 0, we label resources inMp,i,` from
0 to |Mp,i,`| − 1 arbitrarily. Otherwise, for any resourcek such that resource(k, 0) is in bothMp,i,` andMp,i−1,`, we
let resource(k, 0) inherit its label in block(p, i− 1); we then give the remaining labels in[0, |Mp,i,`|) to the remaining
resources inMp,i,`, one label per resource.

Second, we partition the set of color` jobs executed byT in block(p, i) into groups of sizep (one of the groups can
have size less thanp).

Third, we assign groups of color` to the resources inMp,i,` in descending order of group size and in descending
order of resource ranks, one group per resource.

11

Fourth, we determine the schedule of resources inMp,i,` in block(p, i) as follows. For any resource(k, 0) in Mp,i,`

to which we assign a groupU , we execute|U | color (`, j) jobs continuously on resource(k, 0) in block(p, i), and then
mark all slots on resource(k, 0) in block(p, i) as occupied, wherej is the label we give to resource(k, 0) for block(p, i)
in the first step.

Fifth, we setq = |Mp,i,`|. While there is at least one group not assigned yet, we perform the following steps.

1. We pick an arbitraryk such that resource(k, 0), (k, 1) and(k, 2) are inY ′
p,i and there are at leastp free slots in

block(p, i) on them (we will show suchk exists in Lemma 4.4).

2. LetU be the group not assigned with the largest size (breaking ties arbitrarily). We assignU to resource(k, 0),
(k, 1) and(k, 2), execute|U | color (`, q) jobs in the first free|U | slots inblock(p, i) on resource(k, 0), (k, 1) and
(k, 2), and incrementq.

Lemma 4.3 The scheduleT ′ is a schedule forI ′.

Proof. By the construction ofI ′ andT ′, it is not hard to see that the jobs executed byT ′ is a subset of the jobs inσ′, the
input associated withI ′. Hence the lemma follows.

Lemma 4.4 For any delay boundp and any nonnegative integeri, while algorithm Aggregate works on the schedule of
jobs with delay boundp in block(p, i), there existsk such that resource(k, 0), (k, 1) and(k, 2) are inY ′

p,i and there are
at leastp free slots inblock(p, i) on these three resources.

Proof. We fix our attention on the process of scheduling jobs with delay boundp in block(p, i).
First, we show that all jobs scheduled toblock(p, i) in or before this process are executed inblock(p, i) in T . To

see that, we observe that (1) for any delay boundq and any nonnegative integerj, all jobs of delay boundq scheduled
to block(q, j) are executed inblock(q, j) in T ; (2) in or before this process, only jobs of delay bound at mostp are
scheduled. The claim follows from these two observations, and the fact that each delay bound is a power of2.

Second, we show that the number of jobs we schedule on resources inX ′
p,i in block(p, i) is at least that executed on

resources inXp,i in block(p, i) in T . It is obvious that the claim holds for jobs with delay boundp. It remains to show the
claim for jobs with delay bound less thanp. Let q be any delay bounds less thanp. Let j be any nonnegative integer such
thatblock(q, j) ⊂ block(p, i). Let color` be any color with delay boundq. Let r be the number of color̀ jobs arrive in
block(q, j). We defineXq,j,` to be the(T, q, j, `)-monochromatic resource. By the way we schedule color` jobs, we fill
resources inMq,j,` with color` jobs in descending order ofT -levels inblock(q, j). By definitions ofT -levels, theT -level
of any resource inMq,j,` ∩X ′

p,i in block(q, j) is greater than that of any resource inMq,j,` ∩ Y ′
p,i in block(q, j). Hence,

the number of color̀ scheduled on resources inMq,j,` ∩X ′
p,i in block(q, j) is min

(
q ·

∣∣Mq,j,` ∩X ′
p,i

∣∣ , r
)
. It is easy to

see that the number of color` scheduled on resources inXq,j,`∩Xp,i in block(q, j) is at mostmin (q · |Xq,j,` ∩Xp,i| , r).
By definition ofXp,i, X ′

p,i, Mq,j,`, andXq,j,`, |Xq,j,` ∩Xp,i| =
∣∣Mq,j,` ∩X ′

p,i

∣∣. Hence, the number of color̀jobs
scheduled on resources inMq,j,`∩X ′

p,i in block(q, j) is at least that executed on resources inXq,j,`∩Xp,i in block(q, j)
in T . By definition ofXp,i, Xq,j,`, and the fact that color̀is associated with delay boundq, no color` jobs are executed
on resources inXp,i \Xq,j,` in block(q, j). Hence, the claim holds for color` jobs inblock(q, j). Summing up over all
`’s, j’s andq’s, the claim follows.

From the above two steps, we conclude that the number of jobs scheduled inY ′
p,i in block(p, i) is at most that

executed inYp,i in block(p, i) in T , that is, the number of jobs scheduled inY ′
p,i in block(p, i) is at mostp · |Yp,i|. Since

the total number of slots that are marked as occupied inY ′
p,i is at least thep ·

∣∣Y ′
p,i

∣∣, and
∣∣Y ′

p,i

∣∣ = 3 |Yp,i|, we obtain that
at least13 of the slots inY ′

p,i are free. Hence the lemma follows.

Lemma 4.5 The drop cost incurred byT ′ is the same as that incurred byT .

Proof. It is sufficient to show that, for any delay boundp and nonnegative integeri, the jobs of delay boundp executed
by T in block(p, i) are executed byT ′. By Aggregate, we intend to schedule all jobs of delay boundp executed byT in
block(p, i), it is sufficient to show that whenever we schedule a group of jobs of delay boundp, there are enough slots
in the target resources. It is not hard to see that the jobs of delay boundp scheduled toX ′

p,i can find enough slots in the
target resources. By Lemma 4.4, we conclude that the jobs of delay boundp scheduled toY ′

p,i can find enough slots in
the target resources, too. Hence, the lemma follows.

Lemma 4.6 The reconfiguration cost incurred byT ′ is at most a constant factor of that incurred byT .

12

Proof. We define a reconfiguration inT ′ to be aspecial reconfigurationif the reconfiguration is made on the boundary
of block(p, i) on resources inMp,i,`, for anyp, i and`. For any groupU of jobs with delay boundp that are executed in
block(p, i), we defineU to be a(p, i)-multichromatic group ifU is assigned to resources inY ′

p,i.
We first bound the cost incurred by special reconfigurations. Fix an arbitrary delay boundp and a nonnegative

integeri. We consider special reconfigurations on the boundary betweenblock(p, i) andblock(p, i + 1). It is not hard to
verify that if resourcek is (T, p, i, `)-monochromatic, then resource(k, 0) is (T ′, p, i, (`, j))-monochromatic, for some
nonnegative integerj. Hence, it is sufficient to bound the reconfiguration cost incurred byT due to the relabeling of
resources in∪`Yp,i,`, whereYp,i,` is the set of resources that are in bothMp,i,` andMp,i+1,`. Fix any color`. Let
rp,i,` be the number of(T, p, i, `) resources. Letqp,i,` be the number of(T, p, i, `) resources with labels at leastrp,i+1,`

in block(p, i). It is not hard to verify that the number of resources inYp,i,` that change labels fromblock(p, i) to
block(p, i+1) is at mostqp,i,`, which is in turn at mostmax(0, rp,i,`−rp,i+1,`). Summing up over all̀’s, we obtain that
the number of resources that change labels fromblock(p, i) to block(p, i + 1) is at most the number of reconfigurations
on the boundary betweenblock(p, i) andblock(p, i + 1) in T . Summing up over allp’s andi’s, the cost incurred by
special reconfigurations is at most the reconfiguration cost incurred byT .

We then bound the cost incurred by nonspecial reconfigurations in the following three steps. First, we associate
6∆ units of credit with each reconfiguration inT . Second, we show that we can spread the credit so that each(p, i)-
multichromatic group gets6∆ units of credit, for any delay boundp and any nonnegative integeri, as follows. By
the way we form groups and the fact that we can execute at mostp jobs on a resource inblock(p, i), the number of
(T, p, i)-multichromatic resources is at least the number of(p, i)-multichromatic groups. Since there is at least one
reconfiguration on each(T, p, i)-multichromatic resource inblock(p, i), hence the claim follows. Third, we show that
the cost incurred by nonspecial reconfigurations can be bounded by the total credit associated with the multichromatic
groups as follows. For each multichromatic groupU of jobs with delay boundp that are executed inblock(p, i), we
use2∆ units of credit to pay for the reconfigurations at the beginning and end ofU in T ′, and4∆ to pay for the
reconfigurations caused by the wrapping around when the end ofblock(p, i) is encountered while schedulingU . Hence
the cost incurred by nonspecial reconfigurations inT ′ is within a constant factor of the reconfiguration cost incurred by
T .

Hence, the lemma follows.

Lemma 4.1 follows from Lemmas 4.3, 4.5, and 4.6.

5 Our Main Result

In this section, we solve[∆ | 1 | D` | 1], which is characterized by a fixed configuration cost∆, a unit drop cost,
per-color delay boundD`, and non batched arrivals (requests can arrive at any round).

To simplify the presentation, we focus on the special case where eachD` is a power of2. The special case is solved
by a reduction to[∆ | 1 | D` | D`], which is solved in Section 4. For any color` such thatD` = 1, jobs of color` are
already batched. Hence, throughout this section, we assumeD` > 1, for any color`. Section 5.1 and Section 5.2 give
the algorithm and analysis for the reduction, respectively. In Section 5.3, we comment on how to extend our solution for
the special case to arbitrary delay bounds.

5.1 Algorithm VarBatch

For any delay boundp, we definehalf-blocksof delay boundp as follows. For any nonnegative integeri, half-blocki of
delay boundp, denoted byhalfBlock(p, i), is thep

2 rounds starting from roundi · p
2 .

Algorithm VarBatch takes an input sequenceσ for [∆ | 1 | D` | 1], where eachD` is a power of2, and proceeds in
the following two steps. First, we construct an inputσ′ for [∆ | 1 | D`

2 | D`

2] by delaying any jobx of delay boundp that
arrives inhalfBlock(p, i) until halfBlock(p, i + 1), and restricting the execution ofx to halfBlock(p, i + 1). Second, we
apply algorithm Distribute onσ′ to obtain the final schedule.

Note that algorithm VarBatch is an online algorithm.

5.2 Analysis of VarBatch

Consider any delay boundp and any jobx of delay boundp. Let x arrive inhalfBlock(p, i). We say the execution ofx
is early if x is executed inhalfBlock(p, i), punctualif x is executed inhalfBlock(p, i + 1), andlate if x is executed in

13

halfBlock(p, i + 2). We define a scheduleS to beearly (resp.,late) if all job executions inS are early (resp., late). We
define a scheduleS to bepunctualif all job executions inS are punctual.

Lemma 5.1 For any input sequenceσ and any early offline scheduleS with reconfiguration costC and one resource,
there exists a punctual scheduleS′ that executes all jobs executed byS with three resources and incurs a reconfiguration
cost ofO(C).

Proof. GivenS, we constructS′ in the following three steps. First, we identify a set of jobs asspecialjobs as follows.
For any delay boundp, any color̀ with delay boundp and any nonnegative integeri, if color ` is configured throughout
halfBlock(p, i) andhalfBlock(p, i + 1) in S, we label all color̀ jobs executed inhalfBlock(p, i) in S as special.

Second, we schedule special jobs on resource0 as follows. For any color̀ and special jobx of color ` executed in
roundj in S, we executex in roundj + D`

2 on resource0 of S′.
Third, we determine the schedule of nonspecial jobs on resource1 and2 in ascending order of delay bounds. For

any delay boundp and any nonnegative integeri, we determine the schedule of nonspecial jobs of delay boundp in
halfBlock(p, i) in an arbitrary order of colors as follows. For any color` with delay boundp, let X` be the set of
nonspecial jobs of color̀ executed inhalfBlock(p, i) in S. We schedule jobs inX` in the first free slots on resource1
and2 in halfBlock(p, i + 1), where slots are defined in Section 3.3.

We need to show the following properties ofS′: (1) all job executions inS′ are punctual; (2) the drop cost incurred
by S′ is the same as that incurred byS; (3) the reconfiguration cost incurred byS′ is at most a constant factor that
incurred byS.

By the way we schedule jobs inS′, for any delay boundp and nonnegative integer integeri, any job of delay bound
p executed inhalfBlock(p, i+1) in S′ arrives in blockhalfBlock(p, i). By definition of punctual executions and the fact
thatS is an early schedule, all job executions inS′ are punctual, that is, (1) holds.

To show (2), it is sufficient to show that any job executed byS is executed byS′. It is straightforward that any special
job executed byS is executed byS′. In the following, we show that any nonspecial jobs executed byS is executed by
S′. It is not hard to verify that, for any delay boundp and any nonnegative integeri, nonspecial job scheduled in
halfBlock(p, i + 1) in S′ are executed inhalfBlock(p, i) or halfBlock(p, i + 1) in S, hence with two resources, we can
execute all nonspecial job scheduled tohalfBlock(p, i + 1) in S′. Summing up over allp’s andi’s, we obtain that any
nonspecial job executed byS is executed byS′. Therefore, (2) follows.

It is straightforward that the reconfiguration cost incurred on resource0 of S′ is at most the reconfiguration cost
incurred byS. Now we show how to bound the reconfiguration cost incurred on resource1 and 2 of S′ with the
accounting method in the following three steps. First, we associate12∆ units of credit with each reconfiguration in
S. Second, we show that we can spread the credit such that each group gets at least4∆ units of credit, where a group
is a continuous sequence of nonspecial jobs of the same color` in a half-block ofD` in S, as follows. For each
reconfiguration from color̀ to color `′ on a resourcek, we give4∆ units of credit to the group of color̀′ scheduled
on resourcek immediately after the reconfiguration inblock(D`′ , j); we give4∆ units of credit to the group of color̀
scheduled on resourcek immediately before the reconfiguration inblock(D`, i); we give4∆ units of credit to the last
group of color` scheduled on resourcek in block(D`, i − 1); where the reconfiguration incurs inblock(D`, j) and in
block(D`′ , j). Third, we show that the total credit associated with the groups can pay for the reconfiguration cost on
resource1 and2 in S′ as follows. For each groupU of color`, we use2∆ units of credit to pay for the beginning and end
of U in S′, and2∆ to pay for the reconfigurations caused by the wrapping around when the end of the current half-block
of D` is encountered while schedulingU . Hence, (3) follows.

Therefore, the lemma follows.

The following lemma can be proved with a proof similar to that for Lemma 5.1 and hence omitted here.

Lemma 5.2 For any input sequenceσ and any late offline scheduleS with costC and one resource, there exists a
punctual scheduleS′ that executes all jobs executed byS with three resources and incurs a reconfiguration cost of
O(C).

Lemma 5.3 For any inputσ for [∆ | 1 | D` | 1] and any offline scheduleS for σ, there exists a punctual scheduleS′

that is resource competitive withS.

Proof. SupposeS usesm resources. Consider any integerk such that0 ≤ k < m. Let Sk denote the schedule of
resourcek in S. Let Ck denote the cost incurred bySk. Let Sk,0, Sk,1, andSk,2 denote the schedule obtained by
retaining only the early, punctual, and late executions inSk, respectively. Obviously, the reconfiguration cost incurred
by each ofSk,0, Sk,1, andSk,2 is at mostCk.

14

By Lemma 5.1, there exists a punctual scheduleS′
k,0 that executes all jobs executed bySk,0 with three resources

and incurs a reconfiguration cost ofO(Ck). By Lemma 5.2, there exists a punctual scheduleS′
k,2 that executes all jobs

executed bySk,2 with three resources and incurs a reconfiguration cost ofO(Ck). Hence, all jobs executed bySk are
executed byS′

k,0, Sk,1 andS′
k,2, and the total reconfiguration cost incurred byS′

k,0, Sk,1, andS′
k,2 areO(Ck).

Given 7m resources, we constructS′ as follows. We use resources7k to 7k + 6 to execute the jobs executed on
resourcek in S. We useS′

k,0 in resources from7k to 7k + 2, Sk,1 in resources7k + 3, S′
k,2 in resources from7k + 4 to

7k + 6. By the above argument, all jobs executed inSk are executed on resources from7k to 7k + 6 in S′, and the total
reconfiguration cost incurred byS′ on resources from7k to 7k + 6 areO(Ck). Summing up over allk’s, the lemma
follows.

Theorem 3 Algorithm VarBatch is resource competitive for[∆ | 1 | D` | 1].

Proof. Consider any inputσ for [∆ | 1 | D` | 1]. Suppose there exists an offline scheduleS for σ with costC andm
resources. By Lemma 5.3, there exists a punctual scheduleS′ for σ with costO(C) andO(m) resources. Letσ′ be a
request sequence obtained by delaying the arrival of each jobx of delay boundp that arrives inhalfBlock(p, i) in σ until
halfBlock(p, i + 1) and restricting the execution ofx to halfBlock(p, i + 1). SinceS′ is punctual, there exists an offline
scheduleS′′ for σ′ that behaves exactly asS′.

The sequenceσ′ can be viewed as an input sequence for[∆ | 1 | D`

2 | D`

2]. By Theorem 1, algorithm Distribute
is resource competitive for[∆ | 1 | D`

2 | D`

2]. Hence, algorithm Distribute generates an online scheduleT for σ′ that
is resource competitive withS′′. Therefore,T incurs costO(C) with O(m) resources. Forσ, algorithm VarBatch first
transformsσ into σ′ by delaying the job arrivals and then applies algorithm Distribute to generate scheduleT for σ′.
The scheduleT is also the final schedule forσ.

In summary, for any inputσ for [∆ | 1 | D` | 1], if there exists an offline scheduleS for σ with costC andm
resources, algorithm VarBatch generates a scheduleT for σ with costO(C) andO(m) resources. Therefore, algorithm
VarBatch is resource competitive for[∆ | 1 | D` | 1].

5.3 Extension to Arbitrary Delay Bounds

The extension of our solution to arbitrary delay bounds is straightforward. The basic idea is as follows: for any delay
boundp such that2j ≤ p < 2j+1, and any jobx with delay boundp that arrives inhalfBlock(2j−1, i), we delay the
arrival of x until halfBlock(2j−1, i + 1) and restrict the execution ofx in halfBlock(2j−1, i + 1). The proof of the
extended solution is similar as given in Section 5.2.

References

[1] A. Borodin and R. El-Yaniv.Online Computation and Competitive Analysis. Cambridge University Press, Cam-
bridge, 1998.

[2] P. Brucker.Scheduling Algorithms. Springer-Verlag, Berlin, 2001.

[3] P. Brucker, M. Y. Kovalyov, Y. M. Shafransky, and F. Werner. Batch scheduling with deadlines on parallel machines.
Annals of Operation, 83:23–40, 1998.

[4] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for shared data centers using online mea-
surements. InProceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pages 300–301, June 2003.

[5] J. S. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy and server resources in hosting
centers. InProceedings of the 18th ACM Symposium on Operating Systems Principles, pages 103–116, October
2001.

[6] M. Dertouzos. Control robotics: The procedural control of physical processors. InProceedings of the IFIP
Congress, pages 807–813, 1974.

[7] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.Journal of the ACM, 47:617–643, 2000.

15

[8] R. Kokku. ShaRE: Run-time System for High-performance Virtualized Routers. PhD thesis, Department of Com-
puter Science, University of Texas at Austin, August 2005.

[9] R. Kokku, T. Rich́e, A. Kunze, J. Mudigonda, J. Jason, and H. Vin. A case for run-time adaptation in packet
processing systems.ACM SIGCOMM Computer Communication Review, 34:107–112, 2004.

[10] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.Journal of
ACM, 20:46–61, 1973.

[11] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead replacement cache. InProceedings of the 2nd
USENIX Conference on File and Storage Technologies, pages 115–130, 2003.

[12] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replacement algorithm for database disk buffering.
In Proceedings of ACM SIGMOD, pages 297–306, May 1993.

[13] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmentation.Algo-
rithmica, pages 163–200, 2002.

[14] C. G. Plaxton, Y. Sun, M. Tiwari, and H. Vin. Reconfigurable resource scheduling. InProceedings of 18th ACM
Symposium on Parallelism in Algorithms and Architectures, July/August 2006. To appear.

[15] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.Communications of the ACM,
28:202–208, 1985.

[16] T. Spalink, S. Karlin, L. L. Peterson, and Y. Gottlieb. Building a robust software-based router using network
processors. InProceedings of the 18th ACM Symposium on Operating Systems Principles, pages 216–229, October
2001.

[17] A. Srinivasan, P. Holman, J. Anderson, S. K. Baruah, and J. Kaur. Multiprocessor scheduling in processor-based
router platforms: Issues and ideas. InProceedings of the 2nd Workshop on Network Processors, February 2003.

[18] H. Vin, J. Mudigonda, J. Jason, E. J. Johnson, R. Ju, A. Kunze, and R. Lian. A programming environment for
packet-processing systems: Design considerations. InProceedings of the 3rd Workshop on Network Processors
and Applications, February 2004.

A Analysis of ∆LRU

In this section, we show that∆LRU is not constant competitive even with a nonconstant factor blowup in the number of
resources.

Let OFF denote an arbitrary offline algorithm. We give OFF one resource (the argument can be easily extended to
the general case that OFF has more than one resource). Recall that we give∆LRU n resources. Considern2 colors with
a delay bound2j and one color with a delay bound2k, where2k > 2j+1 > n∆. For convenience, we refer to each
color with a delay bound2j as a short-term color and the color with a delay bound2k as a long-term color. The input
sequence proceeds in2k rounds as follows. We receive∆ jobs for each of the short-term color every integral of2j , and
2k jobs for the long-term color at the very beginning.

It is not hard to verify that the timestamp of any short-term color is always at least as recent as that of the long-term
color. Hence,∆LRU caches all short-term colors at the beginning of the second integral of2j and then keeps the same
configuration afterwards. The reconfiguration cost incurred by∆LRU is n∆. The drop cost incurred by∆LRU is at
least2k.

Consider an offline algorithm OFF that caches the long-term color throughout. The reconfiguration cost incurred by
OFF is∆. The drop cost incurred by OFF is2k−j−1n∆. Hence, the competitive ratio of∆LRU is at least

n∆ + 2k

∆ + 2k−j−1n∆
.

Because2k > 2j+1 > n∆, we obtain that the competitive ratio isΩ(2j+1

n∆), which is not a constant whenj is sufficiently
large.

16

B Analysis of EDF

In this section, we show that EDF is not constant competitive even with a nonconstant factor blowup in the number of
resources.

Let OFF denote an arbitrary offline algorithm. We give OFF one resource (the argument can be easily extended to
the general case that OFF has more than one resource). Recall that we give EDFn resources. We considern

2 + 1 colors
as follows: a color with a delay bound2j , a color with a delay bound2k, a color with a delay bound2k+1, . . ., and a
color with a delay bound2k+ n

2 −1, where2k > 2j > ∆ > n. The input sequence proceeds in2k+ n
2 −1 rounds as follows.

For the color with a delay bound of2j , we receive∆ jobs for each integral multiple of2j , until round2k−1. For a color
with a delay bound of2k+p, for 0 ≤ p < n

2 , we receive2k+p−1 jobs at the very beginning.
For the above input sequence, EDF first caches then

2 color with the smallest delay bounds, and then executes jobs
for the color with the largest delay bound whenever any resource becomes idle. The reconfiguration cost incurred by
EDF is at least2k−j−1∆.

Consider an offline algorithm OFF that caches the color with a delay bound of2j throughout rounds from0 to
2k−1−1, and caches the color with a delay bound of2k+p throughout rounds from2k+p−1 to2k+p−1, where0 ≤ p < n

2 .
Algorithm OFF does not incur any drop cost and incurs a reconfiguration cost of

(
n
2 + 1

)
∆.

Hence the competitive ratio of EDF is at least2k−j−1

n
2 +1 , which is not a constant ifk − j is sufficiently large.

17

